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Oral immunotherapy (OIT) has demonstrated reproducibly
successful desensitization in patients with food allergy
completing clinical trials and, in some studies, sustained
unresponsiveness. These clinical outcomes have been associated
with characteristic modifications in the allergen-specific
immune response, but a detailed synthesis of OIT’s mechanisms
of action is lacking. In this rostrum we review the current
evidence regarding the human immune response to OIT, explore
possible mechanisms, and identify knowledge gaps for future
research. (J Allergy Clin Immunol 2018;141:491-8.)
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The mechanisms of action of oral immunotherapy (OIT)
remain poorly understood, with the literature comprised of
primarily descriptive peripheral blood studies in human patients.
Although stromal and immune cells in the gastrointestinal tract
mucosa, its associated secondary lymphoid structures, the
gastrointestinal microbiome, and so on are likely to critically
influence human food allergy, the role of these structures in the
mechanisms of OIT remains obscure given the inability to
routinely sample these structures in human subjects. Although
much can be learned from animal model systems, the knowledge
gained is inherently limited by experimental conditions that do
not resemble human food allergy. Despite these obstacles, the
application of new technologies is enhancing our current
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understanding of the abundance and diversity of OIT’s effect on
immune cell subsets.
Our aim in this rostrum is to review what is known about

clinically relevant OIT mechanisms, and we have chosen to focus
primarily on human studies, supplementing them with data from
animals, where appropriate. We have organized our approach
sequentially in an attempt to outline the temporal changes from
baseline during the OIT treatment protocol.
The primary clinical objective of most OIT programs for food

allergy is to induce a desensitized state in the patient, which is
defined here as a temporary increase in threshold reactivity to the
allergen such that clinical protection from accidental ingestion
can be achieved. This occurs through continuous stimulation of
the immune system with subthreshold daily doses of allergen and
then gradually escalating the dose level over time to reach a target
maintenance dose. The oral route of administration might take
advantage of the unique set of immune cells and pathways
involved in induction of oral tolerance. Protocols vary in their
approaches to the initial dose escalation phase, but they
consistently begin OIT with low doses (eg, <_5 mg of allergenic
protein) and generally increase the doses by 25% to 100% at a
periodic interval until the target maintenance dose is reached or
dose-limiting toxicity occurs. Holding, reducing, or terminating
dosing is occasionally required during this period of treatment
because of allergic symptoms caused by the daily dose as
participants transition from allergen avoidance before OIT to
steadily progressive exposures. It is this period of transition that
we will refer to in this article as the ‘‘initiation phase’’ to describe
the mechanistic changes occurring during initial exposures.
Clinical studies have shown repeatedly that the majority of

patients undergoing OIT in clinical trials will have adverse events
related to dosing, usually mild to moderate in severity, and that
they are more common during initiation, lessening in frequency
over time.1-3 In approximately 15% to 20% of subjects, more se-
vere symptoms and/or dose-limiting toxicity can occur, and
although clinical cofactors have been identified for systemic reac-
tions, the biological basis (ie, the endotype) that explains this
phenotype has not been elucidated. The repeated engagement of
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FIG 1. Modulation of mast cells and basophils during OIT. At baseline, allergic patients’ mast cells and

basophils are decorated with sIgE bound to cell-surface FcεRI receptors. On antigen exposure (eg, entry

food challenge or accidental exposure), IgE molecules are cross-linked, leading to degranulation and

subsequent manifestation of allergic symptoms. During the initiation phase of OIT, repeated exposures to

low-dose antigen leads to direct effects on mast cells and basophils, including IgE endocytosis and actin

rearrangement, rendering these effector cells hyporesponsive to allergen. As OIT continues and higher

doses of antigen are administered, the production of allergen-specific IgG in the consolidation phase plays

an important role and can lead to further, potentially long-lived inhibitorymechanisms seen clinically as SU.

