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Abstract

In this paper we present an efficient numerical method for e soli+* .1 of a partial integro-differential
equation with a singular kernel. In the time direction, a Crank-Nic. ~on finite difference scheme is used to
approximate the differential term and the product trapez. 1al metl »d is employed to treat the integral
term. Also for space discretization we apply Legendr. spec. ~! _ollocation method. We discuss the
stability and convergence of proposed method and show th« the method is unconditionally stable and
convergent with order O(72 + N—*) where 7, N an’ ... wuuc step size, number of collocation points
and regularity of exact solution respectively. We com; e the numerical results of proposed method
with the results of other schemes in the literatur " terms uf accuracy, computational order and CPU
time to show the efficiency and applicability of it.

Keywords: Partial integro-differential equatio. .. ~endre spectral collocation, Stability, Convergence,
Singular kernel.

1 Introduction

Integral equation has been e of th : essential tools for various areas of physics and ap-
plied mathematics. Many ma’hema. -2 formulations of physical phenomena contain integro-
differential equations.

In this paper we study the u. ~ crice  solution of following partial integro-differential equation
with a weakly singular ke .nel

¢
ug(x, 1 = Yuge (2, ) Jr/ (t — )" Vuge(z,s)ds,  (x,t) €, (1.1)
0

where Q = {(z,t)] —_ .2 <1,0<t<T}, v >0, boundary conditions are
u(—=1,t) =u(1,t) =0,
and initial corditiow ‘<
u(z,0) = g(x).
This type ot “auati .ns have widely occurred in the mathematical modeling of various physical

phenon :na, siich as heat conduction in materials with memory, combined conduction, convec-
tion ar 1 radiat on problems [11, 16], phenomena associated with linear viscoelastic mechanics
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[4, 17]. The integral term in (1.1) represents the viscosity part of the equation and v is a
Newtonian contribution to the viscosity.

Analytic solutions of most partial differential and integro-differential equation can not be ob-
tained explicitly. So many authors have resorted to numerical solution st ate, ‘es based on
convergence and stability analysis [6, 7, 9]. In the literature, the numerical s~ution o1 ordinary
integro-differential equations is considered by many authors, for example ¢ e [3 12, 18]. Partial
integro-differential equations also have been studied in some papers. Fo. Fg. (1.1), a quasi
wavelet based numerical method is given in [14], Cubic B-splines colio. ~tion . :ethod in [10],
the finite difference procedures based on the forward Euler explicit < .Z me, ."e backward Eu-
ler implicit technique, the Crank-Nicolson implicit formula and Cr- adal s . ~plicit method are
presented in [5], space-time spectral method in [8], a finite difference .  eme of order O(T% +h?)
in [20] and a compact difference scheme of order O(T% +h%) in o). Authors of [13] proposed a
numerical method for the fourth-order integro-differential equ tions us ng Chebyshev cardinal
functions.

The aim of this paper is to introduce an efficient numeric .t met-nd for the solution of partial
integro-differential equation with a singular kernel (1.1). Ir. *» ¢ime direction, a Crank-Nicolson
finite difference scheme is used to approximate the differc. +ial t>= .1 and the product trapezoidal
method is employed to treat the integral term. Also for space liscretization we apply Legendre
spectral collocation method. We prove that the prc, ased r.ethod is unconditionally stable
and convergent using energy method. The converge. ~e oruer of method is O(T% + N7%). We
compare the numerical results of proposed methnd wit. the results of other schemes in the
literature in terms of accuracy, computational o. 'er and CPU time and show that the new
method is more efficient.

This article is outlined as follows. In Sectior * 2 3, we first give some preliminary and then
propose an implicit spectral method for t! ~ eque “ion (1.1). In Section 4, the stability analysis
of method is studied in detail and the conv.rg. ~ce analysis is given in Section 5. In Section 6,
the results of numerical experiments a~ repo.‘ed to confirm the good accuracy and efficiency
of the proposed scheme. Finally we make ~ome concluding remarks in Section 7.

