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The increasing number of population-based and epidemiologic
associations between oxidant pollutant exposures and
cardiopulmonary disease exacerbation, decrements in
pulmonary function, and mortality underscores the important
detrimental effects of oxidants on public health. Because inhaled
oxidants initiate a number of pathologic processes, including
inflammation of the airways, which may contribute to the
pathogenesis and/or exacerbation of airways disease, it is
critical to understand the mechanisms through which exogenous
and endogenous oxidants interact with molecules in the cells,
tissues, and epithelial lining fluid of the lung. Furthermore, it is
clear that interindividual variation in response to a given
exposure also exists across an individual lifetime. Because of the
potential impact that oxidant exposures may have on
reproductive outcomes and infant, child, and adult health,
identification of the intrinsic and extrinsic factors that may
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influence susceptibility to oxidants remains an important issue.
In this review, we discuss mechanisms of oxidant stress in the
lung, the role of oxidants in lung disease pathogenesis and
exacerbation (eg, asthma, chronic obstructive pulmonary
disease, and acute respiratory distress syndrome), and the
potential risk factors (eg, age, genetics) for enhanced
susceptibility to oxidant-induced disease. (J Allergy Clin
Immunol 2008;122:456-68.)

Key words: Oxidative stress, antioxidant, genetics, susceptibility,
infant, reproductive outcome, premature, children, elderly, asthma,
chronic obstructive pulmonary disease, ozone, pollutants, particu-
lates, PM, acute respiratory distress syndrome, hyperoxia, SNP,
single nucleotide polymorphism

As epidemiologic studies emerge from developed and develop-
ing industrialized countries, it has become clear that air pollution is
associated with dramatic increases in the risk of acute and chronic
diseases and death in children and adults. Many air pollutants exert
their major effect by causing oxidative stress in cells and tissues
that they contact. Gaseous pollutants (including ozone [O3], SO,,
and NO,) and particulate matter (PM; including ultrafine, PM
with diameter <2.5 uM, PM with diameter <10 wM, and diesel
exhaust particles [DEPs]) are known to form reactive oxygen spe-
cies (ROSs) such as superoxide anion, hydrogen peroxide, and hy-
droxyl radicals. ROSs may damage proteins, lipids, and DNA
directly, and form distinct products that can be used as biomarkers
and help in measurement of ROS activity. ROSs react with proteins
to form nitrotyrosine' and bromotyrosine,” whereas reaction with
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Abbreviations used
AHR: Airway hyperresponsiveness
ALI: Acute lung injury
ARDS: Acute respiratory distress syndrome
BALF: Bronchoalveolar lavage fluid
CF: Cystic fibrosis
CFTR: Cystic fibrosis transmembrane
conductance regulator
COPD: Chronic obstructive pulmonary disease
DC: Dendritic cell
DEP: Diesel exhaust particle
EBC: Exhaled breath condensate
GSTM1: Glutathione-S-transferase M1
GSTPI1: Glutathione S-transferase pi
HNE: 4-Hydroxy-2-nonenal
LOP: Lipid ozonation product
MAPK: Mitogen-activated protein kinase
NF-kB: Nuclear factor-«B

GLOSSARY

DIESEL EXHAUST PARTICLE (DEP): DEPs are fine particles that are part
of a complex mixture of gases and particles in diesel exhaust that can
have immediate and/or delayed health effects. DEP exposure induces
inflammation in the lungs, which aggravates chronic respiratory symp-
toms and increases the frequency or intensity of asthma attacks.

EPITHELIAL LINING FLUID (ELF): A heterogeneous group of substances
that covers the respiratory tract epithelial cells and consists of a lower
liquid phase and an upper gel/mucus phase. Substances include mucin,
uric acid, ascorbic acid, proteins, and glutathione.

EXHALED BREATH CONDENSATE (EBC): EBC is collected by directing
the exhaled breath through a cooling device. The resulting liquid
accumulation of exhaled breath constituents contains evaporated and
condensed particles (water, ammonia, water soluble volatiles). EBC is
increasingly used to sample airway fluid from the lower respiratory tract
and identify biomarkers of airway inflammation.

FREE RADICAL: Free radicals are atoms or molecules with unpaired
electrons in their outermost ring that form when a covalent bond is
broken. Because of the presence of unpaired electrons, free radicals are
highly reactive and can interact with important cellular components
such as the cell membrane or mitochondrial DNA, leading to impaired
cell function or cell death.

LIPID PEROXIDATION: Lipid peroxidation occurs when free radicals
interact with lipids in the cell membrane to “fill” their outer electron ring.
This process damages the cell wall, thereby preventing the cell from
functioning properly. The peroxidation process proceeds by a free
radical chain reaction mechanism and consists of 3 major steps: initi-
ation, propagation, and termination.

NUCLEAR FACTOR ERYTHROID-2 RELATED FACTOR (NRF2): NRF2
belongs to a family of basic leucine zipper transcription factors. NRF2
plays an important role in protecting against oxidative stress by regu-
lating antioxidant proteins through an enhancer sequence referred to as
the antioxidant-responsive element.

OXIDANT: Also known as an oxidizing agent, oxidants are compounds
that transfer oxygen atoms or gain electrons in a chemical reaction.
Prolonged oxidant exposure can lead to impaired antimicrobial de-
fenses and alter alveolar macrophage function in the lung.