In particular, circulating allergen-specific IgG can neutralize allergen, such that IgEs are not cross-linked on

effector cells, whereas IgG bound to cell-surface FcgRIIb can induce inhibitory signaling with IgE and IgG

cross-linking, thus preventing degranulation. MC/Baso, Mast cell/basophil.
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allergen-specific IgE (sIgE) on mast cells and basophils,
which in many participants can lead to elicitation of
some symptoms, can also contribute to OIT’s mode of action,
which later engages regulatory pathways that aim to control
allergic inflammation through effector cell suppression and
antibody production (eg, the modified TH2 response), but the
optimal relationship of excitation and inhibition is not well
understood.
Because participants undergoing OIT progress through dose

escalation, the initial initiation phase of the desensitization
process gives way to a consolidation phase. In this phase the
clinical benefit of the regimen is preserved through maintenance
dosing (ie, no further escalation), and effector cells remain stably
suppressed. Lymphocytes and their products (cytokines and
antibodies) are modulated further, culminating in some partici-
pants in a result known as sustained unresponsiveness (SU), a
persistent state of increased allergen threshold in the absence of
daily dosing. The mechanistic changes associated with SUwill be
discussed in this section, followed by some selected key
knowledge gaps that serve as future research needs in this field.
INITIATION PHASE

Mast cells and basophils
At baseline, the mast cells and basophils of participants with

OIT express the high-affinity IgE receptor FcεRI on their cell
surfaces, are primed with sIgE, and are the major effector cells of
IgE-mediated allergic reactions to foods because of their granule
contents. These primed effector cells are activated rapidly by a
signaling cascade through FcεRI signaling when untreated
patients with food allergy accidentally and occasionally
encounter allergen in suprathreshold amounts (Fig 1). However,
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the steady subthreshold dosing used in OIT trials for peanut, egg,
and milk allergies have consistently demonstrated significantly
decreased skin prick test (SPT) wheal size and basophil activation
(as measured by upregulation of CD63, CD203c, or both) in
response to the antigen used for OIT,4-11 and this effect likely ac-
counts for the initial desensitization seen clinically.
Suppression of these effector cell responses occurs within

the first few months of OIT and therefore might be linked to
escalating antigen dose. It is important to note that this
desensitization occurs in the absence of a decrease in sIgE
levels and often during the period of time that sIgE levels are
actually increasing from baseline.5,11 This finding across
several studies implies that desensitization of mast cells and
basophils does not rely on decreased sIgE levels as its under-
lying mechanism. However, decreased IgE levels caused by
omalizumab treatment before initiating OIT allow for much
higher doses of antigen to be safely given in the initial escala-
tion phase.12,13 The effects of anti-IgE therapy on reducing
circulating IgE levels and downregulating FcεRI levels on ba-
sophils might explain this finding. Therefore although low
sIgE levels are not requisite for desensitization, removal of
IgE by omalizumab allows for a rapid escalation in antigen
dose.
More detailed mechanistic studies of effector cells have tended

to focus on basophils, which are easier targets given their
circulation in peripheral blood, compared with tissue-resident,
long-lived mast cells. It should be noted that there are key
differences between basophils and mast cells, and their functional
equivalence should not be assumed. Interestingly, OIT appears to
inhibit the entire IgE-signaling pathway in basophil activation
assays as polyclonal anti-IgE and egg allergen responses on
basophils are decreased with peanut OIT, pointing to a peanut-
nonspecific mechanism.14 Given the technical difficulty in study-
ing cellular mechanisms and inaccessibility of mucosal tissues in
human subjects undergoing OIT, findings from orally induced
desensitization mouse models might provide important further
mechanistic insights; however, there is a relative scarcity of liter-
ature from OIT models.
Mouse models of rapid desensitization, along with supporting

