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Abstract

In recent years wavelets decompositions have been widely used in computational Maxwell’s curl equations, to effec-
tively resolve complex problems. In this paper, we review different types of wavelets that we can consider, the Cohen-
Daubechies-Feauveau biorthogonal wavelets, the orthogonal Daubechies wavelets and the Deslauriers-Dubuc interpolat-
ing wavelets. We summarize the main features of these frameworks and we propose some possible future works.
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1. Introduction

In the last decades, application of the wavelets theory has been extensively investigated in various research fields of
science and engineering. The wavelet decompositions yield very efficient algorithms, in terms of accuracy and CPU time,
when applied to numerical solutions of differential equations. In particular, three methods of deriving wavelet schemes
have been presented so far in the literature to solve electromagnetic problems from Maxwell’s equations: Multiresolu-
tion Time-Domain (MRTD) scheme, Fast Wavelet Transform-based (FWT) algorithms and Interpolating Wavelets (IW).
Although the three methods are time-domain schemes, they differs in how wavelet theory is implemented.

In the MRTD method the electric and magnetic fields are expanded in a wavelet basis and Maxwell’curl equations are
discretized using the Garlekin’s version of the method of moment [50]. Two conflicting requirements for the choice of the
wavelet basis are high regularity properties and minimal support. The former reduces numerical dispersion and the latter
reduces the algorithmic computational complexity and improves stability. In a first approach, we can find a formulation
based on the Haar [32] or Battle-Lemarie [39], [46] orthonormal wavelets. The Haar family have compact support and it
yields a simple algorithm but it lacks smoothness, then poor numerical dispersion properties are expected. In contrast, the
Battle-Lemarie family have good regularity properties which yields highly linear numerical dispersion behavior, but they
have infinite support, thus the MRTD scheme have to be truncated affecting the accuracy of the field computation. As a
natural alternative, the orthogonal Daubechies wavelets [25] and the Cohen-Daubechies-Feauveau biorthogonal wavelets
[23] have been considered. Both being compactly supported, the CDF biorthogonal wavelet family seems to allow a good
balance between regularity and reduced support, while also being symmetric.

Other alternative, which we have named FWT, leading to fast and very efficient algorithms, was first proposed in [51].
It uses the fast wavelet transform and multiscale representation of derivative operators for compactly supported wavelets
in the form of [16]. In contrast to the MRTD schemes, no integrals have to be evaluated. Orthogonal Daubechies’wavelets
were used in the above mentioned work as well in [41] and [28]. Biorthogonal CDF wavelets were also used in [28, 48].

On the other hand, there exists a fundamental characteristic of some sort of wavelets: the interpolation property. The
advantage of interpolating wavelets (IW) is that the coefficients of the associated expansion represent directly the physical
values of the electromagnetic fields. The so-called “shifted interpolating property” [44] of Daubechies’ wavelets has
been used in [18] and [34]. The last authors also proposed in [17] a higher order biorthogonal scheme using Deslauries-
Dubuc interpolating functions [26], [30] which are smooth, symmetric and compactly supported. If the basis do not have
the interpolating property, then it is necessary considering some means of the neighboring coefficients or reconstruction
procedure in order to obtain the physical variables, resulting in a more elaborate scheme and more computational cost.
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Preprint submitted to Elsevier March 10, 2017



An interesting question on MRTD investigated in [42] and [40] is that adding wavelets may not result in the ex-
pected enhancement of resolution of an scaling zero-order scheme. As a consequence, spurious nonphisical modes can
appear, for example. While the FWT method is claimed not suffering from this effect [51], authors of [42] claim this
is a gridding-related dispersion effect and derive a necessary condition for the development of MRTD schemes with a
consistent accuracy performance. It is also noted in [42] that, under the same condition, both methods become equivalent.
Authors of [40] also conclude that MRTD algorithms seem to be superior over standard FDTD only for certain geometries
which are rather candidates for spectral-domain methods.

