
Journal of Computational and Applied Mathematics 234 (2010) 2562–2577

Contents lists available at ScienceDirect

Journal of Computational and Applied
Mathematics

journal homepage: www.elsevier.com/locate/cam

Study of a finite element method for the time-dependent generalized
Stokes system associated with viscoelastic flow
J.H. Carneiro de Araujo a,b, P.D. Gomes b, V. Ruas b,c,∗
a Departamento de Ciência da Computação, Universidade Federal Fluminense, Niterói, Rio de Janeiro state, Brazil
b Programa de Pós-Graduação em Ciência da Computação, Universidade Federal Fluminense, Niterói, Rio de Janeiro state, Brazil
c UPMC Univ. Paris 6, UMR 7190, Institut Jean Rond d’Alembert/ CNRS, Paris, France

a r t i c l e i n f o

Article history:
Received 28 August 2009
Received in revised form 25 February 2010

Keywords:
Explicit solution
Finite elements
Piecewise linear
Stokes system
Three-field methods
Time-dependent
Viscoelastic flows

a b s t r a c t

A three-field finite element scheme designed for solving systems of partial differential
equations governing time-dependent viscoelastic flows is studied. Once a classical
backward Euler time discretization is performed, the resulting three-field system of
equations allows for a stable approximation of velocity, pressure and extra stress tensor, by
means of continuous piecewise linear finite elements, in both two- and three- dimensional
space. This is proved to hold for the linearized form of the system. An advantage of the new
formulation is the fact that it provides an algorithm for the explicit iterative resolution of
system nonlinearities. Convergence in an appropriate sense applying to these three flow
fields is demonstrated.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

The numerical simulation of the flow of viscoelastic liquids is known to be a delicate problem in many respects. First
of all, the models most frequently in use involve three strongly coupled fields, namely, the velocity u, the pressure p and
the extra stress tensor σ . Furthermore the highly nonlinear system of partial differential equations that govern this kind of
flow may change type, according to different parameters or flow conditions. Nevertheless in the past two decades a lot of
progress has been accomplished in deriving numerical methodology in order to overcome such difficulties.
As far asmulti-field finite elementmethods suitable for treating this class of problems in a reliableway are concerned, the

work of Fortin and collaborators (see e.g. [1]), incorporating a fourth field, namely, the strain rate tensor, is among the most
outstanding contributions in this direction. In particular it significantly advanced the numerical simulation of viscolelastic
fluid flow in three-dimensional space, which became more widespread in the past decade (cf. [2]). As for the numerical
analysis of finite element methods for the complete set of equations governing viscoelastic flows, the contribution of
Baranger and Sandri (see e.g. [3]) is themain reference.More recently Codina [4] adopted an interesting stabilizing technique
for the equal order finite element approximation of the three-field Stokes system, using sub-scales. Confining their analysis
to the linearized case, the authors Carneiro de Araujo and Ruas themselves attempted to bring about valid alternatives to
study this class of problems,mostly in the two-dimensional case. Thiswas achieved throughdrastic reductions of thenumber
of degrees of freedom necessary to obtain reliable approximations (cf. [5]) as compared to other methods in use of the same
order (cf. [6]). However in the framework of three-dimensional flows, such an approach is not satisfactory, since the final
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number of degrees of freedom remains excessively high anyway. That is why the third author also worked on three-field
methods using u− σ stabilizing techniques, in order to reduce the number of extra-stress degrees of freedom [7]. The key
to this approach is a Galerkin least square formulation proposed and exploited by Franca, Stenberg and collaborators in the
mid-eighties (cf. [8,9]).
As far as time-dependent viscolelastic flow is concerned, the numerical analysis of classical time-marching schemes

combined with velocity–pressure mixed finite elements suitable for treating incompressible flow were first reported in the
mid-nineties (cf. [10,11]). Some other works on this topic have appeared in the past decade, such as [12–15]. Very recent
papers [16,17] by Chrispell, Ervin and Jenkins based on the θ-method for the time-integration, combined with Taylor–Hood
elements and a SUPG treatment of advective terms supply analyses of the full nonlinear time-dependent systemof equations
governing viscoelastic flow. However, as we should point out, most of those works avoided the crucial issue of extra stress
vs. velocity numerical stability. This was achieved by considering only models incorporating a purely viscous term in the
constitutive law, such as Oldroyd’s or Johnson-Segalman’s model (cf. [18]). It should also be stressed that the same works
overlooked error estimates for the pressure, even though this is an essential point to ensure reliability of the flow simulation.
Nevertheless, since handling system nonlinearities is a challenge that any numerical methodology must be able to take up
efficiently, it can be asserted that the series of works quoted above provided decisive contributions to the simulation of time
dependent viscolelastic flow.
Keeping in mind some limitations of the above work pointed out in the previous paragraph, in [19,20] the authors

studied a stabilization technique applied to the three-field scheme, based on time integration for solving stationary or
time-dependent viscoelastic flow equations in both two- and three-dimensional space. The study was carried out for the
time-dependent three-field Stokes system obtained through linearization of the system governing viscolelastic flow, even
for stationary problems. Indeed in this case time integration is purely fictitious and plays the role of an iterative solution
method. It was shown in [21,20] that such iterations combined with standard piecewise linear representations of the three
fields, give rise to convergent approximations when applied to the stationary Stokes problem as a linearized form of the
stationary Navier–Stokes equations and the viscoelastic flow equations, respectively. Actually a fundamental ingredient
of our numerical strategy described below is aimed at overcoming simultaneously both the difficulties mentioned at the
beginning of this Section. More specifically the splitting algorithm in use allows the solution of the three-field system at
every time step in an explicit manner, as far as the velocity and the extra stress tensor are concerned, for a time step of
the same order as the mesh step size. The pressure in turn is determined as the solution of a consistent pressure Poisson
equation, following ideas already exploited by Goldberg & Ruas [22].

2. Maxwell flow equations

Although the techniques to be developed hereafter extend in a straightforward manner to the case of a wide spectrum
of viscolelastic constitutive laws, we consider as a model the case of Maxwell fluids. This choice is due to the fact that, in
principle, Maxwell models require extra stress–velocity compatible representations. Let Ω be a bounded domain of RN ,
N = 2 or 3, with boundary ∂Ω . Under the action of volumetric forces f, we consider the evolution in time t of the flow inΩ
of a viscoelastic liquid obeying a constitutive law of the differential type. Throughout this work we assume that the velocity
of the liquid is prescribed on ∂Ω , say u = g, where g satisfies the conservation property

∫
∂Ω

g(., t) · Eνds = 0 ∀t, Eν being
the unit outer normal vector on ∂Ω . Moreover without any loss of essential aspects, just to simplify the presentation, we
consider a constitutive law of the upper convected type, which relates the extra stress tensor to the velocity in the following
manner:

σ + λ

[
∂ σ

∂ t
+ (u · ∇) σ − (∇u)σ − σ(∇u)T

]
= 2ηD(u). (1)

In (1) λ is the stress relaxation time of the liquid and η is its reference viscosity, both assumed to be constant;∇ represents
the gradient of a scalar or a vector valued function and D(u) denotes the strain rate tensor, i.e., D(u) := 1

2

[
∇u+ (∇u)T

]
.

Then given a solenoidal velocity u0 and an extra stress σ 0 at time t = 0, for t > 0, in addition to the law (1), the flow is
governed by the following system:

∂ u
∂ t
+ (u · ∇)u−∇ · σ +∇p = f

∇ · u = 0

 inΩ × (0, T ) (2)

where T is a given time and the density of the liquid is assumed to be equal to one.
In [21] we treated the steady state case. In this work wewill be concerned with the search for time-dependent solutions.

Therefore contrary to [21] we treat the case where both f and g depend on t .
Nowwe consider the following semi-implicit discretization in time of system (1)–(2). LetM be a strictly positive integer

and∆t = T/M be a time step. We denote by un, pn and σ n the approximations of u(n∆t), p(n∆t) and σ(n∆t), respectively,
for a strictly positive integer n. Setting fn(.) = f(., n∆t) and gn(.) = g(., n∆t) for n = 0, 1, 2, . . . ,M , starting from u0 and
σ 0, and prescribing un = gn on ∂Ω for every n, un, pn and σ n for n = 1, 2, . . . ,M , are determined as the solution of the
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following system inΩ:
un − un−1

∆t
+ (un−1 · ∇)un−1 −∇ · σ n +∇pn = fn

∇ · un = 0

σ n + λ

[
σ n − σ n−1

∆t
+ (un−1 · ∇)σ n−1 − (∇un−1)σ n−1 − σ n−1(∇un−1)T

]
= 2ηD(un).

(3)

As one can easily infer, (3) is a linear problem for every n. Actually assuming moderate velocities and velocity gradients, the
nonlinear termsmay be neglected. In this case we can legitimately linearize (1)–(2) into the system governing the very slow
flow of a viscoelastic fluid of the Maxwell type. For the sake of conciseness we introduce our methodology in the context of
the following generalized Stokes system, derived from the linearization of the equations that govern the flow of a Maxwell
viscolelastic liquid (cf. [6]), namely:
From a given state at time t = 0 defined by a given solenoidal velocity u0 and an extra stress tensor σ 0, for t > 0 find

u, p, σ that solve the following system, with u = g on ∂Ω × (0, T ):
∂u
∂t
−∇ · σ +∇p = f

∇ · u = 0

σ + λ
∂σ

∂t
= 2ηD(u)

 inΩ × (0, T ). (4)

Remark. Strictly speaking, in order to ensure objectivity (cf. [23]), system (4) should hold only for a Lagrangian description
of the motion. This means that in practice it can also be viewed as a system governing small deformations of a Maxwell
viscoelastic solid.

