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Background: Indoor dampness increases the risk of indoor
fungal growth. A complex interaction between occupant
behaviors and the built environment are thought to affect
indoor fungal concentrations and species diversity, which are
believed to increase the risk of having asthma, exacerbation of
asthma symptoms, or both. To date, no systematic review has
investigated this relationship.
Objective: This review aims to assess the relationship between
exposure to indoor fungi identified to the genera or species level
on asthma outcomes in children and adults.
Methods: Ten databases were systematically searched on April
18, 2013, and limited to articles published since 1990. Reference
lists were independently screened by 2 reviewers, and authors
were contacted to identify relevant articles. Data were extracted
from included studies meeting our eligibility criteria by 2
reviewers and quality assessed by using the Newcastle-Ottawa
scale designed for assessment of case-control and cohort studies.
Results: Cladosporium, Alternaria, Aspergillus, and Penicillium
species were found to be present in higher concentrations in
homes of asthmatic participants. Exposure to Penicillium,
Aspergillus, and Cladosporium species were found to be
associated with increased risk of reporting asthma symptoms by
a limited number of studies. The presence of Cladosporium,
Alternaria, Aspergillus, and Penicillium species increased the
exacerbation of current asthma symptoms by 36% to 48%
compared with those exposed to lower concentrations of these
fungi, as shown by using random-effect estimates. Studies were
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of medium quality and showed medium-high heterogeneity, but
evidence concerning the specific role of fungal species was
limited.
Conclusion: Longitudinal studies assessing increased exposure
to indoor fungi before the development of asthma symptoms
suggests that Penicillium, Aspergillus, and Cladosporium species
pose a respiratory health risk in susceptible populations.
Increased exacerbation of current asthma symptoms in children
and adults were associated with increased levels of Penicillium,
Aspergillus, Cladosporium, and Alternaria species, although
further work should consider the role of fungal diversity and
increased exposure to other fungal species. (J Allergy Clin
Immunol 2014;nnn:nnn-nnn.)

Key words: Systematic review, damp, indoor fungi and allergic
asthma

Genetic factors alone cannot explain the high asthmaprevalence
rates in childhood1 or adulthood2 worldwide or the variations be-
tween different regions comprising similar ethnicities.3 This has
led to a research focus on poor indoor air quality (IAQ) in the
home environment. IAQ can be compounded by efforts to reduce
the carbon footprint of domestic domociles4,5 and the adoption
of increased household energy efficiency measures to reduce the
domestic carbon footprint, protect against temperature-related
morbidity andmortality, and alleviate fuel poverty.6 Efforts to pre-
vent heat loss by reducing ventilation lead to undesired conse-
quences for IAQ,7 increasing indoor dampness and the risk of
fungal contamination,8 which currently affects around 16% of Eu-
ropean dwellings.9 Dampness and fungal contamination has been
consistently shown to increase the risk of asthma10 and asthma
exacerbation.11,12 Fisk et al,11 Mendell,12 and Quansah et al10 re-
view the role of fungal contamination, as defined by the presence
of visible fungi, a moldy musty odor, or both. We contribute to ex-
isting knowledge by investigating the role of individual fungal
genera/species (as opposed to the presence of any fungi) on asthma
outcomes, which has yet to be explored.

Human behaviors, socioeconomic factors, and the built
environment have been shown to increase the fungal load found
in house dust.13 Old terraced houses (>_90 years old) are at
increased risk of higher concentrations of Penicillium and Asper-
gillus species propagules, exceeding outdoor spores per cubicme-
ter of air per day in homes with no suspected damp or fungal
contamination.14 These fungi are also more frequently cultured
from damp indoor home environments15 and are of interest
because they have been shown to increase the risk of asthma
development in children.16 Changes in composition of indoor
air spores are complicated by the interaction with outdoor
ambient levels. The indoor fungal profile is regulated by the
dispersal of outdoor sources of fungi,17 such as Cladosporium
and Alternaria species.18 The indoor fungal profile varies by
geographic location,19 season,20 temperature, humidity, and air
1
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exchange rates,21 which are modified by ventilation and occupant
behaviors. Variations in concentrations and diversity of fungal
propagules (hyphae and spores) regulate the risk of asthma.22 In
a public health context we were interested in the development
of new asthma-like symptoms over time and the exacerbation of
symptoms. For the purpose of this review, we define asthma
development as the initiation and progression of the disease to a
point at which the reversible airflow obstruction and broncho-
spasm become common. We use the risk of asthma to describe
either the development of new asthma-like symptoms, having
‘‘asthma,’’ or the exacerbation of current asthma symptoms, and
it is defined either by wheezing episodes (eg, International Study
of Asthma and Allergies in Childhood22), a doctor’s diagnosis, or
medical examination using protocols, such as the European Res-
piratory Society and American Thoracic Society.23

The adoption of molecular techniques is advancing our ability
to identify and quantify indoor exposures. To our knowledge,
there has been no systematic review exploring the role of fungal
diversity identified to the genus or species level and risk of asthma
in children and adult populations. This is complicated by the
ubiquity of fungi and the fact more than 80 fungal genera have
been shown to induce IgE-mediated type I hypersensitivity in
susceptible populations. These fungi primarily belong to 3 phyla:
Ascomycota (including species of Aspergillus, Penicillium, Alter-
naria, and Cladosporium species), Basidiomycota, and Zygomy-
cota.18 Fungal components have been cultured from sputum
samples taken from asthmatic and nonasthmatic subjects and
are associatedwith an impaired postbronchodilator FEV1.

24 There
are several mechanisms that operate together in the pathogenesis
of hypersensitivity reactions to fungi. Fungi are potent sources of
allergenic molecules, including enzymes, toxins, cell-wall com-
ponents, and highly conserved cross-reactive proteins.25 Also,
the inhalation of serine proteases of Alternaria species can also
cause inflammation through stimulation of protease-activated re-
ceptor 2 of airway epithelium, which might be implicated in the
development and exacerbation of airway allergic diseases.26 Sys-
tematically reviewing studies concerning the diversity and con-
centrations of indoor fungi and the risk of having asthma,
exacerbation of symptoms, or both provide an opportunity to
assess associations and improve future health intervention work.

