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Heisenberg uncertainty principle for a fractional power

of the Dunkl transform on the real line

Sami Ghazouani ∗ and Fethi Bouzeffour †

Abstract

The aim of this paper is to prove Heisenberg-Pauli-Weyl inequality for a fractional power of the Dunkl
transform on the real line for which there is an index law and a Plancherel theorem.

Keywords: Heisenberg uncertainty principle, Dunkl transform, Fractional Fourier transform, Generalized Her-
mite polynomials and functions, Generalized Sobolev spaces.

1 Introduction

Dunkl operators are differential-difference operators associated with finite reflection groups in a euclidean space.
The first class of such operators were introduced by C. F. Dunkl in a series of papers [5, 6, 7], where he built
up the framework for a theory of special functions and integral transforms in several variables related with
reflection groups. In addition to the multidimensional case, one-dimensional Dunkl operators are also of great
interest. For example, a number of works have recently appeared that develop the harmonic analysis results
associated with the one-dimensional Dunkl operator. One of them is the Heisenberg-Weyl type inequality for
the one-dimensional Dunkl transform established by Rösler and Voit [15].

The objective of this paper is two-folded: firstly, we develop an harmonic analysis related to a Dunkl type
operator on the real line. More precisely, we consider a singular differential-difference operator Λα

µ on R which
includes as a particular case the one-dimensional Dunkl operator. The eigenfunction Kµ,α of this operator
permits to define a fractional power Dα

µ of the Dunkl transform on R that reduces to the Dunkl transform,
fractional Hankel transform and the fractional Fourier transform for particular cases of the parameters. Next,
we develop an L1 and L2 theory for this transform. For L1 theory, we give Riemann-Lebesgue lemma, inversion
formula, index additivity property, which is of central importance: without it, we could hardly think of Dα

µ

as being the αth power of Dµ, and operational formula. As for as L2 theory, we prove that the fractional
Dunkl transform Dα

µ , initially defined on L1(R, |x|2µ+1dx), have a unique extension to an unitary operator of
L2(R, |x|2µ+1dx) and if the extension is also denoted by Dα

µ then the family
{
Dα

µ

}
α∈R which is parameterized

by the parameter α ∈ R have a group structure, called the elliptic group. It is like a rotation group since
Dα

µ ◦Dβ
µ = Dα+β

µ and D0
µ is the identity and the inverse is obviously

(
Dα

µ

)−1 = D−α
µ . We present also the subject

of eigenvalues and eigenfunctions. We show that the generalized Hermite functions, which were introduced by
Szegö [16] and studied by Chihara [2, 3] and Rosenblum [13], form an orthonormal basis of eigenfunctions of Dα

µ

on L2(R, |x|2µ+1dx). As a consequence, we prove that the family
{
Dα

µ

}
α∈R is a C0-group of unitary operators and

we derive their infinitesimal generators. Secondly, we extend the Heisenberg-Pauli-Weyl uncertainty inequalities
established by Rösler and Voit (Theorem 4.1,[15]) to the case of fractional Dunkl transform Dα

µ as follows:

varµ(Dα
µ(f)) varµ(Dβ

µ(f)) ≥ sin2(α− β)
((

µ+
1
2

)(
∥fe∥22,µ − ∥fo∥22,µ

)
+

1
2

)2

, (1.1)

where α ∈ R\πZ and β ∈ R. For this purpose, we introduce Sobolev type spaces Hµ,α
2 (R) naturally associated

to Λ−α
µ and we obtain their basic properties such as the imbedding theorems. We prove that:

• For every α ∈ R\πZ and −1
2 ≤ µ < 0, Hµ,α

2 (R) ↪→ C0(R) and the injection map is continuous.
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• For every α ∈ R\πZ, µ ≥ 0 and f ∈ Hµ,α
2 (R), there exists a function ψ ∈ C(R\{0}) such that f(x) = ψ(x), a. e

and for all x ∈ R\{0},

|ψ(x)| ≤ c ∥f |Hµ,α
2 (R)∥2,µ

{ |x|−µ if µ > 0,
| ln |x|| 12 if µ = 0,

where c = c(µ, α) > 0. As applications on these spaces, we will show that (1.1) holds with equality if and only
if f(x) = λ e(i cot(β)−b) x2

2 Eµ(ax), where λ, a and b are suitable parameters.

This paper is organized as follows. Section 2 presents an overview of the Heisenberg’s inequality for various
Fourier transform on the real line. Section 3 we introduce the fractional Dunkl transformDα

µ on the real line with
parameter α ∈ R. Riemann-Lebesgue lemma, inversion formula, an index additivity property and operational
formulae are derived in section 4. Section 5 is devoted to the extension of the fractional Dunkl transform Dα

µ

as an isometry from L2
µ(R) to itself and the intimate relationship between the fractional Dunkl transform and

generalized Hermite polynomials and functions. In section 6, we study the Sobolev spaces Hµ,α
2 (R) associated

to Λ−α
µ and we derive a Heisenberg uncertainty principle for the fractional Dunkl transform and the fractional

Hankel transform.

2 A brief survey of the Heisenberg’s inequality for various Fourier
transform

In this section, we give an overview of the Heisenberg’s inequality for various Fourier transform on the real line.

2.1 The Heisenberg’s inequality for Fourier transform and fractional Fourier trans-
form

• The Fourier transform (FT) can be defined in many ways. For us, three different formulations are in particular
important. In its most formulation, the FT is given by the integral transform

F(f)(ξ) =
1√
2π

∫ +∞

−∞
f(x)e−ixξ dx.

Alternatively, one can rewrite the transform as

F(f)(ξ) =
1√
2π

∫ +∞

−∞
K(x, ξ)f(x) dx, (2.1)

where K(x, ξ) is the unique solution of the system of PDEs
{

d

dx
K(x, ξ) = −iξ K(x, ξ),

k(0, ξ) = 1.
(2.2)

A third formulation is given by

F = e
iπ
4 e

iπ
4 (∆−x2), (2.3)

with ∆ = d2

dx2 . The classical Heisenberg-Pauli-Weyl inequality [8] states that for f ∈ L2(R) and for any a, b ∈ R,
∫ +∞

−∞
(x− a)2|f(x)|2 dx.

∫ +∞

−∞
(ξ − b)2|F(f)(ξ)|2 dξ ≥ 1

4

(∫ +∞

−∞
|f(x)|2 dx

)2

.

It is well known that there is a probabilistic interpretation to the previous inequality in terms of the variance.
Let f ∈ L2(R) and suppose ∥f∥L2(R) = 1. By the Parseval identity, ∥F(f)∥L2(R) = 1. Then |f |2 and |F(f)|2 are
both probability density functions on R. The variance of f and the variance of F(f) are defined by

var(f) = inf
a∈R

∫ +∞

−∞
(x− a)2|f(x)|2 dx, var(F(f)) = inf

b∈R

∫ +∞

−∞
(x− b)2|F(f)(x)|2 dx.

With these definitions, Heisenberg’s inequality states that for f ∈ L2(R) such that ∥f∥L2(R) = 1,

var(f) var(F(f)) ≥ 1
4
.
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Note that if the integral defining the variance of f is finite for one value a, then it is finite for every a ∈ R. In
this case

∫ +∞
−∞ (x − a)2|f(x)|2 dx is a quadratic function of a whose minimum occurs when a is the mean of f,

given by
∫ +∞
−∞ x|f(x)|2 dx = ⟨xf, f⟩; hence

var(f) =
∫ +∞

−∞
(x− ⟨xf, f⟩)2 |f(x)|2 dx = ∥(x− ⟨xf, f⟩) f∥2L2(R)

and using the fact that ξF(f)(ξ) = F( df
dx )(ξ) and the Parseval identity,

var(F(f)) =
∫ +∞

−∞
(x− ⟨xF(f),F(f)⟩)2 |F(f)(x)|2 dx =

∥∥∥∥
(
d

dx
−
⟨
df

dx
, f

⟩)
f

∥∥∥∥
2

L2(R)

.

• The fractional FT is a generalization of the classical FT. It is usually defined by [11]

Fαf(x) =





ei(α̂π/4−(α−2nπ)/2)√
2π| sin(α)|

∫ +∞

−∞
e−

i
2 (x2+y2) cot(α)+ ixy

sin(α) f(y) dy, (2n− 1)π < α < (2n+ 1)π,

f(x), α = 2nπ,
f(−x), α = (2n+ 1)π,

(2.4)

with n ∈ Z and α̂ = sgn(sin(α)). Following the formulation (2.1) of the ordinary FT, we can rewrite this
transformation as

Fαf(x) =





ei(α̂π/4−(α−2nπ)/2)√
2π| sin(α)|

∫ +∞

−∞
Kα(x, y)f(y) dy, (2n− 1)π < α < (2n+ 1)π,

f(x), α = 2nπ,
f(−x), α = (2n+ 1)π,

where, for α ∈ R\πZ, Kα(x, y) = e−
i
2 (x2+y2) cot(α)+ ixy

sin(α) is the unique solution of the system of PDEs




(
d

dx
+ i cot(α)x

)
Kα(x, y) = iy

sin(α)Kα(x, y),

Kα(0, y) = e−
i
2 y2 cot(α).

(2.5)

The exponential expression (2.3) takes for the fractional FT the following form:

Fα = e
iα
2 e

iα
2 (∆−x2).

In [12], the authors gave an uncertainty principle for the fractional FT. They proved the following uncertainty
inequalities:

∫ +∞

−∞
(x− a)2|Fαf(x)|2 dx.

∫ +∞

−∞
(x− b)2|Fβ(f)(x)|2 dx ≥ sin2(α− β)

4

(∫ +∞

−∞
|f(x)|2 dx

)2

.

2.2 The Heisenberg’s inequality for the Hankel transform and fractional Hankl
transform

• The Hankel transform is a generalization of the classical FT. It is defined by

Hµ(f)(x) =
1

2µΓ(µ+ 1)

∫ +∞

0

f(y)jµ(xy) y2µ+1 dy, µ ≥ −1
2
, (2.6)

where jµ denotes the normalized spherical Bessel function

jµ(x) = 2µΓ(µ+ 1)
Jµ(x)
xµ

= Γ(µ+ 1)
+∞∑

n=0

(−1)n(x/2)2n

n! Γ(n+ µ+ 1)
, (2.7)

and Jµ is the classical Bessel function (see, Watson [17]). Note that the Hankel transform (2.6) can be rewritten
as:

Hµ(f)(x) =
1

2µΓ(µ+ 1)

∫ +∞

0

f(y)Kµ(x, y) y2µ+1 dy,

3



where Kµ(x, y) is the unique solution of the modified Bessel’s equation
{
Lµ Kµ(., y) = −y2Kµ(., y),
Kµ(0, y) = 1, d

dxKµ(0, y) = 0. (2.8)

and where Lµ is the Bessel operator given by

Lµ =
d2

dx2
+

2µ+ 1
x

d

dx
.

Another interesting variant of the Hankel transform is the following:

Hµ = ei(µ+1) π
2 ei π

4 (Lµ−x2)

In [1, 15], the authors gave an uncertainty principle for the Hankel transform. They proved the following
uncertainty inequalities:

∫ +∞

0

x2|f(x)|2x2µ+1 dx.