2 The Legendre spectral sche ne

Let = (—1,1). For posit’ ve integ, * number M, let 7 = % be the step size of time variable,
t, so we have
t =nt, n=0,1,..., M.

Also for any integer N .. * Py be the space of algebraic polynomial of degree at most N,
PY ={pePy | p(~1) =p(1)- 0} and L,(x) be the Legendre polynomial of degree n which

is defined by
1 d7L

Polz) = 2! dx™

If the nodes anc wei hts of the Gauss-Lobatto integration formula related to Legendre weight
are denoted by 1. w,—}/‘:o, then {a:L}in are the zeros of (1 — %) L'y(z) and [19]

[(3:2 — 1)”] , n>0.

2 1
N(N +1) [Ly ()]
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With the above quadrature nodes and weights we have

L N
/p(x)duL = Zp(wﬂwh Y p(x) € Poy_1.

A i=0

/1 1/2
Let L?(€2) be the space of measurable functions for which [lully == [ '4L2(x)|d:1:) is

finite. The inner product in this space is defined as f ¢ Lob(x)dx. Also for
any integer s > 0 we denote the Sobolev space H S(Q) as the spac of those functions of
L*(Q) for which the norm |[|ul|, = <Z Hu k)H > is finit . Fina 'y we define the space

H}(Q)={ue H'(Q) | u(-1)=u(1) =0} and set H =T1°(22) auu v = H(f2). For simplic-
ity we put [Ju] = [lulo.

The following lemmas are needed in analysis of proposed .. ~thod.

Lemma 2.1. [2] For any continuous function v, le. "vv < Py denotes its interpolant at the
points x;, 1 =0,1,...,N, then

1
l|lv —INUHH < C’||UH(71N9”7°'1 01> 3, 0< <oy

Lemma 2.2. (Gronwall’s inequality [21]) Suopo.e that the discrete function
{w" | n=c 1,.,N, Nr =T},
satisfies the inequality

n
"L A+TYy B
=1
where A and By, 1 =0,1,2, . are nonnegative constants. Then

max |[w"| < Aexp <2TZBZ>

=1

where T s sufficier. “t 7 wall such that 7. max B; < %
1<I<N
Lemma 2.3. [ 0] Tt Z(ft) = fot (t — s)"Y2f(s)ds, then we can write
. 1 —3/2
(it o) = 5 [T otn) + TS tus)] + 0 (2637, nz0,

We use the “" wing product trapezoidal method to approximate Z(f,t) [15, 20]

I(f,tn) = Anf(to) +Zﬁp np) +O(T?), 1<n<N, (2.1)
p=0




in which

tn+1 2 t1 4
A, = 2 [t}/Q - l/ 91/%19] , Bo= 7/ 0/2dg + %5
tn T Jo

n
t t1
B = 2[/291/%9— 91/%19} —Mﬁ,
T th to 3
2 tp+1 tp
By = = / 91/2d67/ 0'7240|, p>2, (2.2)
T | Jtp tp—1

where [ is a nonnegative constant and is dependent of 7 and h.
Lemma 2.4. [20] Let M be a positive integer and {an}, o be  seque .ce of real numbers with
the following properties

an =0, api1—an <0, apy1 —2an +a, | =0. (2.3)
Then for each vector (Vi,Va, ..., Var) with M real entries

M-1 n \
SAD apVay P >0 (2.4)

n=0 p=0 !

/

Lemma 2.5. [20] Let 8 salisfies

—3V3+8V2 &

5 “B<4-12V3+12/2, (2.5)

then the sequence {BP}ZOZO define . by («~ 2) satisfies (2.3).

