
Accepted Manuscript

Crank–Nicolson and Legendre spectral collocation methods for a partial
integro-differential equation with a singular kernel

Akbar Mohebbi

PII: S0377-0427(18)30585-5
DOI: https://doi.org/10.1016/j.cam.2018.09.034
Reference: CAM 11929

To appear in: Journal of Computational and Applied
Mathematics

Received date : 7 January 2018
Revised date : 18 September 2018

Please cite this article as: A. Mohebbi, Crank–Nicolson and Legendre spectral collocation methods
for a partial integro-differential equation with a singular kernel, Journal of Computational and
Applied Mathematics (2018), https://doi.org/10.1016/j.cam.2018.09.034

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to
our customers we are providing this early version of the manuscript. The manuscript will undergo
copyediting, typesetting, and review of the resulting proof before it is published in its final form.
Please note that during the production process errors may be discovered which could affect the
content, and all legal disclaimers that apply to the journal pertain.

https://doi.org/10.1016/j.cam.2018.09.034


Crank-Nicolson and Legendre spectral collocation methods for a partial

integro-differential equation with a singular kernel

Akbar Mohebbi ∗

Department of Applied Mathematics, Faculty of Mathematical Science, University of Kashan, Kashan, Iran

September 18, 2018

Abstract

In this paper we present an efficient numerical method for the solution of a partial integro-differential
equation with a singular kernel. In the time direction, a Crank-Nicolson finite difference scheme is used to
approximate the differential term and the product trapezoidal method is employed to treat the integral
term. Also for space discretization we apply Legendre spectral collocation method. We discuss the
stability and convergence of proposed method and show that the method is unconditionally stable and
convergent with order O(τ

3
2 +N−s) where τ , N and s are time step size, number of collocation points

and regularity of exact solution respectively. We compare the numerical results of proposed method
with the results of other schemes in the literature in terms of accuracy, computational order and CPU
time to show the efficiency and applicability of it.

Keywords: Partial integro-differential equation, Legendre spectral collocation, Stability, Convergence,
Singular kernel.

1 Introduction

Integral equation has been one of the essential tools for various areas of physics and ap-
plied mathematics. Many mathematical formulations of physical phenomena contain integro-
differential equations.
In this paper we study the numerical solution of following partial integro-differential equation
with a weakly singular kernel

ut(x, t) = γuxx(x, t) +

∫ t

0
(t− s)− 1/2uxx(x, s) ds, (x, t) ∈ Ω, (1.1)

where Ω = {(x, t)| − 1 ≤ x ≤ 1, 0 < t ≤ T}, γ ≥ 0, boundary conditions are

u(−1, t) = u(1, t) = 0,

and initial condition is
u(x, 0) = g(x).

This type of equations have widely occurred in the mathematical modeling of various physical
phenomena, such as heat conduction in materials with memory, combined conduction, convec-
tion and radiation problems [11, 16], phenomena associated with linear viscoelastic mechanics
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[4, 17]. The integral term in (1.1) represents the viscosity part of the equation and γ is a
Newtonian contribution to the viscosity.
Analytic solutions of most partial differential and integro-differential equations can not be ob-
tained explicitly. So many authors have resorted to numerical solution strategies based on
convergence and stability analysis [6, 7, 9]. In the literature, the numerical solution of ordinary
integro-differential equations is considered by many authors, for example see [3, 12, 18]. Partial
integro-differential equations also have been studied in some papers. For Eq. (1.1), a quasi
wavelet based numerical method is given in [14], Cubic B-splines collocation method in [10],
the finite difference procedures based on the forward Euler explicit scheme, the backward Eu-
ler implicit technique, the Crank-Nicolson implicit formula and Crandall’s implicit method are
presented in [5], space-time spectral method in [8], a finite difference scheme of order O(τ

3
2 +h2)

in [20] and a compact difference scheme of order O(τ
3
2 +h4) in [15]. Authors of [13] proposed a

numerical method for the fourth-order integro-differential equations using Chebyshev cardinal
functions.
The aim of this paper is to introduce an efficient numerical method for the solution of partial
integro-differential equation with a singular kernel (1.1). In the time direction, a Crank-Nicolson
finite difference scheme is used to approximate the differential term and the product trapezoidal
method is employed to treat the integral term. Also for space discretization we apply Legendre
spectral collocation method. We prove that the proposed method is unconditionally stable
and convergent using energy method. The convergence order of method is O(τ