cellular studies, indicate that short-term desensitization is
induced by inhibiting calcium flux and remodeling of actin
through repeated stimulation of sIgE on mast cells,15 whereas
another report demonstrates that endocytosis of surface-bound
IgE is critical for mast cell desensitization (Fig 1).16 A model
of oral desensitization in mice with egg allergy demonstrated
that allergic mice can be rendered nonreactive to oral egg chal-
lenge.17 However, these mice reacted when given an intraperito-
neal injection of egg antigen, indicating that effector cells could
still respond vigorously to antigen in the bloodstream. This study
hints at the role of local effects, presumably on mast cells in the
gastrointestinal tract, that prevent allergic reactions on oral chal-
lenge and emphasize the temporal changes that occur during OIT.
Within weeks of starting dosing, we hypothesize that the effector
cell suppression is likely to be predominantly mediated by the
intrinsic responses of those effector cells to repeated low-level
allergen exposure, which is consistent with in vitro studies of
desensitization.15,16 Early antibody responses, which are just
beginning to change at this time, might also contribute. Peripheral
allergen-specific antibodies and B cells also emerge within weeks
of beginning OIT,18 likely interacting with T cells, and these
concerted regulatory actions ultimately lead to further changes
in antibody repertoire that interact with and can suppress basophil
responses through multiple pathways19,20 late in the initiation
phase and into consolidation, which is discussed in greater detail
below.
T cells
In allergic patients T-cell activation drives the main effector

phases of allergy, including eosinophil activation and B-cell
production of allergen-specific IgE. This takes place primarily
through a TH2-biased response pathway initiated by epithelially
derived soluble mediators, such as thymic stromal lymphopoietin,
IL-25, and IL-33.21 Conversely, regulatory T (Treg) cells, CD41

T cells, or both able to produce the anti-inflammatory IL-10 are
generally considered to be significant contributors to the induc-
tion and maintenance of peripheral tolerance to allergen; regula-
tory B cells might also contribute IL-10.22,23 With antigen-
specific TH2 cells at the core of the allergic process in atopic pa-
tients, changes in the magnitude and polarization of allergen-
specific CD41 T cells are likely to be a key component to the
effectiveness of OIT driven by the duration and dose of antigen
exposure.
Consistent with increased production of related sIgE

commonly observed during the initiation phase of
OIT,5,7,10,11,24 the first low-dose exposures to allergen might not
only reinforce the pathogenic TH2 cell effector responses but
also create an inhibitory milieu that hampers establishment of
Treg cells (Fig 2).

Data from various models inform these concepts. For instance,
IL-4 production has been shown to cause TH2 functional activities
to become resistant to Treg cell–mediated suppression and to
antagonize the postthymic development of forkhead box protein
3 (Foxp3)1 Treg cells.25-27 Subsequent increasing doses of
allergen exposure during escalation are associated with a decrease
in TH2 cell activity and clonal expansion28 and an increased fre-
quency of IL-10–producing CD41 T cells.29 This in turn leads to
production of allergen-specific IgG4 antibody that could attenuate
IgE-mediated allergic symptoms30 and might create a milieu that
suppresses de novo generation of pathogenic TH2 cells. However,
at this stage, a high frequency of allergen-specific CD41 T cells is
still present (Fig 2). Therefore this could explain why the clinical
benefit of OIT can be lost or significantly decreased when dosing
is interrupted or discontinued at this point.
One possible mechanism to explain and integrate all these

results into a cohesive schema is that chronic stimulation of
allergen-specific TH2 cells during the initial initiation phase of
OIT might culminate in a counterregulatory immune response,
which consists of pathogenic TH2 cells driven to an anergic,
regulatory-like phenotype transiently preventing allergic symp-
toms through production of suppressive factors, such as IL-10.
However, solid evidence for induction of allergen-specific Treg
cells in human subjects mediating T-cell tolerance through IL-
10 or other means during current OIT protocols remains elusive.
Although the suppression of TH2 cytokine production has been

observed in subjects undergoing OIT, multiple groups have
examined Foxp31 Treg cells, with inconsistent results. During
this phase, if treatment is not continued long enough, the
initial pathogenic properties of allergen-specific TH2 cells can
gradually recover, which is consistent with transient clinical
benefits. This idea is supported bywork demonstrating that during
chronic inflammation, IL-10–producing TH2 cells (which fulfill