This review aims to assess the role of indoor fungal diversity
being identified and quantified to the genus or species level on
asthma symptoms in infants, children, and adults.
METHODS

Search strategy
Electronic searches were conducted on April 18, 2013, and limited to

studies published after 1990 in accordance with our protocol (PROSPERO

reference: CRD42013004333). In addition to electronic searches, author

contacts and references of included studies were conducted in August 2013.
The full search strategy was used on all 10 databases (listed in Appendix E1 in

this article’s Online Repository at www.jacionline.org) to identify eligible ar-

ticles. The screening process was managed in Endnote version X5.0 (Thomas

Reuters, New York, NY)27 and recorded by using the PRISMA guidelines.28

Articles were independently screened by 2 team members (R.A.S. and

N.B.), and where there was disagreement, a third reviewer (N.J.O.) was con-

sulted and any discrepancies were resolved through discussion.
Eligibility criteria and study selection
Included articles were those reporting associations between the home

environment, indoor fungal genera/species, and risk of asthma (Fig 1). For-

ward and backward citation chasing was performed on all included studies,

and authors were contacted for additional relevant articles.

The populations investigated encompassed all ages (infants, children [aged

<18 y], and adults) and both sexes. Studies deemed eligible for the analysis

comprised:

1. original peer-reviewed articles publishing original data;

2. cohort, case-control, and nonrandomized and randomized controlled

trials (including cluster-randomized and crossover trials);

3. studies published in 1990 or later;

4. investigations of the indoor home environment;

5. assessments of indoor fungi identified to the genus or species level;

6. studies with outcomes of asthma ever and/or asthma symptoms in the

last 12 months, including wheeze, whistling in the chest, or a dry

cough; doctor’s diagnosis or skin prick test, peak flow, or spirometric

results; and asthma development requiring newly diagnosed new cases

of asthma by a physician or doctor; and

7. those that provided a measure of risk for asthma, including the relative

risk (RR) or odds ratio (OR) and CI.

Data extraction
Relevant participant and study characteristics were recorded with a

standardized data extraction template (see Appendix E2 in this article’s Online

Repository at www.jacionline.org), which was subsequently used to populate

data synthesis tables.
Quality assessment
Two team members (R.A.S. and N.B.) assessed the quality of each study by

using the Newcastle-Ottawa Scale (NOS)29 modified to reflect fungal exposure

(see the case-control form, Exposure point 1, Appendix E3 in this article’s On-

line Repository at www.jacionline.org). Included studies were independently

scored out of 10 and 13 for case-control and cohort studies, respectively, in

accordance to the NOS standard procedure. Both team members (R.A.S. and

N.B.) independently scored included articles and a final score was obtained

by consensus. Journal article authors were contacted if data were missing.

RESULTS

Synthesis
We provide an overarching narrative synthesis of included

studies and a meta-analysis of studies of similar design and those
reporting ORs and CIs. We included 7 studies in a meta-analysis
of Salo et al,30 Araki et al,31 Dales et al,32 Jones et al,33 Li and
Hsu,34 Rosenbaum et al,35 and Dharmage et al36 because these
met our inclusion criteria for conducting a meta-analysis; the
other 10 studies were too heterogeneous to be included. We
had planned to prioritize studies rated more highly on the NOS
rating scale; however, the evidence located was all of a
midrange quality, and therefore we did not weight studies in the
analysis.

Studies were grouped in our narrative synthesis according to
those reporting risk of increased fungal concentrations in homes
of asthmatic patients (analysis of indoor fungi in homes being
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Search results following criteria presented in the study 
protocol, involving ten databases (reference number 

CRD42013004333) 
(N=8,309)

Records screened  by 
title and abstract 

(N=3875)

Duplicate records removed (N=4434)

Exclusion of:
Not original peer reviewed 

(n=840)
Study design (n=583)

Published <1990 (n=286)
Not home environment 

(n=1091)
Fungi genera not reported 

(n=646)
No asthma outcome (n=275)
No measure of risk (n=24)

(N=3745)

Full text articles 
screened & assessed for 

edibility 
(N=130)

Studies included in 
synthesis
(N=17)

Exclusion of:
Not original peer reviewed 

(n=10)
Study design (n=11)

Not home environment (n=6)
Fungi genera not reported 

(n=18)
No asthma outcome (n=27)
No measure of risk (n=33)

(N=113)

FIG 1. Diagram of the systematic search and included studies.
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occupied with >_1 asthmatic patients). We then assessed fungal
genera, total fungi, and risk of asthma in ourmeta-analyses.Meta-
analyses were undertaken to explore the relationship between
exposure to individual groups of fungi and current asthma by
using the generic inverse variance method37 to conduct random-
effects meta-analysis38 in RevMan 5 (version 5.2.6; Cochrane
Collaboration, Copenhagen, Denmark). Logistic regression was
used to calculate ORs and CIs for adjusted and unadjusted data
because of the inconsistency of reporting unadjusted data. We
were unable to stratify by age, study design, or outcome because
of the limited number of studies and inconsistent reporting.

Heterogeneity was assessed by using the I2 statistic, where an I2

value of 0% to 40% was considered low heterogeneity and an I2

value of 75% or greater represented considerable heterogeneity.37

No further analyses were conducted because of sample size
limitations.
Participant characteristics of included studies
The searches revealed 17 studies meeting our eligibility

criteria. Included studies were from 8 countries and included
case-control, nested case-control, cross-sectional, and longitudi-
nal design methodologies (Table I).16,30-36,39-47 One author31 pro-
vided additional analyses to be included in our results synthesis.
Eight studies were based on populations living in the United
States, and the remaining were from the United Kingdom, Swe-
den, Taiwan, Colombia, Australia, Canada, and China. Not all
studies clearly reported whether they had investigated urban or ru-
ral environments. Based on the summary results (Table I), 9
studies assessed indoor fungal concentrations in homes located
in predominantly urban areas, with only 1 study specifically
investigating homes situated in an agricultural setting.