3
2 +N−s). We

compare the numerical results of proposed method with the results of other schemes in the
literature in terms of accuracy, computational order and CPU time and show that the new
method is more efficient.
This article is outlined as follows. In Sections 2,3, we first give some preliminary and then
propose an implicit spectral method for the equation (1.1). In Section 4, the stability analysis
of method is studied in detail and the convergence analysis is given in Section 5. In Section 6,
the results of numerical experiments are reported to confirm the good accuracy and efficiency
of the proposed scheme. Finally we make some concluding remarks in Section 7.

2 The Legendre spectral scheme

Let Ω = (−1, 1). For positive integer number M , let τ = T
M be the step size of time variable,

t, so we have
tn = nτ, n = 0, 1, ...,M.

Also for any integer N , let PN be the space of algebraic polynomial of degree at most N ,
PN

0 = {p ∈ PN | p(−1) = p(1) = 0} and Ln(x) be the Legendre polynomial of degree n which
is defined by

Pn(x) =
1

2nn!

dn

dxn

[(
x2 − 1

)n]
, n ≥ 0.

If the nodes and weights of the Gauss-Lobatto integration formula related to Legendre weight
are denoted by {xi, wi}N

i=0, then {xi}N
i=0 are the zeros of

(
1 − x2

)
L′

N (x) and [19]

wi =
2

N(N + 1)

1

[LN (xi)]
2 , 0 ≤ i ≤ N.
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With the above quadrature nodes and weights we have

1∫

−1

p(x)dx =

N∑

i=0

p(xi)wi, ∀ p(x) ∈ P2N−1.

Let L2(Ω) be the space of measurable functions for which ∥u∥0 =

(
1∫

−1

|u2(x)| dx
)1/2

is

finite. The inner product in this space is defined as ⟨φ,ψ⟩ =
1∫

−1

φ(x)ψ(x) dx. Also for

any integer s ≥ 0 we denote the Sobolev space Hs(Ω) as the space of those functions of

L2(Ω) for which the norm ∥u∥s =

(
s∑

k=0

∥∥u(k)
∥∥2

0

)1/2

is finite. Finally we define the space

H1
0 (Ω) =

{
u ∈ H1(Ω) | u(−1) = u(1) = 0

}
and set H = L2(Ω) and V = H1

0 (Ω). For simplic-
ity we put ∥u∥ = ∥u∥0.

The following lemmas are needed in analysis of proposed method.

Lemma 2.1. [2] For any continuous function v, let INv ∈ PN denotes its interpolant at the
points xi, i = 0, 1, ..., N , then

∥v − INv∥µ
≤ C∥v∥

σ1
N2µ−σ1 , σ1 >

1

2
, 0 ≤ µ ≤ σ1.

Lemma 2.2. (Gronwall’s inequality [21]) Suppose that the discrete function

{wn | n = 0, 1, ..., N, Nτ = T} ,

satisfies the inequality

wn ≤ A+ τ

n∑

l=1

Blw
l,

where A and Bl, l = 0, 1, 2, ..., N are nonnegative constants. Then

max
1≤n≤N

|wn| ≤ A exp

(
2τ

n∑

l=1

Bl

)
,

where τ is sufficiently small such that τ. max
1≤l≤N

Bl ≤ 1
2 .

Lemma 2.3. [20] Let I(f, t) =
∫ t
0 (t− s)−1/2f(s)ds, then we can write

I(f, tn+1/2) =
1

2
[I(f, tn) + I(f, tn+1)] +O

(
τ2t

−3/2
n+1

)
, n ≥ 0.

We use the following product trapezoidal method to approximate I(f, t) [15, 20]

I(f, tn) = Anf(t0) +
n∑

p=0

βpf(tn−p) +O(τ3/2), 1 ≤ n ≤ N, (2.1)
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in which

An = 2

[
t1/2
n − 1

τ

∫ tn+1

tn

θ1/2dθ

]
, β0 =

2

τ

∫ t1

0
θ1/2dθ +

4
√
τ

3
β,

β1 =
2

τ

[∫ t2

t1

θ1/2dθ −
∫ t1

t0

θ1/2dθ

]
− 4

√
τ

3
β,

βp =
2

τ

[∫ tp+1

tp

θ1/2dθ −
∫ tp

tp−1

θ1/2dθ

]
, p ≥ 2, (2.2)

where β is a nonnegative constant and is dependent of τ and h.