FIG 2. Sequential immune mechanisms of OIT. At baseline, TH2A cells are at the core of the allergic process

in patients with food allergy. During the early initiation phase of OIT, the first low-dose exposures to food

allergen reinforce the pathogenic effector responses, increasing proinflammatory cell and B-cell pathogenic

activities while creating an inhibitory milieu that hampers early establishment of Treg cells. Subsequent

chronic stimulation of allergen-specific TH2 cells with increasing doses of OIT culminate rapidly in a coun-

terregulatory immune response to prevent excessive effector responses. These in turn drive a desensitiza-

tion state through a decrease in TH2A cell activity and IL-10 production and change in IgE/IgG4 ratio. At this

point, the clinical benefit of OIT might be significantly decreased when dosing is interrupted or discontin-

ued. The consolidation phase of OIT arises once a specific threshold of activation is achieved and triggers

selective T-cell exhaustion/deletion-skewing effector responses away from the proallergic TH2 response.

Prolonged continuous antigenic stimulation during maintenance OIT can also have other direct conse-

quences associated with SU, enhancing epigenetic modifications at the Foxp3 locus during Treg cell differ-

entiation mechanisms.
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the criteria of inducible Treg cells) can arise directly from
nonsuppressive TH2 cells once a specific threshold of
activation is achieved.31 In support of the presence of anergic
T cells, a recent study showed that allergen-specific CD41 T cells
expand during OIT and shift toward an anergic TH2 cell
phenotype.28
Antigen-specific B cells and their antibodies:

Bridging the initiation and consolidation phases
High-affinity specific antibody is a hallmark of an adaptive

immune response and is a characteristic of IgE-mediated
hypersensitivity. IgE-mediated food allergy is driven by sIgE
antibodies, and the association between food challenge
outcomes and circulating levels of sIgE, as well as specific-to-
total IgE ratios, is well known.32 Qualitative aspects of sIgE, such
as clonality, epitope specificities, and posttranslational
modifications, might play a decisive role in the allergic immune
response. Linear epitope analysis of sIgE in allergic patients’
sera has revealed not only variability in the number of bound
epitopes but also a positive association with reaction severity
during food challenge outcomes.33,34 Our understanding of how
the sIgE level, sIgE/total IgE ratio, and sIgE clonality and affinity
can affect effector cell degranulation35 has been further expanded
by data from in vitro model systems using basophils sensitized
with recombinant sIgE antibodies.
The study of antigen-specific B cells has provided new insight

into how the clonal contribution of these cells might be important
in the humoral response to peanut OIT. An early and transient
population of rare, circulating, antigen-specific memory and
plasmablast B cells can be identified early in the initiation phase
of peanut OIT by using an Ara h 2 fluorescent multimer.18 New
techniques to isolate and clone recombinant allergen-specific
antibodies induced during peanut OIT have proved highly
informative. The majority of allergen-specific antibodies from
patients with OIT bind to conformational epitopes36; this
observation is also supported by phage display analysis of
sera.37 Interestingly, even though antibody repertoires are



FIG 3. Humoral mechanisms of OIT. The diverse pool of sIgE antibodies are a marker of food allergies in

affected patients at baseline. On antigenic re-exposure in the form of OIT, allergen-specific memory B cells

are reactivated to undergo somatic hypermutation and affinity maturation. During the induction phase,

these memory cell responses contribute to plasma cells that will promote the increase in functional

allergen-specific IgG and IgA responses. On the other hand, pathogenic TH2 cells, on reactivation by these

low allergen exposures, might in part drive allergen-specific IgG memory B cells to IgE-producing cells,

hence transiently increasing sIgE levels. During the consolidation phase, follicular TH (TfH) and regulatory

B (B reg) cell compartments can drive memory B-cell responses. In turn, the continued increases in titers of

diversified, affinity-matured, allergen-specific IgG and IgA result in persistent suppression of allergic

effector cells and the lasting efficacy of OIT.
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considered to be highly individual, selection of homologous Ara h
2–specific antibody clones in the repertoires of multiple patients
has been observed during OIT. It remains to be proved whether
these homologous clones recognize the same epitope, as would
be expected, or have unique functional significance such as in
suppressing IgE-dependent reactivity.18

The increase in the frequency of memory B cells and
plasmablasts during the initiation phase of peanut OIT coincides
with the increase in Ara h 2–specific IgG4 antibody levels, as well
as total Ara h 2–specific IgG and IgA levels, suggesting that these
cells might have a clonal contribution to the functionally suppres-
sive antibodies after peanut OIT (Fig 3). This suggestion is
supported further by induction of new Ara h 2–specific IgG4-
recognizing linear epitopes after peanut OIT,38 as well as the
observation of increased somatic hypermutation in a clonal line-
age of IgG4.