3. Time discretization and splitting algorithm

Splitting algorithms based on projections onto spaces of solenoidal fields were first proposed by Chorin [24] and
Temam [25]. They have since proved to be an efficient tool to solve the incompressible Navier–Stokes equations. One of
its main features is handling the two primitive variables, velocity and pressure, in an uncoupledmanner. Another important
advantage of this kind of approach is that, at least in some versions, it allows for the use of the simplest possible space
discretizations for both variables without affecting numerical stability. This property was exploited by many authors (cf.
[26] for example). However the main drawback of projection algorithms as reported by different authors (see e.g. [27])
remained a persistent numerical inconsistency in the versions most widely in use. This is especially true of those employing
a pressure Poisson equation with unphysical Neumann boundary conditions. In [22] an alternative to this pressure solver
aimed at overcoming such a difficulty was proposed. The basic idea was the computation of a post-processed pressure at
each time step from the available velocity, by a least-square approach, using themomentum equation. The numerical results
certified a considerable improvement of the thus corrected pressure, as compared to the one obtained in a classical way, at
least for Reynolds numbers that were not very low. Indeed, the fact that the viscous term was systematically purged from
the true boundary conditions for the corrected pressure equation, caused a more significant loss of accuracy the lower the
Reynolds number was (cf. [22]). This is because second order derivatives are not computable with classical Lagrangian finite
elements. Although remedies to this problem were proposed and tested in [28], a persistent lack of accuracy in pressure
computations was systematically reported. Notice that in [29] a modification of the above mentioned pressure correction
technique was proposed, in order to circumvent such an inconsistency of the projection algorithms. However the authors
do not show that their approach allows for the use of finite element representations violating the classical inf–sup condition
(see e.g. [30]), such as continuous piecewise linear interpolations for both variables.
In this Section we describe our algorithm for solving both Newtonian and non-Newtonian flow equations, in the u, p, σ

formulation. Although this technique is described here only in the context of problem (4), its adaption tomore general cases
is straightforward, including for instance the Navier–Stokes equations, or even turbulent flowwith turbulent stress models.
Indeed in the latter cases it suffices to take λ = 0, before incorporating nonlinear expressions or terms. It seems however
that in the context of viscoelastic flow the new approach appears to be the most promising, since in this case the use of a
three-field formulation is mandatory.
Wehavemainly dealtwith an explicit splitting algorithm for the time integration or the iterative solution of (4). However,

before presenting it we consider the underlying implicit discretization in time of this system, described as follows:
Starting from u0 and σ 0, for n = 1, 2, . . ., we determine approximations of p(n∆t), u(n∆t) and σ(n∆t), denoted by pn,

un and σ n respectively, as the solution of the following problem:
un − un−1

∆t
−∇ · σ n +∇pn = fn

∇ · un = 0

σ n + λ

(
σ n − σ n−1

∆t

)
= 2ηD(un)

 inΩ (5)
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un = gn on ∂Ω. (6)

For the sake of simplicity we assume that Ω has suitable non restrictive regularity properties. Moreover in order to give
a precise meaning to system (5)–(6) in the strong sense, we further assume that fn ∈ L2(Ω)N , gn ∈ H3/2(∂Ω)N , ∀n,
u0 ∈ H2(Ω)N and σ 0 ∈ H1(Ω)N×N (cf. [31]) (for instance if Ω is a convex polygon or polyhedron this implies that
un ∈ H2(Ω)N , pn ∈ H1(Ω) and σ n ∈ H1(Ω)N×N ∀n). Let also 〈 ·, · 〉1/2,∂Ω denote the duality product between H1/2(∂Ω)N

and H−1/2(∂Ω)N , (·, ·) and ‖ · ‖ denote the standard L2-inner product and the associated norm, respectively. We further
denote by ‖ · ‖m the standard norm of Hm(Ω) for m ∈ N and by ‖ · ‖s,∂Ω the standard norm of Hs(∂Ω) for s ∈ R (cf [31]),
both in scalar and non-scalar version.
Notice that system (5)–(6) can be written in equivalent variational form as follows:

Find pn ∈ Q ,un ∈ V and σ n ∈ Σ such that
∆t2(∇pn −∇ · σ n,∇q) = ∆t2(fn,∇q)+∆t(un−1,∇q)−∆t〈 gn, qEν 〉1/2,∂Ω ∀ q ∈ Q ,
(un −∆t(∇ · σ n −∇pn), v) = (un−1 +∆tfn, v) ∀ v ∈ V
∆t + λ
2η

(σ n, τ )+∆t2(∇ · σ n −∇pn,∇ · τ)

=
λ

2η
(σ n−1, τ )−∆t2(fn,∇ · τ)−∆t(un−1,∇ · τ)+∆t〈 gn, τ Eν 〉1/2,∂Ω ∀ τ ∈ Σ .

(7)

where Q := H1(Ω) ∩ L20(Ω), with L
2
0(Ω) := {q | q ∈ L

2(Ω),
∫
Ω
qdx = 0}, V = L2(Ω)N and Σ := {σ , σ ∈

H(div,Ω)N and σ = σ T} (cf. [32]).

Proposition 1. System (5)–(6) and (7) are equivalent.

Proof. Let us first prove that (5)–(6) implies (7): To begin with, we observe that the second equation of (7) is nothing but
the first equation of (5) tested with v ∈ V. On the other hand the third equation of (7) results from the third equation of (5)
tested with τ ∈ Σ , with the addition of terms that stem from the first equation of (5) tested with ∆t2∇ · τ ∈ V (this adds
positiveness and in this sense it plays a stabilizing role, similarly to previous works such as [8,9]), using also a well-known
identity in order to replace the term∆t(un,∇ ·τ)with∆t[−(D(un), τ )+〈 gn, τ Eν 〉1/2,∂Ω ]. Finally the first equation of (7) is
obtained by testing the first equation of (5) with∆t2∇q ∈ V, and by noticing that, from the second equation of (5) together
with (6), we have∆t(un,∇q) = ∆t〈 gn, qEν 〉1/2,∂Ω ∀q ∈ Q , according to the Green formula recalled at the end of the second
part of the proof.
Next we prove that (7) implies (5)–(6): From the second equation of (7) we immediately establish that the first equation

of (5) holds. Now in order to derive the third equation of (5) we first take in the third equation of (7) τ ∈ Σ ∩D(Ω)N ,D(Ω)
being the test-function space of Schwartz distributions (see e.g. [33]). In so doing we may add to the right hand side of this
equation the term ∆t[(D(un), τ ) − (un,∇ · τ)], which equals zero from well-known properties of Schwartz distributions.
Since the duality term in the resulting relation necessarily vanishes, dropping the terms corresponding to the first equation
of (5) tested with ∆t2∇ · τ ∈ D(Ω)N , we readily establish that the third equation of (5) holds. On the other hand this
equation together with the first Korn’s inequality (see e.g. [34]), implies that un is necessarily a field of H1(Ω)N , and hence
by well-known properties of this space (cf. [31]), the trace of un on ∂Ω belongs toH1/2(∂Ω)N . Next coming back to the third
equation of (7), taking this time arbitrary tensors τ ∈ Σ , simple manipulations combined with the above conclusions imply
in a standard manner that ∆t[〈 gn − un, τ Eν 〉1/2,∂Ω ] = 0 ∀τ ∈ Σ . Now using the trace theorem for H(div,Ω) (cf. [32]),
we note that by convenient choices of the components of τ one may generate any vector w ∈ H−1/2(∂Ω)N represented
in the form τ Eν for τ ∈ Σ . It readily follows that (6) holds. Finally the first equation of (7) is nothing but the first equation
of (5) tested with ∆t2∇q ∈ V, except for the term ∆t(un,∇q), which is replaced with ∆t〈 gn, qEν 〉1/2,∂Ω . In this manner,
the second equation of (5) results from the combination of the first two equations of (7), thanks to (6) and the well-known
Green’s Formula: (un,∇q) = 〈un, qEν 〉1/2,∂Ω − (∇ · un, q),∀q ∈ Q . Indeed comparing these two relations it is readily seen
that (∇ · un, q) = 0 for every q ∈ Q and hence by density for every q ∈ L20(Ω). Since ∇ · u

n
∈ L20(Ω), owing to the fact that∫

Ω
∇ · undx =

∫
∂Ω

gn · Eνds = 0, we may take q = ∇ · un ∈ L20(Ω). This implies that ∇ · u
n
= 0 inΩ , which completes the

proof. �

4. Space discretization

Now we consider the following discrete analogue of (7). Henceforth we assume that Ω is a polygon for N = 2 or a
polyhedron for N = 3, and that f and g are smooth enough for the regularity of the unknown fields required in the sequel
to hold.
Let then Th be a partition ofΩ into N-simplices with maximum edge length equal to h. We assume that Th satisfies the

usual compatibility conditions for finite element meshes, and that it belongs to a quasi-uniform family of partitions. For
every subset ω of RN we further denote by Pk(ω) the space of polynomials of degree less than or equal to k defined in ω. In
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so doing we introduce the following spaces or manifolds associated with Th:

Sh :=
{
v | v ∈ C0(Ω̄) and v/K ∈ P1(K),∀K ∈ Th

}
,

Vh := {v | ∀i vi ∈ Sh} ,
Qh := Sh ∩ L20(Ω),

Σh :=
{
τ | τ ∈ [Sh]N×N , τ = τ T

}
.