Lemma 2.4. [20] Let M be a positive integer and {an}∞
n=0 be a sequence of real numbers with

the following properties

an ⩾ 0, an+1 − an ⩽ 0, an+1 − 2an + an−1 ⩾ 0. (2.3)

Then for each vector (V1, V2, ..., VM ) with M real entries

M−1∑

n=0




n∑

p=0

apVn+1−p


Vn+1 ⩾ 0. (2.4)

Lemma 2.5. [20] Let β satisfies

−3
√

3 + 8
√

2 − 6

3
⩽ β ⩽ 4 − 12

√
3 + 12

√
2, (2.5)

then the sequence {βp}∞
p=0 defined by (2.2) satisfies (2.3).

3 Proposed method

We denote un
j = u(xj , tn), ūn

j = 1
2

(
un

j + un+1
j

)
. Note that we can write

ut(xj , tn+1/2) =
1

τ

(
un+1

j − un
j

)
+ O

(
τ2
)
, (3.1)

and
u(xj , tn+1/2) = ūn

j + O
(
τ2
)
. (3.2)

Considering Eq. (1.1) at point (xj , tn+1/2) results

ut(xj , tn+1/2) = γuxx(xj , tn+1/2) + I(uxx, tn+1/2). (3.3)

Using (2.1), (3.1)-(3.3) and Lemma 2.3 we obtain

1

τ

(
un+1

j − un
j

)
= γ (ūxx)n

j +
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1

2


An (uxx)0j +

n∑

p=0

βp (uxx)n−p
j +An+1 (uxx)0j +

n+1∑

p=0

βp (uxx)n−p+1
j


+ rn

j , (3.4)

where ∣∣rn
j

∣∣ ≤ C
(
τ

3
2 + τ2 + τ2t−3/2

n

)
. (3.5)

Now we propose the implicit spectral method for the solution of Eq. (1.1) as follows. At any
time-level we look for a function Un+1 ∈ PN

0 such that

1

τ

(
Un+1

j − Un
j

)
=
γ

2

{
(Uxx)n

j + (Uxx)n+1
j

}
+ Ãn (Uxx)0j +

1

2

n∑

p=0

βp

{
(Uxx)n−p

j + (Uxx)n−p+1
j

}
,

j = 2, 3, ..., N − 1, n = 0, 1, 2, ...,M − 1, (3.6)

where Ãn = An+An+1+βn+1

2 and U0 = INu0 in which IN is the interpolation operator at the
Legendre Gauss-Lobatto points. For analysis of method (3.6), it is convenient to state it in
variational form. To this end, we first introduce the discrete inner product

⟨φ,ψ⟩N =
N∑

i=0

φ(xi)ψ(xi)wi, (3.7)

which satisfies
⟨φ,ψ⟩N = ⟨φ,ψ⟩ for all φ,ψ inwhich φ.ψ ∈ P2N−1. (3.8)

It is shown in [2] that the discrete norm ∥v∥N = {⟨v, v⟩N} 1
2 is equivalent to norm ∥v∥, i.e.

∥v∥ ≤ ∥v∥N ≤
√

2∥v∥, for all v ∈ PN . (3.9)

Now the proposed method (3.6) can be restated as follows:
Find Un+1 ∈ PN

0 for n = 0, 1, 2, ...,M − 1 such that

1

τ

⟨
Un+1 − Un, v

⟩
N

=
γ

2

⟨
(Uxx)n + (Uxx)n+1, v

⟩
N

+ Ãn

⟨
(Uxx)0, v

⟩
N

+

1

2

n∑

p=0

βp

⟨
(Uxx)n−p + (Uxx)n−p+1, v

⟩
N
, for v ∈ PN

0 . (3.10)

4 Stability of proposed method

In this section we show that the proposed scheme is unconditionally stable.