36 These changes in the context of effector cell sup-
pression by allergen-specific IgG4

19 suggest that reactivation of
the memory response and development of new allergen-specific
antibodies can contribute to post-OIT SU. However, the relevance
of the newly emergent clones and even their isotype to clinical
outcomes in peanut OIT remains the subject of investigation.
CONSOLIDATION PHASE
Changes in antibody and effector cell responses during the

consolidation phase of OIT are likely associated with significant
and stable changes at the T-cell level. This might be due in part to
selective exhaustion/deletion of allergen-specific TH2 cells
induced by persistent higher-dose allergen exposure, allowing
concurrent regulatory immune responses to emerge slowly during
the consolidation/maintenance phase of OIT (Fig 2). Recently,
allergen-specific TH2 cells have been shown to represent a pheno-
typically distinct TH2 subpopulation confined to atopic subjects,
and they display greater adverse activity relative to conventional
TH2 cells.

39 This proallergic TH2 subset, denoted as the proaller-
gic TH2 (TH2A) cell subset, is characterized by stable coexpres-
sion of chemoattractant receptor-homologous molecule
expressed on TH2 cells, CD161, and IL-33 receptor and low
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expression of CD45RB, CD27, and Bcl-2, which is consistent
with cells that are highly sensitive to activation-induced cell
death.40 Furthermore, ex vivo analysis of the peanut-specific
TH2A responses in peripheral blood of patients during the course
of OIT demonstrated that elimination of allergen-reactive TH2
cells from the periphery was associated with clinical benefit.
This is consistent with the notion that skewing allergen-specific
effector T cells away from the proallergic TH2 response could
facilitate other protective changes andmight be a causative mech-
anism for clinical benefits seen during OIT.
Regarding antibodies, it is now well established that levels of

allergen-specific IgG, particularly IgG4, are increased within a
few months after starting OIT and often increased more than
10-fold from baseline values and that these remain increased,
even after many years of OIT.4-6,9,11 Induction of peanut-
specific IgG during OIT has been linked to suppression of allergic
effector cells by using 2 mechanisms, suggesting a gradual tem-
poral convergence in suppressive mechanisms involving humoral
and effector cell responses (Fig 1).

The first postulatedmechanism is that allergen-specific IgG can
block allergen-IgE interactions, thus sequestering the allergen.41

Functional blocking antibodies correlate with clinical outcomes
in subcutaneous immunotherapy.41 Not only do peanut-specific
IgG4 antibody levels increase during the course of peanut OIT,
but IgG4 from post–peanut OIT sera can suppress peanut-
stimulated basophil and mast cell activation.19

The second hypothesis highlights the Fc portion of IgG. Human
basophil suppression by post-OIT IgG has been shown to be
mediated by interactions through the inhibitory receptor FcgRIIb,
as shown inmurinemodels of food allergy.20,42 Blocking FcgRIIb
with anmAb prevented inhibition of basophil degranulation, indi-
cating that specific IgG binds this inhibitory receptor and prevents
antigen-driven activation by inhibitory signaling. The interactions
of antibodies with inhibitory Fc receptors can be influenced by
antibody Fc subtypes (eg, levels of sIgG1, sIgG2, and sIgG3 are
all increased during peanut OIT20), as well as by posttranslational
modifications, such as glycosylation. The increase in allergen-
specific IgG4 levels might be related to IL-10 production from
Treg cells or regulatory cells B, as has been shown in other forms
of immunotherapy.30,43