In essence, the goal of a multiresolution algorithm for the fields is to make adding wavelets virtually equivalent to the
use of a denser grid. To take advantage of it as regarding memory economy, implementation complexity and execution
time as a whole, future work should concentrate on dynamic scale adaptation as concluded in [40]. Two examples of
implementation of this idea can be found in [51] and in [45] in the context of the FWT and MRTD schemes, respec-
tively. Other type of wavelets (less known) have been also considered in this type of applications, physical wavelets [38],
directional wavelets [31], multi-symplectic collocation-wavelets [52], the Sparse Point Representation method [29] or
the Rao-Wilton-Glisson bases over multiple levels [14]. Finally, the book [17] introduces a beautiful and efficient com-
bination of theoretically advanced mathematical topics and their application in time-domain Maxwell equation solution
techniques.

In this paper, we explain the basis of this technique and present the guidelines of an algorithm to be used in the future
for solving Maxwell’s equations. So, the rest of the paper is organized as follows: the principles of multiresolution analysis
is reviewed in next section, then we introduce and compare, in section 3, the different approaches above mentioned for
deriving wavelets schemes for solving Maxwell’s equations; finally, in section 4, some future developments are presented.

2. Brief review of the multiresolution analysis

A multiresolution approximation is a sequence of nested space Vj ⊂ Vj+1 ⊂ · · · of L2(R), such that:

• ⋃ V̄j = L2

• There exists a scaling function ϕ ∈ V0 such that

ϕj,k(t) = 2j/2ϕ(2jt− k), k ∈ Z,

constitute a Riesz basis of Vj (basis (en), in some Hilbert space H , such that ||(xn)||l2 ∼ ||
∑
xnen||H ).

The scaling function ϕ ∈ V0 ⊂ V1 should satisfy a two scale equation

ϕ(t) =
∑

n∈Z
hnϕ(2t− n),

and from it, we obtain

ϕj,k =
1√
2

∑

n∈Z
hnϕj+1,2k+n.

The support of ϕ and the discrete support of (hn) have the same length.
Assuming that ϕ is such that the (ϕj,k)k∈Z are an orthonormal basis, one builds the wavelet ψ by

ψ(t) =
∑

n∈Z
gnϕ(2t− n)

with gn = (−1)nh1−n.
Then (ψj,k)k∈Z are an orthonormal basis of the orthogonal complement Wj of Vj into Vj+1.
We thus can decompose f in the orthonormal basis of L2(R)

f =
∑

k∈Z
< f,ϕ0,k > ϕ0,k +

∑

j≥0

∑

k∈Z
< f,ψj,k > ψj,k.

For the construction of orthonormal scaling function we refer [25]. The orthonormality property give us that
∑
n hnhn+2k =

2 if k = 0, and 0 otherwise. For order N , we have
∑
n hn = 2 and

∑
n(−1)nnmhn = 0, m = 0, . . . , N .

For the biorthogonal case, we replace the orthogonality assumption by a dual scaling function

ϕ̂ =
∑

n∈Z
ĥnϕ̂(2 · −n)
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such that < ϕj,k, ϕ̂j,l >= 1 if k = l and 0 otherwise.
Associated to the dual scaling function we have the dual wavelets

ψ =
∑

n∈Z
gnϕ(2 · −n)

ψ̂ =
∑

n∈Z
ĝnϕ̂(2 · −n)

with gn = (−1)nĥ1−n and ĝn = (−1)nh1−n.
We have that < ψj,k, ψ̂j,l >= 1 if k = l and 0 otherwise, and that < ϕj,k, ψ̂j,l >=< ϕ̂j,k, ψj,l >= 0.
The results in a decomposition of f in a biorthogonal basis of L2(R) are given by

f =
∑

k∈Z
< f, ϕ̂0,k > ϕ0,k +

∑

j≥0

∑

k∈Z
< f, ψ̂j,k > ψj,k.