∫ +∞

0

λ2|Hµ(f)(λ)|2λ2µ+1 dλ ≥ (µ+ 1)2
(∫ +∞

0

|f(x)|2x2µ+1 dx

)2

,

where f is a square integrable function on ]0,+∞[ with respect to the measure dωµ(x) = x2µ+1 dx.
• The fractional Hankel transformation is a generalization of the conventional Hankel transform. It is given by:

Hα
µf(x) =





2cµ,α

∫ +∞

0

e−
i
2 (x2+y2) cot(α) jµ

(
xy

sin(α)

)
f(y)y2µ+1 dy, (2n− 1)π < α < (2n+ 1)π,

f(x), α = 2nπ,
f(−x), α = (2n+ 1)π,

where, for (2n− 1)π < α < (2n+ 1)π, cµ,α =
ei(µ+1)(α̂π/2−(α−2nπ))

Γ(µ+ 1)(2| sin(α)|)µ+1
.

Knowing that, for α ∈ R\πZ, the kernel Kµ,α(x, y) = e−
i
2 (x2+y2) cot(α) jµ(xy/ sin(α)) of the fractional Hankel

transform is the unique solution of:
{

∆µ,α Kµ,α(., y) = − y2

sin2(α)
Kµ,α(., y),

Kµ,α(0, y) = e−
i
2 cot(α)y2

, d
dxKµ,α(0, y) = 0,

(2.9)

where ∆µ,α is the differential operator given by:

∆µ,α =
d2

dx2
+
(

2µ+ 1
x

+ 2i cot(α)x
)

d

dx
+ 2i(µ+ 1) cot(α)− cot2(α)x2.

The exponential form for the fractional Hankel transform is the following:

Hα
µ = eiα(µ+1)ei α

2 (Lµ−x2)

At the end of this paper we derive the following uncertainty principle for the fractional Hankel transform:

∫ +∞

0

(x−a)2|Hα
µf(x)|2x2µ+1 dx.

∫ +∞

0

(x−b)2|Hβ
µ(f)(x)|2x2µ+1 dx ≥ sin2(α−β)(µ+1)2

(∫ +∞

0

|f(x)|2x2µ+1 dx

)2

.

2.3 The Heisenberg’s inequality for the Dunkl transform

The Dunkl transform on the real line is both an extension of the Hankel transform to the whole real line and a
generalization of the Fourier transform. It was introduced by Dunkl in [7], where already many basic properties
were established. Dunkl’s results were completed and extended later on by de Jeu in [4]. The Dunkl transform
of a function f ∈ L1(R, |x|2µ+1dx) is given by

Dµf(λ) =
1

2µ+1Γ(µ+ 1)

∫ +∞

−∞
f(x)Eµ(−iλx)|x|2µ+1dy, µ ≥ −1

2
, (2.10)

where

Eµ(z) = jµ(iz) +
z

2(µ+ 1)
jµ+1(iz), (2.11)
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is the one-dimensional Dunkl kernel [6]. It is well known that the functions Eµ(λ.) is, for µ ≥ −1/2 the unique
solution of the initial value problem

{
Λµf = λf,
f(0) = 1, (2.12)

where

Λµf(x) =
d

dx
f(x) +

2µ+ 1
x

[
f(x)− f(−x)

2

]
,

is the Dunkl operator with parameter µ associated with the reflection group Z2 on R (see[5]). The exponential
form of the Dunkl transform is the following:

Dµ = ei(µ+1) π
2 ei π

4 (Λ2
µ−x2)

In [15], the authors derived a Heisenberg-Weyl type inequality for the Dunkl transform on the real line. They
obtained, for functions f in the appropriate space, the following inequalities

varµ(f) varµ(Dµ(f)) ≥
(

(µ+
1
2
)
(
∥fe∥22,µ − ∥fo∥22,µ

)
+

1
2

)2

, (2.13)

where
varµ(f) = ∥(x− ⟨xf, f⟩µ) f∥22,µ and varµ(Dµ(f)) = ∥(Λµ − ⟨Λµf, f⟩µ) f∥22,µ ,

and where fo(x) = f(x)−f(−x)
2 and fe(x) = f(x)+f(−x)

2 are the odd and the even parts of f respectively. Here,
⟨., .⟩µ denotes the L2(R, |x|2µ+1dx) inner product and ∥.∥2,µ its associated norm.

3 Fractional Dunkl transform in L1
µ(R)

Notation: We denote by
• C0(R) the space of continuous functions on R which vanish at infinity.
• Cm(R) (resp. Cm

c (R)), the space of Cm-functions on R (resp. with compact support).
• S(R) the space of C∞-functions on R which are rapidly decreasing with their derivatives.
• Lp

µ(R) the space of measurable functions on R such that

∥f∥µ,p =
(∫ +∞

−∞
|f(y)|p|y|2µ+1 dy

) 1
p

< +∞, if 1 ≤ p < +∞,

∥f∥µ,∞ = ess sup
x∈R

|f(x)| <∞.

To describe the harmonic analysis in our setting we begin by introducing the differential-difference operator Λα
µ

defined for f ∈ C1(R) by:

Λα
µf(x) :=

d

dx
f(x) +

2µ+ 1
x

[
f(x)− f(−x)

2

]
+ i cot(α)xf(x)

= Λµf(x) + i cot(α)xf(x),

where α ∈ R\πZ and µ ≥ −1/2.
In the case µ = −1/2, Λα

µ is reduced to the operator:

• d

dx
(when α = π/2) which is closely related to the FT (2.2).

• d

dx
+ i cot(α)x, which is closely related to the fractional Fourier transform (2.5).

If we consider the case µ > −1/2 :
• Λα

µ coincides, for α = π/2, with the Dunkl operator Λµ which is closely related to the Dunkl transform (2.12).
The restriction to the even subspace C2(R)e =

{
f ∈ C2(R) : f(x) = f(−x)

}
of the square (Λα

µ)2 is:
• The Bessel operator Lµ (when α = π/2) which is closely related to the Hankel transform (2.8).
• The operator ∆µ,α which is closely related to the fractional Hankel transform (2.9).
One purpose of this paper is to provide that Λα

µ is closely related to a fractional Dunkl transform on the real
line. We begin with the following Proposition:

5



Proposition 3.1 Let α ∈ R\πZ.
(1) The operator Λα

µ is related to the Dunkl operator Λµ by

e
i
2 cot(α)x2 ◦ Λα

µ ◦ e−
i
2 cot(α)x2

= Λµ.

(2) For y ∈ C, the differential-difference equation
{

Λα
µf = iy

sin(α)f,

f(0) = e−
i
2 y2 cot(α),

has a unique analytic solution given by

Kµ,α(x, y) = e−
i
2 (x2+y2) cot(α)Eµ(ixy/ sin(α))

where Eµ is the Dunkl-kernel given by (2.11).

Proof.
(1) Let f be a differentiable function on R and let g be the function defined by g(x) = e−

i
2 x2 cot(α)f(x). An easy

calculation shows that Λα
µg(x) = e−

i
2 x2 cot(α)Λµf(x). Then e

i
2 x2 cot(α)Λα

µg(x) = Λµf(x).
(2) The second assertion follows from the first together with (2.12).

We now summarize some properties of the kernel Kµ,α(x, y).

Proposition 3.2 Let α ∈ R\πZ.
(1) For each x ∈ R and y ∈ C, we have the integral representation

Kµ,α(x, y) =
Γ(µ+ 1)√
πΓ(µ+ 1/2)

e−
i
2 (x2+y2) cot(α)

∫ 1

−1

e
ixyt

sin(α) (1− t2)µ−1/2(1 + t) dt. (3.1)

In particular, we have

∀x ∈ R, ∀y ∈ R, |Kµ,α(x, y)| ≤ 1. (3.2)

(2) There exists a(µ, α) > 0 such that for all x and y ∈ R, we have

|Kµ,α(x, y)| ≤ a(µ, α) min(1, |xy|−(µ+1/2)). (3.3)

Proof.
(1) (3.1) is a direct application of the Bochner-type representation for the Dunkl-kernel Eµ (see [13] or [14]):

Eµ(λx) =
Γ(µ+ 1)√
πΓ(µ+ 1/2)

∫ 1

−1

eλxt(1− t2)µ−1/2(1 + t) dt. (3.4)

(2) We recall, from [17], the asymptotic expansions for Bessel function Jµ(z) as |z| → ∞ :

Jµ(z) ∼
√

2
πz

cos
(
z − µπ

2
− π

4

)
, | arg(z)| < π.

Then

Kµ,α(x, y) = O
(
|xy|−(µ+ 1

2 )
)

for |xy| → ∞. (3.5)

Thus, (3.2) and (3.5) determine our choice of a(µ, α).

Definition 3.1 For 0 < |α| < π, we define the fractional Dunkl transform of a function f in L1
µ(R) by:

Dα
µf(x) = Aα

∫ +∞

−∞
f(y)Kµ,α(x, y)|y|2µ+1dy, (3.6)

where

Aα =
ei(µ+1)(α̂π/2−α)

Γ(µ+ 1)(2| sin(α)|)µ+1
and α̂ := sgn(sin(α)).

6



3.1 Case α = 0 or α = π.

In order to define D0
µ or Dπ

µ , we need another integral representation for the fractional Dunkl transform Dα
µ .

We begin by the following lemmas

Lemma 3.1 Consider for any a ∈ C such that ℜa > 0, the function fa defined by

fa(y) = e−ay2
Eµ(ixy),

where x ∈ R. Then

Dµfa(ξ) =
e−

1
4a (x2+ξ2)

(2a)µ+1
Eµ(xξ/2a).

Proof. Since fa ∈ L1
µ(R), it follows that

Dµfa(ξ) =
1

2µ+1Γ(µ+ 1)

∫ +∞

−∞
e−ay2

Eµ(ixy)Eµ(−iξy)|y|2µ+1dy.

By (2.11),

Eµ(ixy)Eµ(−iξy) = jµ(xy)jµ(ξy) +
xξy2

4(µ+ 1)2
jµ+1(xy)jµ+1(ξy)

+
ixy

2(µ+ 1)
jµ+1(xy)jµ(ξy)− iξy

2(µ+ 1)
jµ(xy)jµ+1(ξy).

Then

Dµfa(ξ) =
1

2µΓ(µ+ 1)
Bµ +

xξ

2µ+2(µ+ 1)Γ(µ+ 2)
Bµ+1,

where

Bµ =
∫ +∞

0

e−ay2
jµ(xy)jµ(ξy) y2µ+1 dy =

1
2

∫ +∞

0

e−ayjµ(x
√
y)jµ(ξ

√
y) yµ dy

=
22µ−1Γ2(µ+ 1)

(xξ)µ

∫ +∞

0

e−ayJµ(x
√
y)Jµ(ξ

√
y) dy.