Theorem 4.1. Let u0 ∈ H2(Ω), then the implicit spectral scheme (3.10) is unconditionally
stable and we have

∥∥∥Uk+1
∥∥∥

2

N
≤ C∗

(∥∥U0
∥∥2

N
+
∥∥∥(Uxx)0

∥∥∥
2

N

)
, k = 0, 1, ...,M − 1.
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Proof. Taking v = 2Ūn in (3.10) and summing up n from 0 to m we obtain

1

τ

m∑

n=0

⟨
Un+1 − Un, 2Ūn

⟩
N

=
γ

2

m∑

n=0

⟨
(Uxx)n + (Uxx)n+1, 2Ūn

⟩
N

+

m∑

n=0

Ãn

⟨
(Uxx)0, 2Ūn

⟩
N

+

1

2

m∑

n=0

n∑

p=0

βp

⟨
(Uxx)n−p + (Uxx)n−p+1, 2Ūn

⟩
N
. (4.1)

For the left hand side of (4.1) we have

1

τ

m∑

n=0

⟨
Un+1 − Un, 2Ūn

⟩
N

=
1

τ

m∑

n−0

(∥∥Un+1
∥∥2

N
− ∥Un∥2

N

)
=

1

τ

(∥∥Um+1
∥∥2

N
−
∥∥U0

∥∥2

N

)
. (4.2)

For the first term in the right-hand side, since (Uxx)n. Ūn ∈ P2N−1
0 , using (3.8) we have

γ

2

m∑

n=0

⟨
(Uxx)n + (Uxx)n+1, 2Ūn

⟩
N

=
γ

2

m∑

n=0

∫

I

2
{

(Uxx)n + (Uxx)n+1
}
Ūn =

−γ
2

m∑

n=0

∫

I

2
{

(Ux)n + (Ux)n+1
}
Ūn

x = − 2γ

m∑

n=0

⟨
Ūn

x , Ū
n
x

⟩
N

= − 2γ

m∑

n=0

∥∥(Ūx

)n∥∥2

N
≤ 0 (4.3)

For the second term in the right-hand side we can write

m∑

n=0

Ãn

⟨
(Uxx)0, 2Ūn

⟩
N

≤ 1

2

(
m∑

n=0

Ãn

)∥∥∥(Uxx)0
∥∥∥

2

N
+

1

2

m∑

n=0

∥∥2Ūn
∥∥2

N
. (4.4)

It is shown in [15] that
m∑

n=0

Ãn ≤ Cτ
1
2 ,

so
m∑

n=0

Ãn

⟨
(Uxx)0, 2Ūn

⟩
N

≤ Cτ
1
2

∥∥∥(Uxx)0
∥∥∥

2

N
+

1

2

m∑

n=0

∥∥2Ūn
∥∥2

N
. (4.5)

Also similar to (4.3) we can write

1

2

m∑

n=0

n∑

p=0

βp

⟨
(Uxx)n−p + (Uxx)n−p+1, 2Ūn

⟩
N

=
m∑

n=0

n∑

p=0

βp

⟨(
Ūxx

)n−p
, 2Ūn

⟩
N

=

−
m∑

n=0

n∑

p=0

βp

⟨(
Ūx

)n−p
, 2
(
Ūx

)n⟩
N
.

So from Lemma 2.4 we can write

1

2

m∑

n=0

n∑

p=0

βp

⟨
(Uxx)n−p + (Uxx)n−p+1, 2Ūn

⟩
N

≤ 0. (4.6)

Using (4.1)-(4.6) we obtain

1

τ

(
∥Um∥2

N −
∥∥U0

∥∥2

N

)
≤ Cτ

1
2

∥∥∥(Uxx)0
∥∥∥

2

N
+

m∑

n=0

∥∥2Ūn
∥∥2

N
. (4.7)
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Regarding to ∥∥2Ūn
∥∥2

N
=
∥∥Un+1 + Un

∥∥2

N
≤ 2

(∥∥Un+1
∥∥2

N
+ ∥Un∥2

N

)
,

we can write (4.7) as follows

∥∥Um+1
∥∥2

N
≤
∥∥U0

∥∥2

N
+ Cτ

3
2

∥∥∥(Uxx)0
∥∥∥

2

N
+ 4τ

m+1∑

n=0

∥Un∥2
N .

Now using Gronwall Lemma 2.2, for sufficiently small values of τ , we obtain

∥∥Um+1
∥∥2

N
≤
(∥∥U0

∥∥2

N
+ Cτ

3
2

∥∥∥(Uxx)0
∥∥∥

2

N

)
e8τ(m+2)

≤ C∗
(∥∥U0

∥∥2

N
+
∥∥∥(Uxx)0

∥∥∥
2

N

)

where
C∗ = e8T max

{
1, Cτ

3
2

}
.