Then letting u0h be the field of Vh satisfying u
0
h(P) = u0(P), and σ 0h be the tensor of Σh satisfying σ

0
h (P) = σ

0(P), for every
vertex P of Th, we provisionally set the following problem to approximate (7), or yet (5)–(6), for every n, n = 1, 2, . . . ,M:

Find pnh ∈ Qh,u
n
h ∈ Vh and σ nh ∈ Σh such that

∆t2(∇pnh −∇ · σ
n
h ,∇q) = ∆t

2(fn,∇q)+∆t(un−1h ,∇q)−∆t〈 gn, qEν 〉1/2,∂Ω ∀ q ∈ Qh,
(unh −∆t(∇ · σ

n
h −∇p

n
h), v) = (u

n−1
h +∆tf

n, v), ∀ v ∈ Vh,
∆t + λ
2η

(σ nh , τ )+∆t
2(∇ · σ nh −∇p

n
h,∇ · τ)

=
λ

2η
(σ n−1h , τ )−∆t2(fn,∇ · τ)−∆t(un−1h ,∇ · τ)+∆t〈 gn, τ Eν 〉1/2,∂Ω ∀ τ ∈ Σh.

(8)

For problem (8) the following result holds, whose proof is given in [19].

Proposition 2. Problem (8) has a unique solution for every∆t and every n. �

As a matter of fact we will work with the mass lumping technique for terms of the type (ϕ, ψ) (see e.g. [35]), where ϕ and
ψ are both either velocities or stress tensors assumed to belong to L2(Ω)L, L ∈ N. This gives rise to an approximate inner
product (ϕ, ψ)h derived from the application of the trapezoidal rule in every N-simplex of Th if both arguments happen to
belong to (Sh)L. More specifically denoting by πK1 the standard L

2-projection operator from L2(K)L onto P1(K)L, we define:

(ϕ, ψ)h :=
∑
K∈Th

(ϕ, ψ)K , with (ϕ, ψ)K :=
meas(K)
N + 1

N+1∑
i=1

[πK1 (ϕ/K ) · π
K
1 (ψ/K )](S

K
i ), (9)

SKi being the vertices of N-simplex K , i = 1, . . . ,N + 1. We further set for ϕ,ψ ∈ L2(Ω)L, ‖ϕ‖h := (ϕ, ϕ)
1/2
h and

εh(ϕ, ψ) := (ϕ, ψ)h − (ϕ, ψ).
Next we prove a Lemma for scalar functions, which obviously extends to the case of fields of any kind:

Lemma 3. ∀u ∈ Sh, εh(u, u) ≥ 0 and if εh(u, u) = 0 then u is constant all over Ω . Moreover the following relation holds:

1
√
N + 2

‖u‖h ≤ ‖u‖ ∀u ∈ Sh. (10)

Proof. Since πK1 (u) = u/K if u ∈ Sh, setting εK (u, v) :=
∑N+1
i=1

uKi v
K
i

N+1 meas(K) −
∫
K u/Kv/Kdx, we have εh(u, u) =

∑
K∈Th

εK (u, u)where uKi = u(S
K
i ) and v

K
i = v(S

K
i ).

We know that u/K =
∑N+1
i=1 u

K
i λ
K
i and v/K =

∑N+1
j=1 v

K
j λ
K
j where λ

K
1 , λ

K
2 , . . . , λ

K
N+1 are the barycentric coordinates of K .

Thus we have (cf. [36]):∫
K
u2/Kdx =

N+1∑
i=1

N+1∑
j=1

uKi u
K
j

∫
K
λKi λ

K
j dx =

N+1∑
i=1

N+1∑
j=i

uKi u
K
j

2meas(K)
(N + 1)(N + 2)

.

Hence after straightforward calculations we derive,

εK (u/K , u/K ) = (N + 1)
∫
K
u2/Kdx−

meas(K)
N + 1

(
N+1∑
j=1

uKj

)2
(11)

which readily yields (10).
On the other hand, for Ee = (e1, e2, . . . , eN+1)with ej = 1,∀jwe have:(

N+1∑
j=1

uKj

)2
≤

N+1∑
j=1

(
uKj
)2 N+1∑
j=1

e2j . (12)

Thus plugging (12) into (11), after performing some elementarymanipulations, we conclude that εK (u/K , u/K ) ≥ 0 ∀K ∈ Th,
that is, εh(u, u) ≥ 0.
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Finally, if εh(u, u) = 0, necessarily from (12),
(∑N+1

j=1 u
K
j ej
)2
=

∑N+1
j=1

(
uKj
)2∑N+1

j=1 e
2
j . But in this case Eu

K
:=

(uK1 , u
K
2 , . . . , u

K
N+1) is parallel to Ee and thus u is constant in K . Since u is continuous, it must be constant in the wholeΩ . �

Next we consider a lumped mass version of system (8), that we will actually employ in this work, namely:

Find pnh ∈ Qh,u
n
h ∈ Vh, and σ nh ∈ Σh such that

∆t2
[
(∇pnh,∇q)− (∇ · σ

n
h ,∇q)

]
= ∆t2(fnh,∇q)+∆t(u

n−1
h ,∇q)−∆t〈 gnh, qEν 〉1/2,∂Ω ∀q ∈ Qh,

(unh, v)h +∆t
[
(∇pnh, v)− (∇ · σ

n
h , v)

]
= (un−1h , v)h +∆t(fnh, v) ∀v ∈ Vh,

∆t + λ
2η

(σ nh , τ )h +∆t
2 [(∇ · σ nh ,∇ · τ)− (∇pnh,∇ · τ)]

=
λ

2η
(σ n−1h , τ )h −∆t2(fnh,∇ · τ)−∆t(u

n−1
h ,∇ · τ)+∆t〈 gnh, τ Eν 〉1/2,∂Ω ∀τ ∈ Σh.

(13)

where gnh and f
n
h are suitable approximations of g

n and fn.

Proposition 4. Given un−1h , σ n−1h , fnh , g
n
h , problem (13) has a unique solution (p

n
h,u

n
h, σ

n
h ).

Proof. Since Qh, Vh and Σh, are finite dimensional spaces and (13) is equivalent to a linear system of Jh equations with Jh
unknowns, where Jh = dim Qh + dim Vh + dim Σh, it suffices to prove that fnh = 0, gn = gnh = 0, un−1h = 0 and σ n−1h = O
implies that pnh = 0, u

n
h = 0, σ nh = O.

Under this hypothesis we take q = pnh ∈ Qh, v = unh ∈ Vh and τ = σ nh . This gives:
∆t2(∇pnh −∇ · σ

n
h ,∇p

n
h) = 0∥∥unh∥∥2h +∆t(∇pnh −∇ · σ nh ,unh) = 0

λ+∆t
2η

∥∥σ nh ∥∥2h +∆t2(∇ · σ nh −∇pnh,∇ · σ nh ) = 0.
(14)

Adding up the three relations above it is readily seen that

∆t2
∥∥∇pnh −∇ · σ nh ∥∥2 + ∥∥unh∥∥2h + λ+∆tη

∥∥σ nh ∥∥2h + ∥∥∆t(∇pnh −∇ · σ nh )+ unh
∥∥2 + εh(unh,unh) = 0.

This trivially yields unh = 0, σ nh = O and ∇pnh = 0. Since pnh ∈ L
2
0(Ω) this implies that p

n
h = 0 too. �

Let us now consider the following splitting algorithm for solving explicitly system (13) at every time step.
Set for every n ≥ 0, σ n,0h = σ

n−1
h . Then for s = 1, 2, . . . determine approximations pn,sh ∈ Qh, u

n,s
h ∈ Vh and σ n,sh ∈ Σh of

pnh, u
n
h and σ

n
h by solving successively the following problems:

∆t2(∇pn,sh ,∇q) = ∆t
2
[(fnh,∇q)+ (∇ · σ

n,s−1
h ,∇q)] +∆t(un−1h ,∇q)−∆t〈 gnh, qEν 〉1/2,∂Ω ∀q ∈ Qh

(un,sh , v)h = ∆t(f
n
h +∇ · σ

n,s−1
h −∇pn,sh , v)+ (u

n−1
h , v)h ∀v ∈ Vh

λ+∆t
2η

(σ
n,s
h , τ )h =

λ

2η
(σ
n,s−1
h , τ )h −∆t2(fnh +∇ · σ

n,s−1
h −∇pn,sh ,∇ · τ)

−∆t
[
(un−1h ,∇ · τ)− 〈 gnh, τ Eν 〉1/2,∂Ω

]
∀τ ∈ Σh.