To compute Bµ, we need the following formulas (see 7.4.21 (4) in [9])

∫ +∞

0

e−δyJν(2r
√
y)Jν(2s

√
y) dy =

e−(1/δ)(s2+r2)

δ
Iν(2rs/δ),

where

Iν(z) = e−iπν/2Jν(iz) = (z/2)ν
+∞∑

n=0

(z/2)2n

n! Γ(n+ ν + 1)
,

| arg(δ)| < π/2 and ν ≥ 0. Let us take δ = a, r = x/2 and s = ξ/2, then

Bµ =
22µ−1Γ2(µ+ 1)

(xξ)µ

e−
x2
4a e−

ξ2

4a

a
Iµ(xξ/2a) =

2µΓ(µ+ 1)
(2a)µ+1

e−
1
4a (x2+ξ2)jµ(ixξ/2a).

Lemma 3.2 Let c, d ∈ C such that ℜc > 0. For all x, y ∈ R, we have
∣∣∣e−cx2

Eµ(dxy)
∣∣∣ ≤ e−

(ℜd)2y2

4ℜc .
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Proof. By (3.4), it follows that

|Eµ(dxy)| ≤ e|ℜd||x||y|. (3.7)

Then
∣∣∣e−cx2

Eµ(dxy)
∣∣∣ ≤ e−ℜcx2+|ℜd||x||y|.

On the other hand, we have,

sup
r≥0

(−ℜc r2 + |ℜd||y|r) = − (ℜd)2y2

4ℜc .

Which gives the result.

Theorem 3.1 Let 0 < |α| < π such that |α| ̸= π/2. For f ∈ L1
µ(R) ∩ L2

µ(R) with Dµf ∈ L1
µ(R), we have:

(1)

Dα
µf(x) =

1
Γ(µ+ 1)

(
e−iα

2 cosα

)µ+1 ∫ +∞

−∞
e

i
2 (x2+y2) tan α Eµ

(
ixy

cos(α)

)
Dµf(y)|y|2µ+1 dy. (3.8)

(2)

lim
α→0+

Dα
µf(x) = lim

α→0−
Dα

µf(x) = f(x), a.e.

lim
α→π+

Dα
µf(x) = lim

α→π−
Dα

µf(x) = f(−x), a.e

Proof.
(1) For any a > 0, define

Fa(x) =
∫ +∞

−∞
f(y)ga(y)|y|2µ+1 dy,

where ga(y) = e−(a+ i
2 cot(α))y2

Eµ(ixy/ sin(α)).
From (3.7), we deduce that |ga(y)| ≤ 1. Then |f(y)ga(y)| ≤ |f(y)|, so we can apply the dominated convergence
theorem to get

lim
a→0

Fa(x) = A−1
α e

i
2 x2 cot(α)Dα

µf(x). (3.9)

Using Lemma 3.1 with a↔ a+ i
2 cot(α), one can schow

Dµfa(ξ) =
1

(2a+ i cot(α))µ+1
e
− x2

4a sin2(α)+i sin(2α) e−
ξ2

4a+2i cot(α)

× Eµ

(
xξ

2a sin(α) + i cos(α)

)
.

Now applying the Parseval formula for the Dunkl transform (see [4]) together with Lemma 3.1, we obtain

Fa(x) =
1

(2a+ i cot(α))µ+1
e
− x2

4a sin2(α)+i sin 2α

×
∫ +∞

−∞
e−

ξ2

4a+2i cot(α) Eµ

(
xξ

2a sin(α) + i cos(α)

)
Dµf(−ξ) |ξ|2µ+1 dξ.

Applying Lemma 3.2 with c = 1
4a+2i cot(α) and d = 1

2a sin(α)+i cos(α) , then

ℜc =
a sin2(α)

4a2 sin2(α) + cos2(α)
and ℜd =

2a sin(α)
4a2 sin2(α) + cos2(α)

.

Therefore
∣∣∣∣ e

− ξ2

4a+2i cot(α) Eµ

(
xξ

2a sin(α) + i cos(α)

)
Dµf(−ξ)

∣∣∣∣ ≤ e
ax2

4a2 sin2(α)+cos2(α) |Dµf(−ξ)|

≤ Bx|Dµf(−ξ)|.
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where Bx = sup
a∈]0,1]

e
a |x|2

4a2 sin2(α)+cos2(α) . The function ξ 7→ Dkf(−ξ) is in L1
µ(R), then the dominated convergence

theorem implies

lim
a→0

Fa(x) =
e

ix2
sin(2α)

(i cot(α))µ+1

∫ +∞

−∞
e

i
2 ξ2 tan α Eµ(−ixξ/ cos(α))Dµf(−ξ)|ξ|2µ+1 dξ. (3.10)

Hence, (3.9) and (3.10) gives after simplification

Dα
µf(x) =

1
Γ(µ+ 1)

(
e−iα

2 cosα

)µ+ 1
2
∫ +∞

−∞
e

i
2 (x2+y2) tan α Eµ

( −ixy
cos(α)

)
Dµf(−y)|y|2µ+1 dy. (3.11)

Finally, if we make the change of variables u = −y in (3.11), then we find (3.8).
(2) Follows from (3.8) together with the dominated convergence theorem and the inversion formula for the
Dunkl transform (see Theorem 4.20 in [4]).
From the above theorem, we extend the definition (3.6) to α = 0 or α = π as follows

Definition 3.2 For f ∈ L1
µ(R), define

(1) D0
µf(x) = f(x),

(2) Dπ
µf(x) = f(−x).

3.2 Case α ∈ R.

We make the following definition.

Definition 3.3 For n ∈ Z and f ∈ L1
µ(R), define

(1) D2nπ
µ f(x) = f(x),

(2) D
(2n+1)π
µ f(x) = f(−x),

(3) Dα+2nπ
µ f(x) = Dα

µf(x), α ∈ R.

Note that if (2n− 1)π < α < (2n+ 1)π and n ∈ Z,

Dα
µf(x) =

ei(µ+1)(α̂π/2−(α−2nπ))

Γ(µ+ 1)(2| sin(α)|)µ+1

∫ +∞

−∞
f(y)Kµ,α(x, y)|y|2µ+1dy, (3.12)

where α̂ = sgn(sin(α))

Particular case
• When α = −π/2, Dα

µ reduces to the Dunkl transform Dµ.
• If f is an even function then Dα

µf coincides with the fractional Hankel transform Hα
µf of f .

• When µ = −1/2, Dα
µ coincides with the fractional Fourier transform Fα.

4 Basic properties of Dα
µ.

In this section, we discuss basic properties of Dα
µ for general α ∈ R.

4.1 Riemann-Lebesgue lemma and the reversibility property.

Theorem 4.1 Let α ∈ R.
(1) Here suppose α ̸∈ πZ. For all f ∈ L1

µ(R), Dα
µf belongs to C0(RN ) and verifies

∥Dα
µf∥∞ ≤ 1

Γ(µ+ 1)(2| sin(α)|)µ+1
∥f∥1.

(2) For all f ∈ L1
µ(R) with Dα

µf ∈ L1
µ(R),

(D−α
µ ◦Dα

µ)f = f, a.e,

and

(Dα
µ ◦D−α

µ )f = f, a.e.
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(3) Dα
µ is a one-to-one and onto mapping from S(R) into S(R). Moreover,

(Dα
µ)−1f = D−α

k f, f ∈ S(R). (4.1)

Proof.
(1) The first statement follows immediately from Riemann-Lebesgue lemma for the Dunkl transform (see [4],
Corollary 4.7).
(2) Since Dα

µ is periodic in α with period 2π, we can assume that α ∈ (−π, π]. We see immediately that

D0
µ ◦D0

µf = f,

Dπ
µ ◦Dπ

µf = f.

When 0 < |α| < π, we have

D−α
µ ◦Dα

µf(x) =
1

(4 sin2(α))µ+1Γ2(µ+ 1)
e

i
2 x2 cot(α)

∫ +∞

−∞
Eµ(−ixy/ sin(α))

×
(∫ +∞

−∞
e−

i
2 z2 cot(α)f(z)Eµ(iyz/ sin(α)) |z|2µ+1dz

)
|y|2µ+1 dy.

By the change of variables u = y
sin(α) , we obtain

D−α
µ ◦Dα

µf(x) = e
i
2 x2 cot(α) 1

4µ+1Γ2(µ+ 1)

∫ +∞

−∞
Eµ(−ixu)

×
(∫ +∞

−∞
e−

i
2 z2 cot(α)f(z)Eµ(iuz)|z|2µ+1 dz

)
|u|2µ+1du

= e
i
2 x2 cot(α)Dµ

(
Dµ

[
e−

i
2 z2 cot(α)f(−z)

])
(x),

= f(x), a. e.

The last equality follows from the inversion formula for the Dunkl transform.
(3) That Dα

µ : S(R) −→ S(R) is an homeomorphism follows from [4], Corollary 4.22, and the fact that the
mapping Mλ defined by

(Mλf)(x) = e
i
2 λx2

f , f ∈ S(R)

is an automorphism on S(R) for each λ ∈ R. The statement (Dα
µ)−1 = D−α

µ follows from part (2).

4.2 An index additivity property

We begin by following lemmas:

Lemma 4.1 Let ϵ > 0, α, β ∈ R\πZ and (x, z) ∈ R2. Then

∫ +∞

−∞
e−ϵy2

Kµ,α(x, y)Kµ,β(y, z)|y|2µ+1 dy =
2µ+1Γ(µ+ 1)

cα,β(ϵ)
exp

(
− i

2
(x2 cot(α) + z2 cot(β))

)

× exp
(
−(r1(ϵ)x2 + r2(ϵ)z2)

)
Eµ (−r3(ϵ)xz) ,

where

r1(ϵ) =
1

4ϵ sin2(α) + 2i sin(α)(sin(α+ β)/ sin(β))
, r2(ϵ) =

1
4ϵ sin2(β) + 2i sin(β)(sin(α+ β)/ sin(α))

,

r3(ϵ) =
1

2ϵ sin(α) sin(β) + i sin(α+ β)
and cα,β(ϵ) =

(
2ϵ+ i

sin(α+ β)
sin(α) sin(β)

)µ+1

.
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Proof. Replacing Kµ,α(x, y) and Kµ,β(y, z) by their definitions, we get
∫ +∞

−∞
e−ϵy2

Kµ,α(x, y)Kµ,β(y, z)|y|2µ+1 dy = exp
(
− i

2
(x2 cot(α) + z2 cot(β))

)

×
∫ +∞

−∞
e−(ϵ+ i

2 (cot(α)+cot(β)))y2
Eµ

(
ixy

sin(α)

)
Eµ

(
iyz

sin(β)

)
|y|2µ+1 dy.

The desired result follows from Lemma 3.1

Lemma 4.2 Let α, β be in R\πZ such that α+ β ∈ R\πZ and let f be in L1
µ(R) with Dβ

µf ∈ L1
µ(R). Then

∫ +∞

−∞
Kµ,α(x, y)

(∫ +∞

−∞
f(z)Kµ,β(y, z)|z|2µ+1dz

)
|y|2µ+1dy = 2µ+1Γ(µ+ 1)

∣∣∣∣
sin(α) sin(β)
sin(α+ β)

∣∣∣∣
µ+1

× e−
iπ
2 (µ+1)ã(α,β)

∫ +∞

−∞
f(z) Kµ,α+β(x, z)|z|2µ+1 dz,

where

â(α, β) = sgn
(

sin(α+ β)
sin(α) sin(β)

)
.

