
Gene expression profiling of asthma phenotypes
demonstrates molecular signatures of atopy and
asthma control
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Background: Recent studies have used cluster analysis to
identify phenotypic clusters of asthma with differences in
clinical traits, as well as differences in response to therapy with
anti-inflammatory medications. However, the correspondence
between different phenotypic clusters and differences in the
underlying molecular mechanisms of asthma pathogenesis
remains unclear.
Objective: We sought to determine whether clinical differences
among children with asthma in different phenotypic clusters
corresponded to differences in levels of gene expression.
Methods: We explored differences in gene expression profiles of
CD41 lymphocytes isolated from the peripheral blood of 299
young adult participants in the Childhood Asthma Management
Program study. We obtained gene expression profiles from study
subjects between 9 and 14 years of age after they participated in
a randomized, controlled longitudinal study examining the
effects of inhaled anti-inflammatory medications over a
48-month study period, and we evaluated the correspondence
between our earlier phenotypic cluster analysis and subsequent
follow-up clinical and molecular profiles.
Results: We found that differences in clinical characteristics
observed between subjects assigned to different phenotypic
clusters persisted into young adulthood and that these clinical
differences were associated with differences in gene expression
patterns between subjects in different clusters. We identified a
subset of genes associated with atopic status, validated the
presence of an atopic signature among these genes in an
independent cohort of asthmatic subjects, and identified the
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presence of common transcription factor binding sites
corresponding to glucocorticoid receptor binding.
Conclusion: These findings suggest that phenotypic clusters are
associated with differences in the underlying pathobiology of
asthma. Further experiments are necessary to confirm these
findings. (J Allergy Clin Immunol 2016;nnn:nnn-nnn.)
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Asthma is a disease of increased airway hyperresponsiveness
and airflow limitation that is increasingly being viewed as a
heterogeneous syndrome composed of an assortment of disease
subtypes with differing causes and natural histories.1 The
observation that subsets of asthmatic patients exist who continue
to have symptoms despite maximal medical therapy has
motivated the search for distinct asthma subgroups with putative
differences in disease mechanisms. Recent multivariate analyses
have uncovered phenotypic clusters with differing risk factors for
and manifestations of asthma. Moore et al2 demonstrated the
presence of 5 distinct phenotypic clusters among adult asthmatic
patients, and Fitzpatrick et al3 performed a parallel analysis with
analogous findings among patients with childhood asthma. More
recent work has highlighted the clinical importance of such
clusters by demonstrating the presence of both longitudinal
consistency4 and different responses to medical therapy5 between
different phenotypic clusters.

An important implication of recent advances in our under-
standing of asthma phenotypes is that we can use these clusters to
uncover associated differences in pathogenetic mechanisms and
thus have the potential to identify new therapeutic targets with
increased treatment specificity and newmolecular biomarkers for
improved clinical detection.

Several studies have furthered our current understanding of the
relationship between phenotypic clusters and molecular
mechanism. Woodruff et al6 profiled a selected subset of gene
expression levels in asthmatic patients and found that differences
in gene expression corresponded to differences in multiple
clinical measures of asthma severity, demonstrating a link
between clinical phenotype and molecular mechanism. Baines
et al7 subsequently found a correspondence between transcrip-
tional profiles and different clinical characteristics in an asthmatic
population. However, the cross-sectional nature of these studies
limits the clinical applicability of the findings.

In the current analysis our goal was to link differences in gene
expression levels to longitudinally stable clinical phenotypes with
demonstrated differences in response to medical therapy. In a
prior analysis we determined the presence of phenotypic clusters
in a cohort of children with mild-to-moderate persistent asthma
1
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SLC33A1: S
olute carrier family 33, member 1
SRM: S
permidine synthase
TFBS: T
ranscription factor binding site
obtained from the Childhood Asthma Management Program
(CAMP) study.8 Among these children, we identified 5 distinct
phenotypic clusters with different degrees of airflow obstruction,
rates of exacerbation, and atopic characteristics. We further found
that these clusters demonstrated both longitudinal stability over
the 48-month study period and differences in response to medical
therapy. In the current study we extend our earlier analysis
through an exploration of differences in gene expression between
these different phenotypic clusters, with the goals of identifying
novel molecular biomarkers corresponding to different
phenotypes and further elucidating the differences in molecular
mechanism between subjects in different clusters.5 We uncovered
the presence of a set of genes in CD41 lymphocytes isolated from
the peripheral blood of a subset of CAMP participants who were
differentially expressed (DE) betweenmore atopic and less atopic
study subjects. Gene expression levels were also associated with
different phenotypic clusters and were highly predictive of
multiple clinical characteristics, such as levels of atopy and
asthma control. We validated these results in an independent
population and evaluated for the presence of shared transcription
factor binding sites (TFBSs) among the genes of each module.
METHODS

Study population
CAMP was a multicenter, randomized, double-masked clinical trial of the

long-term effects of 3 inhaled treatments for mild-to-moderate childhood

asthma with 1041 subjects enrolled.9 Recruitment for the CAMP study took

place from December 1993 to September 1995. Two subsequent 4-year

observational follow-up studies of CAMP participants, CAMPCS/1 and

CAMPCS/2, were carried out on completion of the original CAMP study.

We obtained blood samples and clinical data for the current study during

routine CAMPCS/2 clinic visits between May 1, 2004, and July 31, 2007,

from 4 clinical centers (Baltimore, Boston, Denver, and St Louis). The study

visit included questionnaire assessments of asthma symptoms and medication

use. From those specimens, we isolated CD41 lymphocytes and obtained

high-quality expression profiles from 299 patient samples using Illumina

HumanRef8 v2 BeadChip arrays (Illumina, San Diego, Calif).10 Clinical

characteristics and gene expression profiles of the 299 study subjects were

assessed with respect to their membership in one of 5 phenotypic clusters

assigned in a prior analysis of the complete CAMP cohort of 1041 study

subjects.5
RNA extraction and microarray preprocessing
From the CAMP study population, we isolated CD41 T cells from the

collected mononuclear cell layer using anti-CD41 microbeads with column

separation (Miltenyi Biotec, Auburn, Calif).11,12 Total RNA was extracted

with the RNeasy Mini Protocol (Qiagen, Gaithersburg, Md).13-15 Expression

profiles were generated with the Illumina Human-Ref8 v2 BeadChip arrays

(Illumina) according to the protocol. Arrays were read with the Illumina
BeadArray scanner and analyzed by using BeadStudio (version 3.1.7) without

background correction. Raw expression intensities were processed with the

lumi package16 of Bioconductor, with background adjustment with Robust

Multi-Array Average convolution17 and log2 transformation of each array.