3 Proposed method

We denote u} = u(z;. n), u; -3 (u? + u?“). Note that we can write
1 n+1 n 2
(T, tng1/2) = - (uj — uj> + O (T ) , (3.1)
and
w(@j, typ12) = Uj + O (72) ) (3.2)

Considering Eq. " 1) @ point (zj,%,,1/2) results

(T, tny1/2) = Viza(Tj, tni1/2) + L(Uzz, tnya/2)- (3:3)
Using (2 ', (0.2 3.3) and Lemma 2.3 we obtain
o ( 7\

1 _
~ (=) =5 (@)} +



n n+1

1 n— n— n
| An () + D7 By (ta0) ] P+ At ()] + Y By ()} 7| 407, (3.4)
p=0 p=0
where .
r|<C (75 +72 4+ th;3/2) : (3.5)

Now we propose the implicit spectral method for the solution of Eq. (1..) #. follows. At any
time-level we look for a function U™*! ¢ ]P’ON such that

% (U;’“ _ U;?) - % {(Um)? + (Um)?“} + A s

1 — e .
3 {4 Gy
p=0 '

j=23,.,N—1, n=01,2 .,M— 1, (3.6)

where A,, = M and U® = Zyug in which Zy *~ .he i terpolation operator at the
Legendre Gauss-Lobatto points. For analysis of methow /3.6,, it is convenient to state it in
variational form. To this end, we first introduce the discrete . 1ner product

N
(o) = D p(i)ibla, i, (3.7)
i=0
which satisfies
(o, )y = (p,¢) forall ¢ ¢ mwhich p.¢p € Pan_1. (3.8)

1
It is shown in [2] that the discrete norm |[v'y = {\v,v) 5} 2 is equivalent to norm |[jv]], i.e.
vl < |lvlly = Vziel, for all v € Py. (3.9)

Now the proposed method (3.6) c2~ he restated as follows:
Find U™t € Py for n =0,1,2,. ., M —  such that

1 ¥ ~

- n+l _ g N\ _ I n n+1 0

(U U0y = ()" (Uaa)™ T 0) o+ An((Ur) )+
1 ‘_T‘ n—p n—p+1 N
- 3p<(Um) 4 (Usa) ,v> , forv € PY. (3.10)
2 17_:6 N

Stability of p: p/,sed method
In this sectic + we show that the proposed scheme is unconditionally stable.

Theorem 4.1. Lo« € H?(RQ), then the implicit spectral scheme (3.10) is unconditionally
stable and 1 e have

Il c+1H2

" 2 2

N




Proof. Taking v = 2U™ in (3.10) and summing up n from 0 to m we obtain
- Z (Urtt —um 20y = 2 Z (Use)" + (Usa)™™,20m) + Z An(()°,20m) +

5 D03 B (Ua) ™7 (U207 (4.1)

N

For the left hand side of (4.1) we have

Ly +1_ 7 _ 1y 12 2\ _ L 2 02
(U v, 20 = = 3l = 10m3) =~ (o = 100) - @)

For the first term in the right-hand side, since (Uy,)™. U™ € P,V 7!, us 1g (3.8) we have

3 (0l 20, =5 2 (@ -
- I

m m
33 [2{er sy or—-n3 0y a0 0y
n=07 n=0
For the second term in the right-hand side we ¢ . ..o

i o U 2U"> ;(i >:: - 0H1+;é||2(7"”fv. (4.4)

It is shown in [15] that

;: f;n ;:(77%,
n=0
S0
ZA< )0 20m) < Cr3|(Ur)” ’ ZH2U"HN (4.5)
Also similar to (4.3) we can vritr
lmn n—p n—p+l orn 7mn n—p n _
ZZﬂp<(UT P+ (Caa) ,2U >NfZZﬁp (Uza)" 7,20 >Nf
n=0 p=0 n=0 p=0
n
_Zzﬁp<(Uw)n_p’2(Ux)n>N
n=0 p=0
So from Lemme 2.4 /e can write
4 m n
5 303 B (U™ 4 (U PH,207) <0 (1.0
n=0 p=0
Using (4 ''-(4.c, ..e obtain
1
= (o - o)) < et || +Z!!2U"HN~ (4.7)




Regarding to
rrn n n||2 n 2 n
[20m (% = o+ oy < 2 (o5 + 107

we can write (4.7) as follows

9 m+1
(Um)OHN +ar 3 U
n=0

lom iy < 00y + Cr2

I
N
Now using Gronwall Lemma 2.2, for sufficiently small values of 7, wr ~btai.