Proof. For any positive number ϵ, we define the function Iϵ on R by

Iϵ(x) =
∫ +∞

−∞
e−ϵy2

Kµ,α(x, y)
(∫ +∞

−∞
f(z)Kµ,β(y, z)|z|2µ+1dz

)
|y|2µ+1dy.

Since Dβ
µf ∈ L1

µ(R), it follows from the dominated convergence theorem that

lim
ϵ→0

Iϵ(x) =
∫ +∞

−∞
Kµ,α(x, y)

(∫ +∞

−∞
f(z)Kµ,β(y, z)|z|2µ+1dz

)
|y|2µ+1dy.

Using Fubini’s Theorem and Lemma 4.1, we obtain

Iϵ(x) =
2µ+1Γ(µ+ 1)

cα,β(ϵ)
e−( i

2 cot(α)+r1(ϵ))x
2

×
∫ +∞

−∞
e−( i

2 cot(β)+r2(ϵ))z
2
f(z)Eµ (−r3(ϵ)xz) |z|2µ+1 dz.

Clearly

lim
ϵ→0

cα,β(ϵ) =
∣∣∣∣

sin(α+ β)
sin(α) sin(β)

∣∣∣∣
µ+1

e
iπ
2 (µ+1)â(α,β),

lim
ϵ→0

e−( i
2 cot(α)+r1(ϵ))x

2
= e−

i
2 x2 cot(α+β),

lim
ϵ→0

e−( i
2 cot(β)+r2(ϵ))z

2
f(z)Eµ (−r3(ϵ)xz) = e−

i
2 z2 cot(α+β)f(z)Eµ(ixz/ sin(α+ β)).

Applying again Lemma 3.2 with c = i
2 cot(β) + r2(ϵ) and d = −r3(ϵ), then

ℜc =
ϵ sin2(α)

4ϵ2 sin2(α) sin2(β) + sin2(α+ β)
and ℜd = − 2ϵ sin(α) sin(β)

4ϵ2 sin2(α) sin2(β) + sin2(α+ β)
.

Therefore
∣∣∣e−( i

2 cot(β)+r2(ϵ))z
2
f(z)Eµ (−r3(ϵ)xz)

∣∣∣ ≤ e
ϵ sin2(β)x2

4ϵ2 sin2(α) sin2(β)+sin2(α+β) |f(z)|
≤ Cx|f(z)|,

where Cx = sup
ϵ∈]0,1]

e
ϵx2 sin2(β)

4ϵ2 sin2(α) sin2(β)+sin2(α+β) . Thus, the dominated convergence theorem leads to

lim
ϵ→0

Iϵ(x) = 2µ+1Γ(µ+ 1)
∣∣∣∣
sin(α) sin(β)
sin(α+ β)

∣∣∣∣
µ+1

e−
iπ
2 (µ+1)â(α,β)e−

i
2 x2 cot(α+β)

×
∫ +∞

−∞
f(z) e−

i
2 z2 cot(α+β)Eµ(ixz/ sin(α+ β)) |z|2µ+1 dz.

This completes the proof.
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Lemma 4.3 Let α, β be in ]− π, 0[∪]0, π[. Then
(
α̂+ β̂ − â(α, β)

) π
2
− (α+ β) = sgn(sin(α+ β))

π

2
− (α+ β − 2rπ),

where

r =





1, if α+ β ∈]π, 2π[,
0, if α+ β ∈]− π, 0[∪]0, π[,
−1, if α+ β ∈]− 2π,−π[.

Proof. is obviously.

Theorem 4.2 Let α, β be in R and let f be in L1
µ(R) with Dβ

µf ∈ L1
µ(R). Then

Dα
µ ◦Dβ

µ(f) = Dα+β
µ (f).

with equality a. e when α+ β ∈ πZ.

Proof. Since Dα
µ is periodic in α with period 2π, we can assume that α and β are in (−π, π].

We shall divide the proof into five steps.
Step I Suppose that α ∈]− π, 0[∪]0, π[ and β = π. By the change of variables u = −y, we obtain

Dα
µ(Dπ

µf)(x) = Aα

∫ +∞

−∞
f(−y)Kµ,α(x, y)|y|2µ+1 dy

= Aα

∫ +∞

−∞
f(y)Kµ,α(−x, y)|y|2µ+1 dy

= Dπ
µ(Dα

µf)(x).

An easy calculation shows that

sgn(sin(α+ π))
π

2
− (α+ π − 2rπ) = Aα,

where

r =
{

0, if α ∈]− π, 0[,
1, if α ∈]0, π[.

Since Kµ,α(−x, y) = Kµ,α+π(x, y), definition 3.12 implies that

(Dα
µ ◦Dπ

µ)f = Dα+π
µ f. (4.2)

Step II Suppose that α ∈] − π, 0[∪]0, π[ and β = π − α. As −α ∈] − π, 0[∪]0, π[, (4.2) implies that Dπ−α
µ =

D−α
µ ◦Dπ

µ . Therefore, in view of Theorem 4.1,
(
Dα

µ ◦Dπ−α
µ

)
(f) =

(
Dα

µ ◦D−α
µ

)
(Dπ

µf)
= Dπ

µf, a.e.

Step III Suppose that α ∈]− π, 0[∪]0, π[ and β = −α. This is exactly statement (2) of Theorem 4.1.
Step IV Suppose that α ∈]− π, 0[∪]0, π[ and β = −π − α. The proof of this is similar to step I.
Step V. Suppose that α, β ∈]− π, 0[∪]0, π[ and α+ β ̸∈ {−π, 0, π}. In this case

Dα
µD

β
µf(x) =

ei(µ+1)((α̂+β̂) π
2−(α+β))

Γ2(µ+ 1)(4| sinα sinβ|)µ+1
A(x),

where

A(x) =
∫ +∞

−∞
Kµ,α(x, y)

(∫ +∞

−∞
f(z)Kµ,β(y, z)|z|2µ+1dz

)
|y|2µ+1dy.

By Lemmas 4.2 and 4.3 and Definition 3.3, we have

Dα
µD

β
µf(x) =

ei(µ+1)((α̂+β̂−â(α,β)) π
2−(α+β))

Γ(µ+ 1)|2 sin(α+ β)|µ+1

∫ +∞

−∞
f(z)Kµ,α+β(x, z)|z|2µ+1dz

=
ei(µ+1)(sgn(sin(α+β)) π

2−(α+β−2rπ))

Γ(µ+ 1)|2 sin(α+ β)|µ+1

∫ +∞

−∞
f(z)Kµ,α+β(x, z)|z|2µ+1dz

= Dα+β
µ f(x).
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4.3 Operational formulae

Proposition 4.1 Let f ∈ S(R) and α ∈ R\πZ. Then
(1) Dα

µ(yf(y))(x) = −i sin(α)Λα
µ(Dα

µf)(x).
(2) xDα

µ(f)(x) = i sin(α)Dα
µ

(
Λ−α

µ f
)
(x).

Proof.
(1) Since Dα

µ is periodic in α with period 2π, we can assume that 0 < |α| < π.
Let us rewrite equality (3.6) in the form

Dα
µ(f) = f1f2,

where

f1(x) = e−
i
2 cot(α)x2

, f2(x) = bαDµ

[
e−

i
2 cot(α)y2

f(y)
](

− x

sin(α)

)
and bα =

ei(µ+1)(α̂π/2−α)

(| sin(α)|)µ+1
.

The product rule of the Dunkl operators Λµ, gives

Λµ(Dα
µf) = f1Λµ(f2) + f2Λµ(f1).

By virtue of Corollary 2.11 in [7], we deduce

Λµ(f2)(x) =
ibα

sin(α)
Dµ

[
ye−

i
2 cot(α)y2

f(y)
](

− x

sin(α)

)
.

Taking into account of Λµ(f1)(x) = −ix cot(α)f1(x), we can easily prove

Λµ(Dα
µf)(x) = −ix cot(α)Dα

µf(x) +
i

sin(α)
Dα

µ(yf(y))(x).

This complete the proof.
(2) It suffices to assume that 0 < |α| < π. From Lemma 2.9 in [7], we deduce

ix

sin(α)
(
Dα

µf
)
(x) = Aα

∫ +∞

−∞
Λα

µ(Kµ,α(x, .))f(y)|y|2µ+1 dy

= −Aα

∫ +∞

−∞
Kµ,α(x, y)Λα

µf(y) |y|2µ+1 dy

= −Aα

∫ +∞

−∞
Kµ,α(x, y)(Λ−α

µ f)(y) |y|2µ+1 dy

= −Dα
µ

(
Λ−α

µ f
)
(x).

5 Fractional Dunkl transform in L2
µ(R)

In this section, we discuss the extension of the fractional Dunkl transform Dα
µ to L2

µ(R).

5.1 Plancherel theorem

Proposition 5.1 Let f and g be in L1
µ(R) and α ∈ R\πZ. Then

∫ +∞

−∞
Dα

µf(x)g(x)|x|2µ+1 dx =
∫ +∞

−∞
f(x)D−α

µ g(x)|x|2µ+1 dx.

Proof. Let f and g ∈ L1
µ(R). As Dα

µ is periodic in α with period 2π, we suppose 0 < |α| < π. Using Fubini’s
theorem we write

∫ +∞

−∞
Dα

µf(x)g(x)|x|2µ+1 dx = Aα

∫ +∞

−∞

(∫ +∞

−∞
Kµ,α(x, y)f(y)|y|2µ+1 dy

)
g(x)|x|2µ+1 dx,

=
∫ +∞

−∞
f(y)A−α

∫ +∞

−∞
g(x)Kµ,α(x, y)|x|2µ+1 dx|y|2µ+1 dy,

=
∫ +∞

−∞
f(y)D−α

µ g(y)|y|2µ+1 dy.

This complete the proof.
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Corollary 5.1 Let f ∈ S(R) and α ∈ R. Then
∥∥Dα

µf
∥∥

2,µ
= ∥f∥2,µ .

Proof. It is easy to check that Corollary 5.1 holds for α = 0 and α = π. Now let 0 < |α| < π and f ∈ S(R).
By Proposition 5.1 and Theorem 4.1, (3), we have

∥∥Dα
µf
∥∥

2,µ
=

∫ +∞

−∞
Dα

µf(x)Dα
µf(x)|x|2µ+1 dx,

=
∫ +∞

−∞
f(x)D−α

µ Dα
µf(x)|x|2µ+1 dx,

= ∥f∥2,µ .

Theorem 5.1 Let α ∈ R.
(1) If f ∈ L1

µ(R) ∩ L2
µ(R), then Dα

µf ∈ L2
µ(R) and

∥∥Dα
µf
∥∥

2,µ
= ∥f∥2,µ .

(2) The fractional Dunkl transform Dα
µ have a unique extension to an unitary operator on L2

µ(R). More precisely
if the extension is also denoted by f → Dα

k f, then Dα
k is a unitary operator on L2

µ(R) with inverse (Dα
k )−1 =

D−α
k .