The combined samples were quantile normalized. The complete raw

and normalized microarray data are available through the Gene

Expression Omnibus of the National Center for Biotechnology Information

(http://www.ncbi.nlm.nih.gov/geo/, accession ID GSE22324).
Identification of DE genes
To classify gene expression levels from multiple phenotypic clusters into

differential expression patterns, we used an empiric Bayes hierarchical

modeling approach to calculate the posterior probability of each gene

expression value fitting a particular pattern of expression.18-20 For example,

for this analysis, we were interested in patterns of differential expression of

genes across different phenotypic clusters. We developed a set of 49

theoretical pattern assumptions (Fig 1 and see Table E1 in this article’s Online

Repository at www.jacionline.org), such as the assumption of the null

hypothesis of no differential expression across clusters for a gene or the

assumption of differential expression across all clusters for a gene, and then

calculated the posterior probability of each gene fitting a particular pattern

of expression. We assigned genes to the gene pattern with maximum posterior

probability. Further details of this methodology are described in the Methods

section in this article’s Online Repository at www.jacionline.org.
Association of differential gene expression with

clinical characteristics
To assess the potential functional relevance of the DE genes, we explored

the relationship between the top pattern of differential expression andmultiple

clinical characteristics obtained at the time blood samples were obtained for

gene expression profiling. We used Kruskal-Wallis and x2 tests to make

comparisons between phenotypic clusters with different gene expression

profiles. We calculated counts and percentages or arithmetic means and SDs

for all variables measured. We also examined the temporal effects of

differential gene expression by calculating correlations between gene

expression levels and several longitudinal clinical outcomes, including

measures of atopy and airway hyperresponsiveness.
Validation of gene expression signatures
To assess the generalizability of the association between atopy and gene

expression levels, we evaluated whether the genes fitting the atopic expression

pattern could be used to predict atopic status in an independent cohort. We

used a gene expression data set that was publicly available on the Gene

Expression Omnibus Web site (accession no. GSE473).21 This data set

consisted of gene expression profiles obtained from CD41 T lymphocytes

in the peripheral blood of 30 patients with and without atopy and asthma.

We selected this data set as a validation cohort because it was similar to our

study population in terms of the range of clinical phenotypes (atopic and

asthmatic subjects) and in terms of the particular cell type from which RNA

was obtained (CD41 T lymphocytes). Notably, this cohort was somewhat

different from our study population because only a subset of patients had

asthma (68/88), whereas all of the 299 subjects in our study population had

asthma.

We used the genes DE betweenmore atopic and less atopic clusters to grow

a binary recursive partitioning decision tree to predict phenotypic cluster

assignments within our patient population.22,23 Further details of this

methodology are described in the Methods section in this article’s Online

Repository.
Identification of common regulatory domains
To map the set of 501 DE genes to biological functions, we used the

ENCODE ChIP-Seq Significance Tool24 to explore the presence of enriched

transcription factors within each module. The ENCODE ChIP-Seq

http://www.ncbi.nlm.nih.gov/geo/
http://www.jacionline.org
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FIG 1. Graphic depiction of possible distributions of gene expression patterns for each phenotypic cluster.

Each color denotes a particular genome-wide pattern of expression, and each row denotes a distribution of

expression patterns across phenotypic clusters. Similar colors denote similar patterns of expression,

whereas different colors denote different patterns of expression. For example, the top row of the figure

depicts 5 red segments, indicating similar patterns of genome-wide expression across the 5 phenotypic

clusters. A close-up view of the top 5 expression pattern distributions as determined by posterior probability

is also shown.
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Significance Tool leverages a MySQL database of official unified peak

calls from 708 ENCODE ChIP-Seq nonhistone and noncontrol

experiments, including 220 transcription factor and treatment combinations

across 91 cell types. We designed the experiment so that for each

transcription factor/treatment combination, the ENCODE ChIP-Seq

Significance Tool would query the database to identify the number of genes

within each coexpression module with at least 1 transcription factor

peak apex in the selected window around the gene. We calculated an

enrichment score by using a 1-tailed hypergeometric test followed by the false

discovery rate (FDR) method to control the FDR in multiple hypothesis

testing.25
RESULTS

Distribution of phenotypic traits
Clinical phenotypic data were available for all 299 participants.

We assessed clinical characteristics of study participants based on
their membership in a particular phenotypic cluster, as previously
assigned. The characteristics assessed within 1 month of the time
blood was obtained for microarray analysis are presented in
Table I. The clinical characteristics presented in Table I represent
follow-up data obtained between 9 and 14 years after the onset of
the original CAMP study. The mean age of study subjects was
20.4 years compared with 5 to 12 years in the original study.
The ethnic and sex distributions were similar to those of the
original study (see Table E2 in this article’s Online Repository
at www.jacionline.org).

Several measures of atopic burden were obtained at the time of
sample collection, including serum IgE levels and eosinophil
counts. As was observed in our prior cluster analysis, the degree
of atopy at the time of follow-up was highest in clusters 2, 3, and 5
and lowest in clusters 1 and 4. Similarly, the spirometric values at
the time of follow-up show a similar distribution to those obtained
at baseline, with clusters 4 and 5 showing the highest levels of
airway obstruction.

The number of active smokers represented a minority of this
cohort (11.4%), with the highest percentage of smokers in cluster
3 (16.3%) and the lowest percentage of smokers in cluster 4
(4.3%).
Gene transcripts demonstrate patterns of

expression associated with atopic status
To understand the relative contribution of different genes to the

formation of the asthma phenotypic clusters, we performed gene
expression profiling of subjects from different phenotypic clusters
to detect patterns of expression. For the set of phenotypic clusters,
gene expression levels could be sorted into 49 distinct theoretical
patterns (Fig 1 and see Table E1).