5 Convergence of proposed method

We first introduce the following operators

PN : H → PN , ⟨v − PNv, φ⟩ = 0, for all φ ∈ PN , (5.1)

ΠN : V → P0
N , ⟨(ΠNv)xx, φ⟩ = ⟨vxx, φ⟩ , for all φ ∈ P0

N . (5.2)

Lemma 5.1. [2] The following estimates hold

∥v − PNv∥µ ≤ C∥v∥σN
3µ/2−σ, σ ≥ 0, 0 ≤ µ ≤ 1,

∥v − ΠNv∥µ ≤ C∥v∥σN
µ−σ, σ ≥ 1, 0 ≤ µ ≤ 1.

For any function v ∈ V we will use the following notation

⟨E(v), φ⟩ = ⟨v, φ⟩N − ⟨v, φ⟩, for all φ ∈ PN , (5.3)

then it can be shown that [1]

|⟨E(v), φ⟩| ⩽ C {∥v − PN−1v∥ + ∥v − INv∥} ∥φ∥, for all φ ∈ PN . (5.4)

We denote

In(f) =
1

2

n∑

p=0

βp [f(tn−p) + f(tn−p+1)].

Let u be the exact solution, we put

en = un − Un, ẽn = ΠNu
n − Un.
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Theorem 5.2. If u be the exact solution of Eq. (1.1), u0 ∈ Hs+2(Ω), ut ∈ C(0, T ;Hs(Ω)),
u ∈ C(0, T ;Hs+2(Ω)), then we have

∥en∥ ⩽ C
(
N−s + τ

3
2

)
. (5.5)

Proof. Let ũ = ΠNu. Using (2.1), (3.1)- (3.2), (3.4)- (3.5), (5.2) and Lemma 2.3, ũ satisfies

1

τ

⟨
ũn+1 − ũn, v

⟩
N

= γ
⟨(

¯̃u
n)

xx
, v
⟩
N

+ Ãn

⟨(
ũ0
)
xx
, v
⟩
N

+

⟨
ũ

n+ 1
2

t − u
n+ 1

2
t , v

⟩
+

⟨
E

(
ũ

n+ 1
2

t

)
, v

⟩
+ ⟨In (ũn

xx) , v⟩N

−
⟨
I
(
ũxx, tn+ 1

2

)
− I

(
uxx, tn+ 1

2

)
, v
⟩

−
⟨
E
(
I
(
ũxx, tn+ 1

2

))
, v
⟩

+
⟨
rn+ 1

2 , v
⟩
, for all v ∈ P0

N , (5.6)

in which

∥∥∥rn+ 1
2

∥∥∥ ≤ C
(
τ

3
2 + τ2 + τ2t

−3/2
n+1

)
.

Subtracting (3.10) from (5.6), gives

1

τ

⟨
ẽn+1 − ẽn, v

⟩
N

= γ
⟨(

¯̃e
n)

xx
, v
⟩
N

+ Ãn

⟨(
ẽ0
)
xx
, v
⟩
N

+

⟨
ũ

n+ 1
2

t − u
n+ 1

2
t , v

⟩
+

⟨
E

(
ũ

n+ 1
2

t

)
, v

⟩
+ ⟨In (ẽnxx) , v⟩N

−
⟨
I
(
ũxx, tn+ 1

2

)
− I

(
uxx, tn+ 1

2

)
, v
⟩

−
⟨
E
(
I
(
ũxx, tn+ 1

2

))
, v
⟩

+
⟨
rn+ 1

2 , v
⟩
. (5.7)