Proof. It suffices to assume that 0 < |α| < π. From Corollary 5.1 and the density of S(R) in L2
µ(R), we deduce

the existence of a unique continuous operator D̂α
k on L2

µ(R) that coincides with Dα
µ on S(R). If f, g ∈ S(R) then

∫ +∞

−∞
D̂α

k f(x)g(x)|x|2µ+1 dx =
∫ +∞

−∞
Dα

µf(x)g(x)|x|2µ+1 dx

=
∫ +∞

−∞
f(x)D−α

µ g(x)|x|2µ+1 dx

=
∫ +∞

−∞
f(x)D̂−α

k g(x)|x|2µ+1 dx.

Let f, g ∈ L2
µ(R). By the density of S(R) in L2

µ(R), we conclude that

∫ +∞

−∞
D̂α

k f(x)g(x)|x|2µ+1 dx =
∫ +∞

−∞
f(x)D̂−α

µ g(x)|x|2µ+1 dx. (5.1)

Now, if f ∈ L1
µ(R) ∩ L2

µ(R) and g ∈ S(R), then

∫ +∞

−∞
Dα

µf(x)g(x)|x|2µ+1 dx =
∫ +∞

−∞
f(x)D−α

µ g(x)|x|2µ+1 dx

=
∫ +∞

−∞
f(x)D̂−α

µ g(x)|x|2µ+1 dx

=
∫ +∞

−∞
D̂α

µf(x)g(x)|x|2µ+1 dx.

Hence Dα
µf = D̂α

µf, a.e, which proves the first statement in part (1). The second statement of part (1) follows
from Corollary 5.1. Part (2) follows from part (1), Corollary 5.1 and Theorem 4.1, (2).

As a consequence of the previous Theorem and of Theorem 4.2, we state the following Corollary.

Corollary 5.2 For each f ∈ L2
µ(R) and α, β ∈ R, we have

Dα
µ ◦Dβ

µ(f) = Dα+β
µ (f).
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5.2 Eigenfunctions of the operator Dα
µ

In this subsection, we introduce the following operators on S(R) by:

Tµf(x) = 2−1/2 [xf(x)− Λµf(x)] , T ∗µf(x) = 2−1/2 [xf(x) + Λµf(x)]

and

Hµ = T ∗µTµ + TµT
∗
µ .

After an integration by parts, it is easy to check that T ∗µ is the adjoint of Tµ in L2
µ(R). More precisely: if f and

g are in S(R), then

⟨Tµf, g⟩µ = ⟨f, T ∗µg⟩µ. (5.2)

In the next proposition, we discuss intertwining properties of Dα
µ with Tµ, T

∗
µ and Hµ.

Proposition 5.2 The following relations hold:
(1) Dα

µ ◦ Tµ = eiα
(
Tµ ◦Dα

µ

)
on S(R).

(2) Dα
µ ◦ T ∗µ = e−iα

(
T ∗µ ◦Dα

µ

)
on S(R).

(3) Dα
µ ◦Hµ = Hµ ◦Dα

µ on S(R).

Proof.
(1) Clearly, D0

µ ◦ Tµ = Tµ = Tµ ◦D0
µ and Dπ

µ ◦ Tµ = eiπ Tµ ◦Dπ
µ .

Now let 0 < |α| < π. From the relation
√

2 Tµ = x− Λµ = (−ieiα/ sin(α))x− Λ−α
µ , we deduce

√
2Dα

µ ◦ Tµ = − ieiα

sin(α)
Dα

µ ◦ x−Dα
µ ◦ Λ−α

µ .

By Proposition 4.1, it follows that

√
2Dα

µ ◦ Tµ = −eiαΛα
µ ◦Dα

µ +
i

sin(α)
x ◦Dα

µ

= eiα(x− Λµ) ◦Dα
µ =

√
2 eiαTµ ◦Dα

µ .

(2) follows by taking adjoints in (1)

Remark 5.1 By induction, one can show:

Dα
µ ◦ Tn

µ = einα
(
Tn

µ ◦Dα
µ

)
and Dα

µ ◦ T ∗nµ = e−inα
(
T ∗nµ ◦Dα

µ

)
on S(R).

The following commutator identities are useful in the sequel.

Proposition 5.3 Let n ∈ N. Then
(1)

[T ∗µ , Tµ] = 1 + (2µ+ 1)s, where sf(x) = f(−x).

(2)

[
T ∗µ , T

n
µ

]
=
{

2rT 2r−1
µ ; n = 2r,

T 2r
µ ◦ ((2r + 1) + (2µ+ 1)s); n = 2r + 1. (5.3)

(3)
[
T ∗nµ , Tµ

]
=

{
2rT ∗(2r−1)

µ ; n = 2r,
T
∗(2r)
µ ◦ ((2r + 1) + (2µ+ 1)s); n = 2r + 1.

Proof.
(1) A simple calculation shows that

2[T ∗µ , Tµ] = (x+ Λµ)(x− Λµ)− (x− Λµ)(x+ Λµ)
= 2[Λµ, x] = 2(1 + (2µ+ 1)s), where sf(x) = f(−x).

(2) and (3) follow from the preceding formula by induction on n

15



Now let hµ
0 (x) = 1√

Γ(µ+1)
e−x2/2 be the standard Gaussian on R. Then we have:

Proposition 5.4 Let n ∈ N. Then
(1) T ∗µh

µ
0 = 0.

(2) Dα
µh

µ
0 = hµ

0 .

(3) T ∗nµ Tn
µ h

µ
0 =

[n
2 ]! 2n Γ(µ+ [n+1

2 ] + 1)
Γ(µ+ 1)

hµ
0 , where [x] denotes the greatest integer function.

Proof.
(1) Since hµ

0 is even,
√

2T ∗µ(hµ
0 ) = xhµ

0 + d
dxh

µ
0 = 0.

(2) It is clear that D0
µh

µ
0 = hµ

0 and Dπ
µh

µ
0 = hµ

0 . When 0 < |α| < π,

√
Γ(µ+ 1)Dα

µh
µ
0 (x) =

ei(µ+1)(α̂π/2−α)e−
i
2 x2 cot(α)

| sin(α)|µ+1

× 1
2µ+1Γ(µ+ 1)

∫ +∞

−∞
e−( 1

2+ i
2 cot(α))y2

Eµ

(
ixy

sin(α)

)
|y|2µ+1 dy.

Using Lemma 3.1 with a↔ 1
2 + i

2 cot(α), ξ = 0 and x↔ x
sin(α) , one can schow

1
2µ+1Γ(µ+ 1)

∫ +∞

−∞
e−( 1

2+ i
2 cot(α))y2

Eµ

(
ixy

sin(α)

)
|y|2µ+1 dy =

e
− x2

2(1+i cot(α)) sin2(α)

(1 + i cot(α))µ+1

=
e−( 1

2− i
2 cot(α))x2

Aα
.

Hence, Dα
µh

µ
0 (x) = hµ

0 (x).
(3) Using the fact that T ∗µh

µ
0 = 0, we have

T ∗(n+1)
µ Tn+1

µ hµ
0 = T ∗nµ

(
T ∗µT

n+1
µ

)
hµ

0

= T ∗nµ

(
[T ∗µ , T

n+1
µ ]− Tn+1

µ T ∗µ
)
hµ

0

= T ∗nµ [T ∗µ , T
n+1
µ ]hµ

0 .

By (5.3), we get

[T ∗µ , T
n+1
µ ]hµ

0 =
{

(n+ 1)Tn
µ h

µ
0 , if n is even,

(2µ+ n+ 2)Tn
µ h

µ
0 , if n is odd.

Hence,

T ∗(n+1)
µ Tn+1

µ hµ
0 =

{
(n+ 1)T ∗nµ Tn

µ h
µ
0 , if n is even,

(2µ+ n+ 2)T ∗nµ Tn
µ h

µ
0 , if n is odd.

Consequently, the assertion now follows by induction on n.

Definition 5.1 We define the nth generalized Hermite function hµ
n by:

hµ
0 (x) =

1√
Γ(µ+ 1)

e−
x2
2 and for n ≥ 1 hµ

n(x) = cnT
n
µ h

µ
0 (x),

where

cn =

√
Γ(µ+ 1)

[n
2 ]! 2n Γ(µ+ [n+1

2 ] + 1)
.

We collect some properties of the one-dimensional generalized Hermite functions:

Proposition 5.5 The one-dimensional generalized Hermite functions satisfy:
(1) Tµh

µ
n = cn

cn+1
hµ

n+1.

(2) T ∗µh
µ
n = cn−1

cn
hµ

n−1.
(3) Hµh

µ
n = 2(µ+ n+ 1)hµ

n.
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Remark 5.2 In view of the previous proposition, we call Tµ and T ∗µ the creation operator and annihilation
operator, respectively, for the one-dimensional generalized Hermite functions hµ

n, n = 0, 1, 2, . . . .
Part (3) of the above proposition says that hµ

n is an eigenfunction of the generalized Hermite operator Hµ

corresponding to the eigenvalue 2(n+ µ+ 1).

Definition 5.2 The function Hµ
n (x) = e

x2
2 hµ

n(x) is a polynomial of degree n, called the nth one-dimensional
generalized Hermite polynomial.

From Proposition 5.5, we get the following proposition

Proposition 5.6
(1)

√
2cn

cn+1
Hµ

n+1(x) = 2xHµ
n (x)− (Hµ

n )
′
(x)− 2µ+1

x
Hµ

n(x)−Hµ
n(−x)

2 .

(2)
√

2cn−1
cn

Hµ
n−1(x) = (Hµ

n )
′
(x) + 2µ+1

x
Hµ

n(x)−Hµ
n(−x)

2 .

(3)
√

2cn

cn+1
Hµ

n+1(x) = 2xHµ
n (x)−Hµ

n−1(x).

Remark 5.3 By induction we see that:
• Every polynomial of degree ≤ n on R is a linear combination of one-dimensional generalized Hermite polyno-
mial of degree ≤ n.

The aim of this subsection is the following theorem:

Theorem 5.2 The generalized Hermite functions {hµ
n}∞n=0 are a basis of eigenfunctions of the fractional Dunkl

transform Dα
µ on L2

µ(R), satisfying

Dα
µh

µ
n(x) = einαhµ

n(x). (5.4)

Proof. We begin our proof by showing that the family {hµ
n}∞n=0 is an orthonormal basis of L2

µ(R). Let m and
n be non negative integers such that m < n. By (5.2) and part (3) of Proposition 5.4, we get

⟨hµ
m, h

µ
n⟩µ = cmcn

⟨
Tm

µ hµ
0 , T

n
µ h

µ
0

⟩
µ

= cmcn
⟨
T ∗mµ Tm

µ hµ
0 , T

n−m
µ hµ

0

⟩
µ

=
cn
cm

⟨
hµ

0 , T
n−m
µ hµ

0

⟩
µ

=
cn
cm

⟨
T ∗(n−m)

µ hµ
0 , h

µ
0

⟩
µ

= 0.