For each transcript in each phenotypic cluster, we calculated
the posterior probability for each of the 49 patterns and assigned
the transcript to the expression pattern with maximum posterior
probability. DE transcripts were defined as those with maximum
posterior probabilities of greater than a specific threshold set to
limit the FDR to less than 0.05 for each of the DE patterns (Fig 1,
and see pattern numbers 2-49 in Table E1). Using this approach,
we found that 99.7% of the DE transcripts were confined to 2 of
the 49 possible DE patterns.

The top 5 expression patterns as ranked by posterior probability
are also shown in Fig 1. The expression pattern containing the
highest number of DE transcripts (20,347 of 22,184 total
transcripts) was the null hypothesis expression pattern (ie, the
pattern of no difference in expression between the different
phenotypic clusters). The expression pattern containing the
second highest number of DE transcripts (501 of 22,184 total

http://www.jacionline.org


TABLE I. Distribution of traits across cluster groups

AOE classification:

Cluster 1

(n 5 102)

Cluster 2

(n 5 50)

Cluster 3

(n 5 49)

Cluster 4

(n 5 70)

Cluster 5

(n 5 28)

P valueLLL HLL HHM MHH HHH

Demographics

Age (y) 20.1 6 2.0 20.3 6 2.2 21.0 6 2.2 20.7 6 2.1 19.9 6 2.4 .54

Male (%) 59 (57.8) 37 (74.0) 24 (49.0) 44 (62.9) 20 (71.4) .08

Female (%) 43 (42.2) 13 (26.0) 25 (51.0) 26 (37.1) 8 (28.6)

White (%) 84 (82.4) 35 (70.0) 34 (69.4) 53 (75.7) 21 (75.0) .16

African American (%) 11 (10.8) 13 (26.0) 10 (20.4) 16 (22.9) 6 (21.4)

Hispanic (%) 7 (6.9) 2 (4.0) 5 (10.2) 1 (1.4) 1 (3.6)

Atopic features

Total serum IgE levels (log10) 0.63 0.70 0.64 0.80 0.66 .001

Total serum eosinophils (log10) 2.17 6 0.50 2.37 6 0.46 2.42 6 0.35 2.34 6 0.32 2.44 6 0.31 .002

Spirometry

Prebronchodilator FEV1 (% predicted) 98.2 6 13.2 98.5 6 10.9 98.4 6 11.3 94.1 6 13.7 97.0 6 11.1 .48

Prebronchodilator FEV1/FVC ratio 78.5 6 7.67 78.5 6 7.89 78.6 6 7.55 76.2 6 7.57 75.3 6 9.64 .22

Prebronchodilator peak flow (L/min) 576.6 6 144.5 634.0 6 157.1 564.0 6 147.0 579.8 6 137.8 598.8 6 162.7 .20

Airway responsiveness

Methacholine PC20 (natural log) 1.09 6 0.56 0.91 6 0.53 0.75 6 0.47 0.92 6 0.52 0.96 6 0.58 .08

Environmental exposures

Tobacco smoking .18

Yes 14 (13.7) 7 (14.0) 8 (16.3) 3 (4.3) 2 (7.1)

No 76 (74.5) 38 (76.0) 34 (69.4) 60 (85.7) 21 (75.0)

Average cigarettes smoked per day 1.3 6 4.1 1.2 6 3.7 1.9 6 4.7 0.5 6 2.8 0.5 6 2.1 .18

We constructed an Atopy-Obstruction-Exacerbation (AOE) scoring scheme, assigning low (L), medium (M), or high (H) scores for each factor group. FVC, Forced vital capacity.

TABLE II. Characteristics of study subjects dichotomized by

atopic status

More atopic

(n 5 127)

Less atopic

(n 5 172)

P

value

Demographics

Age (y) 20.5 6 2.3 20.4 6 2.0 .63

Male (%) 81 (63.8) 103 (59.9) .55

Female (%) 46 (36.2) 69 (40.1)

White (%) 90 (70.9) 137 (80.0) .21

African American (%) 29 (22.8) 27 (15.7)

Hispanic (%) 8 (6.3) 8 (4.7)

Atopic features

Serum IgE (log10) 2.69 6 0.57 2.43 6 0.63 .005

Serum eosinophils (log10) 2.41 6 0.38 2.24 6 0.44 .0002

Spirometry

Prebronchodilator FEV1

(% predicted)

98.1 6 11.0 96.5 6 13.5 .29

Postbronchodilator FEV1/FVC

ratio (% predicted)

77.8 6 8.22 77.4 6 7.69 .82

Airway responsiveness

Methacholine PC20 (natural log) 0.86 6 0.52 1.03 6 0.55 .04

Environmental exposures

Tobacco smoking (%) .40

Yes 17 (13.4) 17 (10.0)

No 93 (73.2) 136 (79.1)

FVC, Forced vital capacity.
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transcripts) was the pattern of similar expression between clusters
1 and 4 and between clusters 2, 3, and 5. Our earlier analysis of the
clinical data from the CAMP study demonstrated that clusters 1
and 4 had the lowest atopic burden of the phenotypic clusters.
That is, at the time of initial recruitment to the CAMP study,
clusters 1 and 4 had the lowest levels of atopic dermatitis (cluster
1 and cluster 4 5 0%), the lowest history of hay fever (cluster
1 5 20.3%, cluster 4 5 52.9%), the lowest history of a positive
skin test result (cluster 1 5 76.7%, cluster 4 5 88%), and the
lowest log10 total serum IgE levels (cluster 1 5 2.37, cluster
4 5 2.64). Thus a large number of DE genes demonstrated an
expression pattern that was associated with the degree of atopic
burden present among study subjects at the time of enrollment
in the CAMP study, suggesting atopic status was the primary
driver of the change in gene expression for these transcripts.