' 2
o=ty < (00l + o], ) )

<o (0l + Jomer|)

where

C* = eSTmaX{LC’T%‘E .

Convergence of proposed method
We first introduce the following operators
Py:H — Py, (v—Ppyv,p) =9, forall pec Py,
My :V =P, (Tyv),, ¢ = (v, @), forall ¢ € PY.
Lemma 5.1. [2] The following estimatc. hota
[v = Pyol|,, = “Nol| N¥/277 0>0, 0<p<1,
v —Hyvy, <C'ol|, N7, o>1, 0<p<1
For any function v € V' we -.ill 1 se the following notation
()4, = (0,¢)x — (0,9), forallp € Py,

then it can be shown that [1]

(E( ¢ < C{llv=Py_1v]| + [lv = Invll} [l¢ll, forallp € Py.

We denote .
() = 5 3 By tny) + Fltn i)
p=0

Let u be th exact s blution, we put

e =u"-U", e"=Iyu"-U".




Theorem 5.2. If u be the exact solution of Eq. (1.1), u® € H**2(Q), u; € C(0,T; H*(Q)),
u € C(0,T; H2(Q)), then we have

le"| < C (N‘S + 73) . (5.5)

Proof. Let 4 = I yu. Using (2.1), (3.1)- (3.2), (3.4)- (3.5), (5.2) and Lem na . .3, @ satisfies

1 ~n ~n =1 A ~ 4 |
;<’U/ i —u ’U>N :’Y<(U )xm’U>N+An<(u0)x3¢7v)1\/ -

<~:+% - u?+%,v> + <E <ﬂ?+;> ,U> + (I N
(o b)) ) (2 ) )

+(r"*3,0), forall v Py, (5.6)

in which

1
n+3

3 —
(7'5 +72+ ‘Qtn%?) .

Subtracting (3.10) from (5.6), gives

\

L@ =2, 0)y =2 e A (@)
(art -t} + <u (278) )+ @ @) ol
—<I (am,t7L+%) 7 (um ) (B ( (um " )) ,u> n <r"+%,v>. (5.7)

Putting v = 2¢" and summing v n fron 0 to m, (5.7) leads to

m
~ 12 =n
e = 1 = =2 I1E) ||N+TZA< )awr € It
n=0

Ti‘ <u:‘+5 - u?+5,2é”> + TZm: <E (a?+5> ,2é”>
+T§‘<_L én Qén 77’Z< (um, nal )fI(um,tn_,_%),Qén>
72<E< (Umx L )) >+TZ< nt3 98 > (5.8)
n=0

Now we obta'» a b und for each term in (5.8). Denote |[e?| = Jmax lle™|l. It is shown in [15]
_n_
that
LA 3
T Z A, <272T,
n=0




using
I€6e | = lld2z = Uzl = [l — Zvuza|| < ONT* [,

and Cauchy-Schwarz inequality, we have

Ti@n(éO)maé@ <TZA 16%),.. 1| l12E" 1,
n=0

<2|(&),, |17 Y A, < CNTE e (5.9)
n=0
Also using Lemma 2.4
TZ <In (e, Qén = g Z Zﬂp<(éa:x)n_ S 1)n—p+1’ 2én>N
n=0 p=0

- szm:zn:ﬂp@;"’.?éQN <. (5.10)

n=0 p=0

For other terms we have

N/ ntd +3 =\ o i n+— S| 95n
TZ Uy fut ,2€ / = Uy HQe H

n=0 n= 0||
"