Also

⟨hµ
n, h

µ
n⟩µ = c2n

⟨
Tn

µ h
µ
0 , T

n
µ h

µ
0

⟩
µ

= c2n
⟨
T ∗nµ Tn

µ h
µ
0 , h

µ
0

⟩
µ

= ∥hµ
0∥22,µ

= 1.

For completeness, let f be any function in L2
µ(R) such that ⟨f, hµ

n⟩µ = 0 for all non negative integers n. Then,
for all polynomials p, we get, by Remark 5.3,

⟨f, e− x2
2 p ⟩µ = 0. (5.5)

Our object is to show that (5.5) implies Dµ

[
fe−

y2

2

]
= 0 and therefore by the injectivity of the Dunkl transform,

f(y)e−
y2

2 = 0, a.e., and hence f = 0. By (2.10) and (2.11), we have

2µ+1Γ(µ+ 1)Dµ

[
fe−

y2

2

]
(x) =

∫ +∞

−∞
f(y)e−

y2

2 jµ(xy)|y|2µ+1 dy

+
ix

2(µ+ 1)

∫ +∞

−∞
f(y)e−

y2

2 jµ+1(xy)|y|2µ+2 dy.

17



Noting that

∫ +∞

−∞
f(y)e−

y2

2 jµ(xy)|y|2µ+1 dy = Γ(µ+ 1)
∫ +∞

−∞

+∞∑

n=0

(−1)n(x/2)2n

n! Γ(n+ µ+ 1)
f(y)e−

y2

2 y2n|y|2µ+1 dy.

By the Schwarz inequality

∫ +∞

−∞
|f(y)|e− y2

2 y2n|y|2µ+1 dy ≤ ∥f∥2,µ

(∫ +∞

−∞
e−y2

y4n|y|2µ+1 dy

)1/2

≤ ∥f∥2,µ

√
Γ(2n+ µ+ 1).

Then

+∞∑

n=0

(x/2)2n

n! Γ(n+ µ+ 1)

∫ +∞

−∞
|f(y)|e− y2

2 y2n|y|2µ+1 dy <∞.

Hence, using (5.5)

∫ +∞

−∞
f(y)e−

y2

2 jµ(xy)|y|2µ+1 dy = Γ(µ+ 1)
+∞∑

n=0

(−1)n(x/2)2n

n! Γ(n+ µ+ 1)

∫ +∞

−∞
f(y)e−

y2

2 y2n|y|2µ+1 dy

= 0.

Similarly, one can show
∫ +∞

−∞
f(y)e−

y2

2 jµ+1(xy)|y|2µ+1 dy = 0.

Finally, it remains to prove (5.4). Since Dα
µh

µ
0 = hµ

0 , Remark 5.1 and Definition 5.1 gives the desired result.

Corollary 5.3 The family of operators {Dα
µ}α∈R is a C0-group of unitary operators on L2

µ(R).

Proof. From Corollary 5.2, we deduce that the family {Dα
µ}α∈R satisfies the algebraic properties of a group:

D0
µ = I, Dα

µ ◦Dβ
µ = Dα+β

µ = Dβ
µ ◦Dα

µ ; α, β ∈ R.

For the strong continuity, assume that f ∈ L2
µ(R). Then we can expand f in the orthonormal basis {hµ

n}∞n=0 as
follows:

f =
∞∑

n=0

⟨f, hµ
n⟩µ hµ

n =
∞∑

n=0

f̂n hµ
n,

where

f̂n = ⟨f, hµ
n⟩µ =

∫ +∞

−∞
f(x)hµ

n(x)|x|2µ+1dx.

By Theorem 5.2, we can write

Dα
µf =

+∞∑

n=0

einα⟨f, hµ
n⟩µ hµ

n

and therefore

∥∥Dα
µf − f

∥∥2

2,µ
=

+∞∑

n=0

|einα − 1|2 |⟨f, hµ
n⟩µ|2 .

Finally, we can interchange limits and sum to get:

lim
α→0

∥∥Dα
µf − f

∥∥2

2,µ
= 0.
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5.3 The generator of the C0-group {Dα
µ}α∈R

The infinitesimal generator G of the C0-group {Dα
µ}α∈R is defined by

G : D(G) ⊆ L2
µ(R) −→ L2

µ(R),
f 7−→ Gf

where

D(G) =
{
f ∈ L2

µ(R) : lim
α→0

(1/α)[Dα
µf − f ] ∈ L2

µ(R)
}
,

Gf = lim
α→0

(1/α)[Dα
µf − f ], f ∈ D(G).

Since {Dα
µ}α∈R is unitary, it follows from Stone’s Theorem ([10], p. 32) that iG is self-adjoint.

Theorem 5.3 −iG is a self-adjoint extension of the operator 1
2Hµ − (µ+ 1).

Proof. Note firstly that D( 1
2Hµ − (µ+ 1)) = D(Hµ) = S(R) and Hµ is symmetric. We will show that −iG is

an extension of 1
2Hµ − (µ+ 1). Let f ∈ S(R), the inversion formula for the Dunkl transform (see Theorem 4.20

in [4]):

f(x) =
1

2µ+1Γ(µ+ 1)

∫ +∞

−∞
Dµf(y)Eµ(ixy)|y|2µ+1 dy

together with (3.8) implies

Dα
µf(x)− f(x)

α
=

r1(α)
2µ+1Γ(µ+ 1)

∫ +∞

−∞
e

i
2 (x2+y2) tan(α)Eµ

(
ixy

cos(α)

)
Dµf(y)|y|2µ+1 dy

+
1

2µ+1Γ(µ+ 1)

∫ +∞

−∞
r2(α, x, y)Dµf(y)|y|2µ+1 dy,

where

r1(α) =

(
e−iα

cos(α)

)µ+1

− 1

α
and r2(α, x, y) =

e
i
2 (x2+y2) tan(α)Eµ

(
ixy

cos(α)

)
− 1

α
.

A limiting argument using the dominated convergence theorem allows us to

lim
α→0

Dα
µf(x)− f(x)

α
= − i(µ+ 1)

2µ+1Γ(µ+ 1)

∫ +∞

−∞
Dµf(y)Eµ(ixy)|y|2µ+1 dy

+
1

2µ+1Γ(µ+ 1)

∫ +∞

−∞

i

2
(x2 + y2)Dµf(y)|y|2µ+1 dy

= −i(µ+ 1)f(x) +
i

2
(
x2f(x) +Dµ

[
y2Dµf(y)

]
(−x)

)
.

From Corollary 2.11 in [7], we deduce

−y2Dµf(y) = Dµ[Λ2
µf ](y),

Therefore

−Dµ

[
y2Dµf(y)

]
(−x) = D2

µ[Λ2
µf(y)](−x)

= Λµf(x).

Finally, f ∈ D(G) and Gf = i
(

1
2Hµ − (µ+ 1)

)
f.

Corollary 5.4 The exponential form for the fractional Dunkl transform is:

Dα
µ = eiα(µ+1)ei α

2 (Λ2
µ−x2).
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6 Heisenberg inequality for Dα
µ.

Throughout this section, Q denote the multiplication operator on L2
µ(R) defined by Qf(x) = xf(x): its domain

is

D(Q) =
{
f ∈ L2

µ(R) : xf ∈ L2
µ(R)

}
.

Definition 6.1 Let µ ≥ −1/2 and α ∈ R. We define the generalized Sobolev spaces Hµ,α
2 (R) as follows:

Hµ,α
2 (R) :=

{
f ∈ L2

µ(R) : xDα
µf ∈ L2

µ(R)
}
.

We provide this space with the norm

∥f |Hµ,α
2 (R)∥2,µ :=

(
∥f∥22,µ + ∥xDα

µf∥22,µ

)1/2
.

Note that Hµ,0
2 (R) = Hµ,π

2 (R) = D(Q).

Proposition 6.1 The following properties holds.
(1) The fractional Dunkl transform Dα

µ is a unitary isomorphism from Hµ,α
2 (R) to L2(R, dmµ(x)) where

dmµ(x) = (1 + x2)|x|2µ+1 dx. In particular, Hµ,α
2 (R) is a Hilbert space with the inner product given by

⟨f, g⟩mµ =
∫ +∞

−∞
Dα

µ(f)(x)Dα
µ(g)(x) dmµ(x).

(2) S(R) is a dense subspace of Hµ,α
2 (R).

(3) For α ∈ R\πZ, the operator Λ−α
µ extends canonically to Hµ,α

2 (R) by setting

Λ−α
µ f :=

−i
sin(α)

D−α
µ

[
y.Dα

µ(f)
]

for f ∈ Hµ,α
2 (R).

(4) For α ∈ R\πZ, the operator iΛ−α
µ is symmetric on L2

µ(R) with domain D(iΛ−α
µ ) = D(Λ−α

µ ) = Hµ,α
2 (R).

(5) Let α and β ∈ R\πZ. For all f ∈ Hµ,α
2 (R) ∩Hµ,β

2 (R) ∩D(Q), we have

Λ−α
µ f = Λ−β

µ f +
i sin(α− β)
sin(α) sin(β)

xf. (6.1)

Proof.
(1) This is clear from Definition 6.1 and the fact that Dα

µ is an unitary operator on L2
µ(R).

(2) This follows easily from (1) and the fact that C∞c (R) is dense in L2(R, dmµ(x)).
(3) Follows from Proposition 4.1, (2).
(4) Follows from (5.1).
(5) To see this we first note that the equality (6.1) holds when f ∈ S(R). Now, if f ∈ Hµ,α

2 (R)∩Hµ,β
2 (R)∩D(Q)

and g ∈ S(R), then
⟨
iΛ−α

µ f, g
⟩

µ
=

⟨
f, iΛ−α

µ g
⟩

µ

=
⟨
f, iΛ−β

µ g
⟩

µ
− sin(α− β)

sin(α) sin(β)
⟨f, xg⟩µ

=
⟨
iΛ−β

µ f − sin(α− β)
sin(α) sin(β)

xf, g

⟩

µ

.

By the density of S(R) in L2
µ(R), we obtain the desired result.

Proposition 6.2 Let α ∈ R\πZ and suppose −1/2 ≤ µ < 0, then

Hµ,α
2 (R) ↪→ C0(R).

Proof. Let f be in Hµ,α
2 (R) with −1/2 ≤ µ < 0.

We have ∫ +∞

−∞
|Dα

µ(f)(x)||x|2µ+1 dx =
∫ +∞

−∞
(1 + x2)−

1
2 (1 + x2)

1
2 |Dα

µ(f)(x)||x|2µ+1 dx.
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Using Cauchy-Schwartz inequality we deduce that

∥∥Dα
µf
∥∥

1,µ
≤

(∫ +∞

−∞

|x|2µ+1

1 + x2
dx

) 1
2

∥f |Hµ,α
2 (R)∥2,µ

=
√

π

sin(−πµ)
∥f |Hµ,α

2 (R)∥2,µ. (6.2)

Hence Dα
µf belongs to L1

µ(R) and therefore Dα
µf ∈ L1

µ(R) ∩ L2
µ(R). Thus from Theorem 5.1,(2), we have

f(x) = A−α

∫ +∞

−∞
Dα

µf(y)Kµ,−α(x, y)|y|2µ+1 dy, a. e.