For the construction of the dual function, one can prescribe the hn and therefore the function ϕ and look for the
coefficients ĥn. We remark that the duality property implies that

∑
n ĥnhn+2k = 2 if k = 0 and 0 otherwise.

Different settings can be considered depending on the linear discretization operator that produces the data. Classical
settings are provided by the sampling operator (point value setting) [30], [26] or the averaging operators (spline settings)
[23].

3. Wavelet based time domain approach for Maxwell’s equations

Maxwell’s curl equations for nonconducting media in time domain are

∇×H =
∂D
∂t

, ∇×E = −∂B
∂t

(1)

where D,B,E,H are called the electric flux density, the magnetic flux density, the electric field and the magnetic field,
respectively. Constitutive relations must be written accounting for the electromagnetic properties of the material and for
a homogeneous material of linear response, these are

D = εB, E = µH (2)

where ε, µ are constants named permittivity and permeability, respectively. Then, equations (1) can be written in terms of
only E and H vectors as follows

∇×H = ε
∂E
∂t
, ∇×E = −µ∂H

∂t
(3)

For simplicity, we consider one-dimensional plane wave propagation with components Ex and Hx along the z-
direction, resulting the following two scalar cartesian equations

∂Ex
∂z

= −µ∂Hy

∂t
, (4)

∂Hy

∂t
= −ε∂Ex

∂t

To incorporate the multiresolution techniques, one first develops expansions of the fields into the basis associated with
the wavelet setting considered in space and in pulse functions in time. These expansions are then inserted in Maxwell’s
curl equations and sampled according to Galerkin method using the same basis and pulse functions as testing functions
in space and time, respectively. The final time-evolution equations are then obtained through the orthogonality properties
of the basis used. In order to consider more dimensions, we can use a tensor-product approach [1] or some nonseparable
approach [2] in the multiresolution transforms.

3.1. MRTD orthogonal and biorthogonal wavelets schemes
Restricting the presentation to one level of resolution for simplicity, the field expansion for orthogonal wavelets can

be written as

Ex(z, t) =
+∞∑

k,m=−∞
[Eϕk,mϕm(z) + Eψk,mψm(z)]hk(t) (5)

Hy(z, t) =
+∞∑

k,m=−∞
[Hϕ

k+ 1
2 ,m+ 1

2
ϕm+ 1

2
(z) +Hψ

k+ 1
2 ,m+ 1

2
ψm+ 1

2
(z)]hk+ 1

2
(t)

3



and for biorthogonal ones

Ex(z, t) =
+∞∑

k,m=−∞
[Eϕk,mϕ̂m(z) + Eψk,mψ̂m(z)]hk(t) (6)

Hy(z, t) =
+∞∑

k,m=−∞
[Hϕ

k+ 1
2 ,m+ 1

2
ϕ̂m+ 1

2
(z) +Hψ

k+ 1
2 ,m+ 1

2
ψ̂m+ 1

2
(z)]hk+ 1

2
(t)

Integers m and k indicate the discrete lattice indexes in space and time grids related to the space and time coordinates
via x = m4x and t = k4t, where 4x and 4t represents the space and time discretization intervals. The ϕm and ψm
are the scaling and wavelet orthogonal functions, respectively, displaced by m units,

ϕm(x) = ϕ(
x

4x −m), (7)

ψm(x) = ψ(
x

4x −m)

being ϕ̂m and ψ̂m their dual functions. For time discretization, one uses rectangular pulses (Haar scaling functions) hk(t),
where k represents shift in time units, defined as

hk(x) = h(
x

4x − k) (8)

According to the standard Yee’s leap-frog approach [49] of the traditional finite difference time-domain (FDTD)
method, the magnetic-field components are usually shifted by half a discretization interval in the space and time domains
with respect to the electric-field components. Nevertheless, other offsets should be investigated in order to improve
numerical dispersion and stability characteristics [45], [51]. After inserting the expansions (6) in Maxwell’s equations,
equation (4) is sampled with hk(t) in time and with ϕm+ 1