<Cilley v TS T < Cyf|e”| N (5.11)
=0

Sile(irt)ar)

m
n+3 _n+i
Cg*T E Hut 2 7PN71ut 2H +

s NG

Cylle?| N=2> 7 < Cs||é?|| N, (5.12)
n=0

1 1
,rn+§ n+z

‘m 1 m m

T <r"+572§n> <rT g ||2§nH < |le?| = E r
L 4
r =0 n=0 0

m
< Cj 1€ TZ (7’2 +72 47 tni/f)




m

A (T +72 4 (n+ 1)*3/2) < Cyllé e, (5.13)
n=0
TZ<Z(ﬂzz—uzz,tn+%) 28" =
n=0
m thr% 1 1
27’2 / (tm_; —5)75/(1211(%5)—um(x,s))f(x,fb)dmpls
n=079 i “1
m tn+% _1
<7ty / (taey = 5) " (el ) = a0 [28"]) ds
n=0 0
m t"+% N E
< O3 ||ull poo oo 2y N2 1€ D / (tnﬁﬂ) Yds < Cs [|e?| N, (5.14)
n=0 0
(B (2 (.t 25") < 05rS T (upet P17 (e, t
5B (o) 2) £ Cir 3 7 sents) - P ()1

m
HI (’U/x:catn+%) —INT (’U/x:catn+%) ”} l;:”H < Cg*TZ {HI (um,thr%) HSN_S HETLH}
n=0

m
<Gty {lullpe origesny N7 &} < Colle? N (5.15)
=0

Now (5.8)- (5.15) gives

ey < el + ¢ (N7 72) ) (5.16)

using [|&°]|%, < € [|&9]] <%, (5.16) gives

e < (N‘s + r‘%) . (5.17)

Now we obtc ™ \
e = Ju” = @+ @ — U] < € (N7 + 7#). (5.18)
O
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6 Numerical results

In this section we present the numerical results of the proposed method on several test
problems. We tested the accuracy and stability of the method described in t u. »aper by per-
forming the mentioned scheme for different values of h and 7. We performed our comn.jutations
using Matlab 7 software on a Pentium IV, 2800 MHz CPU machine with z G »yte of memory.
We calculate the computational order of method presented in this article . >+ t me variable with

the following formula
[ Loo (27, N)||>
C — order = log ( .
2\ Loo(r, N

6.1 Test problem 1
We consider Eq. (1.1) with v =0, i.e

w6, ) = /0 (t— ) Vugele, ) diy 0 “¢<1 (6.1)
and the following initial condition
u(¢,0) = sin(7). (6.2)
The exact solution of this problem is [5, 15, 20]
u(é,t) = M(wf’r =) sin(r€), (6.3)

where - N7 . )
M(z)zrg)—l)‘tzn—f—l) 2"
Using € = £ + £ we first transform (6.1)-(6.3, to the following problem
u(z,t) =4[ (t—s) 2z, 8)ds, —1<a<1,
u(@,0) = (5~ 3),

u(e,t) = M (r B2) sin (% + 3).

Weput T=1and N = 10 a. 1 _omr are the results of present method with the compact finite
difference scheme develor :d in |1} i Tables 1,2.

Table 1: Cc apar son of maximum error for Test problem 1 with =0

Present . chod Method of [15]

T Er or CPU time C-order Error CPU time C-order
1/20 TR67T x 107 0.0048 - 8.93117 x 1072 0.0080 -

1/40 1.087. <7173 0.0139 1.8305 3.21568 x 1072 0.0186 1.47372
1/80 3.14¢° x 107* 0.0436 1.7876 1.15715 x 1072 0.0621 1.47455
1/160 9.3874 x 107° 0.1593 1.7464 4.16970 x 1072 0.2304 1.47256
1/320 _.0x107° 0.5911 1.7062 1.50417 x 1073 0.8783 1.47098
1/6 0 10549 x 107° 2.3133 1.6678 5.46742 x 1074 3.3257 1.46004
1/1=°0 ©.9198 x 107° 9.1880 1.6328 - -

1/2560 9.6146 x 1077 37.164 1.6026 - -

11



Table 2: Comparison of maximum error for Test problem 1 with g =0.1

Present method Method of [15]