We identify f with the second member, then we deduce that f belongs to C0(R) and using (6.2) we show that
the injection of Hµ,α

2 (R) into C0(R) is continuous.

Lemma 6.1 Let α ∈ R\πZ, µ ≥ 0, x ∈ R\{0} and f ∈ Hµ,α
2 (R). There exists c1 = c1(µ) > 0 such that

∫ 1/|x|

−1/|x|
|Dα

µf(y)| |y|2µ+1 dy ≤ c1 ∥f |Hµ,α
2 (R)∥2,µ

{ |x|−µ if µ > 0,
| ln |x|| 12 if µ = 0

(6.3)
∫

{|y|≥ 1
|x|}

|Dα
µf(y)| |y|µ+ 1

2 dy ≤ c1
√
|x| ∥f |Hµ,α

2 (R)∥2,µ. (6.4)

Proof. By the Cauchy-Schwartz inequality, we deduce that:

∫

{|y|≥ 1
|x|}

|Dα
µf(y)| |y|µ+ 1

2 dy ≤
(∫

{|y|≥ 1
|x|}

(1 + y2)|Dα
µf(y)|2 |y|2µ+1 dy

) 1
2
(∫

{|y|≥ 1
|x|}

dy

1 + y2

) 1
2

≤
√
φ(x) ∥f |Hµ,α

2 (R)∥2,µ,

and

∫ 1/|x|

−1/|x|
|Dα

µf(y)| |y|2µ+1 dy ≤
(∫ 1/|x|

−1/|x|
(1 + y2)|Dα

µf(y)|2 |y|2µ+1 dy

) 1
2
(∫ 1/|x|

−1/|x|

|y|2µ+1

1 + y2
dy

) 1
2

≤
√
ψ(x) ∥f |Hµ,α

2 (R)∥2,µ,

where

φ(x) =
∫

{|y|≥ 1
|x|}

dy

1 + y2
= 2arctan(|x|),

ψ(x) =
∫ 1/|x|

−1/|x|

|y|2µ+1

1 + y2
dy =

2
|x|2µ

∫ 1

0

y2µ+1

x2 + y2
dy.

We therefore obtain (6.3) and (6.4) and complete the proof of the Lemma.

Proposition 6.3 Let α ∈ R\πZ, µ ≥ 0 and f ∈ Hµ,α
2 (R). Then there exists a function ψ ∈ C(R\{0}) such

that f(x) = ψ(x), a. e and for all x ∈ R\{0},

|ψ(x)| ≤ c ∥f |Hµ,α
2 (R)∥2,µ

{ |x|−µ if µ > 0,
| ln |x|| 12 if µ = 0,

where c = c(µ, α) > 0.

Proof. Let f ∈ Hµ,α
2 (R) and x ∈ R\{0}. From (3.3) we see that

∫ +∞

−∞
|Dα

µf(y)Kµ,−α(x, y)| |y|2µ+1 dy ≤ a(µ,−α)
∫ +∞

−∞
|Dα

µf(y)|min
(
1, |xy|−(µ+ 1

2 )
)
|y|2µ+1 dy

= a(µ,−α)
∫ 1/|x|

−1/|x|
|Dα

µf(y)| |y|2µ+1 dy +
a(µ,−α)
|x|µ+ 1

2

∫

{|y|≥ 1
|x|}

|Dα
µf(y)| |y|µ+ 1

2 dy.
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By Lemma 6.1, it follows that there exists c = c(µ, α) > 0 such that

∫ +∞

−∞
|Dα

µf(y)Kµ,−α(x, y)| |y|2µ+1 dy ≤ c ∥f |Hµ,α
2 (R)∥2,µ

{ |x|−µ if µ > 0,
| ln |x|| 12 if µ = 0.

(6.5)

The next step is to show that the function ψ defined on R\{0} by

ψ(x) = A−α

∫ +∞

−∞
Dα

µf(y)Kµ,−α(x, y) |y|2µ+1 dy

satisfies the conclusion of the proposition. Since S(R) is a dense subspace of Hµ,α
2 (R), there exists a sequence

(fn) ⊂ S(R) such that lim
n→∞

fn = f in Hµ,α
2 (R). Using (4.1) and (6.5) we obtain

|ψ(x)− fn(x)| ≤ c ∥(f − fn)|Hµ,α
2 (R)∥2,µ

{ |x|−µ if µ > 0,
| ln |x|| 12 if µ = 0.

Then (fn) converges locally uniformly on R\{0} to ψ; this means that ψ is continuous on R\{0}. On the other
hand, the convergence in Hµ,α

2 (R) implies the convergence in L2
µ(R), we can therefore extract a subsequence

(fnk
) that converges almost everywhere to f on R, so that f(x) = ψ(x), a. e.

Proposition 6.4 Let α ∈ R\πZ and f ∈ D(Λ−α
µ ) ∩D(Q). Then

ℜ
⟨
Qf,Λ−α

µ f
⟩

µ
= −1

2
∥f∥22,µ − (µ+ 1/2)

(
∥fe∥22,µ − ∥fo∥22,µ

)
. (6.6)

Proof.
We begin the proof by showing that

ℜ
⟨
Q φf,Λ−α

µ f
⟩

µ
= −

∥∥√φf
∥∥2

2,µ

2
− (µ+ 1/2)

(
∥√φfe∥22,µ − ∥

√
φfo∥22,µ

)
− 1

2

⟨
|y|φ′

f, f
⟩

µ
, (6.7)

where f ∈ S(R) and φ is non-negative continuously differentiable function with compact support.
Obviously,

ℜ
⟨
Q φf,Λ−α

µ f
⟩

µ
= ℜ

(
⟨Q φf,Λµf⟩µ + i cot(α) ⟨Q φf,Qf⟩µ

)
= ℜ⟨Q φf,Λµf⟩µ .

Since f ∈ S(R), it follows that

ℜ⟨Q φf,Λµf⟩µ = ℜ
(∫ +∞

−∞
yφ(y)f(y)f ′(y)|y|2µ+1 dy − (µ+ 1/2)

∫ +∞

−∞
φ(y)f(y)f(−y)|y|2µ+1 dy

+ (µ+ 1/2)∥√φf∥22,µ

)
.

Write f = u+ iv, where u and v are real-valued functions, we obtain

ℜ
(∫ +∞

−∞
yφ(y)f(y)f ′(y)|y|2µ+1 dy

)
=

1
2

∫ +∞

−∞
yφ(y)

(
|f(y)|2

)′
|y|2µ+1 dy

=
1
2

lim
n→∞

(∫ − 1
n

−∞
+
∫ +∞

1
n

)
yφ(y)

(
|f(y)|2

)′
|y|2µ+1 dy.

Integrate by parts and take n→∞, we get

1
2

lim
n→∞

(∫ − 1
n

−∞
+
∫ +∞

1
n

)
yφ(y)

(
|f(y)|2

)′
|y|2µ+1 dy = −(µ+ 1)∥√φf∥22,µ −

1
2

⟨
|y|φ′

f, f
⟩

µ
.

Write f(x) = fe(x) + fo(x), where fe(x) = 1
2 (f(x) + f(−x)) and fo(x) = 1

2 (f(x)− f(−x)), we have

∫ +∞

−∞
φ(y)f(y)f(−y)|y|2µ+1 dy = ∥√φfe∥22,µ − ∥

√
φfo∥22,µ.
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Finally, we obtain (6.7).
Next, we will extend (6.7) to all functions f ∈ D(Λ−α

µ ) ∩D(Q). For this purpose, let f ∈ D(Λ−α
µ ) ∩D(Q) and

(fn) ⊂ S(R) such that fn → f in Hµ,α
2 (R). Since D−α

µ is unitary on L2
µ(R), then

∥∥Λ−α
µ f

∥∥
2,µ

=
1

| sin(α)|
∥∥D−α

µ (y.Dα
µ(f))

∥∥
2,µ

=
1

| sin(α)| ∥y.D
α
µ(f)∥2,µ

≤ 1
| sin(α)| ∥f |H

µ,α
2 (R)∥2,µ.

Therefore Λ−α
µ fn → Λ−α

µ f in L2
µ(R). From the inequality

∥xφfn − xφf∥2,µ ≤ ∥xφ∥∞ ∥fn − f∥2,µ

≤ ∥xφ∥∞∥(fn − f)|Hµ,α
2 (R)∥2,µ,

we see that xφfn → xφf in L2
µ(R). So that

lim
n→∞

ℜ
⟨
Q φfn,Λ−α

µ fn

⟩
µ

= ℜ
⟨
Q φf,Λ−α

µ f
⟩

µ
.

Similarly one can see

lim
n→∞

⟨
|y|φ′

fn, fn

⟩
µ

=
⟨
|y|φ′

f, f
⟩

µ
.

Using the fact that the support of
√
φ is compact, then

lim
n→∞

∥√φfn∥2,µ = ∥√φf∥2,µ

lim
n→∞

∥√φfn,e∥2,µ = ∥√φfe∥2,µ

lim
n→∞

∥√φfn,o∥2,µ = ∥√φfo∥2,µ .

We conclude that (6.7) is true for all f ∈ D(Λ−α
µ ) ∩D(Q).

To prove (6.6), let φ ∈ C1
c (R) with φ ≥ 0 and φ(0) = 1. Let φn be the function on R defined by φn(x) = φ(x/n).

By the preceding calculation we have

ℜ
⟨
Q φnf,Λ−α

µ f
⟩

µ
= −

∥∥√φnf
∥∥2

2,µ

2
− (µ+ 1/2)

(
∥√φnfe∥22,µ − ∥

√
φnfo∥22,µ

)
− 1

2n

⟨
|y|φ′

(y/n)f, f
⟩

µ
,

where f ∈ D(Λ−α
µ ) ∩D(Q). Since xfΛ−α

µ f and |x|.|f |2 are in L1
µ(R), the dominated convergence theorem can

be applied to show that

lim
n→∞

ℜ
⟨
Q φnf,Λ−α

µ f
⟩

µ
= ℜ

⟨
Qf,Λ−α

µ f
⟩

µ
,

lim
n→∞

1
2n

⟨
|y|φ′

(y/n)f, f
⟩

µ
= 0.

The functions f, fe and f0 are all in L2
µ(R), the dominated convergence theorem can be invoked again to give

lim
n→∞

∥∥√φnf
∥∥2

2,µ

2
+ (µ+ 1/2)

(
∥√φnfe∥22,µ − ∥

√
φnfo∥22,µ

)
=
∥f∥22,µ

2
− (µ+ 1/2)

(
∥fe∥22,µ − ∥fo∥22,µ

)
.

Corollary 6.1 Let α ∈ R\πZ, β ∈ R\πZ and f ∈ D(Λ−α
µ ) ∩D(Λ−β

µ ) ∩D(Q). Then

ℑ
⟨
Λ−α

µ f,Λ−β
µ f

⟩
µ

=
sin(α− β)

sin(α) sin(β)

(
1
2
∥f∥22,µ − (µ+ 1/2)

(
∥fe∥22,µ − ∥fo∥22,µ

))
.