Gene expression profiles are associated with

differences between clinical traits
We explored the relationship between gene expression pattern

and clinical traits by reorganizing our 5 phenotypic clusters into 2
subgroups (most atopic and least atopic) based on the degree of
atopic burden present. These 2 subgroups were associated with
the pattern of expression of 501 genes that differed between
subjects with different levels of atopy. We examined multiple
clinical characteristics for differences between the 2 subgroups
and found statistically significant differences in serum IgE levels
(P5 .005), serum eosinophil counts (P5 .0002), and established
markers for atopic burden (Table II). We also found statistically
significant differences in methacholine PC20, a measure of airway
hyperresponsiveness between the 2 subgroups. The group with
the higher burden of atopy demonstrated a lower methacholine
PC20 value (P5 .04), indicating that in addition to having higher
levels of atopy as adults, this subgroup also had higher levels of
airway hyperresponsiveness.
We next examined the longitudinal trajectory of each clinical trait
comparing more atopic and less atopic subjects. In general, for
each subgroup, levels of atopic burden decreased over time, as ex-
hibited by decreasing serum IgE levels and serum eosinophil
counts (Fig 2). In addition, levels of airway hyperresponsiveness
decreased over time, as demonstrated by increasing methacholine
PC20 values. However, we also found that along the course of each
trait, there were differences between the more atopic and less



FIG 2. Longitudinal trajectories of several clinical traits stratified by gene expression pattern (more atopic vs

less atopic). A, Trajectory of serum eosinophil counts. B, Trajectory of serum IgE levels. C, Trajectory of

methacholine PC20 values.
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atopic subgroups (P < .001). Overall, the differences between the
more atopic and less atopic subgroups were more extreme in
childhood, decreasing over time yet persisting into young
adulthood.
Gene expression profiles are predictive of atopic

status
To explore the generalizability of the set of DE genes within

our cohort, we assessed whether these genes were also predictive
of atopic status in an independent data set (Fig 3). Of the 501
genes present in this gene expression pattern, 5 genes successfully
classified all of the atopic patients in an independent cohort with a
sensitivity of 100%, specificity of 81.3%, positive predictive
value of 96.0%, and negative predictive value of 100%. Details
of the methodology leading to these results are provided in the
Methods section in this article’s Online Repository.

Expression levels for each of the 5 genes in the signature for
atopic status were significantly different (P < .05) between more
atopic and less atopic subgroups (Table III). Spermidine synthase
(SRM) expression levels were relatively downregulated in more
atopic compared with less atopic asthmatic patients, whereas
expression levels of histone deacetylase 2 (HDAC2); solute
carrier family 33, member 1 (SLC33A1); purinergic receptor
P2Y, G-protein coupled, 10 (P2RY10); and adducin 3 (gamma
[ADD3]) were relatively upregulated in more atopic compared
with less atopic asthmatic patients.

We measured the correlation between the 5-gene signature for
atopic status and serum IgE levels, serum eosinophil counts, and
methacholine PC20 values. Serum IgE levels were positively
correlated with all 5 genes in the gene signature, most notably
with ADD3 (P 5 .04, Fig 4), and serum eosinophil counts were
positively correlated with SRM expression levels (P 5 .02).
DE genes are enriched for glucocorticoid receptor

binding sites
We queried the ENCODE Chip-Seq Significance Tool for

evidence of TFBS enrichment among our set of 501 DE genes.
Among the genes expressing atopic pattern differences, we found



FIG 3. Decision tree classification model for atopic status. There were 5

genes that were strongly predictive of atopic status in an independent

population. These genes make up the branches of the tree, with each

partition determined by the log2 gene expression level.

TABLE III. Average expression levels of atopic signature genes

Gene

More atopic

(n 5 127)

Less atopic

(n 5 172)

P

value

Adjusted

P value

SRM 9.11 6 0.53 9.27 6 0.57 .019 .019

HDAC2 10.5 6 0.51 10.3 6 0.63 .0048 .0060

Solute carrier family 33,

member 1 (SLC33A1)

8.4 6 0.40 8.2 6 0.42 .0018 .0060

Purinergic receptor P2Y,

G-protein coupled,

10 (P2RY10)

9.4 6 0.71 9.2 6 0.70 .0027 .0060

ADD3 11.3 6 0.91 11.0 6 0.93 .0048 .0060

FIG 4. Correlation heat map depicting correlation between clinical traits

and gene expression levels. Blue denotes a higher positive level of

correlation between gene and clinical trait, whereas grey denotes a higher

negative level of correlation between gene and clinical trait.
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evidence that the promoter regions were significantly enriched for
glucocorticoid receptor (GR) binding sites. GR binding sites were
present in 144 of 476 genes queried by using the tool
(q value 5 4.99e-9). The list of genes with GR binding sites
is shown in Table E3 in this article’s Online Repository at
www.jacionline.org. Three of the 5 genes present in the signature
(SRM, SLC33A1, and ADD3) were among those with TFBSs
enriched for GR binding sites.
DISCUSSION
Our analysis of gene expression profiles obtained from CAMP

participants 9 to 14 years of age from study onset is notable for
several key findings. First and foremost, these results extend and
enhance the results of our previous cluster analysis. In the
previous cluster analysis we detected 5 phenotypic clusters using
the baseline clinical data from asthmatic study subjects who
differed in their response to medical therapy. In the current
analysis we found that in the same patient population, even after 9
to 14 years, there continued to be longitudinal consistency in the
clinical characteristics of subjects within different phenotypic
clusters.

Second, subjects with a higher degree of atopic features
demonstrated differential expression in a subset of genes with
expression levels highly correlated with longitudinal measures of
atopy and airway hyperresponsiveness.
Third, a subset of these DE genes formed an atopic signature
that we used to successfully determine atopic status from gene
expression profiles obtained from an independent population of
asthmatic patients.

In our initial cluster analysis performed with clinical data from
participants in the CAMP study, we found that children could be
characterized in terms of 5 distinct phenotypic clusters, which
differed in terms of atopic burden, airway obstruction, and rates of
exacerbation. In this analysis we found that an average of 12 years
after the original study, participants continued to exhibit
cluster-specific differences in several clinical characteristics,
including differences in atopic features, spirometry, and airway
responsiveness. This is notable because, at this time, in contrast to
the physiologic differences, many of these patients described
relatively mild symptoms. Furthermore, this finding, from the
largest randomized, placebo-controlled clinical trial with
extended follow-up for children with mild-to-moderate asthma,26

suggests that the decreased symptoms many patients with
childhood asthma describe as they age do not correspond to
disease remission. In fact, the original pathogenetic mechanisms
appear to persist into young adulthood, although with minimal
subjective symptoms.