(15)

This algorithm is unlikely to generate converging sequence of approximations of (pn,un, σ n) as s goes to infinity in the
analogous continuous case (7). However, here it is applied in the framework of the discrete counterpart of (7) defined by
replacing Q , V andΣ with finite dimensional spaces Qh, Vh andΣh, for which the classical inverse inequalities hold. In our
case we shall employ the following one (cf. [37]):
There exists a constant C independent of h such that

‖∇ · τ ‖ ≤
C
h
‖ τ ‖ ∀τ ∈ Σh. (16)

In this way we are able to prove:

Proposition 5. Let ε be a parameter satisfying 0 < ε ≤ 1, and C be the constant of the inverse inequality (16). Provided ∆t is
chosen such that

∆t ≤
h
C

√
λε

2η(1+ ε)
, (17)

the sequence {(pn,sh ,u
n,s
h , σ

n,s
h )}s defined by (15) converges to the solution (p

n
h,u

n
h, σ

n
h ) of (13) in Qh×Vh×Σh as s goes to infinity.
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Proof. Let us set ūn,sh := un,sh − unh; p̄
n,s
h := p

n,s
h − p

n
h; σ̄

n,s
h := σ

n,s
h − σ

n
h

Comparing (13) and (15), ūn,sh , p̄
n,s
h and σ̄

n,s
h are easily found to satisfy:

∆t2(∇p̄n,sh ,∇q) = ∆t
2(∇ · σ̄

n,s−1
h ,∇q) ∀q ∈ Qh

(ūn,sh , v)h = −∆t(∇p̄
n,s
h , v)+∆t(∇ · σ̄

n,s−1
h , v) ∀v ∈ Vh

λ+∆t
2η

(σ̄
n,s
h , τ )h = ∆t

2(∇p̄n,sh ,∇ · τ)−∆t
2(∇ · σ̄

n,s−1
h ,∇ · τ) ∀τ ∈ Σh.

(18)

Taking v = ūn,sh , q = p̄
n,s
h and τ = σ̄

n,s
h ,we obtain:

∆t2
∥∥∇p̄n,sh ∥∥2 = ∆t2(∇ · σ̄ n,s−1h ,∇p̄n,sh )∥∥ūn,sh ∥∥2h = −∆t(∇p̄n,sh , ūn,sh )+∆t(∇ · σ̄ n,s−1h , ūn,sh )

λ+∆t
2η

∥∥σ̄ n,sh ∥∥2h = ∆t2(∇p̄n,sh ,∇ · σ̄ n,sh )−∆t2(∇ · σ̄ n,s−1h ,∇ · σ̄
n,s
h ).

(19)

Adding up the three relations in (19), we derive:

∆t2
∥∥∇p̄n,sh ∥∥2 −∆t2(∇ · σ̄ n,s−1h ,∇p̄n,sh )+

∥∥ūn,sh ∥∥2h +∆t(∇p̄n,sh −∇ · σ̄ n,s−1h , ūn,sh )

×
λ+∆t
2η

∥∥σ̄ n,sh ∥∥2h +∆t2(∇ · σ̄ n,s−1h ,∇ · σ̄
n,s
h )−∆t

2(∇p̄n,sh ,∇ · σ̄
n,s
h ) = 0 (20)

which yields:

∆t2
∥∥∇p̄n,sh ∥∥2 − 2∆t2(∇p̄n,sh ,∇ · σ̄ n,sh )+∆t2(∇ · σ̄ n,sh −∇ · σ̄ n,s−1h ,∇p̄n,sh )

+∆t2
∥∥∇ · σ̄ n,sh ∥∥2 −∆t2(∇ · σ̄ n,sh −∇ · σ̄ n,s−1h ,∇ · σ̄

n,s
h )+∆t(∇p̄

n,s
h −∇ · σ̄

n,s, ūn,sh )

+
∥∥ūn,sh ∥∥2h +∆t(∇ · σ̄ n,sh −∇ · σ̄ n,s−1h , ūn,sh )+

λ+∆t
2η

∥∥σ̄ n,sh ∥∥2h = 0. (21)

It follows that:

∆t2
∥∥∇p̄n,sh −∇ · σ̄ n,sh ∥∥2 + ∥∥ūn,sh ∥∥2h +∆t(∇p̄n,sh −∇ · σ̄ n,sh , ūn,sh )+ λ+∆t2η

∥∥σ̄ n,sh ∥∥2h
= −∆t(∇ · σ̄ n,sh −∇ · σ̄

n,s−1
h , ūn,sh +∆t(∇p̄

n,s
h −∇ · σ̄

n,s
h )). (22)

Taking into account that (f , g) ≤ 1
2 [‖f ‖

2
+ ‖g‖2], ∀f , g , we may write:

∆t2

2

∥∥∇p̄n,sh −∇ · σ̄ n,sh ∥∥2 + 12 ∥∥ūn,sh ∥∥2h + 12 ∥∥ūn,sh +∆t (∇p̄n,sh −∇ · σ̄ n,sh )∥∥2 + 12εh(ūn,sh , ūn,sh )
+
λ+∆t
2η

∥∥σ̄ n,sh ∥∥2h ≤ 12∆t2‖∇ · σ̄ n,sh −∇ · σ̄ n,s−1h ‖
2
+
1
2
‖ūn,sh +∆t(∇p̄

n,s
h −∇ · σ̄

n,s
h )‖

2. (23)

Furthermore, owing to Lemma 3 we have:

∆t2
∥∥∇p̄n,sh −∇ · σ̄ n,sh ∥∥2 + ∥∥ūn,sh ∥∥2h + λ+∆tη

∥∥σ̄ n,sh ∥∥2h ≤ ∆t2 ∥∥∥∇ · σ̄ n,sh −∇ · σ̄ n,s−1h

∥∥∥2 . (24)

This further gives:

∆t2
∥∥∇p̄n,sh −∇ · σ̄ n,sh ∥∥2 + ∥∥ūn,sh ∥∥2h + λ+∆tη

∥∥σ̄ n,sh ∥∥2h ≤ 2∆t2 (‖∇ · σ̄ n,sh ‖2 + ‖∇ · σ̄ n,s−1h ‖
2
)
. (25)

Recalling (16), we come up with:

∆t2‖∇p̄n,sh −∇ · σ̄
n,s
h ‖

2
+ ‖ūn,s‖2h +

λ+∆t
η
‖σ̄
n,s
h ‖

2
h ≤ 2∆t

2 C
2

h2
(‖σ̄

n,s
h ‖

2
+ ‖σ̄

n,s−1
h ‖

2) (26)

or yet:

∆t2‖∇p̄n,sh −∇ · σ̄
n,s
h ‖

2
+ ‖ūn,sh ‖

2
+

(
λ+∆t
η
− 2
C2∆t2

h2

)
‖σ̄
n,s
h ‖

2
h ≤ 2

C2∆t2

h2
‖σ̄
n,s−1
h ‖

2
h. (27)
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Now setting a = 2C2∆t2

h2
and b = λ

η
we momentarily assume that b ≥ a. In this way:

‖σ̄
n,s
h ‖

2
h ≤ ρ

2
‖σ̄
n,s−1
h ‖

2
h where ρ2 =

a
b− a+∆t/η

. (28)

Applying (28) iteratively for s = 1, 2, . . .we derive ‖σ̄ n,sh ‖h ≤ ρ
s
‖σ̄
n,0
h ‖h = ρ

s
‖σ nh −σ

n−1
h ‖h, ∀s. Then letting s go to infinity,

‖σ̄
n,s
h ‖h will tend to zero if ρ < 1 and by (16),∇ · σ̄

n,s
h tends to zero as well. Then since σ̄

n,s
h → O it immediately follows that

un,sh → 0 and
(
∇p̄n,sh −∇ · σ̄

n,s
h

)
→ 0. Therefore, ∇p̄n,sh → 0, and thus p̄n,sh tends to a constant. However, p̄

n,s
h ∈ L

2
0(Ω) ∀s,

which implies that p̄n,sh tends to zero too.
Finally in order to ensure convergence, we must have ρ < 1. Now if a ≤ εb

1+ε necessarily b > a and
a
b−a ≤ ε. As a result

if∆t and h satisfy (17), then ρ2 < ε ≤ 1. This completes the proof. �

5. Stability

Remark. Henceforth the letter C combined or not with other symbols will represent different strictly positive constants
independent of∆t and h.

In this Section we proceed to the stability analysis of scheme (13). For this purpose it is convenient to assume that we
are solving a more general problem, namely:

∆t2
(
∇pnh,∇q

)
−∆t2(∇ · σ nh ,∇q) = ∆t(u

n−1
h ,∇q)−∆tGnh(qEν)+∆t

2Lp,nh (∇q) ∀q ∈ Qh
(unh, v)h +∆t(∇p

n
h −∇ · σ

n
h , v) = (u

n−1
h , v)+∆tLu,nh (v) ∀v ∈ Vh

∆t
2η
(σ nh , τ )h +

λ

2η
(σ nh , τ )h +∆t

2(∇ · σ nh ,∇ · τ)−∆t
2(∇pnh,∇ · τ)

=
λ

2η
(σ n−1h , τ )h −∆t(un−1h , τ )h +∆tGnh(τ Eν)−∆t

2Lp,nh (∇ · τ)+∆tL
σ ,n
h (τ ).