Putting v = 2¯̃e
n

and summing up n from 0 to m, (5.7) leads to

∥∥ẽm+1
∥∥2

N
−
∥∥ẽ0
∥∥2

N
= −2τγ

m∑

n=0

∥∥(¯̃en
)
x

∥∥
N

+ τ

m∑

n=0

Ãn

⟨(
ẽ0
)
xx
, ¯̃e

n⟩
N

+

τ
m∑

n=0

⟨
ũ

n+ 1
2

t − u
n+ 1

2
t , 2¯̃e

n
⟩

+ τ
m∑

n=0

⟨
E

(
ũ

n+ 1
2

t

)
, 2¯̃e

n
⟩

+τ

m∑

n=0

⟨
In (ẽnxx) , 2¯̃e

n⟩
N

− τ

m∑

n=0

⟨
I
(
ũxx, tn+ 1

2

)
− I

(
uxx, tn+ 1

2

)
, 2¯̃e

n
⟩

−τ
m∑

n=0

⟨
E
(
I
(
ũxx, tn+ 1

2

))
, 2¯̃e

n
⟩

+ τ

m∑

n=0

⟨
rn+ 1

2 , 2¯̃e
n
⟩
. (5.8)

Now we obtain a bound for each term in (5.8). Denote ∥eq∥ = max
0≤n≤N

∥en∥ . It is shown in [15]

that

τ

m∑

n=0

Ãn ≤ 2τ
3
2T,
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using ∥∥ẽ0xx

∥∥ =
∥∥ũ0

xx − U0
xx

∥∥ =
∥∥ũ0

xx − INu
0
xx

∥∥ ≤ CN−s
∥∥u0
∥∥

s+2
,

and Cauchy-Schwarz inequality, we have

τ

m∑

n=0

⟨
Ãn

(
ẽ0
)
xx
, 2¯̃e

n
⟩

N
≤ τ

m∑

n=0

Ãn

∥∥(ẽ0
)
xx

∥∥
N

∥∥2¯̃e
n∥∥

N

≤ 2
∥∥(ẽ0

)
xx

∥∥ ∥ẽq∥ τ
m∑

n=0

Ãn ≤ C1N
−s ∥ẽq∥ . (5.9)

Also using Lemma 2.4

τ
m∑

n=0

⟨
In (ẽnxx) , 2¯̃e

n⟩
N

=
τ

2

m∑

n=0

n∑

p=0

βp

⟨
(ẽxx)n−p + (ẽxx)n−p+1, 2¯̃e

n
⟩

N

= −τ
m∑

n=0

n∑

p=0

βp

⟨
¯̃e
n−p
x , 2¯̃e

n
x

⟩
N

≤ 0. (5.10)

For other terms we have

τ
m∑

n=0

⟨
ũ

n+ 1
2

t − u
n+ 1

2
t , 2¯̃e

n
⟩

≤ τ
m∑

n=0

∥∥∥∥ũ
n+ 1

2
t − u

n+ 1
2

t

∥∥∥∥
∥∥2¯̃e

n∥∥

≤ C∗
2 ∥ẽq∥N−s

m∑

n=0

τ ≤ C2 ∥ẽq∥N−s, (5.11)

τ

m∑

n=0

⟨
E

(
ũ

n+ 1
2

t

)
, 2¯̃e

n
⟩

⩽

C∗∗
3 τ

m∑

n=0

{∥∥∥∥ũ
n+ 1

2
t − PN−1ũ

n+ 1
2

t

∥∥∥∥+

∥∥∥∥ũ
n+ 1

2
t − IN ũ

n+ 1
2

t

∥∥∥∥
}∥∥¯̃en

∥∥ ⩽

C∗
3 ∥ẽq∥N−s

m∑

n=0

τ ≤ C3 ∥ẽq∥N−s, (5.12)

τ
m∑

n=0

⟨
rn+ 1

2 , 2¯̃e
n
⟩

≤ τ
m∑

n=0

∥∥∥rn+ 1
2

∥∥∥
∥∥2¯̃e

n∥∥ ≤ ∥ẽq∥ τ
m∑

n=0

∥∥∥rn+ 1
2

∥∥∥

≤ C∗
4 ∥ẽq∥ τ

m∑

n=0

(
τ

3
2 + τ2 + τ2t

−3/2
n+1

)
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= C∗
4 ∥ẽq∥ τ 3

2

m∑

n=0

(
τ + τ

3
2 + (n+ 1)−3/2

)
≤ C4 ∥ẽq∥ τ 3

2 , (5.13)