Gene expression profiles from CD41 T cells collected from the
same set of patients allow us to integrate genomic factors into our
analysis of phenotypic clusters. Our analysis of gene expression
profiles further confirms the persistence of physiologic differ-
ences between asthmatic patients assigned to different clusters.
A set of 501 of 22,184 total genes assayed displayed an expression
pattern that was associated with atopic status. Thus these gene
expression profiles allowed us to organize our phenotypic clusters
into 2 subgroups based on atopic burden. Study subjects with
higher levels of atopic burden had a different pattern of expression

http://www.jacionline.org
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of this set of genes from subjects with relatively lower levels of
atopic burden. Atopic subjects (clusters 2, 3, and 5) had higher
levels of 2 peripheral blood markers of atopic burden, serum
IgE levels and serum eosinophil counts, compared with the other
clusters (clusters 1 and 4). Additionally, methacholine PC20

values were lower in more atopic than less atopic subjects,
suggesting that the set of genes responsible for atopy might also
control aspects of airway hyperresponsiveness. Differences in
these clinical traits were significant when these children were
initially enrolled in the CAMP study and persisted for at least 9
to 14 years into young adulthood.

A subset of DE genes formed a signature that was highly
predictive of atopy in an independent population of patients with
mild-to-moderate asthma, a finding that lends further credibility
to the hypothesis that different phenotypic clusters correspond to
differences in the underlying pathobiological mechanisms of
asthma, as well as validating the biological relevance of our
longitudinal phenotypic clusters. Several genes in this signature
have been previously linked to asthma pathogenesis, most notably
HDAC2, which had higher expression in more atopic relative to
less atopic study subjects. Studies have shown that reduction of
histone acetylation by HDAC2 results in suppression of multiple
inflammatory genes through a glucocorticoid-mediated process
and a reduction in asthmatic symptoms.27 Evidence has also
linked inhibition of HDAC2 to steroid-resistant asthma.28-32 The
presence of GR TFBSs on numerous DE genes suggests an
association between steroid resistance and differences in the
clinical characteristics we observed between our more atopic
and less atopic subgroups.

Our study had several limitations. First, the analysis was
retrospective, with gene expression profiles associated with
existing clinical phenotypic data. The availability of longitudinal
gene expression data from prospective studies could help to
elucidate temporal changes in the expression of these genes and
their role in the pathogenesis of childhood asthma.

Second is the lack of longitudinal clinical data in our validation
cohort. Further studies from multiple institutions will be
necessary to confirm the correspondence between changes in
gene expression, atopic status, and clinical characteristics
corresponding to atopy and airway hyperresponsiveness.

Third is the fact that our patient cohort was limited to subjects
with mild and moderate asthma, excluding those with a more
severe phenotype. We recognize that this limited the diversity of
symptoms among our subjects, and many young adults among the
more mild phenotypes seemed to outgrow their asthma
symptoms. For this reason, the differential gene expression levels
among different clusters are more likely to have clinical utility for
patients at the extreme ends of the phenotype.

In summary, the current study represents the largest analysis to
demonstrate differences in gene expression profiles associated
with clinically significant phenotypic clusters. Furthermore,
differences among patients in different clusters and their gene
expression profiles persist across time. Our findings lend further
support to the hypothesis that asthma phenotypic clusters are
associated with differences in the underlying molecular mecha-
nisms of asthma pathogenesis, as demonstrated by differences in
gene expression profiles among subjects in different phenotypic
clusters. This finding has implications for drug development and
personalized approaches to the treatment of this complex disease.
Further work will be necessary to validate these early findings and
explore the mechanistic differences between different clusters.
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Clinical implications: There is evidence for asthma endotypes
(subtypes) but less information about the relevance of such en-
dotypes. In this article we link asthma endotypes to atopic pat-
terns of gene expression.
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METHODS

Identification of DE genes
To identify distinct patterns within our set of gene expression profiles, we

first postulated different potential patterns of gene expression based on

variable patterns of gene expression among our phenotypic clusters. For

example, for one pattern of expression, we postulated that gene expression

across all phenotypic clusters would be similar. For another pattern of

expression, we postulated that gene expression would be different for each

cluster. For a third pattern of expression, we postulated that gene expression

would be different among atopic and nonatopic asthmatic subjects. In total,

we postulated 49 unique patterns of differential gene expression (Fig 1 and

Table E1). Next, we used the previously described methodE1-E6 to

calculate the posterior probability for each gene fitting a particular pattern

of expression.

We used the EBarrays package in Bioconductor, which used a parametric

empiric Bayes method to identify DE genes. For example, suppose that we

want to compare expression levels between 2 prespecified expression patterns,

s1 and s2, assumed by expression measurements xj5 (xj1, xj2,., xjI) taken on

gene j. In the case where the distribution of measured expression levels is not

affected by the groupings s1 and s2, wemight conclude that the null hypothesis

holds and that there is equivalent expression, EEj, for gene j. Conversely, if

differential expression levels (DEj) exist, we might assume 2 different means,

mj1 and mj2, corresponding to measurements in s1 and s2, respectively. An

additional assumption of this particular model is that the effects of each

gene arise from independently and identically from a system-specific

distribution, p(m), which allows for information sharing among different

genes.

In this model, if we let p signify the subset of genes that are DE, then 12 p

is the fraction of genes that are equivalently expressed (EE), such that the EE

gene j presents data xj5 (xj1, xj2,., xjI), according to a distribution as follows:

f0
�
xj
�
5

Z  YI
i5 1

fobs
�
xji
�jm
!
pðmÞdm:

Conversely, if gene j is DE, the data xj 5 (xj1, xj2,., xjI) follow the

following distribution:

f1
�
xj
�
5 f0

�
xj1
�
f0
�
xj2
�
:

which demonstrates that xj1 and xj2 have different mean values. By extension,

the marginal distribution of the data is as follows:

pf1
�
xj
�
1ð12pÞf0

�
xj
�
:

The posterior probability of differential expression as calculated by Bayes’

rule and given the estimates of p, f0, and f1 is as follows:

pf1
�
xj
�

pf1
�
xj
�
1ð12pÞf0

�
xj
� :

In practice each gene is assigned to the distribution for which the posterior

probability is greatest.