(29)

We assume that Lu,nh , L
p,n
h , L

σ ,n
h and Gnh are linear functionals satisfying:

Lu,nh (d) ≤ |L
u,n
h | ‖d‖, ∀d ∈ Dh,

Lp,nh (v) ≤ |L
p,n
h | ‖d‖, ∀d ∈ Dh,

Lσ ,nh (τ ) ≤ |Lσ ,nh | ‖τ‖, ∀τ ∈ Σh,
Gnh(w) ≤ [G

n
h] ‖w‖−1/2,∂Ω , ∀w ∈ Γh

(30)

where | · | and [·] denote standard functional norms, Dh := {v|v/K ∈ P1(K)N ,∀K ∈ Th}, Γh := {w : ∂Ω −→ RN | w/F ∈

P1(F)N ∀ face or edge F of K ∈ Th such that F ⊂ ∂Ω}.
Notice that in practice Lu,nh (v) = (fnh, v) ∀v ∈ L

2(Ω)N , Lp,nh = Lu,nh , L
σ ,n
h = 0 and Gnh(w) = 〈g

n
h,w〉1/2,∂Ω ∀w ∈

H−1/2(∂Ω)N .

Theorem 6. Assuming that ∆t < 1
2 the following stability result holds for scheme (29):

∀n ≤ M : ‖unh‖
2
+ εh(unh,u

n
h)+

∆t2

2
‖∇pnh −∇ · σ

n
h ‖
2
+
λ

2η
‖σ nh ‖

2
h

≤ e4T
[
‖u0h‖

2
+ εh(u0h,u

0
h)+

λ

2η
‖σ 0h ‖

2
h + C̃∆t

n∑
i=1

(
|Lp,ih |

2
+ |Lu,ih |

2
+ |Lσ ,ih |

2
+
[Gih]

2

∆t2

)]
. (31)

Proof. Setting v = unh, q = p
n
h and τ = σ

n
h in (29) we derive:

∆t2‖∇pnh ‖
2
−∆t2(∇ · σ nh ,∇p

n
h) = ∆t

2Lp,nh (∇p
n
h)−∆t G

n
h(p

n
hEν)+∆t(u

n−1
h ,∇pnh)

‖unh‖
2
h +∆t(∇p

n
h −∇ · σ

n
h ,u

n
h) = ∆tL

u,n
h (u

n
h)+ (u

n−1
h ,unh)h

λ+∆t
2η
‖σ nh ‖

2
h +∆t

2
‖∇ · σ nh ‖

2
−∆t2(∇pnh,∇ · σ

n
h ) =

λ

2η
(σ nh , σ

n−1
h )h

−∆t(un−1h ,∇ · σ nh )+∆ tG
n
h(σ

n
h Eν)−∆t

2Lp,nh (∇ · σ
n
h )+∆tL

σ ,n
h (σ nh ).

(32)

Adding up the three relations above we come up with:

‖unh‖
2
h +∆t(∇p

n
h −∇ · σ

n
h ,u

n
h)+∆t

2
‖∇pnh −∇ · σ

n
h ‖
2
+
λ

2η
‖σ nh ‖

2
h +

∆t
2η
‖σ nh ‖

2
h
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= (un−1h ,unh)h +∆t(∇p
n
h −∇ · σ

n
h ,u

n−1
h )+

λ

2η
(σ nh , σ

n−1
h )h

−Gnh(p
n
hI − σ

n
h )+∆t

2Lp,nh (∇p
n
h −∇ · σ

n
h )+∆t L

u,n
h (u

n
h)+∆ tL

σ ,n
h (σ nh ). (33)

This leads to
1
2
[‖unh‖

2
h +∆t

2
‖∇pnh −∇ · σ

n
h ‖
2
+ ‖unh +∆t(∇p

n
h −∇ · σ

n
h )‖

2
+
λ

η
‖σ nh ‖

2
h +

∆t
η
‖σ nh ‖

2
h] + εh(u

n
h,u

n
h)

= εh(un−1h ,unh)+
λ

2η
(σ nh , σ

n−1
h )+ (un−1h ,unh +∆t(∇p

n
h −∇ · σ

n
h ))−∆t G

n
h(p

n
hI − σ

n
h )+∆tL

σ ,n
h (σ nh )

+∆tLp,nh (u
n
h +∆t(∇p

n
h −∇ · σ

n
h ))+∆t(L

u,n
h − L

p,n
h )(u

n
h). (34)

Using the Cauchy–Schwarz inequality, the inequality |yz| ≤ y2

2κ +
κ
2 z
2, ∀κ > 0,∀y, z ∈ R together with the properties of

functionals Lp,nh , L
u,n
h , L

σ ,n
h and Gnh, for α, β , γ , δ > 0, provided α +∆tβ = 1, we obtain:

1
2

[
‖unh‖

2
+ εh(unh,u

n
h)+∆t

2
‖∇pnh −∇ · σ

n
h ‖
2
+
λ

2η
‖σ nh ‖

2
h +

∆t
η
‖σ nh ‖

2
h

]
≤
1
2

{
1
α
‖un−1h ‖

2
+
∆t
β
|Lp,nh |

2
+ εh(un−1h ,un−1h )+

λ

2η
‖σ n−1h ‖

2
h +∆t

{
[Gnh]

2

γ
+ γ ‖(pnhI − σ

n
h )Eν‖

2
−1/2,∂Ω

}
+∆t

(
|Lσ ,nh |

2

δ
+ δ‖σ nh ‖

2
h

)
+∆t

[
|Lp,nh |

2

β
+ (|Lu,nh | + |L

p,n
h |)

2
+ ‖unh‖

2
]}
.

(35)

Now assuming∆t < 1
2 we take α = 1−∆t and β = 1.

On the other hand from a standard result (cf. Girault–Raviart [32]) we have:

‖(pnhI − σ
n
h )Eν‖−1/2,∂Ω ≤ C1

{
‖ pnhI − σ

n
h ‖ + ‖∇ ·

(
pnhI − σ

n
h

)
‖
}
≤ C1

{
‖ pnh ‖ + ‖ σ

n
h ‖ + ‖∇p

n
h −∇ · σ

n
h ‖
}
. (36)

By a well-known result (see e.g. [38] p.33), ∃C2 such that ‖ q ‖ ≤ C2‖∇q ‖,∀q ∈ Q .
Applying this relation to (36) we obtain:

‖(pnhI − σ
n
h )Eν‖−1/2,∂Ω ≤ C1

{
C2‖∇pnh ‖ + ‖ σ

n
h ‖ + ‖∇p

n
h −∇ · σ

n
h ‖
}

≤ C1
[
C2‖∇ · σ nh ‖ + ‖ σ

n
h ‖ + (C2 + 1)‖∇p

n
h −∇ · σ

n
h ‖
]
.

Recalling (16) we are led to

‖(pnhI − σ
n
h )Eν‖−1/2,∂Ω ≤

C3
h
‖ σ nh ‖ + C4‖∇p

n
h −∇ · σ

n
h ‖

where C3 = CC2 + C1H with H = maxτh⊂P h, P being the family of quasi-uniform partitions in use and C4 = C1(1+ C2).

Next we choose γ and δ such that γ × C23
h2
+

δ
2 ≤

1
2η and γ C

2
4 ≤

∆t
4 . Taking δ =

1
2η and setting ∆t = µh we choose

γ = min
{
1
C24
, ∆t
µ2C23 η

}
∆t
4 .

In so doing we obtain:

(1−∆t)‖unh‖
2
+ εh(unh,u

n
h)+

∆t2

2
‖∇pnh −∇ · σ

n
h ‖
2
+
λ

2η
‖σ nh ‖

2
h

≤
‖un−1h ‖

2

(1−∆t)
+ εh(un−1h ,un−1h )+

λ

2η
‖σ n−1h ‖

2
h + C̄

[
∆t
(
|Lp,nh |

2
+ |Lu,nh |

2
+ |Lσ ,nh |

2)
+
[Gnh]

2

∆t

]
. (37)

Using the relation 1
1−∆t ≤ 1+ 2∆t for∆t <

1
2 , after straightforward calculations we obtain:

‖unh‖
2
+ εh(unh,u

n
h)+

∆t2

2
‖∇pnh −∇ · σ

n
h ‖
2
+
λ

2η
‖σ nh ‖

2
h ≤ (1+ 2∆t)

2
[
‖un−1h ‖

2
+ εh(un−1h ,un−1h )+

λ

2η
‖σ n−1h ‖

2
h

+ C̃∆t
(
|Lp,nh |

2
+ |Lu,nh |

2
+ |Lσ ,nh |

2
+
[Gnh]

2

∆t2

)]
. (38)

Now we may follow the main lines of Gronwall’s Lemma [39]. More specifically, applying (38) iteratively from n = 1, we
derive:

‖unh ‖
2
+ εh(unh,u

n
h)+

∆t2

2
‖∇pnh −∇ · σ

n
h ‖
2
+
λ

2η
‖ σ nh ‖

2
h ≤ (1+ 2∆t)

2n
[
‖u0h ‖

2
+ εh(u0h,u

0
h)+

λ

2η
‖ σ 0h ‖

2
h

]
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+ C̃∆t
n∑
i=1

(1+ 2∆t)2(n−i+1)
(
|Lp,ih |

2
+ |Lu,ih |

2
+ |Lσ ,ih |

2
+
[Gih]