Thirteen included studies involved children (aged <18 years), 2
included adult populations, and the remaining 2 included all age
groups. Demographic variables (ie, variations in the built
environment and occupant behaviors) potentially modifying the
risk of fungi, asthma, or both were not consistently reported.
Reported asthma outcome measures also varied (Table I), and
only 2 studies, those of Reponen et al16 and Matheson et al,39

examined the development of new asthma symptoms.
Study design characteristics of included studies
We included 4 cohort studies with follow-up periods of 1, 2,

and 7 years. Thirteen studies were cross-sectional, which
included 9 case-control studies. Funding, recruitment, and statis-
tical analyses varied between studies (see Table E2 in this article’s
Online Repository at www.jacionline.org). The heterogeneity
between study designs and the defined exposure and outcomes
prevented the inclusion of all studies in our meta-analysis. The
following presents results separately for both our narrative
synthesis and meta-analysis.
Results of studies included in our narrative

synthesis
We provide a narrative synthesis of 10 studies16,39-47 that were

not included in the meta-analysis because of heterogeneity

http://www.jacionline.org


TABLE I. Summary of participant characteristics of included studies

Reference Country Study population Urban/rural, region Study design Study size

Rosenbaum et al35 United States Infants aged <1 y Urban; Syracuse, NY Birth cohort 39 cases, 64 control

subjects

Matheson et al39 Australia Adults aged 20-45 y Urban, Melbourne Longitudinal 360

Reponen et al16 United States Children aged 7 y Cincinnati, Ohio, and

northern Kentucky

Birth cohort 69 cases, 220 control

subjects

Gent et al46 United States Infants aged <1 y Connecticut/western

Massachusetts

Cohort, longitudinal 819

Jones R et al33 United States Children aged 3-17 y Buffalo, NY Nested case-control 50 cases, 59 control

subjects

Araki et al31 Japan All ages Not specified; study

conducted across

6 regions

Case-control 609

Holme et al42 Sweden Children aged 1-6 y Mixed, V€armland Nested case-control 198 cases, 202 control

subjects

Vesper et al43 United States Children aged 9-12 y Urban, Detroit, Mich Case-control 28 cases, 83 control

subjects

Su et al44 Taiwan Children aged 10-12 y Urban, Taiwan Case-control 23 cases, 12 control

subjects

Strachan et al41 United Kingdom Children aged 6-7 y Scotland Case-control 34 cases, 54 control

subjects

Li and Hsu34 China Children aged 7-15 y Urban, Taiwan Case-control 46 cases, 26 control

subjects

Vesper et al40 United States Children; mean age, 6.8 y Cleveland, Ohio Case-control 60 cases, 22 control

subjects

Meng et al45 United States Children aged 2-18 y Rural, agricultural area

in the Midwest

Case-control 88 cases, 85 control

subjects

Salo et al30 United States All ages Metropolitan areas,

nationwide

Cross-sectional 2456

Dharmage et al36 Australia Adults aged 20-44 y Urban, Melbourne Cross-sectional 485

Dales et al32 Canada Children aged 10 y Ontario Cross-sectional 400

Herrera et al47 Colombia Children aged 7 y Urban, Bucaramanga Cross-sectional 678

ATS, American Thoracic Society; CE, cell equivalents; EISL, International Study of Wheezing in Infants; GINA, Global Initiative for Asthma; ISAAC, International Study of

Asthma and Allergies in Childhood; NA, not applicable; NP, nurse practitioner.
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between study designs, statistical analyses, and outcomes. The
first part of the narrative synthesis includes 2 main elements
because 7 studies16,40-45 used 2 different sampling and analysis
techniques to quantify fungal concentrations in homes of asth-
matic patients (Tables II and III).16,40-45 These are defined by
those reporting fungal species as cell equivalents per gram of
house dust and fungal genera as colony-forming units (CFU)
per cubic meter of air. This is followed by a review of the asso-
ciated risk of asthma exacerbation assessed as rate or prevalence
ratios (see Table E4, A, in this article’s Online Repository at
www.jacionline.org) and then ORs (Table IV30-36,39 and see
Table E5 in this article’s Online Repository at www.jacionline.
org), which were subsequently included in the meta-analysis.

Three studies from the United States assessed the risk of
increased fungal concentrations in the homes of asthmatic
patients16,43,48 by using house dust samples and mold-specific
quantitative PCR (MSqPCR) to quantify fungal concentrations
(Table II). This method has been developed to assess 36 fungi of
the Environmental Relative Moldiness Index (ERMI) developed
to quantify the indoor fungal load.49 These studies quantify 9
fungal genera at the species level that were found to be present
in higher concentrations in homes of asthmatic patients, although
these were not consistent, and concentrations varied considerably
(see Table E3 in this article’s Online Repository at www.
jacionline.org). The other studies41,42,44,45 used air sampling and
microscopy to quantify indoor fungus to the genus level as CFU
per cubic meter of air (Table III), as opposed to MSqPCR. Studies
using microscopy to define CFU per cubic meter of fungi present
indoors showed that levels of Penicillium species (496.8 vs 276.3
total CFU/m3),44 Cladosporium species (5.18 vs 4.43 mean CFU/
m3), Ulocladium and Acremonium species (3.32 vs 0 mean CFU/
m3), and total fungi (5.92 vs 5.19 mean CFU/m3)45 were higher
in homes of asthmatic patients, although other studies did not report
this relationship. Studies with molecular techniques to quantify in-
door fungal concentrations reported higher concentrations of
Aspergillus, Penicillium, Cladosporium, Ulocladium, Acremo-
nium, Aureobasidium, Epicoccum, Scopulariopsis, Trichoderma,
Alternaria, and Wallemia species in house dust. Not all studies
found this relationship, and only higher concentrations of Asper-
gillus and Penicillium species were reported by 2 of the studies.

http://www.jacionline.org
http://www.jacionline.org
http://www.jacionline.org
http://www.jacionline.org
http://www.jacionline.org


Follow-up y Exposure measurement Definition of asthma Final quality score

2 Air sampling (CFU/m3) Diagnosis of wheeze during the first year of life was defined as (1) primary care provider

documenting wheezing, reactive airway disease, asthma, or bronchiolitis; (2) wheeze heard

on physical examination by the NP; or (3) prescription for bronchodilator, inhaled steroid,

or steroid pulse prescription documented in medical records.

7/13

2 Air sampling (CFU/m3) Wheeze <12 mo, spirometry plus bronchial hyperreactivity to methacholine and clinical activity 7/13

1 and 7 House dust sampling

(ERMI)

Parental self-reports and then diagnosis of asthma based on asthma symptoms and objective

measures of lung function and airway hyperresponsiveness; all children completed spirometric

testing (Koko; nSpire Health, Longmont, Colo) according to ATS criteria.