T Error CPU time C-order Error Coe “ime C-order
1/20 2.9307 x 1073 0.0050 — 8.71410 x 1072 0.0106 -

1/40 9.2153 x 1074 0.0140 1.6691 3.13501 x 1072 0.0217 1.47488
1/80 2.7753 x 1074 0.0453 1.7314 1.13353 x 1072 (0 U579 1.46764
1/160 8.3741 x 107° 0.1599 1.7286 4.10482 x 10~ 0. 73 1.46544
1/320 2.5677 x 1075 0.6062 1.7055 1.48438 x 1073 « 807 1.46745
1/640 8.0424 x 107 2.4593 1.6748 5.3766 x 1 ~* 23037 1.46510
1/1280 2.5756 x 1076 9.5111 1.6427 — —

1/2560 8.4213 x 1077 41.527 1.6128 - -

As we see from Tables 1,2, in comparison with the method of | 5], the roposed scheme in this
paper has high-order of accuracy and needs to less CPU ti-~e. ..7 _ numerical results reflect
that convergence order is at least % in time component.

6.2 Test problem 2

We consider partial integro-differential equation with . weak! ; singular kernel

t
up(z,t) = uge(z,t) +/ (t— 5)71/2"' ‘v 3)ds, -1<z<1, (6.4)
0
with the following initial condition
u(z,0) =~ — 2% (6.5)

We put N = 32 and use the numerical solu‘io.. ~orresponding to N = 32 and 7 = 1/3000 as
reference solution. Tables 3,4 show t} ~rore and computational order of presented method
for different values of 8, 7 and T.

Table 3: Errors and ompu. tional order for Test problem 2 at 7' = 0.5

B8=0 B =01

T Error  C-order Error C-order
1/30 3.6 57 x .07 - 2.5178 x 10~*

1/60 19670 10~ 1.6298 1.0459 x 1074 1.2674
1/120 1662 x 10 ~° 1.7529 4.1802 x 107° 1.3231
1/240 9.495 x107° 1.7369 1.5949 x 107° 1.3901
1/480 2.8442 x 107° 1.7398 5.7492 x 107° 1.4720
1/96¢ 3.0062 x 107° 1.8288 1.9543 x 107¢ 1.5567

Tal .e 4: Errc.'s and computational order for Test problem 2 at T'=1

B=0 £ =0.1

T y Error C-order Error C-order
/2 9.2773 x 107* - 1.0326 x 1073 -

1/60 2.9978 x 1074 1.6298 3.3917 x 10~* 1.6062
.20 9.8680 x 10~° 1.6031 1.1291 x 10~* 1.5869
1/240 3.2732 x 107° 1.5921 3.7753 x 10~* 1.5805
1/480 1.0699 x 10~° 1.6132 1.2410 x 1077 1.6051
1/960 3.2302 x 10~° 1.7278 3.7609 x 107° 1.7224

12



Tables 3,4, show the high-accuracy of proposed method and the numerical results reflect that convergence
order is bout % in time component. Figure 1 presents the numerical solution of this problem with N = 32,
T =1/500 and different values of final times.

-0.02 -

-0.04 -

3-0.06

-0.08 -

Figure 1: Numerical solution of Test problem 2 with N = 3., = = 1/500 and different values of final times.

7 Conclusion

In this paper we proposed an efficient nu. nic “ca, method for the solution of a partial integro-
differential equation with a singular kernel. In ‘he time direction, a Crank-Nicolson finite differ-
ence scheme is used to approximate the . “ereundial term and the product trapezoidal method is
employed to treat the integral term. Also for .pace discretization we applied Legendre spectral
collocation method. We proved tb .. .= method is unconditionally stable and convergent with
order O(T% + N—*%). We compe ed our wmerical results with analytical solutions and other
methods in the literature and sho. ~1 t' at the proposed method is efficient in both accuracy
and CPU time.
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