Validation of gene expression signatures
We evaluated the predictive potential of the set of 501 genes that were DE

between atopic and nonatopic study subjects. We used these genes as

predictors of atopic status in a publicly available independent cohort of

patients with and without atopy and asthma. Using the methods described

above, we identified a set of 501 genes that were highly associated with atopic

status in our population. Next, we used the 501 genes from our data set to 387

genes in the independent cohort, which we obtained from the Gene Expression

Omnibus (accession no. GSE473), and used this select set of genes as inputs to

a decision tree model.E7,E8 We used the tree package in R 3.0.2 to develop a

binary recursive partitioning decision tree.

The tree is created by recursively partitioning the set of genes and fitting a

simple prediction model within each partition. Success of the model is based

on the total number of misclassifications. For example, our goal was to use a

set of 501 genes, X1, X2,.,Xp, identified within our data set to predict atopic

status, Y, in an independent data set. We created our tree by repeatedly parti-

tioning the set of genes into smaller and smaller regions of interacting genes,

such that we obtained a set of predictors (genes) that we could use to identify

atopic and nonatopic study subjects. Fig 3 depicts our decision tree. In this tree

each node represents a cell of the partition and is associated with a model (eg,

the expression value being greater than or less than a particular cutoff) that ap-

plies in that cell only. A point x belongs to a leaf if x falls in the corresponding

cell of the partition. To figure out in which cell we should end up, we begin at

the top (root) node of the tree and ask a series of questions about the levels of

gene expression for each gene represented by the interior nodes of the tree. The

questions asked will depend on the previous answers to questions at higher

levels of the tree. We chose this particular method to classify study subjects

as atopic or nonatopic because it provided a fast and intuitive way to classify

patients that could easily be adapted to a clinical setting.

From the set of 387 inputs to the model, recursive partitioning

demonstrated that 5 genes served as the optimal predictors of atopic status

in the independent data set.
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TABLE E1. Description of gene pattern interpretations

Pattern no. Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Interpretation

1 1 1 1 1 1 Null hypothesis (none different)

2 1 2 3 4 5 All different

3 2 1 1 1 1 Cluster 1 different, others similar

4 1 2 1 1 1 Cluster 2 different, others similar

5 1 1 2 1 1 Cluster 3 different, others similar

6 1 1 1 2 1 Cluster 4 different, others similar

7 1 1 1 1 2 Cluster 5 different, others similar

8 2 2 1 1 1 Clusters 1 and 2 similar, others similar

9 2 1 2 1 1 Clusters 1 and 3 similar, others similar

10 2 1 1 2 1 Clusters 1 and 4 similar, others similar

11 2 1 1 1 2 Clusters 1 and 5 similar, others similar

12 1 2 2 1 1 Clusters 2 and 3 similar, others similar

13 1 2 1 2 1 Clusters 2 and 4 similar, others similar

14 1 2 1 1 2 Clusters 2 and 5 similar, others similar

15 1 1 2 2 1 Clusters 3 and 4 similar, others similar

16 1 1 2 1 2 Clusters 3 and 5 similar, others similar

17 1 1 1 2 2 Clusters 4 and 5 similar, others similar

18 1 2 3 1 1 Clusters 1, 4, and 5 similar, others different

19 1 1 2 3 1 Clusters 1, 2, and 5 similar, others different

20 1 1 1 2 3 Clusters 1, 2, and 3 similar, others different

21 2 3 1 1 1 Clusters 3, 4, and 5 similar, others different

22 2 2 3 1 1 Clusters 1 and 2, similar, clusters 4 and 5 similar

23 2 2 1 3 1 Clusters 1 and 2, similar, clusters 3 and 5 similar

24 2 2 1 1 3 Clusters 1 and 2, similar, clusters 3 and 4 similar

25 2 3 2 1 1 Clusters 1 and 3, similar, clusters 4 and 5 similar

26 2 1 2 3 1 Clusters 1 and 3, similar, clusters 2 and 5 similar

27 2 1 2 1 3 Clusters 1 and 3, similar, clusters 2 and 4 similar

28 2 1 1 2 3 Clusters 1 and 4, similar, clusters 2 and 3 similar

29 2 3 1 2 1 Clusters 2 and 4, similar, clusters 3 and 5 similar

30 2 1 3 2 1 Clusters 2 and 4, similar, clusters 2 and 5 similar

31 2 1 1 3 2 Clusters 1 and 5, similar, clusters 2 and 3 similar

32 2 1 3 1 2 Clusters 1 and 5, similar, clusters 2 and 4 similar

33 2 3 1 1 2 Clusters 1 and 5, similar, clusters 3 and 4 similar

34 1 1 2 3 4 Clusters 1 and 2, similar, others different

35 1 2 1 3 4 Clusters 1 and 3, similar, others different

36 1 2 3 1 4 Clusters 1 and 4, similar, others different

37 1 2 3 4 1 Clusters 1 and 5, similar, others different

38 2 1 1 3 4 Clusters 2 and 3, similar, others different

39 2 1 3 1 4 Clusters 2 and 4, similar, others different

40 2 1 3 4 1 Clusters 2 and 5, similar, others different

41 2 3 1 1 4 Clusters 3 and 4, similar, others different

42 2 3 1 4 1 Clusters 3 and 5, similar, others different

43 2 3 4 1 1 Clusters 4 and 5, similar, others different

44 1 1 2 1 3 Clusters 1, 2, and 4 similar, others different

45 1 2 1 3 1 Clusters 1, 3, and 5 similar, others different

46 1 2 1 1 3 Clusters 1, 3, and 4 similar, others different

47 2 1 3 1 1 Clusters 2, 4, and 5 similar, others different

48 2 1 1 3 1 Clusters 2, 3, and 5 similar, others different

49 2 1 1 1 3 Clusters 2, 3, and 4 similar, others different
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TABLE E2. Distribution of traits across original phenotypic clusters

AOE classification:

Cluster 1

(n 5 300)

Cluster 2

(n 5 202)

Cluster 3

(n 5 218)

Cluster 4

(n 5 225)

Cluster 5

(n 5 96) P

valueLLL HLL HHM MHH HHH

Asthma history

Age (y) 3.52 6 2.63 3.09 6 2.40 3.66 6 2.62 2.21 6 1.89 2.27 6 1.80 <.001

Total hospitalized for asthma (%) 0 (0) 0 (0) 1 (0.46) 225 (100) 94 (97.9) <.001

ED visits for asthma (visits/100 person-years) 44.3 47.0 70.2 75.6 101 <.001

Atopic features

History of atopic dermatitis (%) 0 (0) 202 (100) 2 (0.1) 0 (0) 94 (97.9) <.001

History of hay fever (%) 61 (20.3) 132 (65.3) 191 (87.6) 119 (52.9) 54 (56.3) <.001

History of positive skin test result (%) 230 (76.7) 185 (91.6) 209 (95.9) 198 (88) 92 (95.8) <.001

Total serum IgE levels (log10) 2.37 6 0.70 2.72 6 0.72 2.79 6 0.58 2.64 6 0.61 2.81 6 0.63 <.001

Spirometry

Prebronchodilator FEV1 (% predicted) 96.4 6 12.7 97.7 6 14.8 89.7 6 13.9 91.4 6 13.8 92.0 6 16.1 <.001

Prebronchodilator FEV1/FVC ratio (% predicted) 81.8 6 7.68 81.5 6 7.59 77.6 6 8.54 77.8 6 8.24 78.6 6 9.60 <.001

Prebronchodilator peak flow 276.1 6 67.3 274.3 6 73.3 276.7 6 69.1 276.4 6 70.8 255.6 6 73.3 .12

Airway responsiveness

Methacholine PC20 (natural log) 0.71 6 1.03 0.14 6 1.11 20.54 6 1.00 0.038 6 1.14 20.23 6 1.17 <.001

FEV1 bronchodilator response (L) 0.077 6 0.07 0.097 6 0.08 0.12 6 0.11 0.12 6 0.11 0.16 6 0.14 <.001

Anthropomorphic features

BMI (kg/m2) 18.1 6 3.46 18.6 6 3.83 18.5 6 3.66 17.8 6 3.19 17.6 6 3.38 .07

Waist/hip ratio 0.882 6 0.06 0.885 6 0.07 0.881 6 0.06 0.874 6 0.05 0.877 6 0.07 .80

Peripheral blood counts

Eosinophils (log10) 2.35 6 0.55 2.54 6 0.53 2.57 6 0.52 2.50 6 0.49 2.71 6 0.41 <.001

Lymphocytes (%) 42.1 6 11.5 40.9 6 9.82 41.1 6 10.9 41.7 6 10.5 40.8 6 9.78 .67

Neutrophils (%) 45.5 6 12.2 44.5 6 11.0 44.6 6 11.5 44.7 6 11.5 43.1 6 11.0 .62

We constructed an Atopy-Obstruction-Exacerbation (AOE) scoring scheme, assigning low (L), medium (M), or high (H) scores for each factor group. ED, Emergency department;

FVC, forced vital capacity.
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TABLE E3. Genes enriched for GR TFBSs

Symbol Description

ADD3 Adducin 3 (gamma)

AGL Amylo-alpha-1, 6-glucosidase, 4-alpha-glucanotransferase

ALPP Alkaline phosphatase, placental

ATM Ataxia telangiectasia mutated

ATP1B3 ATPase, Na1/K1 transporting, beta 3 polypeptide

ATP6V0C ATPase, H1 transporting, lysosomal 16kDa, V0 subunit c

CARS Cysteinyl-tRNA synthetase

CDC42 Cell division cycle 42 (GTP binding protein, 25kDa)

AP2M1 Adaptor-related protein complex 2, mu 1 subunit

COMT Catechol-O-methyltransferase

DR1 Downregulator of transcription 1, TBP-binding (negative cofactor 2)

GSK3B Glycogen synthase kinase 3 beta

GTF2H1 General transcription factor IIH, polypeptide 1, 62kDa

GUSB Glucuronidase, beta

HNRNPA2B1 Heterogeneous nuclear ribonucleoprotein A2/B1

HNRNPL Heterogeneous nuclear ribonucleoprotein L

ITGB1 Integrin, beta 1 (fibronectin receptor, beta polypeptide, antigen CD29 includes MDF2, MSK12)

JAK1 Janus kinase 1

KPNA3 Karyopherin alpha 3 (importin alpha 4)

M6PR Mannose-6-phosphate receptor (cation dependent)

MSH2 Mdm4 p53 binding protein homolog (mouse)

MDM4 mutS homolog 2, colon cancer, nonpolyposis type 1 (E coli)

PPP1R12A Protein phosphatase 1, regulatory subunit 12A

NUBP1 Nucleotide binding protein 1

RPL10A Ribosomal protein L10a

NFX1 Nuclear transcription factor, X-box binding 1

P4HA1 Prolyl 4-hydroxylase, alpha polypeptide I

PCNA Proliferating cell nuclear antigen

PDE8A Phosphodiesterase 8A

PDK1 Pyruvate dehydrogenase kinase, isozyme 1

PMS1 PMS1 postmeiotic segregation increased 1 (S cerevisiae)

CTSA Cathepsin A

PRKCI Protein kinase C, iota

MAP2K2 Mitogen-activated protein kinase 2

PSMA7 proteasome (prosome, macropain) subunit, alpha type, 7

RANBP2 RAN binding protein 2

RAP1B RAP1B, member of RAS oncogene family

RPS6KB2 Ribosomal protein S6 kinase, 70kDa, polypeptide 2

MSMO1 Methylsterol monooxygenase 1

SMARCC2 SWI/SNF related, matrix associated, actin dependent regulator of chromatin, subfamily c, member 2

UAP1 UDP-N-acteylglucosamine pyrophosphorylase 1

SRM Spermidine synthase

TCEA1 Transcription elongation factor A (SII), 1

TCF12 Transcription factor 12

TRAPPC10 Trafficking protein particle complex 10

UGP2 UDP-glucose pyrophosphorylase 2

YWHAG Tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein, gamma polypeptide