More recently, serum Ara h 2–specific IgG and IgA levels have
also been shown to increase during peanut OIT.18 These anti-
bodies might play a blocking role44 or might have a deeper role
in disease pathogenesis and treatment. Alternatively, the increase
in specific IgA levels during OIT might point to a mucosal origin
of allergen-specific B cells, which could ultimately shape the
allergen-specific B-cell repertoire.45 For example, significant in-
creases in IgA and IgA2 levels were found in patients undergoing
egg OIT, and these can contribute to effector cell suppression.46
SU
SU is a relatively new and loosely defined term referring to the

durability of the clinical effect after cessation of the dosing
protocol. The term SU was coined to differentiate this post-
immunotherapy outcome from true immunologic tolerance,
which is regarded as the default state in healthy subjects and
can be naturally re-established when food allergies spontaneously
resolve (eg, ‘‘outgrowing’’ egg or milk allergy). Nonetheless,
although SU probably differs from true tolerance, it is a signif-
icant clinical achievement, allowing more flexible consumption
of the previously allergenic food in its natural forms. There are 2
main explanations for SU: simple desensitization occurring after
extended maintenance treatment, such that the elimination
kinetics of the effect are prolonged, or an intermediate-phase
change that is neither simple desensitization nor full tolerance.
Our understanding of SU in patients undergoing OIT and its

association with the humoral response has been significantly
strengthened recently through development of novel tools and
methodologies. There might be a pre-existing bias within the
adaptive response of those without SU for the propagation of
sIgE. For example, SU has been associated with lower quantities
of pretreatment peanut and milk sIgE,9,10,47 whereas the impor-
tance of diversity and clonality in patients with persistent and se-
vere food allergy33,34 suggests that qualitative differences can
also exist. Whether this is due to IgE-switched memory B cells
or another compartment, such as IgG-switched memory B cells,
TH2 cells, or follicular TH cells, is still unknown. The induction
of antibodies directed against new linear epitopes and oligoclonal
allergen-specific memory B cells with somatically hypermutated
antibodies suggests that OIT modulates the B-cell repertoire
(Fig 3). Although we can speculate that these post-OIT
allergen-specific antibodies in patients with SU might effectively
suppress allergen effector cells through antigen sequestration19 or
engagement of inhibitory Fc receptors,20 SU can be more related
to the longevity of the induced B-cell memory response or novel
immunomodulatory functions of allergen-specific antibodies.
As previously discussed, this effector cell suppression occurs

rapidly with continuous administration of antigen, but SPT
responses rarely become negative, and some activation is seen
in basophil assays, even after many months or years of therapy.
This implies that once OIT is stopped, cells can become
increasingly responsive to antigen. Indeed, clinical desensitiza-
tion resulting fromOIT can be short-lived, with a large percentage
of subjects regaining allergic reactivity within 2 weeks after
stopping OIT4,7,9,24 and in some cases as soon as 1 week after
stopping OIT.6 In these cases it appears that the suppressive ef-
fects on mast cells and basophils are transient and that these
effector cells will become reactive once antigen administration
is stopped.
Studies have demonstrated a return in SPT and basophil

responses in subjects with failed oral food challenges several
weeks after stopping OIT. However, the opposite was seen in
subjects achieving SU, in whom SPT responses and basophil
activation remained suppressed.9,48 Importantly, a study of egg
OIT demonstrated that longer treatment regimens led to a higher
proportion of subjects with SU,49 possibly because of a further
reduction in sIgE levels or increasing sIgG4 or sIgA levels or
more permanent changes in mast cell signaling pathways.
Prolonged continuous antigenic stimulation during mainte-

nance treatment can also have other direct consequences on
CD41 T cells, enhancing epigenetic mechanisms that have been
associated with SU.8 The disease induction model50 proposes
that the presence of a pathogenic CD41 T-cell subset with distinct
phenotypic and functional properties might be sufficient for the
pathogenesis of an immune-mediated disease regardless of the
balance of other TH subsets. Similarly, it is possible that current
OIT protocols can target allergen-specific TH2A cells in a step-
wiseway, including T-cell exhaustion followed by T-cell deletion,
to restore a hyporesponsive state to allergen. This is consistent
with previous studies suggesting that allergen-specific T cells
might represent a suitable therapeutic target during OIT.