2

∆t2

)
. (39)

Since (1+ 2∆t)2n ≤
(
1+ 2T

M

)2M
≤ e4T ∀n, we finally obtain the stability result (31). �

Corollary 7. Provided∆t < 1/2, stability holds in the following sense for scheme (13):

∀n ≤ M : ‖unh‖
2
+ εh(unh,u

n
h)+

∆t2

2

n∑
i=1

‖∇pih −∇ · σ
i
h‖
2
+
λ

2η
‖σ nh ‖

2
h

≤ e4T
[
‖u0h‖

2
+ εh(u0h,u

0
h)+

λ

2η
‖σ 0h ‖

2
h + C̃∆t

n∑
i=1

(
2‖fih‖

2
2 +

1
∆t2
‖gih‖

2
1/2,∂Ω

)]
. (40)

Proof. Recalling that in the case under study Lu,nh (v) = L
p,n
h (v) = (f

n
h, v), L

σ ,n
h = 0 and G

n
h(w) = 〈g

n
h,w〉1/2,∂Ω this result is a

mere consequence of (31). �

6. Consistency

As a preparatory step to prove the convergence of our scheme, we establish in this Section that it is consistent in an
appropriate sense. In order to do so we define ∀n,

ũnh = ũh(n∆t) (41)

where ũh(t) ∈ Vh is given by

(ũh(t), v)h = (u(t), v)h ∀v ∈ Vh, (42)

together with the pair [p̃nh, σ̃
n
h ] ∈ Qh ×Σh defined by

λ+∆t
2η

(σ̃ nh , τ )h +∆t
2(∇p̃nh −∇ · σ̃

n
h ,∇q−∇ · τ)

=
λ+∆t
2η

(σ n, τ )h +∆t2(∇pn −∇ · σ n,∇q−∇ · τ) ∀[q, τ ] ∈ Qh ×Σh. (43)

Proposition 8. If u(t) ∈ H2(Ω)N , t ∈ [0, T ], the following estimate holds:

‖u(t)− ũh(t)‖ ≤ Ch2‖u(t)‖2. (44)

Proof. Let πh denote the standard Vh-interpolation operator of any field with components in H2(Ω). By the definition of
ũh(t)we may write (u(t)− ũh(t), πh[u(t)] − ũh(t))h = 0, which yields,

‖u(t)− ũh(t)‖h ≤ ‖u(t)− πh[u(t)]‖h. (45)

Next we note that, owing to (11) together with the classical estimate ‖[πh(v)− v]/K‖0,K ≤ Ch2‖v‖2,K , for every K ∈ Th and
∀v ∈ H2(Ω)N , we may write,

(w− πh(w), v− πh(v))K ≤ C‖w‖2,K‖v‖2,K ∀w, v ∈ [H2(K)N ]2,

where (·, ·)K is defined in (9). Then Ciarlet’s Lemma for bilinear forms [37] yields:

‖u(t)− πh[u(t)]‖h ≤ Ch2‖u(t)‖2. (46)

On the other hand, since ‖v‖ ≤ ‖v‖h ∀v ∈ Vh we have

‖u(t)− ũh(t)‖ ≤ ‖πh[u(t)] − u(t)‖ + ‖πh[u(t)] − ũh(t)‖h. (47)

Then from (45) and (47) we easily establish that,

‖u(t)− ũh(t)‖ ≤ ‖πh[u(t)] − u(t)‖ + 2‖πh[u(t)] − u(t)‖h.

Finally combining this relation with (46) and using the standard estimate ‖u(t) − πh[u(t)]‖ ≤ Ch2‖u(t)‖2 (cf. [37]) the
result follows. �

The pair [σ̃ nh , p̃
n
h] in turn is a sort of orthogonal projection of [σ

n, pn]. Thus by similar arguments to those employed in the
proof of Proposition 8, we can prove the following:
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Proposition 9. If σ n ∈ H2(Ω)N×N and pn ∈ H2(Ω) we have:

‖ σ̃ nh − σ
n
‖h ≤ Ch∆t

[
‖pn‖2 + (1+ h/∆t)‖σ n‖2

]
(48)

‖∇p̃nh −∇p
n
−∇ · σ̃ nh +∇ · σ

n
‖ ≤ Ch

[
‖pn‖2 + (1+ h/∆t)‖σ n‖2

]
. � (49)

Next we apply scheme (13) to the triple (ũnh, p̃
n
h, σ̃

n
h ) ∈ Vh × Qh × Σh assuming that ũn−1h and σ̃ n−1h , n = 1, 2, . . . ,M are

known. More specifically, taking ũ0h = πh(u0) and σ̃ 0h = πh(σ
0), we determine the residuals in (13), when (unh, p

n
h, σ

n
h )

is replaced with (ūnh, p̄
n
h, σ̄

n
h ) := (ũnh − unh, p̃

n
h − p

n
h, σ̃

n
h − σ

n
h ) and [u

n−1
h , σ n−1h ] is replaced with [ū

n−1
h , σ̄ n−1h ] := [ũ

n−1
h −

un−1h , σ̃ n−1h − σ n−1h ].
By definition we have:

∆t2
[
(∇p̄nh,∇q)− (∇ · σ̄

n
h ,∇q)

]
−∆t(un−1h ,∇q) = −∆tSnh (qEν)+∆t

2R
p,n
h (∇q)

(ūnh, v)h +∆t(∇p̄
n
h −∇ · σ̄

n
h , v)h − (ū

n−1
h , v)h = ∆tRu,n

h (v)
∆t + λ
2η

(σ̄ nh , τ )h −
λ

2η
(σ̄ n−1h , τ )h +∆t2

[
(∇ · σ̄ nh ,∇ · τ)− (∇p̄

n
h,∇ · τ)

]
+∆t(un−1h ,∇ · τ) = ∆tSnh (τ Eν)−∆t

2R
p,n
h (∇ · τ)+∆tR

σ ,n
h (τ )

(50)

where Ru,n
h , R

p,n
h and Rσ ,n

h are functionals standing for the residuals with respect to domain integrals and Snh is the one
representing the residuals related to boundary integrals.
As for the second equation of (50) we have:

(ũnh, v)h +∆t(∇p̃
n
h −∇ · σ̃

n
h , v)− (ũ

n−1
h , v)h = (ũnh − un, v)h

+∆t(∇p̃nh −∇ · σ̃
n
h −∇p

n
+∇ · σ n, v)− (ũn−1h − un−1, v)h

+ (un, v)+∆t(∇pn −∇ · σ n, v)− (un−1, v)+ εh(un − un−1, v). (51)

On the other hand for every field F sufficiently smooth we have ∀n (cf. [39]):

F n
− F n−1

= ∆tF n
t −

∫ n∆t

(n−1)∆t
[s− (n− 1)∆t]Ftt(s)ds, with F n(·) = F (·, n∆t). (52)

Hence using (4) it follows that:

(un − un−1 +∆t(∇pn −∇ · σ n), v) = ∆t(fn, v)−
(∫ n∆t

(n−1)∆t
[s− (n− 1)∆t]utt(s)ds, v

)
.

Then since (ũnh − un, v)h = 0 and (ũn−1h − un−1, v)h = 0, recalling (51) and (13), we easily derive:
Ru,n
h (v) = (∇p̃nh −∇ · σ̃

n
h −∇p

n
+∇ · σ n, v)+ (fn − fnh, v)

−
1
∆t

(∫ n∆t

(n−1)∆t
[s− (n− 1)∆t]utt(s)ds, v

)
+
1
∆t
εh(un − un−1, v).

(53)

As for the first and third equations of (50), taking into account (43) we easily obtain:
λ+∆t
2η

(σ̃ nh , τ )h −
λ

2η
(σ̃ n−1h , τ )h +∆t2[(∇p̃nh −∇ · σ̃

n
h ,∇q)− (∇p̃

n
h −∇ · σ̃

n
h ,∇ · τ)] −∆t(ũ

n−1
h ,∇q−∇ · τ)

= −∆t(ũn−1h − un−1,∇q−∇ · τ)−
λ

2η
(σ̃ n−1h − σ n−1, τ )h +∆t2

[
(∇pn −∇ · σ n,∇q−∇ · τ)

]
+
λ+∆t
2η

[
(σ n, τ )+ εh(σ

n, τ )
]
−∆t(un,∇q−∇ · τ)

+∆t(un − un−1,∇q−∇ · τ)−
λ

2η

[
(σ n−1, τ )+ εh(σ

n−1, τ )
]
.

Then applying integration by parts together with (52), we derive:
λ+∆t
2η

(σ̃ nh , τ )h −
λ

2η
(σ̃ n−1h , τ )h +∆t2(∇p̃nh −∇ · σ̃

n
h ,∇q−∇ · τ)−∆t(ũ

n−1
h ,∇q−∇ · τ)

= −∆t(ũn−1h − un−1,∇q−∇ · τ)−
λ

2η
(σ̃ n−1h − σ n−1, τ )h +∆t2(unt +∇p

n
−∇ · σ n,∇q−∇ · τ)

−∆t
(∫ n∆t

(n−1)∆t
[s− (n− 1)∆t]utt(s)ds,∇q−∇ · τ

)
+
λ+∆t
2η

εh(σ
n, τ )



J.H. Carneiro de Araujo et al. / Journal of Computational and Applied Mathematics 234 (2010) 2562–2577 2573

−
λ

2η
εh(σ

n−1, τ )+
∆t
2η

(
σ n + λσ nt −

λ

∆t

∫ n∆t

(n−1)∆t
[s− (n− 1)∆t] σtt(s)ds, τ

)
−∆t[〈 gn, (qI − τ)Eν 〉1/2,∂Ω − (∇ · un, q)+ (D(un), τ )].