Proof.
By (6.1), we get

⟨
Λ−α

µ f,Λ−β
µ f

⟩
µ

=
∥∥Λ−α

µ f
∥∥2

2,µ
+

i sin(α− β)
sin(α) sin(β)

⟨
Λ−α

µ f, xf
⟩

µ
.
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Then

ℑ
⟨
Λ−α

µ f,Λ−β
µ f

⟩
µ

=
sin(α− β)

sin(α) sin(β)
ℜ
⟨
xf,Λ−α

µ f
⟩

µ
,

and the desired result is therefore a consequence of Proposition 6.4.

Definition 6.2 Let f ∈ D(Q) with ∥f∥2,µ = 1. We define the µ-variance of f by

varµ(f) = ∥xf∥22,µ − ⟨xf, f⟩2µ = ∥(x− ⟨xf, f⟩µ)f∥22,µ . (6.8)

Proposition 6.5 Let α ∈ R\πZ and f ∈ D(Λ−α
µ ) ∩D(Q) with ∥f∥2,µ = 1. Then

varµ(Dα
µ(f)) = sin2(α)

∥∥(Λ−α
µ − ⟨Λ−α

µ f, f⟩µ)f
∥∥2

2,µ
.

Proof.
By (6.8) and Theorem 5.1, we have

varµ(Dα
µ(f)) =

∥∥xDα
µ(f)

∥∥2

2,µ
−
⟨
xDα

µ(f), Dα
µ(f)

⟩2
µ

=
∥∥i sin(α)Dα

µ(Λ−α
µ f)

∥∥2

2,µ
−
⟨
i sin(α)Dα

µ(Λ−α
µ f), Dα

µ(f)
⟩2

µ

= sin2(α)
(∥∥Dα

µ(Λ−α
µ f)

∥∥2

2,µ
+
⟨
Dα

µ(Λ−α
µ f), Dα

µ(f)
⟩2

µ

)

= sin2(α)
(∥∥Λ−α

µ f
∥∥2

2,µ
+
⟨
Λ−α

µ f, f
⟩2

µ

)

= sin2(α)
∥∥(Λ−α

µ − ⟨Λ−α
µ f, f⟩µ)f

∥∥2

2,µ
.

Theorem 6.1 Let α ∈ R\πZ, β ∈ R and f ∈ Hµ,α
2 (R) ∩Hµ,β

2 (R) ∩D(Q) with ∥f∥2 = 1. Then

varµ(Dα
µ(f)) varµ(Dβ

µ(f)) ≥ sin2(α− β)
((

µ+
1
2

)(
∥fe∥22,µ − ∥fo∥22,µ

)
+

1
2

)2

. (6.9)

Moreover, equality holds if and only if f(x) = λ em x2
2 Eµ(ax) for some a,m and λ ∈ C.

Proof.
• Case α, β ∈ R\πZ.
By Proposition 6.5 and the Schwarz inequality, it follows that

varµ(Dα
µ(f)) varµ(Dβ

µ(f))

sin2(α) sin2(β)
=

∥∥(Λ−α
µ − ⟨Λ−α

µ f, f⟩µ)f
∥∥2

2,µ

∥∥(Λ−β
µ − ⟨Λ−β

µ f, f⟩µ)f
∥∥2

2,µ

≥
∣∣⟨(Λ−α

µ − ⟨Λ−α
µ f, f⟩µ)f, (Λ−β

µ − ⟨Λ−β
µ f, f⟩µ)f

⟩∣∣2

≥
∣∣∣ℑ
(
⟨Λ−α

µ f,Λ−β
µ f⟩ − ⟨Λ−α

µ f, f⟩⟨Λ−β
µ f, f⟩

)∣∣∣
2

. (6.10)

Since the operators Λ−α
µ and Λ−β

µ are skew symmetric, we conclude that ⟨Λ−α
µ f, f⟩⟨Λ−β

µ f, f⟩ is real and therefore
the inequality (6.10) becomes

varµ(Dα
µ(f)) varµ(Dβ

µ(f))

sin2(α) sin2(β)
≥

∣∣ℑ⟨Λ−α
µ f,Λ−β

µ f⟩
∣∣2

=
sin2(α− β)

sin2(α) sin2(β)

(
1
2
∥f∥22,µ − (µ+ 1/2)

(
∥fe∥22,µ − ∥fo∥22,µ

))2

,

where the last inequality follows from Corollary 6.1.
To show when (6.9) holds with equality, we use the Cauchy-Schwartz inequality in (6.10) and taking the
imaginary part. Hence, (6.9) holds with equality if and only if

ic
(
Λ−α

µ f − ⟨Λ−α
µ f, f⟩µf

)
=
(
Λ−β

µ f − ⟨Λ−β
µ f, f⟩µf

)
a. e, (6.11)
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for some c ∈ R. By (6.1), (6.11) becomes

(ic− 1)Λ−β
µ f =

[
(ic− 1)⟨Λ−β

µ f, f⟩ − c
sin(α− β)

sin(α) sin(β)
⟨xf, f⟩

]
f + c

sin(α− β)
sin(α) sin(β)

xf.

Thus we are lead to solve the equation

Λ−β
µ f = (a− bx)f, (6.12)

where

a = ⟨Λ−β
µ f, f⟩µ +

c

1− ic

sin(α− β)
sin(α) sin(β)

⟨xf, f⟩µ and b =
c

1− ic

sin(α− β)
sin(α) sin(β)

.

First we shall show that for each solution f ∈ Hµ,β
2 (R) of (6.12), there exists a function ψ ∈ C∞(R\{0}) such

that:

f = ψ a. e and Λ−β
µ ψ = Λµψ − i cot(β)xψ on R\{0}. (6.13)

Let f ∈ Hµ,β
2 (R) and (fn) ⊂ S(R) such that fn → f in Hµ,β

2 (R). Let 0 < ϵ < |x|. Clearly
∫ |x|

ϵ

Λ−β
µ f(y)|y|2µ+1 dy = lim

n→∞

∫ |x|

ϵ

Λ−β
µ fn(y)|y|2µ+1 dy

= lim
n→∞

(∫ |x|

ϵ

Λµfn(y)|y|2µ+1 dy − i cot(β)
∫ |x|

ϵ

yfn(y)|y|2µ+1 dy

)

= lim
n→∞

(
|x|2µ+1fn(|x|)− ϵ2µ+1fn(ϵ)

)
− (µ+ 1/2)

∫ |x|

ϵ

(f(y) + f(−y))|y|2µ dy

− i cot(β)
∫ |x|

ϵ

yf(y)|y|2µ+1 dy. (6.14)

For x ∈ R\{0}, define

ψ(x) = A−β

∫ +∞

−∞
Dβ

µf(y)K−β(x, y) |y|2µ+1 dy.

The fact that ψ is well defined on R\{0}, belongs to C(R\{0}), the sequence (fn) converges locally uniformly
on R\{0} to ψ and f = ψ a. e can be shown by the same argument that was used in the proof of Proposition
6.3. Using these facts, we can write (6.14) in the form

∫ |x|

ϵ

Λ−β
µ ψ(y)|y|2µ+1 dy = |x|2µ+1ψ(|x|)− ϵ2µ+1ψ(ϵ)− (µ+ 1/2)

∫ |x|

ϵ

(ψ(y) + ψ(−y))|y|2µ dy

− i cot(β)
∫ |x|

ϵ

yψ(y)|y|2µ+1 dy,

which implies (6.13) and according to (6.12), the function ψ is a solution of the differential-difference equation

Λµψ = (a+mx)ψ,

where m = i cot(β)− b. Let F (x) = e−m x2
2 ψ(x). An application of the product rule of the Dunkl operators Λµ

shows that F is a solution of the following differential-difference equation

ΛµF = aF. (6.15)

From the decomposition in the form F = Fe + Fo where Fe is even and Fo is odd, equation (6.15) is equivalent
to the following system:

F
′
o(x) + (2µ+ 1)

F0(x)
x

= aFe(x); F
′
e(x) = aFo(x). (6.16)

Clearly a ̸= 0, because for a = 0, Fe is of the form λ |x|−(2µ+1) which contradicts Proposition 6.3, and therefore,
F

′
e is a solution of the modified Bessel equation

y
′′

+
2µ+ 1
x

y
′ − a2y = 0 on R\{0}. (6.17)
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We recall from [17] that the general solution of the modified Bessel’s equation (6.17) of order µ, is

y(x) = λ1 jµ(iax) + λ2 |x|−2µj−µ(iax) ; µ ̸= 0,±1,±2, . . . (6.18)

When µ is an integer, a general solution is also given by

y(x) = λ1 jµ(iax) + λ2 |x|−µYµ(ia|x|) ; µ = 0,±1,±2, . . . (6.19)

where Yµ is the Bessel function of the second kind.
An examination of the asymptotic behavior of ψ as x→ 0 (see Proposition 6.3) together with (6.18) and (6.19)
show that

ψe(x) = λ1 e
m x2

2 jµ(iax). (6.20)

Again, by (6.15) we have

ψo(x) =
λ1

a
em x2

2
d

dx
(jµ(iax)) = λ1 e

m x2
2

ax

2(µ+ 1)
jµ+1(iax) (6.21)

Combining (6.20) and (6.21) gives

ψ(x) = λ1 e
m x2

2 Eµ(ax). (6.22)

• Case α ∈ R\πZ and β ∈ πZ.
Let β ∈ πZ and f ∈ Hµ,α

2 (R) ∩D(Q). It is easy to see that

varµ(Dβ
µ(f)) = varµ(f).

In view of the Cauchy-Schwartz inequality and Proposition 6.4, we have

varµ(Dα
µ(f)) varµ(Dβ

µ(f))

sin2(α)
= ∥(x− ⟨xf, f⟩µ)f∥22,µ

∥∥(Λ−α
µ − ⟨Λ−α

µ f, f⟩µ)f
∥∥2

2,µ

≥
∣∣⟨(x− ⟨xf, f⟩µ)f, (Λ−α

µ − ⟨Λ−α
µ f, f⟩µ)f

⟩∣∣2

≥
∣∣ℜ
(
⟨xf,Λ−α

µ f⟩
)∣∣2 =

(
(µ+ 1/2)

(
∥fe∥22,µ − ∥fo∥22,µ

)
+ 1/2

)2
. (6.23)

In a similar fashion, as in the first case, it may be shown that (6.23) holds with equality if and only if

f(x) = λem x2
2 Eµ(ax)

where λ, a,m are an appropriate constant in R.

Corollary 6.2 Let α ∈ R\πZ, β ∈ R and f ∈ Hµ,α
2 (R) ∩Hµ,β

2 (R) ∩D(Q) with f(x) = f(−x). Then

varµ(Hα
µ(f)) varµ(Hβ

µ(f)) ≥ sin2(α− β) (µ+ 1)2∥f∥42,µ.

Moreover, equality holds if and only if f(x) = λ em x2
2 jµ(ax) for some a,m and λ ∈ C.

Proof. is a direct consequence of the previous Theorem.
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