6/13

3 in 1 y Air sampling (CFU/m3) Respiratory symptoms of wheeze and persistent cough defined by yearly symptom counts 5/13

NA Air sampling (CFU/m3) Self-reported questionnaire and clinical interview to assess medication use and asthma symptoms,

including lung function and skin prick testing for allergens

8/10

NA Air sampling (CFU/m3) Self-reported questionnaire for receiving medical treatment for bronchial asthma 7/10

NA Air sampling (CFU/m3) Doctor-diagnosed asthma defined by medical examination 6/10

NA House dust by vacuum

(CE/mg dust [ERMI])

Parental self-reported use of asthma medication using the GINA classification system 6/10

NA Air sampling (CFU/m3) Adult self-reported child receiving a diagnosis from a physician and re-examined by a pediatrician

at the National Cheng Kung University Hospital before they were included into the year-long study

6/10

NA Air sampling (CFU/m3) Examination followed the ATS protocol: wheeze in <12 mo and bronchial lability >10%. Wheeze and

bronchial lability were defined as the difference between the postexercise and pre-exercise FEV

divided by the pre-exercise FEV.

5/10

NA Air sampling (CFU/m3) Asthma status defined by ATS criteria 5/10

NA Air and dust sampling

(mg/g [ERMI])

Homes with an asthmatic child 4/10

NA Air sampling (CFU/m3) Persistent asthma defined by National Heart, Lung, and Blood Institute 4/10

NA Dust sampling (mg/g) Doctor-diagnosed asthma and allergy defined at interview to obtain information on doctor-diagnosed

asthma and allergies, asthma symptoms in the past year, and current asthma medication use

7/10

NA Air sampling (CFU/m3) Wheeze <12 mo, spirometry plus bronchial hyperreactivity to methacholine and clinical activity 6/10

NA Self-reported and house

dust samples collected

Self-reported questionnaire of current and diagnosed asthma; cough or wheeze during the night

and within the last 12 mo; asthma defined by a doctor confirming the child has asthma or

regularly takes asthma medication

5/10

NA Air sampling (CFU/m3) Self-reported via questionnaire, respiratory symptoms suggestive of asthma, which is measured

by questionnaires from EISL and the ISAAC

4/10

TABLE I. (Continued)
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The evidence reviewed here is weak and requires further investiga-
tion into variations in species diversity and the interaction between
the indoor and outdoor environments.

In an attempt to examine the role of fungi in asthma beyond
exacerbation, 2 longitudinal studies have enabled the investiga-
tors to assess the effect of fungal diversity before the development
of asthma symptoms. Birth cohorts at risk of atopy showed a 2-
fold increased risk of higher rates of infant wheeze46 and the onset
of childhood asthma16 associated with exposure to species of
Penicillium and Aspergillus. Cladosporium species increased
the risk of a new asthma attack in the last 12 months by 50% in
adults.39 Wewere unable to include these studies16,39,46 in a sepa-
rate meta-analysis because of the limited number of studies (with
varying study designs) assessing fungal concentrations and the
risk of having asthma symptoms in longitudinal analyses. The
longitudinal study designs also prevented them from being
included in our meta-analysis of the cross-sectional and case-
control studies assessing the risk of asthma exacerbation.

Investigations into specific groups of fungi and associated risk of
asthma exacerbation were not consistent and limited our syntheses,
particularly with respect to variations in asthma outcome defini-
tions (Table I). Three studies16,46,47 assessed the potential risk of
asthma by calculating prevalence or rate ratios and were omitted
from our meta-analysis because of heterogeneity of study designs.
In summary, Herrera et al47 reported an increased probability
(>50%) of respiratory symptoms (indicative of bronchial asthma)
being associated with Acremonium species (prevalence ratio, 6.2;
95% CI, 3.8-10.0). Gent et al46 reported that the highest level of
Penicillium species (>_1000 CFU/m3) was associated with higher
rates of wheeze (adjusted RR, 2.2; 95% CI, 1.3-3.5) in the first
year of life, although it is impossible to assess whether reported
wheeze developed into asthma later in childhood. Finally, the sum-
mation of Aspergillus ochraceus, Aspergillus unguis, and Penicil-
lium variabile were associated with the development of asthma
in children aged 7 years (adjusted RR, 2.2; 95% CI, 1.8-2.7).16
Results of studies included in the meta-analysis
We identified 7 studies30-36 that met our criteria for con-

ducting a meta-analysis to assess fungal (identified to the genus



TABLE II. Results synthesis: risk of fungi identified to the species level (CE) in homes of asthmatic patients

Study Fungal analysis

Fungi measured as CE/g of house dust

Aspergillus niger Penicillium species group 2 Cladosporium sphaerospermum

Aspergillus ochraceus Penicillium spinulosum Cladosporium cladosporioides 1

Aspergillus unguis Penicillium variabile Cladosporium cladosporioides 2

Case Control subject P value Case Control subject P value Case Control subject P value

Vesper et al40 GM CE/g NR NR NR 2,604.09 654.48 .08 4,714.39 8,172.98 .03

1,895.46 2,117.95 .79 710.90 3,600.06 .01 177,704.3 544,160.00 .00

3,831.60 1,881.66 .32 1,050.69 1,033.93 .92 16,155.37 50,671.42 .01

Vesper et al43 Median CE/mg 67 24 .01 16 11 .49 16 9 .10

40 24 .09 * * * 325 370 .59

3 2 .02 27 14 .39 7 10 .70

Reponen et al16 GM CE/g 13.7 5.7 <.05 2 2 NS 137.2 70.5 NS

6.8 2.0 <.05 1.1 0.9 NS 2,099.3 1,349.2 NS

2.6 1.0 <.05 12.6 4.0 <.05 28.1 27.7 NS

Aureobasidium pullulans Epicoccum nigrum Scopulariopsis brevicaulis

Vesper et al40 GM CE/g 417,991.00 727,917.30 .02 407,868.70 920,578.1 .00 1,179.00 480.64 .04

Trichoderma viride Alternaria alternata Wallemia sebi

Vesper et al40 GM CE/g 1,602.96 284.82 .01 16,452.45 55,594.45 0 18,954.01 8,442.97 .05

CE, Cell equivalents; GM, geometric mean; NR, not reported; NS, not significant.