2
(z) and ψm+ 1

2
(z) in space while equation (4) is sampled with

hk+ 1
2
(t) in time and with ϕm(z) and ψm(z) in space. From the the orthogonality properties of scaling, wavelet and pulse

functions, and from

〈hm(z),
∂hm′+ 1

2
(z)

∂z
〉 = δm,m′ − δm,m′+1 (9)

the MRTD update equations are

Hϕ

k+ 1
2 ,m+ 1

2
= Hϕ

k− 1
2 ,m+ 1

2
− 4t
µ4z (

∑

m′

Eϕ
k,m′am′ +

∑

m′

Eψ
k,m′ cm′) (10)

Hψ

k+ 1
2 ,m+ 1

2
= Hψ

k− 1
2 ,m+ 1

2
− 4t
µ4z (

∑

m′

Eϕ
k,m′dm′ +

∑

m′

Eψ
k,m′ bm′)

Eϕk+1,m = Eϕk,m −
4t
ε4z (

∑

m′

Hϕ

k+ 1
2 ,m

′+ 1
2
am′ +

∑

m′

Hψ

k+ 1
2 ,m

′+ 1
2
cm′)

Eψk+1,m = Eψk,m −
4t
ε4z (

∑

m′

Hϕ

k+ 1
2 ,m

′+ 1
2
dm′ +

∑

m′

Hψ

k+ 1
2 ,m

′+ 1
2
bm′)

The coefficients a, b, c and d are integrals connecting the scaling or wavelets functions with their derivatives as follows

am′ = 〈ϕm(z),
∂ϕm′+ 1

2
(z)

∂z
〉 (11)

bm′ = 〈ψm(z),
∂ψm′+ 1

2
(z)

∂z
〉

cm′ = 〈ϕm(z),
∂ψm′+ 1

2
(z)

∂z
〉

dm′ = 〈ψm(z),
∂ϕm′+ 1

2
(z)

∂z
〉

for orthogonal functions, or with dual functions under the derivative operator if biorthogonal. These integrals are calcu-
lated numerically from explicit computation of the scaling and the wavelet functions (or their Fourier counterparts) and
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m
′
-index is updated from orthogonality properties of the results. If Battle-Lemarie functions are used, the sums in (10)

become of infinite extend and are to be truncated by virtue of the exponential decay of the Battle-Lemarie functions. On
the other hand, orthogonal Daubechies or biorthogonal CDF families of wavelets yield compact support and this means
that the resulting sequence of coefficients is rigorously finite (no truncation is needed). CDF family may also been made
symmetric using spline functions as dual wavelets, thus we impose smoothness as they appears are differentiated in (11).
Moreover, vanishing moments of the non dual functions (used to form the inner products) are maximized for a given ex-
tend of their support, thus moment suppression is imposed. In any case, the performances of orthogonal Daubechies and
biorthogonal CDF wavelets in the MRTD methods are shown to be similar in terms of dispersion errors and computational
efficiency [28].

3.2. FWT wavelets schemes

This scheme was first suggested in [51] for compactly supported orthonormal wavelets. In this work, time derivatives
are approximated using central differences of second order to obtain

Ek = Ek−1 +
4t
ε

curl Hk− 1
2 (12)

Hk+ 1
2 = Hk− 1

2 − 4t
µ

curl Ek

Then the electromagnetic field is expanded into a system of orthogonal functions as previously. According to the
theory of the representation of operators in bases of compactly supported wavelets [16], a curl operator is introduced to
express (3) in terms of scaling and wavelets functions, obtaining a matricial equation in the form

[E]kw = [E]k−1
w +

4t
ε
C[H]k−

1
2

w (13)

[H]k+ 1
2

w = [H]k−
1
2

w − 4t
µ
C[E]kw (14)

where Hw and Ew represents the coefficients of the electric and magnetic field expansion, respectively, and C denotes the
curl operator. Expressions (13)-(14) are a time evolution explicit algorithm to be started from applying the fast wavelet
transform to the initial fields. It has been seen that the method does not suffer from the excitation of spurious modes
like the MRTD. As basis functions, compactly supported Daubechies wavelets and scaling functions with two vanishing
moments were used at three different scales. By changing the number of vanishing moments, schemes of different order
of accuracy can be realized. See [51] for all the details.