Since unt +∇p
n
−∇ · σ n = fn, ∇ · un = 0 and σ n + λσ nt = 2ηD(u

n), recalling (13) we obtain,

λ+∆t
2η

(σ̄ nh , τ )h −
λ

2η
(σ̄ n−1h , τ )h +∆t2(∇p̄nh −∇ · σ̄

n
h ,∇q−∇ · τ)−∆t(ū

n−1
h ,∇q−∇ · τ)

= ∆t2(fn − fnh,∇q−∇ · τ)−∆t(ũ
n−1
h − un−1,∇q−∇ · τ)−

λ

2η
(σ̃ n−1 − σ n−1, τ )h +

λ+∆t
2η

εh(σ
n, τ )

−
λ

2η
εh(σ

n−1, τ )−∆t
(∫ n∆t

(n−1)∆t
[s− (n− 1)∆t]utt(s)ds,∇q−∇ · τ

)
−
λ

2η

(∫ n∆t

(n−1)∆t
[s− (n− 1)∆t] σtt(s)ds, τ

)
−∆t〈 gn − gnh, (qI − τ)Eν 〉1/2,∂Ω .

This means that:{
R
p,n
h (∇q−∇ · τ) =

(
fn − fnh +

1
∆t

(
un−1 − ũn−1h −

∫ n∆t

(n−1)∆t
[s− (n− 1)∆t]utt(s)ds

)
,∇q−∇ · τ

)
. (54)

Rσ ,n
h (τ ) =

λ

2η∆t

[
(σ n−1 − σ̃ n−1h , τ )h + εh(σ

n, τ − σ n−1, τ )−

(∫ n∆t

(n−1)∆t
[s− (n− 1)∆t] σtt(s)ds, τ

)]
+
1
2η
εh(σ

n, τ )

(55)

Snh ((qI − τ)Eν) = 〈 g
n
− gnh, (qI − τ)Eν 〉1/2,∂Ω . (56)

Nowwe endeavour to estimate the norms ofRu,n
h ,R

p,n
h ,R

σ ,n
h and Snh , f

n
h being defined as the piecewise constant interpolate

of fn and gnh being the quadratic interpolate of g
n at the vertices and edge mid-points of the boundary edges or faces of the

mesh.
First we need the following technical result

Lemma 10. ∃CE > 0 such that ∀u ∈ H1(Ω)N and ∀v ∈ Vh we have

|εh(u, v)| ≤ CEh‖u‖1‖v‖. (57)

Proof. Recalling (9) let us first extend the definition of εK in Lemma 3 in order to accommodate u ∈ H1(K)N and
v ∈ P1(K)N , by setting: εK (u, v) := (πK1 (u), v)K −

∫
K π

K
1 (u) · v. From the semi-positive-definiteness of εK established

in the proof of Lemma 3, we know that εK (πK1 (u), v)
2
≤ εK (π

K
1 (u), π

K
1 (u))εK (v, v). Thus using (11) we readily derive

εK (u, v) ≤ (N+1)‖πK1 (u)‖0,K‖v‖0,K ≤ (N+1)‖u‖1,K‖v‖0,K . Moreover, as one can easily check, εK (u, v) = 0, ∀u ∈ P0(K)
N

and ∀v ∈ P1(K)N . Then (57) is a direct consequence of Ciarlet’s Lemma for bilinear forms (cf. [37]). �

Proposition 11. Assuming that f(t) ∈ H1(Ω)N ∀t, pn ∈ H2(Ω), unt ∈ H
1(Ω)N , σ n ∈

[
H2(Ω)

]N×N
∀n and utt ∈

L∞
[
(0, T ), L2(Ω)

]N (cf. [40]), it holds that
|Ru,n
| ≤ Cαnu(h+∆t + h

2/∆t) (58)

where αnu = ‖f
n
‖1 + ‖pn‖2 + ‖unt ‖1 + sup ess0≤s≤T ‖utt(s)‖. �

Proof. According to (53) we have:

|Ru,n
| ≤ ‖∇p̃nh −∇p

n
−∇ · σ̃ nh +∇ · σ

n
‖ + ‖fn − fnh‖ +∆t sup ess

0≤s≤T
‖utt(s)‖ + sup

v∈Vh−{0}

|εh(un − un−1, v)|
∆t‖v‖

.

Using Lemma 10 together with (52), it is possible to derive in a straightforward manner,

sup
v∈Vh−{0}

|εh(un − un−1, v)|
∆t‖v‖

≤ C
(
h‖unt ‖1 +∆t sup ess

0≤s≤T
‖utt(s)‖

)
.

Then the remainder of the proof is a consequence of (49), together with the classical estimate ‖fn − fnh‖ ≤ Ch‖f
n
‖1. �
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In an entirely analogous manner one can prove:

Proposition 12. Under the assumptions of Proposition 11 together with the regularity hypotheses that σ nt ∈ H
1(Ω)N×N and

σtt ∈ L∞[(0, T ), L2(Ω)]N×N (cf. [40]), it holds that:

|Rp,n
| ≤ Cαnp(h+∆t + h

2/∆t) (59)

where αnp = ‖f
n
‖1 + ‖un−1‖2 + sup ess0≤s≤T ‖utt(s)‖, and

|Rσ ,n
| ≤ Cαnσ (h+∆t + h

2/∆t) (60)

where αnσ = ‖p
n
‖2 + ‖σ

n
t ‖1 + sup ess0≤s≤T ‖σtt(s)‖. �

Finally by the classical interpolation theory (cf. [37]) the following estimate holds:

Proposition 13. If gn ∈ H5/2(∂Ω)N then:

[Snh ] ≤ Ch
2
‖gn‖5/2,∂Ω . � (61)

7. Convergence

In this Section we prove the convergence of the method in natural norms. The essential step for this is the application of
the stability result (40) to problem (50). Indeed thanks to (58)–(61) and Lemma 3, we have

Proposition 14. Let ∆t = T/M with M > 2T . Then under the assumptions of Propositions 11–13, µ being the ratio ∆t/h
considered to be fixed, we have ∀n ≤ M:

‖ũnh − unh‖
2
+
∆t2

2

n∑
i=1

‖∇(p̃ih − p
i
h)−∇ · (σ̃

i
h − σ

i
h)‖

2
+
λ

2η
‖σ̃ nh − σ

n
h ‖
2

≤
C(T )h2

µ2
max
1≤i≤n

{[
(αiu)

2
+ (αip)

2
+ (αiσ )

2] (µ2 + µ+ 1)2 + ‖gi‖5/2,∂Ω} . � (62)

Before pursuing this we need the following technical lemma:

Lemma 15. If σ n ∈ H2(Ω)N×N and pn ∈ H2(Ω) then,

‖σ n − σ̃ nh ‖ ≤ C(h
2
+ h∆t)(‖σ n‖2 + ‖pn‖2). (63)

Proof. First we write ‖σ n − σ̃ nh ‖ ≤ ‖σ
n
− πh(σ

n)‖ + ‖πh(σ
n)− σ̃ nh ‖. Then

‖σ n − σ̃ nh ‖ ≤ Ch
2
‖σ n‖2 + ‖πh(σ

n)− σ̃ nh ‖. (64)

On the other hand, by the definition of σ̃ nh we have ∀q ∈ Qh and ∀τ ∈ Σh:

λ+∆t
2η

(σ̃ nh − πh(σ
n), τ )h +∆t2(∇(p̃nh − πh(p

n))−∇ · (σ̃ nh − πh(σ
n)),∇q−∇ · τ)

=
λ+∆t
2η

(σ n − πh(σ
n), τ )h +∆t2(∇(pn − πh(pn))−∇ · (σ n − πh(σ n)),∇q−∇ · τ).

Thus taking τ = σ̃ nh − πh(σ
n) and q = p̃nh − πh(p

n) and using the Cauchy-Schwartz inequality we obtain:

λ+∆t
2η
‖πh(σ

n)− σ̃ nh ‖
2
h +∆t

2
‖∇(p̃nh − πh(p

n))−∇ · (σ̃ nh − πh(σ
n))‖2

≤
λ+∆t
2η
‖πh(σ

n)− σ n‖2h +∆t
2
‖∇(pn − πh(pn))−∇ · (σ n − πh(σ n))‖2

≤ C(h4 +∆t2h2)(‖pn‖22 + ‖σ
n
‖
2
2).