J ALLERGY CLIN IMMUNOL

VOLUME 141, NUMBER 2

KULIS ET AL 497
CONCLUSIONS/FUTURE DIRECTIONS
There has been significant progress in understanding how OIT

suppresses mast cell and basophil reactivity, whereas newer
methodologic approaches are beginning to uncover the roles of T
and B cells in OIT-induced immunomodulation. However, several
key knowledge gaps remain. We need to understand specifically
how effector cells are desensitized at the molecular level because
this could lead to targeted therapies for food allergies. We need to
know whether the basophil activation assay can be used as a
biomarker to reliably determine a state of allergy before treatment
and then to monitor desensitization, SU, or both as outcomes of
treatment. Recently, it was demonstrated that basophil activation
assays can predict allergy versus sensitization and eliminate the
need for oral food challenges in some patients.51

In addition, it is of paramount importance to have a better
understanding of the cellular changes associated with different
clinical outcomes during or after OIT; for example, it is not known
why some subjects achieve partial or full desensitization and
others achieve SU. For example, is there a change in the signaling
pathways through FcεRI that re-emerges on cessation or does
sIgE and/or FcεRI density increase, leading some subjects to
become reactive again?
SU likely requires concerted coordination of the adaptive

response to delete pathogenic TH2A cells and induce protective
and functionally suppressive allergen-specific clonal memory
B-cell responses to suppress effector cell responses for long-
lasting clinical efficacy of OIT, but the relative importance of
these mechanisms and their kinetics need further study. It will
require the endophenotyping of larger numbers of subjects to
do this. Ultimately, this work should lead to development of a reli-
able biomarker assay or group of assays for diagnosis, treatment
response monitoring, or both, which will facilitate widespread
OIT implementation.
For many years, mechanistic studies investigating the effect of

OIT on B cells and CD41 T cells have been hampered by the
absence of adequately sensitive approaches that directly assess
immunologic changes within these rare allergen-specific cell pop-
ulations. Therefore there is a need for a comprehensive under-
standing of the targeted CD41 T-cell population, which is
critical to designing more effective immunotherapy. However,
new technologies, such as polychromatic flow cytometry, mass
cytometry, and transcriptional profiling, have been applied to
the study of patients with food allergy and are now making it
possible to characterize these and other cells with unprecedented
resolution.52-54 As with other routes of allergen-specific immuno-
therapy, OIT can alter T-cell responses through multiple parallel
or overlapping mechanisms, including exhaustion/deletion of
proallergic T-cell responses (immune disease induction model),
the switch in T-cell effector immune responses (immune devia-
tion model), or the induction of concurrent immune-regulating
T cells (immune regulation model). More research is needed to
develop a more unified understanding of which of these T-cell
mechanisms, or others yet undiscovered, are operative in the
short- and long-term outcomes during OIT. Data from such
studies should inform rational strategies to enhance OIT by
combining it with immune-modulating strategies (eg, mAbs)
that can either induce a counterregulatory immune response or
block de novo generation of proallergic TH2 cells, leading to
improved safety and durable clinical benefit. On the B-cell side,
emerging data suggest that we might be approaching a new era
of antibody-directed enhancement for OIT through modulating
the antibodies produced during therapy to induce long-lasting
clinical tolerance. The next generation of antibody-directed vac-
cine efforts might involve careful shaping of the antibody reper-
toire, either using antigen-specific B-cell modulation55 or
sequential vaccination strategies, such as used in HIV vaccine tri-
als, to drive the generation of protective antibodies.56

Finally, local immune mechanisms in the gut associated with
OIT remain to be investigated further, most particularly with
respect to the factors involved in antigen uptake and response at
the site of administration, such as epithelial cells, innate lymphoid
cells, and local microbial factors. Emerging evidence suggests
that dendritic cells can play a role in OIToutcomes,8,57 and this is
a key area requiringmore investigation.We look forward to future
studies that will fill in these and other knowledge gaps and lead us
to a better unified understanding of the complex interplay of the
molecular, cellular, and humoral changes that occur during and
after OIT.

We thank Wesley Burks, William Kwok, and Wayne Shreffler for their

careful review of the manuscript and helpful suggestions.
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