It must be noted that this method can be incorporated into the MRTD scheme, as shown in [28] for orthogonal
Daubechies and biorthogonal CDF families of wavelets. In fact, integrals expressed by (11) can be solved analytically in
the case of compactly supported wavelet systems from the scaling/wavelet filter coefficients according to the algorithms
presented in [51], without the need to explicitly compute the scaling/wavelet functions (or their Fourier counterparts).

3.3. IW schemes

A wavelet-Garlekin interpolating scheme based on the so-called “shifted interpolation property ” [44] of Daubechies’
wavelet family was proposed in [3]. Here, Daubechies’ scaling functions with two vanishing moments (D2) were used.
The formulation is similar to the analogous scaling-function-based multiresolution time-domain method (S-MRTD ) [39].
The resulting algorithm can be extracted directly from expressions (10) by eliminating all wavelet-related content. But
the interpolation property adopted in [18] enables local sampling of the field, leading to a more versatile and simple
algorithms despite the large support and asymmetry of the Daubechies’ scaling functions. To make use of this property,
(7) is modified to

ϕm(z) = ϕ(
z

4z −m+K1) (15)

where K1 is the first-order moment of the scaling function, and the interpolation property is written as

ϕ(i+K1) = δi,0 (16)

for i integer. This approach is as better as smaller is K1 and it is almost satisfied for Daubechies’ scaling functions.
The scaling function behaving as a delta makes the field sample at one given grid point equals the scaling coefficient
corresponding to that point, so that the expansion coefficients represent direct physical values of the field. Otherwise,
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it becomes necessary obtaining the fields at the point of interest by taking a weighted sum of neighboring coefficients
(MRTD) or through a reconstruction procedure based on discrete wavelet transform methods (FWT), both resulting in a
more complicated algorithm and large computational overhead.

Although the numerical dispersion of this technique is larger than that of the MRTD method using Battle-Lemarie
functions, it has advantages over MRTD in that the Daubechies’ scaling function has compact support. Moreover, by
using basis functions of higher regularity and minimum support, such as Daubechies’ scaling functions with three (D3)
and four (D4) vanishing wavelet moments [34], better accuracy and minimum stencil sizes can be expected, resulting in
an optimally efficient algorithm.

On the other hand, CDF [28] and Deslauriers-Dubuc [35], [32] biorthogonal interpolating schemes have also been
applied. In the first case, the interpolating property of the CDF dual scaling functions is used as in Cheong’s method [18].
In the second case, the Deslauriers-Dubuc interpolating function [26] is adopted as the fundamental scaling basis. As can
be read in, the Deslauriers-Dubuc interpolating function ϕ of order 2p − 1 is given by an autocorrelation function of the
Daubechies compactly supported orthogonal scaling function ϕ0 of p vanishing moments as

ϕ(x) =
∫ +∞

−∞
ϕ0(u)ϕ0(u− x)du (17)

As the additional wavelet basis, a shifted and contracted version of the scaling function can be chosen. Dirac delta
functions or their linear combinations are chosen as dual functions and used for testing, which implies the interpolatory
property. These functions constitute non-L2 biorthogonal bases that are smooth, symmetric, compactly supported and
exactly interpolating. Unlike the Daubechies orthogonal wavelets, of which interpolation property is limited to the bases
of low regularity [33], the proposed basis set yields a scheme of desired order of regularity. Moreover, by adding wavelets
to this interpolating scheme multiresolution analysis can be generated while saving the computational overhead of total
field reconstruction, as both the scaling and the wavelet functions are exactly interpolating. The time evolution equations
are obtained in a form similar to the MRTD scheme but the calculation of the integrals (11) are simple due to the dual
delta functions appearing as test functions [34].