ZBTB17 Zinc finger and BTB domain containing 17

MAPKAPK3 Mitogen-activated protein kinase-activated protein kinase 3

BAP1 BRCA1 associated protein-1 (ubiquitin carboxy-terminal hydrolase)

PEX3 Peroxisomal biogenesis factor 3

PRKRA Protein kinase, interferon-inducible double stranded RNA dependent activator

EIF3A Eukaryotic translation initiation factor 3, subunit A

RPL14 Ribosomal protein L14

SLC33A1 Solute carrier family 33 (acetyl-CoA transporter), member 1

VAPA VAMP (vesicle-associated membrane protein)–associated protein A, 33kDa

CNOT8 CCR4-NOT transcription complex, subunit 8

SEP15 Selenoprotein isoform 1 precursor

ZRANB2 Zinc finger, RAN-binding domain containing 2

MED23 Mediator complex subunit 23

SPAG7 Sperm associated antigen 7

PREPL Prolyl endopeptidase-like

(Continued)
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TABLE E3. (Continued)

Symbol Description

VPS9D1 Chromosome 16 open reading frame 7

HS2ST1 Heparan sulfate 2-O-sulfotransferase 1

FLOT1 Flotillin 1

BCKDK Branched chain ketoacid dehydrogenase kinase

CITED2 Cbp/p300-interacting transactivator, with Glu/Asp-rich carboxy-terminal domain, 2

NDC80 NDC80 kinetochore complex component homolog (S cerevisiae)

TAB1 TGF-beta activated kinase 1/MAP3K7 binding protein 1

MTF2 Metal response element binding transcription factor 2

SACM1L SAC1 suppressor of actin mutations 1-like (yeast)

ADNP Activity-dependent neuroprotector homeobox

SIRT1 sirtuin 1

PHF3 PHD finger protein 3

NIPBL Nipped-B homolog (Drosophila)

WSB1 WD repeat and SOCS box containing 1

NARF nuclear prelamin A recognition factor

RANBP6 RAN binding protein 6

AKAP8L A kinase (PRKA) anchor protein 8-like

NPTN neuroplastin

ALG5 Asparagine-linked glycosylation 5, dolichyl-phosphate beta-glucosyltransferase homolog (S cerevisiae)

PNPLA8 Patatin-like phospholipase domain containing 8

VPS36 Vacuolar protein sorting 36 homolog (S cerevisiae)

GLOD4 Glyoxalase domain containing 4

HSD17B11 Hydroxysteroid (17-beta) dehydrogenase 11

NT5C3 59-Nucleotidase, cytosolic III

MRPL30 Mitochondrial ribosomal protein L30

DDX41 DEAD (Asp-Glu-Ala-Asp) box polypeptide 41

NLK nemo-like kinase

LUC7L3 LUC7-like 3 (S. cerevisiae)

BTBD1 BTB (POZ) domain containing 1

RAB4B RAB4B, member RAS oncogene family

SLC38A2 Solute carrier family 38, member 2 family with sequence similarity 35, member A

FAM35A Late endosomal/lysosomal adaptor, MAPK and MTOR activator 1

LAMTOR1 Chromosome 19 open reading frame 24

C19orf24 Pleckstrin homology domain containing, family B (evectins) member 2

PLEKHB2 Zinc finger, CCHC domain containing 8

ZCCHC8 Kinesin family member 21A

KIF21A Ankyrin repeat domain 10

ANKRD10 THUMP domain containing 1

THUMPD1 DEAD (Asp-Glu-Ala-Asp) box polypeptide 27

DDX27 Asunder, spermatogenesis regulator homolog (Drosphila)

ASUN Lysine (K)-specific demethylase 3A

KDM3A Kelch-like 7 (Drosophila)

KLHL7 Chromosome 19 open reading frame 10

C19orf10 SAR1 homolog A (S cerevisiae)

SAR1A CDC42 small effector 2

CDC42SE2 UTP3 UTP3, small subunit (SSU) processome component, homolog (S cerevisiae)

PHTF2 Putative homeodomain transcription factor 2

SNX14 Sorting nexin 14

POLD4 Polymerase (DNA-directed), delta 4, accessory subunit

PLEKHA1 Pleckstrin homology domain containing, family A (phosphoinositide binding specific) member 1

RRAGC Ras-related GTP binding C

IKZF5 IKAROS family zinc finger 5 (Pegasus)

ACD Adrenocortical dysplasia homolog (mouse)

FAM65A Family with sequence similarity 65, member A

SLTM SAFB-like, transcription modulator

KIAA0319L KIAA0319-like

C10orf88 Chromosome 10 open reading frame 88

IFT74 intraflagellar transport 74 homolog (Chlamydomonas)

MED25 Mediator complex subunit 25

STARD3NL STARD3 N-terminal like

MCM8 Minichromosome maintenance complex component 8

WDR73 WD repeat domain 73

(Continued)
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TABLE E3. (Continued)

Symbol Description

ZNF700 Zinc finger protein 700

SLC25A51 Solute carrier family 25, member 51

G6PC3 Glucose 6 phosphatase, catalytic, 3

CASC4 Cancer susceptibility candidate 4

ESCO1 Establishment of cohesion 1 homolog 1 (S cerevisiae)

AGAP3 ArfGAP with GTPase domain, ankyrin repeat and PH domain 3

ANAPC16 Anaphase promoting complex subunit 16

LRRC28 Leucine rich repeat containing 28

C17orf49 Chromatin complexes subunit BAP18

PM20D2 Peptidase M20 domain containing 2

PPP4R2 Protein phosphatase 4, regulatory subunit 2

ZNF296 Zinc finger protein 296

DENND6A Family with sequence similarity 116, member A

C9orf72 Chromosome 9 open reading frame 72

TIPRL TIP41, TOR signaling pathway regulator-like (S cerevisiae)

POC1B POC1 centriolar protein homolog B (Chlamydomonas)

TSEN54 tRNA splicing endonuclease 54 homolog (S cerevisiae)

ZNF181 Zinc finger protein 181

C6orf120 Chromosome 6 open reading frame 120
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