τ

m∑

n=0

⟨
I
(
ũxx − uxx, tn+ 1

2

)
, 2¯̃e

n
⟩

=

2τ
m∑

n=0

t
n+1

2∫

0

(
tn+ 1

2
− s
)− 1

2

1∫

−1

(ũxx(x, s) − uxx(x, s)) ¯̃e(x, tn)dx ds

≤ τ

m∑

n=0

t
n+1

2∫

0

(
tn+ 1

2
− s
)− 1

2 (∥ũxx(., s) − uxx(., s)∥
∥∥2¯̃e

n∥∥) ds

≤ C∗
5τ ∥u∥L∞(0,T ;Hs+2)N

−s ∥ẽq∥
m∑

n=0

t
n+1

2∫

0

(
tn+ 1

2
− s
)− 1

2
ds ≤ C5 ∥ẽq∥N−s, (5.14)

τ
m∑

n=0

⟨
E
(
I
(
uxx, tn+ 1

2

))
, 2¯̃e

n
⟩

≤ C∗
6τ

m∑

n=0

{∥∥∥I
(
uxx, tn+ 1

2

)
− PN−1I

(
uxx, tn+ 1

2

)∥∥∥+

∥∥∥I
(
uxx, tn+ 1

2

)
− INI

(
uxx, tn+ 1

2

)∥∥∥
}∥∥¯̃en

∥∥ ≤ C∗∗
6 τ

m∑

n=0

{∥∥∥I
(
uxx, tn+ 1

2

)∥∥∥
s
N−s

∥∥¯̃en
∥∥
}

≤ C∗∗∗
6 τ

m∑

n=0

{
∥u∥L∞(0,T ;Hs+2)N

−s
∥∥¯̃en
∥∥
}

≤ C6 ∥ẽq∥N−s. (5.15)

Now (5.8)- (5.15) gives

∥ẽq∥2
N ≤

∥∥ẽ0
∥∥2

N
+ C∗∗

(
N−s + τ

3
2

)
∥ẽq∥ . (5.16)

using
∥∥ẽ0
∥∥2

N
≤ C∗ ∥ẽq∥N−s, (5.16) gives

∥ẽq∥ ≤ C
(
N−s + τ− 3

2

)
. (5.17)

Now we obtain
∥en∥ = ∥un − ũ+ ũn − Un∥ ≤ C

(
N−s + τ

3
2

)
. (5.18)
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6 Numerical results

In this section we present the numerical results of the proposed method on several test
problems. We tested the accuracy and stability of the method described in this paper by per-
forming the mentioned scheme for different values of h and τ . We performed our computations
using Matlab 7 software on a Pentium IV, 2800 MHz CPU machine with 2 G byte of memory.
We calculate the computational order of method presented in this article for time variable with
the following formula

C − order = log2

(∥L∞(2τ,N)∥
∥L∞(τ,N)∥

)
.

6.1 Test problem 1

We consider Eq. (1.1) with γ = 0, i.e

ut(ξ, t) =

∫ t

0
(t− s)− 1/2uξξ(ξ, s) ds, 0 ≤ ξ ≤ 1 (6.1)

and the following initial condition

u(ξ, 0) = sin(πξ). (6.2)

The exact solution of this problem is [5, 15, 20]

u(ξ, t) = M
(
π5/2t3/2

)
sin(πξ), (6.3)

where

M(z) =

∞∑

n=0

(−1)nΓ

(
3

2
n+ 1

)−1

zn.

Using ξ = x
2 + 1

2 we first transform (6.1)-(6.3) to the following problem





ut(x, t) = 4
∫ t
0 (t− s)−1/2uxx(x, s)ds, −1 ≤ x ≤ 1,

u(x, 0) = sin
(

πx
2 + π

2

)
,

u(x, t) = M
(
π5/2t3/2

)
sin
(

πx
2 + π

2

)
.

We put T = 1 and N = 10 and compare the results of present method with the compact finite
difference scheme developed in [15] in Tables 1,2.