It is important to mention that all the multiresolution schemes used are stable. In particular, the error is controlled
after the truncation of the wavelets details. Specific error bounds can be found in [5] for the orthogonal wavelets, in [6]
for the biorthogonal wavelets and in [7] for the interpolatory wavelets.

So far we have considered homogeneous media being ε and µ constants in the entire domain. When applied to
time-domain inhomogeneous electromagnetic problems, the interpolating scheme have demonstrated higher versatility
and simplicity when compared to FWT or MRTD methods. The treatment of inhomogeneous configuration in the con-
text of MRTD poses significant problems, because the material properties (ε and µ), as functions of space, introduce
coupling between adjacent basis. In [39], [45], the inhomogeneities are treated rigorously through a matrix formulation
obtained applying the standard Galerkin scheme starting from the general form of Maxwell equations (1) and incorporat-
ing discretization of the constitutive relations (2). On the other hand, a new material operator accounting for the material
distribution is introduced in the context of the FWT method. Both procedures result in more complex algorithms than
those obtained from applying interpolating wavelets which allow to extract the local media value by virtue of the interpo-
lation property of the basis used, thus neglecting material operator. Authors in [40] claim that this approach yields worse
results compared to the conventional FDTD.

4. Future developments

In this section we present two ways in order to improve in some cases the above approaches. The first one is related
with the boundary conditions and the second one with the size of the considered wavelet’s expansions.

4.1. Wavelets on the interval

To simulate an electromagnetic problem, specific boundary conditions for the fields must be introduced to account
for the finite domain of the simulation. Usually, perfect electric conductor (PEC) or perfect magnetic conductor (PMC),
meaning zero tangential electric or magnetic fields, respectively, at the conductors positions, must be modeled. In all
the mentioned papers, nonlocalized basis functions are considered and problems arise to an exact localization of the spe-
cific boundary conditions. Then, the image principle is used which means that PEC or PMC are replaced by an open
structure with proper symmetry conditions for the electromagnetic field. Namely, the electric and magnetic field com-
ponents tangential to the PEC must have odd and even symmetry, respectively, and conversely for a magnetic conductor.
Alternatively, we propose using wavelets defined on a interval according to the guidelines we give in next section.

6



It is telling that, despite the promise of orthogonal quantum mechanical multiresolution bases, the numerical solution
of even such simple problems as the particle in a box have previously resisted solution via wavelets because of the
difficulty in imposing boundary conditions.

The difficulties for the construction of the multiresolution and the wavelets focuses naturally on the edges. Different
strategies may be adopted that can be adapted to the construction of spaces of functions satisfying homogeneous boundary
conditions.

A [0,M ] supported signal can be represented as the product of a general signal with the characteristic function of
[0,M ]. The discontinuities of this function require special attention. Three methods are known to handle them, the last
one being the most efficient.

Wavelet periodization
The wavelets are periodized by the following transformation:

ψperj,k (t) =
1√
2j

∞∑

k=−∞
ψ

(
t− 2jk + kM

2j

)

with j <= log2M . This is equivalent to a signal periodization.
This procedure creates large wavelet coefficients when the periodized signal is not itself continuous.
Wavelet folding
To bypass this problem, the signal is symmetrically folded around the right edge of the interval and periodized over

the double sized interval.
This yields a continuous periodic signal.
Porting the signal transformation to the wavelet basis shows that the vector family is a basis of L2([0,M ]) if the

wavelet is symmetric or antisymmetric. This puts orthogonal bases asides.
In fact, the continuity problem reappears at the next derivative. The following approach takes the problem at the root,

which is how to make wavelets over an interval with vanishing moments.
Edge wavelets
Boundary effects are explicitly handled. Consider an Daubechies orthogonal basis with p vanishing moments.
¿From the Strang et Fix conditions, it appears that there exists a polynomial θk of degree k such that:

∞∑

n=−∞
nkϕ(t− n) = θk(t)

for k < p.
This equation is multiplied by the characteristic function of [0,M ]. Assuming that the support of ϕ is [−p + 1, p],

scaling functions with indices p <= k < M − p are not changed by this restriction. To recover the Strang and Fix
condition on the interval, p “left” edge scaling function and p “right” edge scaling functions are to be found such that

θk(t)ℵ[0,M ](t) =
p−1∑

n=0

a[n]ϕleftn (t) +
M−p−1∑

n=p

nkϕ(t− n) +
p−1∑

n=0

b[n]ϕrightn (t)

If this equation is satisfied, it remains valid after re-scaling since the nk, up to a power of 2, are the scaling coefficients
of θk at all resolutions.

More details can be found in [12].
Interpolatory wavelets on the interval are defined in [47], where explicit formulations of the resulting decomposition

and reconstruction algorithms are calculated. The associated interpolatory subdivision scheme for finite sequences is
shown to be convergent.

The case of orthogonal and biorthogonal wavelets on the interval is most classical and can be found in [24].

4.2. Nonlinear multiresolution representations

There is a significant evolution since 90’s, strongly connect to the development of appropriated mathematical repre-
sentations and approximation theory associated to these representations, of schemes from linear to nonlinear and from
uniform to adaptive.

The goal of a multiresolution algorithm for the numerical approximation of the solution of PDEs is to design a frame-
work that are optimal giving a prescribed accuracy in the shortest computational time. The recent studies on wavelets and
nonlinear approximation have provided new strategies, which allow us, to build algorithms that have such characteristics
[22], [19], [20], [21], [15]. The choice of an appropriated representation of the signal can be fundamental to solve an
specific task.
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Given a wavelet basis of L2(Ω), {ψλ, λ ∈ Λ}, we define the nonlinear space

ΣN = {u =
∑

λ

cλψλ : c = {cλ}λ∈Λ ∈ σN}

with σN = {c ∈ l2(Λ) : #{λ ∈ Λ : cλ 6= 0} ≤ N}.
There are two central points in approximation theory

• Characterize the function that has a certain rate of approximation

f ∈ Xr ⇔ σN (f) ≤ CN−r

• Practical realization of f → g ∈ ΣN such that

||f − g||X ≤ CσN (f)

Two examples of approximation are given by

• Linear
ΣN := V ect(e1, e2, . . . , eN )

with (ek)k>0 a functional basis.

• Nonlinear
ΣN := {Σλ∈Edλψλ : #(E) ≤ N}

set of all N -terms combination of a basis (ψλ).

We can perform fast computation algorithms using the inter-scale relations.
It is easy to define a nonlinear projection operator PN : Hs(Ω) → ΣN which minimizes the error ||u − PNu||Hs in

an equivalent Hs(Ω) norm.
The decay of wavelet coefficients is influenced by the local smoothness of the function. For instance, if f ∈ C1 on

Ij,k an estimate is
|dj,k| ≤ 2−3j/2 sup

t∈Ij,k
|f ′

(t)|.

The rate of convergence is linked to the Besov regularity.
In order to obtain adaptive nonlinear methods, one possibility is to look for iterative approximation schemes in which,

by definition, the iterates belong to the space ΣN .
We can consider three equivalent measurements of sparsity

• weak spaces: Card{λ : |dλ| > η} ≤ Cη−p

• best N-term nonlinear approximation: if p < 2, s = 1/p− 1/2,

||f −
∑

N largest |dλ|
dλψλ|| ≤ CN−s

• approximation by thresholding algorithms: if p < 2,

||f −
∑

|dλ|≥η
|| ≤ Cη1−p/2

For the most error norm X, Lp,W s,p, Bsp,q , a near optimal approximation is obtained by thresholding: if f =∑
λ dλψλ, and fN :=

∑
N largest |dλ| dλψλ, we then have

||f − fN || ≤ Cinfg∈ΣN ||f − g||X
with C independent of f and N .