*Missing data.

TABLE III. Results synthesis: risk of fungi identified to the genus level (CFU) in homes of asthmatic patients

Study Fungal analysis

Aspergillus species Penicillium species Cladosporium species Alternaria species

Case

Control

subject P value Case

Control

subject P value Case

Control

subject P value Case

Control

subject P value

Strachan

et al41
GM CFU/m3 NR 39 55 2.78 16 12 .46 NR

Holme

et al42
Mean CFU/m3 NR

On DG-18 113 128 .602 104 119 .298 92 125 .130

On MEA 229 57 .147 95 106 .699 70 100 .762

Su et al44 Total CFU/m3

Spring 306.7 226.9 NS 839.6 608.3 NS 4,972.9 3,906.10 NS 3,039.1 4,098.6 NS

Summer 738.0 427.0 NS 568.4 260.7 NS 2,085.0 2,303.90 NS 47.4 4.5 NS

Fall 303.1 269.8 NS 454.0 479.3 NS 6,469.51 6,726.10 NS 87.9 178.8 NS

Winter 451.2 165.0 NS 496.8 276.3 <.05 17,696.0 16,999.3 NS 251.0 336.53 NS

Meng et al45 Mean CFU/m3 3.62 3.33 .24 4.12 3.72 .09 5.18 4.43 <.0001 3.99 3.60 .07

Acremonium species Ulocladium species Epicoccum species

3.32 0 <.02 3.06 0 <.001 3.63 3.62 .98

The outcome of interest is risk of fungi in homes of asthmatic and nonasthmatic subjects.

GM, Geometric mean; NR, not reported; NS, not significant.
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level) exposure and risk of asthma exacerbation. Included
studies were of case-control or cross-sectional study designs
and consistently assessed increased exposure to concentrations
of Aspergillus, Penicillium, Cladosporium, and Alternaria
species and risk of asthma exacerbation. Included studies also
assessed increased exposures to other fungi, such as Rhodotor-
ula, Epicoccum, and Acrodontium species, as well as total fungi,
ergosterol, and yeasts, although these were not consistently
investigated by all studies. Reported health outcomes were
defined as doctor-diagnosed asthma, self-reported use of asthma
medication, wheeze plus bronchial hyperreactivity to methacho-
line, and medical examination according to the American
Thoracic Society criteria (Table I). In some cases studies did
not report unadjusted data (see Table E5), which prevented
the inclusion of raw data into our meta-analysis. This meant
that we used unadjusted data (when reported) and data from
the adjusted models reported by each study. Included studies
did not consistently adjust for potential covariates (Table III),
although a number of built environment and demographic risk
factors were assessed (see Tables E5 and E6 in this article’s On-
line Repository at www.jacionline.org).

We were unable to assess the risk associated with fungal
species because identification was only made to the genus level
(eg, for Aspergillus, Penicillium, Cladosporium, and Alternaria
species), with the exception of 1 study.30 Increased exposure to
these fungi was associated with an increased risk of asthma in
child and adult populations (Table III), although this relationship
was not consistently reported. Other fungi investigated included
Rhodotorula, Epicoccum, and Acrodontium species and sterile
fungi (those lacking asexual or sexual spore production), which
were not associated with increased risk of residents having
asthma (see Table E5). Seven studies were included in random-
effects meta-analysis to assess the strength and direction of
association concerning exposure to Aspergillus, Penicillium,
Cladosporium, and Alternaria species and risk of asthma exacer-
bation (Table V). We excluded data concerning the associated

http://www.jacionline.org


TABLE IV. Summary table of studies reporting ORs and CIs

Study

Fungal

analysis

Aspergillus species Penicillium species Cladosporium species Alternaria species

Unadjusted Adjusted Unadjusted Adjusted Unadjusted Adjusted Unadjusted Adjusted

Salo et al30 <3.90 Not reported Not reported Not reported 1.0 1.0

3.90-6.27 1.60 (0.90-2.77) 1.52 (0.90-2.55)

2 fold increase in

concentration

>_6.28 mg/g 1.84 (1.21-2.93) 1.84 (1.18-2.85)

All ages Not reported 1.31 (1.05-1.64)

Children

<18 y

Not reported 1.47 (0.83-2.62)

Adults

>18 y

Not reported 1.25 (0.99-1.58)

Araki et al31 >GM

CFU/m3

0.83 (0.53-1.29) 0.73 (0.45-1.21) 1.44 (0.89-2.33) 1.43 (0.84-2.42) 0.84 (0.59-1.20) 0.87 (0.59-1.28) Not reported

Dales et al32 Detectable

limits

CFU/g

0.92 (0.35-2.44) Not reported 0.46 (0.18-1.21) 1.90 (0.55-6.59)

Jones R et al33 >_85th

percentile

Not reported

Viable counts CFU/m3 2.81 (1.00-7.90) 6.1 (1.37-27.19)* 0.49 (0.19-1.31) 0.35 (0.11-1.17) 1.37 (0.52-3.56) 1.19 (0.39-3.60)

Total counts Spores/m3 0.54 (0.10-2.92)� 0.70 (0.27-1.82)� 0.94 (0.31-2.83)� 1.93 (0.73-5.14) 2.37 (0.77-7.26)

Li and Hsu34 Summer 1.55 (0.71-3.36) 0.61 (0.21-1.81) 1.88 (1.07-3.30)

Winter 0.69 (0.28-1.73) 0.56 (0.17-1.84) 4.14 (1.17-14.67)

Rosenbaum

et al35
Not detected

v high

CFU/m3

3.00 (1.07-8.39) 1.58 (0.43-5.79) 7.88 (2.30-26.99) 6.18 (1.34-28.46) 2.74 (0.98-7.66) 2.28 (0.41-12.67) 1.18 (0.41-3.41) 0.96 (0.27-3.45)

Dharmage

et al36
Highest

quartile

Not reported 3.9 (1.1-14.3) 8.5 (1.6-44.3) Not reported

Matheson

et al39
CFU/m3 Not reported Not reported 0.96 (0.80-1.16)§ Not reported

1.11 (0.91-1.37)k
1.52 (1.08-2.13){

The outcome of interest is risk of fungi in homes of asthmatic and nonasthmatic subjects.