Table 1: Comparison of maximum error for Test problem 1 with β = 0

Present method Method of [15]

τ Error CPU time C-order Error CPU time C-order

1/20 3.8677 × 10−3 0.0048 − 8.93117 × 10−2 0.0080 −
1/40 1.0874 × 10−3 0.0139 1.8305 3.21568 × 10−2 0.0186 1.47372

1/80 3.1496 × 10−4 0.0436 1.7876 1.15715 × 10−2 0.0621 1.47455

1/160 9.3874 × 10−5 0.1593 1.7464 4.16970 × 10−3 0.2304 1.47256

1/320 2.8770 × 10−5 0.5911 1.7062 1.50417 × 10−3 0.8783 1.47098

1/640 9.0549 × 10−6 2.3133 1.6678 5.46742 × 10−4 3.3257 1.46004

1/1280 2.9198 × 10−6 9.1880 1.6328 − −
1/2560 9.6146 × 10−7 37.164 1.6026 − −
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Table 2: Comparison of maximum error for Test problem 1 with β = 0.1

Present method Method of [15]

τ Error CPU time C-order Error CPU time C-order

1/20 2.9307 × 10−3 0.0050 − 8.71410 × 10−2 0.0106 −
1/40 9.2153 × 10−4 0.0140 1.6691 3.13501 × 10−2 0.0217 1.47488

1/80 2.7753 × 10−4 0.0453 1.7314 1.13353 × 10−2 0.0579 1.46764

1/160 8.3741 × 10−5 0.1599 1.7286 4.10482 × 10−3 0.2173 1.46544

1/320 2.5677 × 10−5 0.6062 1.7055 1.48438 × 10−3 0.8807 1.46745

1/640 8.0424 × 10−6 2.4593 1.6748 5.3766 × 10−4 3.3037 1.46510

1/1280 2.5756 × 10−6 9.5111 1.6427 − −
1/2560 8.4213 × 10−7 41.527 1.6128 − −

As we see from Tables 1,2, in comparison with the method of [15], the proposed scheme in this
paper has high-order of accuracy and needs to less CPU time. Also numerical results reflect
that convergence order is at least 3

2 in time component.

6.2 Test problem 2

We consider partial integro-differential equation with a weakly singular kernel

ut(x, t) = uxx(x, t) +

∫ t

0
(t− s)− 1/2uxx(x, s) ds, −1 ≤ x ≤ 1, (6.4)

with the following initial condition

u(x, 0) = 1 − x2. (6.5)

We put N = 32 and use the numerical solution corresponding to N = 32 and τ = 1/3000 as
reference solution. Tables 3,4 show the errors and computational order of presented method
for different values of β, τ and T .

Table 3: Errors and computational order for Test problem 2 at T = 0.5

β = 0 β = 0.1

τ Error C-order Error C-order

1/30 3.6157 × 10−4 − 2.5178 × 10−4 −
1/60 1.0671 × 10−4 1.6298 1.0459 × 10−4 1.2674

1/120 3.1662 × 10−5 1.7529 4.1802 × 10−5 1.3231

1/240 9.4992 × 10−6 1.7369 1.5949 × 10−5 1.3901

1/480 2.8442 × 10−6 1.7398 5.7492 × 10−6 1.4720

1/960 8.0062 × 10−6 1.8288 1.9543 × 10−6 1.5567

Table 4: Errors and computational order for Test problem 2 at T = 1

β = 0 β = 0.1

τ Error C-order Error C-order

1/30 9.2773 × 10−4 − 1.0326 × 10−3 −
1/60 2.9978 × 10−4 1.6298 3.3917 × 10−4 1.6062

1/120 9.8680 × 10−5 1.6031 1.1291 × 10−4 1.5869

1/240 3.2732 × 10−5 1.5921 3.7753 × 10−4 1.5805

1/480 1.0699 × 10−5 1.6132 1.2410 × 10−5 1.6051

1/960 3.2302 × 10−6 1.7278 3.7609 × 10−5 1.7224
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Tables 3,4, show the high-accuracy of proposed method and the numerical results reflect that convergence
order is bout 3

2 in time component. Figure 1 presents the numerical solution of this problem with N = 32,
τ = 1/500 and different values of final times.

Figure 1: Numerical solution of Test problem 2 with N = 32, τ = 1/500 and different values of final times.

7 Conclusion

In this paper we proposed an efficient numerical method for the solution of a partial integro-
differential equation with a singular kernel. In the time direction, a Crank-Nicolson finite differ-
ence scheme is used to approximate the differential term and the product trapezoidal method is
employed to treat the integral term. Also for space discretization we applied Legendre spectral
collocation method. We proved that the method is unconditionally stable and convergent with
order O(τ

3
2 + N−s). We compared our numerical results with analytical solutions and other

methods in the literature and showed that the proposed method is efficient in both accuracy
and CPU time.
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