Denoting byM the direct multiresolution algorithm and byM−1 the inverse one, we present an algorithm to find the
multiresolution representation V n+1,j

M of V n+1,j from the multiresolution representation V n,jM of V n,j . It is based in a
thresholding procedure and we refer [37] for more theoretical and computational aspects. Let us define

Dε(V ) = {(j, k) : |dj,k| > εj}.
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First, we present a way to compute a set D̃n+1 such that D̃n+1 ⊇ Dε(V n)Dε(V n+1).
Calculation of D̃n+1 and thresholding,
Set

ı̂(j, k) = 0, 1 ≤ k ≤ Nj , 1 ≤ j ≤ L.

for j = 1, . . . , L
for k = 1, . . . , Nj

if (|d(j, k)(vn)| ≤ εj)
d(j, k)(vn) = 0

else
ı̂(j, k − l) = 1, −K ≤ l ≤ K

if (|d(j, k)(vn)| ≥ 2p+1εj , k > 1)
ı̂(j − 1, 2k − 1) = 1
ı̂(j − 1, 2k) = 1

end
end

end
end

where K is related with the propagation speed and the support of the numerical scheme and p is its order of accuracy.
Define Dn+1 by

Dn+1 = {(j, k) : ı̂(j, k) = 1}

The full algorithm

• Truncate
V̂ nM = trε(V nM )

and calculate D̃n+1 ⊇ Dε(V n)Dε(V n+1).

• Prepare fine-grid
V̂ n = M−1V̂ nM .

• Coarsest grid calculations in an usual way.

• Computation of {dj,k(V n+1)}

if ((j, k) ∈ D̃n+1)
Compute dj,k

else
dj,k = 0

end

The stability of the nonlinear transforms are more difficult, see for instance [3, 11].

4.3. General anisotropic media in 3d

The general anisotropic media can be characterized by full permittivity and permeability tensors. For instance, in [43]
(see also its references) we can find a split-step finite-difference time-domain method for the 3-D Maxwell’s equations
in general anisotropic media Unfortunately, we cannot find any work relating general anisotropic media and wavelets
algorithms. Fortunately, the wavelet multiresolution algorithms can be extended to several dimension. The most easy
way to extend the 1d algorithms is the tensor product (or separable) strategy [1], but other approaches can be considered
like the quincunx strategy [2] or full nonseparable strategy [4]. For instance, these algorithms are used usually in image
processing applications [9, 10, 13].

We are interesting to make this research because the problem is more complex, and then, the benefits of using wavelet
transformations can increase.
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5. Conclusions

In this paper, we intent to fill the gap between engineers and mathematicians concerning the wavelets methods of
applied electromagnetic engineering. We observe an efficient combination of theoretically advanced mathematical topics
and their application in time-domain Maxwell equation solution techniques. We have revisited all the possible classical
wavelet settings that we can consider, the Cohen-Daubechies-Feauveau biorthogonal wavelets, the orthogonal Daubechies
wavelets and the Deslauriers-Dubuc interpolating wavelets. Moreover, some few studied (but interesting) approaches have
been proposed.

Our main conclusion is that partial differential equations arising from computational electromagnetics, like Maxwell’s
equations, still pose very challenging problems in numerical analysis and simulation. The wavelets representations can be
used to obtain sparse approximations of the unknown solution, mainly thanks to the cancelation properties. The wavelets
coefficients convey local structural approximation such as the regularity of the expanded function. The approximation
theoretic foundations of such bases allow to analyze and optimize in an adaptive way their performances. Thus, the
stability properties are crucial in order to control the final error. The nonlinear approach using the best N -term wavelet
approximation with a tree structure seems to be a very good candidate [11].

There are several open questions for future works.
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approach. III Encuentro Ibéico de Electromagnetismo Computacional, Sedano, Diciembre 2003.
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