GM, Geometric mean.

Individual analyses in studies: *without family history of asthma; �with family history of asthma; �model for Aspergillus and Penicillium combined (Jones et al33); §effect of

doubling allergen or fungal exposure on the risk of current asthma; keffect of doubling exposure to allergens or fungi on the remission of current asthma; and {effect of doubling
allergen or fungal exposure on the risk of asthma attack in the last 12 months (Matheson et al39).

Adjusted models in each study:

d Salo et al30 adjusted for age, sex, race, education, smoking, and sampling season. Please note other adjusted models were provided, with all showing positive associations in

the third quartile. Analysis for a 2-fold increase (children <18 years) has fewer observations because of missing values.

d Araki et al31 adjusted for sex, age, tobacco smoke exposure, renovation history, wall-to-wall carpeting, dampness index, and hay fever.

d Dales et al32 adjusted for child’s age, parental illness, passive smoking, and dust mites.

d Jones et al33 adjusted for age and 1 or more family members with asthma. There was a strong interaction between an increased level of Aspergillus species and 1 or more

family members with asthma. Therefore separate models were generated for subjects with and without a family member with asthma.

d Li and Hsu34 adjusted for age, parental education, number of household smokers, and use of a gas stove for cooking.

d Rosenbaum et al35 adjusted for season of visit, maternal smoking during pregnancy, any smoker in the home, day care center or nonrelative care, and endotoxin.

d Dharmage et al36 adjusted for potential confounders: sociodemographic factors, current smoking, parental asthma/allergy, medication use, and season during which the partic-

ipant was investigated.

d Matheson et al39 adjusted for season of sampling and smoking status. Analysis provided for asthma attack in the last 12 months, atopy, and doctor-diagnosed asthma.
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risk of asthma resulting from models investigating the associated
level of risk with doubling fungal exposures30,39 because the
methodology differed from that for other included data.

Random-effect estimates were calculated in combined models
to investigate the role of fungal load and then individual fungal
genera to further explore associations between different fungal
genera. Effect estimates of each model were calculated with the
number of included studies and the I2 statistic, indicating that
included studies were subject to medium-high heterogeneity
(Table V). No associations were reported with the total fungal
load found indoors (model 1), and model 2 suggests a 29% to
40% risk. In accordance with our protocol, we omitted exposures
not defined to the genera or species level, and this suggests a 34%
to 51% (model 3) and 34% to 51% (model 4) increased risk of
asthma symptoms. The combination of the most consistently re-
ported fungal genera and the 4 prevalent indoor fungi
Cladosporium, Alternaria, Penicillium, and Aspergillus species
(model 5) increased the risk of current asthma by 48% in the un-
adjusted model and 36% in the adjusted model. Studies were sub-
ject to medium heterogeneity, with an I2 statistic ranging from
61% to 67% (Table V). Because of the heterogeneity, we carried
out subgroup analyses of the 4 most commonly reported fungal
genera to determine which genus or genera modified our com-
bined effect estimates. This analysis suggests that the association
was primarily caused by increased levels ofCladosporium andAl-
ternaria species (models 6-9), with no significant association with
exposure to Penicillium and Aspergillus species (Figs 2 and 3 and
see Appendix E1). Further analyses showed that the findings
might be driven by a single study30 demonstrating a strong asso-
ciation between Alternaria alternata and asthma exacerbation.
The fungal analysis of this study differed by the use of ELISA
techniques to quantify concentrations of A alternata antigen in



TABLE V. Summary effect estimates and heterogeneity scores of results synthesis

Model in subgroup analysis

Unadjusted synthesis of outcome: Asthma Adjusted synthesis of outcome: Asthma

No. of studies

included in

analysis

Summary effect

estimates for

pooled unadjusted

data (95% CI) I2 value

No. of studies

included in

analysis

Summary effect

estimates for

pooled adjusted

data (95% CI) I2 value

Model 1: Total fungi 3 0.98 (0.53-1.82) 25% 3 0.86 (0.46-1.59) 1%

Model 2: Identified and unidentified fungi (Aspergillus,

Penicillium, Cladosporium, Alternaria, Rhodotorula,

Acrodontium, and Epicoccum* species; sterile;

Basidiomycetes; hyaline unknown and dark unknown)

4 1.40 (1.07-1.82) 54% 7 1.29 (1.02-1.62) 50%

Model 3: Fungi, including nonsporulating (Aspergillus,

Penicillium, Cladosporium, Alternaria, Rhodotorula,

Acrodontium, and Epicoccum* species; sterile)

4 1.47 (1.09-1.97) 61% 7 1.34 (1.05-1.71) 54%

Model 4: Fungi, excluding nonsporulating (Aspergillus,

Penicillium, Cladosporium, Alternaria, Rhodotorula,

Acrodontium, and Epicoccum* species)

4 1.51 (1.10-2.07) 64% 7 1.34 (1.04-1.73) 64%

Model 5: Four most commonly reported fungi (Aspergillus,

Penicillium, Cladosporium, and Alternaria species)

4 1.48 (1.03-2.14) 67% 7 1.36 (1.02-1.82) 61%

Model 6: Aspergillus species 3 1.74 (0.66-4.60) 76% 5 0.98 (0.59-1.63) 54%

Model 7: Penicillium species 3 1.66 (0.48-5.70) 83% 5 1.19 (0.56-2.54) 67%

Model 8: Cladosporium species 3 1.29 (0.64-2.59) 61% 6 1.96 (1.13-3.41) 66%

Model 9: Alternaria species 2 1.71 (1.11-2.63) 0% 3 1.77 (1.22-2.56) 0%

*Only unadjusted data are available.
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house dust. Analyses in these models excluded Rhodotorula,
Acrodontium, and Epicoccum because data concerning these
fungi were not consistently reported.
Risk of bias of individual studies
The NOS for included items (Table I) indicated the studies

were of medium quality, suggesting the potential inclusion of
bias. There is also the potential for the inclusion of reporting
bias resulting from inclusion of unadjusted and adjusted data
into the random-effects models. Funnel plots present the vari-
ability between individual fungal groups (see Fig E1 in this arti-
cle’s Online Repository at www.jacionline.org) and the I2 statistic
(Table V) suggests that there is medium-to-considerable hetero-
geneity, further suggesting conservative effect estimates, with
the exclusion of combined models for total fungi and Alternaria
species (I2 value ranging from 0 to <25).
DISCUSSION
Our findings suggest that exposure to Aspergillus, Penicillium,