Recalling (64) and noticing that from Lemma 3 we have ‖τ‖ ≤ ‖τ‖h ∀τ ∈ Σh, the proof is complete. �

We are now ready to give the main convergence results:

Theorem 16. Let ∆t = T/M < 1/2, and ∆t = µh. Under the regularity assumptions on the data and the solution of
problem (4)made throughout this paper, there exists a constant CµT > 0 such that ∀n ≤ M the following estimate holds:

‖un − unh‖
2
+∆t2

n∑
i=1

‖∇(pi − pih)−∇ · (σ
i
− σ ih)‖

2
+
λ

2η
‖σ n − σ nh ‖

2
≤ CµT h

2. (65)
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More specifically we have:

CµT = C(µ, T )
{
max
1≤i≤M
[‖ui‖22 + ‖p

i
‖
2
2 + ‖σ

i
‖
2
2 + ‖f

i
‖
2
1 + ‖g

i
‖
2
5/2,∂Ω

+‖uit‖
2
1 + ‖σ

i
t‖
2
1] + sup ess

0≤s≤T
‖utt(s)‖2 + sup ess

0≤s≤T
‖σtt(s)‖2

}
.

Proof. Using ‖un−unh‖
2
≤ 2[‖un− ũnh‖

2
+‖ũn−unh‖

2
] and analogous inequalities for both ‖σ n−σ nh ‖

2 and
∑n
i=1 ‖∇(p̃

i
h−

pih)−∇ · (σ̃
i
h − σ

i
h)‖

2, this result directly follows from Lemma 15, together with Proposition 14, (44), (48) and (49). �

As a consequence of Theorem 16, first order convergence in the sense of L2(Ω) of unh to u(t), and of σ
n
h to σ(t) as n goes to∞

and h goes to zero was established, provided t = n∆t remains fixed. Next we give another result stating the convergence of
pnh to p in a weaker sense. More precisely we mean the sense of the discrete L

2
[(0, T ), L2(Ω)]-norm denoted by ‖ · ‖M given

by,

‖q‖M =

[
M∑
i=1

∆t‖qi‖2
]1/2

, with qi = q(i∆t), i = 1, 2, . . . ,M,∀q ∈ C0{[0, T ], L2(Ω)}.

Here we assume that q varies linearly with t between i∆t and (i+ 1)∆t for every i, if the function q is defined only at times
i∆t for i = 1, 2, . . . ,M .

Theorem 17. Under the same regularity assumptions on the solution of (4) made in Theorem 16 and for ∆t = T/M < 1/2,
µ = ∆t/h being fixed ∃ CM such that:

‖p− ph‖2M ≤ CMh (66)

where ph is defined by ph(i∆t) = pih, i = 1, 2, . . . ,M.

Proof. First we rewrite:

‖p− ph‖2M =
M∑
i=1

∆t

[
sup

q∈L20(Ω)−{0}

|(pi − pih, q)|
‖q‖

]2
.

By a classical result (cf. [32]) ∀q ∈ L20(Ω), q 6= 0, ∃v ∈ H
1
0 (Ω)

N such that ∇ · v = q and ‖∇v‖ ≤ C‖q‖. Hence using suitable
Green’s formulae and the Friedrichs–Poincaré inequality, we successively obtain:

sup
q∈L20(Ω)−{0}

|(pi − pih, q)|
‖q‖

≤ C sup
v∈H10 (Ω)

N−{0}

|(pi − pih,∇ · v)|
‖∇v‖

= C sup
v∈H10 (Ω)

N−{0}

[
|(∇(pi − pih)−∇ · (σ

i
− σ ih), v)− (σ

i
− σ ih,∇v)|

‖∇v‖

]
≤ CP

[
‖∇(pi − pih)−∇ · (σ

i
− σ ih)‖ + ‖σ

i
− σ ih‖

]
.

This leads to

‖p− ph‖2M ≤ 2CP∆t
−1

M∑
i=1

∆t2[‖∇(pi − pih)−∇ · (σ
i
− σ ih)‖

2
+ ‖σ i − σ ih‖

2
].

Finally using (65) we conclude that ‖p− ph‖2M ≤ CU [∆t
−1h2 + h2] and the result follows. �

8. Numerical aspects

Since questionsmay arise on the optimality of the error estimates obtained in thiswork, the authorswould like to address
a few considerations about this point.
First of all it is worthwhile stressing the fact that the stability result (40) derived for our scheme holds independently of

the discretization parameters h and∆t . This is not surprising at all since such a result was derived for a fully implicit scheme
applied to a linear problem. However the condition that ∆t be bounded by a constant multiplied by h must be satisfied if
the algorithm (15) providing an explicit solution procedure is employed at every time step. Again this is no surprise owing
to the dominant hyperbolic nature of the three-field system under study for λ not so small.
As for convergence, error bounds proportional to h + ∆t are the best one can hope for. Indeed, on the one hand this

is natural for a first order Euler time integration scheme. On the other hand, contrary to the O(h2) estimate for the error
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Table 1
Relative errors in the L2-norm for λ = 10, η = 1 and t = 0.1.

M u p σ

2 0.20424657E−04 0.87849969E+00 0.11637832E−04
4 0.31002633E−01 0.44702548E+00 0.83090181E−05
8 0.18373583E−01 0.14006621E+00 0.71100717E−05
16 0.90056909E−02 0.41192174E−01 0.54772777E−05

Table 2
Relative errors in the L2-norm for λ = 10, η = 1 and t = 1.0.

M u p σ

2 0.56647707E−03 0.29960172E+01 0.97030262E−03
4 0.68327049E−02 0.54365712E+00 0.33282136E−03
8 0.31364798E−02 0.18664163E+00 0.13640762E−03
16 0.13763716E−02 0.70842154E−01 0.67042529E−04

introduced by lumping the masses that is known to hold for the heat equation (cf. [39]), in the case under study only an
O(h) bound for such error can be exploited. This is because here we have to deal with the L2-norm instead of the H1-norm
of the velocity and extra stress test functions. In this respect we refer to Lemma 10. Besides this limitation, the error of the
piecewise linear approximations of p and σ in the H1-norm, necessary to derive the error estimates, is again no better than
O(h), which becomes clear from Proposition 9. In particular estimate (49) indicates that∆t = O(h) is the optimal choice for
our method. Nevertheless in order to check this out we performed some three-dimensional computations. More specifically
we approximated with our method system (4) in the domain Ω × (0, T ), Ω being the unit cube (0, 1)3 and T = 1. We
present below some relevant results for the particular case where the exact solution is given by:

u(x, y, z, t) = [x(y− z), y(z − x), z(x− y)]Tt
p(x, y, z, t) = [x2(z − y)+ y2(x− z)+ z2(y− x)]/2 ∀t

σ(x, y, z, t) = η(t − λ)

[2(y− z) x− y z − x
x− y 2(z − x) y− z
z − x y− z 2(x− y)

]
.

The corresponding right hand side is given by f(x, y, z, t) = [y2− z2, z2− x2, x2− y2]T/2 ∀t , while the prescribed boundary
velocity g and the initial data u0 and σ 0 are obvious. We solved this problem with uniform tetrahedral meshes obtained
by first subdividingΩ into M3 equal cubes with edge length h = 1/M , each one of them being in turn subdivided into six
tetrahedra in a classical manner. We display in Tables 1 and 2 the relative errors in the L2-norm of the approximate velocity,
pressure and extra stress for different values of M , corresponding to t equal to 0.1 and t = 1 respectively. In all cases we
kept λ = 10 and η = 1, and∆t was taken equal to h/50.
As one can infer from both tables, the predicted convergence rates are roughly confirmed by the numerical results,

although only one iterative substep was used in these computations. This means that we actually implemented a fully
explicit time integration scheme. Surprisingly enough, this seems to perform rather well, and in this respect we also refer
to the general conclusions hereafter.

Remark 18. Similarly to the case considered in this Section, we solved with our method viscoelastic flow problems with
known analytical solutions taking into account all the nonlinear terms. The results obtained for such problems up to
moderate values of λ, indicate a convergence behavior similar to the one observed for the linear case. However, further
stabilization is needed for larger values of this parameter (i.e. higher Deborah numbers) and in this respect we refer to the
last paragraph of the next Section. �

9. Discussions and final remarks

We conclude this work by pointing out some of its aspects that in our opinion are worth being emphasized.
First of all we would like to stress the fact that convergence results for the pressure were obtained, even if the roughest

possible type of space–time finite element approximationswere employed for solving a three-field Stokes system.Moreover,
all the results derived here avoided the widespread assumption that the viscoelastic liquid behaves partially as a Newtonian
fluid andpartially as a non-Newtonian fluid, asmost authors of similarworkhave done so far. As amatter of fact our approach
is also designed for purely viscoelastic constitutive laws such as Maxwell’s. As is well-known, in this case handling the extra
stress tensor properly in the numerical approach is mandatory, if one wishes to perform reliable flow simulations (see
e.g. [6]).
Another important remark concerns the iterative substeps to run at each time step: as we observed in our numerical

experiments for stationary problems, convergence of this iterative procedure to a reasonably small tolerance occurs after
about two iterations, except for the very first values of n (cf. [19]). This is an interesting point, since it means that we are



J.H. Carneiro de Araujo et al. / Journal of Computational and Applied Mathematics 234 (2010) 2562–2577 2577

practically dealing with an explicit scheme stable and convergent for values of the time step of the same order as the
mesh step size. Actually the authors are currently adapting the present numerical approach, in order to further exploit
it in the framework of time-dependent viscoelastic flow problems of practical interest at possibly high Deborah numbers.
Corresponding results should be reported in the near future.
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