Cladosporium, Ulocladium, Acremonium, Aureobasidium, Epi-
coccum, Scopulariopsis, Trichoderma, Alternaria, and Wallemia
species might represent a respiratory health risk to asthmatic pa-
tients living in homeswith increased fungal concentrations. These
analyses do not provide sufficient detail to assess whether these
fungi exacerbated asthma symptoms or potential health outcomes
resulting from increased exposure to known allergenic fungal spe-
cies (ie, fungi only identified to the genus level) present in higher
concentrations at the time of sampling. Development of the ERMI
and use of MSqPCR49 enables us to more reliably quantify fungal
species present indoors.50 Aspergillus niger, A unguis, Cladospo-
rium cladosporioides, Aureobasidium pullulans, Epicoccum nig-
rum, and A alternata were found in higher concentrations in
homes of asthmatic patients in studies using MSqPCR. These
fungi are allergenic species that might induce type I hypersensi-
tivity.18 It is not clear which factors regulate indoor fungal
diversity and the risk of asthma at the individual level or how po-
tential covariates might modify the outcome.

We identified a limited number of longitudinal studies to
explore the risk of new cases of asthma symptoms in populations
exposed to increased concentrations of indoor fungi. Included
studies highlight that exposure to species of Penicillium, Asper-
gillus, and Cladosporium species increases the risk of asthma in
children and adults, although these studies do not embrace the
full extent of indoor fungal diversity and exposure to other aller-
genic fungi.18 Seven of the identified studies reviewed investigate
exposure to increased fungal concentrations and increased risk of
the exacerbation of asthma symptoms, whichwere included in our
meta-analysis.
Meta-analysis: Indoor fungal contamination and

asthma exacerbation of asthma symptoms
Our meta-analysis suggests that a number of fungal genera

investigated by the included studies increase the risk of exacer-
bation of asthma symptoms. The associated level of risk did not
appear to be significantly different when grouped by all reported
fungi (model 2) versus those identified to the genera level
(model 5). These findings could be affected by increased hetero-
geneity (I2 statistic) as we refine our meta-analysis model in
accordance with our protocol. Our refined model for the 4 most
consistently reported fungal genera, Penicillium and Aspergillus
species,51 Penicillium species,35,36 Aspergillus species,33 Clado-
sporium species,34,36 and Alternaria species,30 increases the
risk of the exacerbation of asthma symptoms by 36% to 48% in
our effect estimates. These fungi have also been shown to be asso-
ciated with an increased risk in longitudinal studies discussed in
our narrative analyses16,39,46 and warrant further investigation
in future research. Further analyses suggest that exposure to
increased concentrations ofCladosporium and Alternaria species
are primarily associated with increased risk of the exacerbation of
asthma symptoms. However, this might be a result of the adopted

http://www.jacionline.org


FIG 2. Unadjusted model for indoor fungi and risk of asthma.
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study designs and limited sample sizes. For example, the strong
association with Alternaria species results from the inclusion of
one study30 with a large sample size (n 5 2456) compared with
other studies and used ELISA to quantify concentrations of A al-
ternata antigen. This study supports the adoption of such diag-
nostic assays and a large sample size in future investigations
into fungal exposure and asthma.

Heterogeneity between studies explains some of the inconsis-
tent findings, including sample size, age ranges, and outcome
definitions. This is likely to be compounded by variations in the
adopted sampling methodologies (air CFU per cubic meter vs
dust CFU per gram sampling) because of their poor correlation in
estimating potential exposures52 and differences in fungal identi-
fication techniques.40,51 Resultant health risks depend on the
timing and extent of exposure to other groups of fungi, as well
as ambient outdoor/indoor conditions, growth substrates, and
levels of dampness,8 which cannot be ascertained from the
included studies. Included studies did not consistently account
for potential covariates, and few considered the role of indoor
dampness and increased relative humidity, which increase the
biological (house dust mite and fungi) and chemical load53 and
should be considered potential covariates. Sensitization to
pet allergens increases asthma exacerbation, with cat allergen be-
ing the most insidious,54 although other work suggests that early
dog ownership is associated with changes in immune develop-
ment and reductions in wheezing and atopy.55

It is also not clear from the evidence reviewed here how
fungal diversity and risk of asthma might be modified by
residential characteristics and the influx of outdoor fungal
spores, which regulates the indoor fungal profile.8 Penicillium,
Aspergillus, Cladosporium, and Alternaria species sporulation
rates have considerable daily and seasonal variability and,
combined with the adoption of different sampling tech-
niques,56,57 add another level of complexity. Indoor fungal
concentrations used to calculate ERMI values have also been
shown to be heterogeneously distributed across the United
States.19 These factors introduce another layer of uncertainty
that cannot be explained from the evidence included in this re-
view. The evidence reviewed suggests that exposure to
increased concentrations of these 4 fungal groups represents
a respiratory risk for asthmatic patients, but the evidence is
not conclusive when assessing species diversity and asthma
risk. It is yet unknown how exposure to fungi influences the
development of new asthma-like symptoms, exacerbation of
asthma symptoms, or both.
Synthesis with existing knowledge
Our combined random-effect estimates concerning expo-

sures to individual fungal genera are similar to the meta-
analyses of Fisk et al,11 who reported an approximate 30% to
50% increased risk of asthma outcomes. Two cohort studies
have demonstrated that exposure to increased fungal contami-
nation and risk of atopy increase the risk of asthma develop-
ment in children58 and adult59 populations. A recent
systematic review reported a significant association with



FIG 3. Adjusted model for indoor fungi and risk of asthma.

J ALLERGY CLIN IMMUNOL

nnn 2014

10 SHARPE ET AL
increased exposure to fungal odor (random-effects model; ef-
fect estimate, 1.7; 95% CI, 1.2-2.5) and the development of
asthma.10 Fungal diversity and concentrations of Penicillium,
Aspergillus, Cladosporium, and Alternaria species vary
considerably between different populations.45,60,61 This is
likely to regulate asthma outcomes in different populations
given that variations in residential characteristics regulate
fungi found in US13 and United Kingdom14 homes. Included
studies in our meta-analysis used predominantly microscopy
to identify and quantify the genus of fungi, which is likely to
underestimate microbial exposures compared with molecular
techniques.51

Exposure to Cladosporium and Alternaria species increased
the risk of asthma in our effect estimates, which might be due
to asthma severity being associated with Cladosporium39,62

and Alternaria species.63,64 It is not clear how the risk of asthma
and severity of symptoms might be modified in sensitized pop-
ulations, which is important to consider given that the develop-
ment of allergic asthma (presence of IgE antibodies) in adults
has been associated with Aspergillus fumigatus and
Cladosporium species.65 Penicillium species is frequently
cultured from damp indoor home environments and has been
associated with asthma severity,66 peak flow variability,67 and
asthma morbidity68 when present in low concentrations.69 The
lack of association between exposure to Penicillium and Asper-
gillus species and asthma in meta-analyses might be due to the
limitations discussed above. These are important fungi to
consider in future work because they dominate the damp indoor
environment, where propagule concentrations exceed those in
their natural outdoor environments,8 and have been implicated
in the development of childhood asthma.16 Dampness appears
to be a high risk for fungal growth present both in the US and Eu-
ropean scenarios.

There is insufficient evidence to support targeted interventions
to decrease exposures to high-risk fungi in the general public and
reduce symptoms or the initiation of disease. It is accepted that
fungal sensitization is associated with an increased risk of
asthma.70 Fungal diversity and concentrations of different fungal
groups appear to modify asthma outcomes in atopic and nona-
topic subjects. However, this might also be the result of inhalation
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of different indoor/outdoor fungal propagules. Variations in the
composition of ambient fungal spores also influence asthma epi-
sodes resulting from increased seasonal sporulation rates or those
resulting from extreme weather events, such as thunderstorm-
related asthma in A alternata–sensitized populations.71 For
example, outdoor fungal exposure is associated with increased
asthma symptoms and exacerbation in an-inner city population.66

Thermotolerant filamentous fungi, such as Aspergillus and
Penicillium species, can germinate and colonize the bronchial
tree and regulate fungal sensitization and asthma severity.24 Aller-
genic proteins have been identified in 23 fungal genera, although
not all are considered major allergens, such as Alt a 1 of A alter-
nata, Cla h 8 of C herbarum, and Asp f 1 from A fumigatus.18

Fungal sensitization has been reported in up to 80% of asthmatic
patients, although research into fungal allergies has been com-
pounded by high variability between their protein composi-
tions.18 In terms of asthma severity, it is thought that more than
6.5 million persons have severe asthma with fungal sensitization
and up to 50% of adult asthmatic patients attending secondary
care have fungal sensitization.72 This is likely influenced by a
high aeroallergen load,73 which can have opposing health ef-
fects.74 Work to date is inhibited by the lack of species identifica-
tion. The adoption of a multidisciplinary approach and consistent
sampling methodologies are required to accurately measure the
timing and extent of exposures to microbial agents and other in-
door/outdoor aeroallergens. This should be combined with a pro-
tocol for identifying the appropriate sampling period,75 along
with clearly defined outcomes for developing asthma (long-
term) or exacerbation (short-term) and epidemiologic techniques
to investigate the cause of asthma at a population level.
Strengths and limitations of the systematic review
This assessment of the fungi and asthma literature has under-

gone a structured systematic review, with all phases of this
systematic review conducted in accordance to our published
protocol. A number of limitations exist, and we have tried to
account for them by synthesizing our findings in Table E6 in this
article’s Online Repository at www.jacionline.org. Our analyses
were limited by the quality, reporting inconsistencies, and limited
number of peer-reviewed studies investigating the role of fungal
diversity and risk of asthma exacerbation. The included studies
had relatively small sample sizes, resulting in low power to our
analyses, and prevented the stratification by age, exposure, and
outcome definitions. This assumes that asthma in children and
adults is the same disease with the same pathways of pathogen-
esis. They showed medium-high heterogeneity and were of me-
dium quality, meaning that our findings might include reporting
bias. We were unable to conduct further analyses to explore po-
tential bias associated with the heterogeneity between studies
because of the small number of included studies.

The majority of the included studies used cross-sectional or
case-control study designs, which reduces our confidence in these
results because bias can be introduced as a result of incorrect
estimation of exposures and failure to account for confounders, as
evidenced by the decrease in the strength of the relationship
between moisture-related risk factors and asthma in longitudinal
analyses.76 We identified a limited number of longitudinal study
designs, which restricted our meta-analysis to assess the role of
fungal exposures taken from a single sample on the exacerbation
of asthma symptoms. Few studies quantified indoor fungal
contamination defined to the species level by using molecular
techniques, which restricted analyses to the fungal genera and
potentially underestimate exposures. Potential covariates were
not consistently assessed, and studies did not account for the ef-
fect of increased dampness and relative humidity on concentra-
tions of house dust mites or volatile organic compounds or the
seasonality of outdoor air spore composition. It is also not clear
how fungal exposures and risk of asthma exacerbation might be
modified by different occupant behaviors, such as heating and
ventilation patterns, which have been shown to modify the indoor
fungal profile, and this adds another layer of complexity in assess-
ing indoor exposures.

Longitudinal studies assessing increased exposure to indoor
fungi before the development of asthma symptoms suggests that
species of Penicillium, Aspergillus, and Cladosporium pose a res-
piratory health risk in susceptible populations. Increased exacer-
bation of current asthma symptoms in children and adults were
associated with increased levels of Penicillium, Aspergillus, Cla-
dosporium, and Alternaria species, although further work should
consider the role of fungal diversity and increased exposure to
other fungal species. Adoption of a holistic approach to the com-
plex disease of asthma in atopic and nonatopic populations, with
the understanding that multiple exposures are potentially
involved and should be measured, will lead to better study design
and capture of sufficient data to allow amore measured view. This
remains challenging because it will be expensive to achieve at the
population level. We recommend that future studies should
consider the adoption of a multidisciplinary approach using
both molecular and epidemiologic tools to accurately estimate
the extent and timing of exposures and reliably assess potential
health effects.
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Key message

Future studies should consider the adoption of a multidisci-
plinary approach using both molecular and epidemiologic
tools to accurately determine the extent and timing of expo-
sures to allergenic fungi and reliably assess potential health
effects.
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