OZONE (0O3): Ozone or trioxygen is a triatomic molecule consisting of 3
oxygen atoms. In the upper atmosphere, ozone filters out potentially
damaging UV light. In the lower atmosphere, ozone is an air pollutant
that can cause harmful effects on the respiratory systems of animals and
human beings at concentrations as low as 0.06 ppm. UV light in the
lower atmosphere catalyzes the reaction between ozone and hydrocar-
bons, which begins the process by which hydrocarbons are removed

NQOI: Reduced form of nicotinamide adenine dinucleotide
phosphate: quinone oxidoreductase 1
NRF: Nuclear factor erythroid-2 related factor
PM: Particulate matter
QTL: Quantitative trait locus
ROS: Reactive oxygen species
SP: Surfactant protein

lipids leads primarily to the formation of isoprostanes™* and eth-
ane.’ In scenarios in which DNA damage occurs, single-strand
breaks and 8-hydroxyguanosine are generated.’

Health effects of air pollution can be classified into short-term
and long-term effects, and a number of excellent reviews discuss
these effects.” Pollutant effects include reversible decrements in
pulmonary function, airway inflammation, airways hyperreactiv-
ity, compromised immune function, enhanced responsivity to res-
piratory infection, increased incidence and exacerbation of lung

from the air and leads to the formation of smog, which contains
potential irritants.

PARTICULATE MATTER (PM): PM is a complex mixture of tiny particles
of solid or liquid suspended in a gas. The mixture contains numerous
components including acids, organic chemicals, metals, dust, and soil
particles, which can be separated into 3 categories: (1) inhalable coarse
particles have diameters of 2.5 to 10 wm; (2) fine particles have diameters
less than 2.5 um; and (3) ultrafine particles have diameters less than 0.1
pm. On inhalation, particles can have serious effects on the heart and
lungs including asthma, lung cancer, cardiovascular disease, and pre-
mature death.

REACTIVE OXYGEN SPECIES (ROSs): Small molecules that include
oxygen ions, free radicals, and peroxides. ROSs form as a byproduct
oxygen metabolism and can increase dramatically in times of environ-
mental stress. Increased ROS levels can result in significant damage to
cells by damaging DNA, oxidizing fatty acids in lipids, oxidizing amino
acids, and inactivating specific enzymes.

SINGLE NUCLEOTIDE POLYMORPHISM (SNP): A DNA sequence vari-
ation occurring when a single nucleotide—A (adenine), C (cytosine), G
(guanine), or T (thymine)—in the genome differs between members of
the same species. Genomic DNA coding sequences dictate amino acid
sequences and ultimately protein production; therefore, SNPs can result
in mutations that have no effect on protein production or mutations that
significantly alter protein production. Often SNPs are assigned an allelic
frequency on the basis of how prevalent they are within a population,
and they can be used as biomarkers to determine whether a patient has a
genetic predisposition for a particular disease.

TNF-a: A proinflammatory cytokine primarily produced macrophages
but also found in lymphoid cells, mast cells, and endothelial cells.
Binding of TNF-a to its respective receptors leads to the activation of
nuclear factor-kB, activation of mitogen-activated protein kinase stress-
related pathway, and apoptosis.

TOLL-LIKE RECEPTOR (TLR): A family of membrane glycoproteins that
play an important role in the innate immune response by recognizing
pathogen-associated molecular patterns, molecules that are shared by
pathogens but distinguishable from host molecules. Thirteen TLRs have
been identified in human beings and mice collectively and pair with an
adaptor molecule for signaling. TLRs are members of a larger super-
family that includes the IL-1 receptors because of a conserved Toll/IL-
1 receptor domain in the cytoplasmic tail.

TRANSCRIPTION FACTOR: A protein that binds to specific DNA se-
quences called response elements to activate or repress gene expres-
sion. TFs are modular in structure with DNA-binding, trans-activating,
and signal-sensing domains.

The Editors wish to acknowledge Michael D. Howell, PhD, for preparing this glossary.
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Mechanisms involved in oxidant pollutant-induced adverse health effects. Oxidant pollutants may

elicit their effects through (1) the production of secondary mediators generated by reaction of pollutants or
pollutant-induced ROSs or free radicals with lipids in the ELF or cell membrane as well as proteins and
antioxidants; (2) activation of signaling pathways by ROSs or secondary mediators; (3) oxidation of cellular
proteins; (4) damage to DNA. In addition to pollutant-induced generation of ROSs, endogenous sources of
ROSs such as inflammatory cells, phagocytes recruited to the site of injury, and other cellular processes may
contribute to the oxidative stress state caused by pollutant exposure. Antioxidant molecules and enzymes
mitigate the effects of ROSs in the body. TF, Transcription factor; PMN, polymorphonuclear leukocyte.

disease (eg, asthma), and mortality. For example, high-dose ex-
posure of DEPs can aggravate bacterial infection and induce a
strong T-cell-mediated response,”® whereas O exposure com-
bined with exercise is known to decrease respiratory frequency,
FEV;, and forced vital capacity concurrent with an increase in
airways resistance.””” Ozone also exacerbates allergic asthma,
which is characterized by increased eosinophils in induced spu-
tum.'® Further, studies have shown that air pollutant exposures
can increase susceptibility and response to bacterial and viral res-
piratory infections.''!* In particular, individuals with 1 or more
risk factors for adverse effects of oxidant exposures are of public
health concern. Some of these risk factors include, but are not
limited to age, sex, genetic background, nutrition, and pre-exist-
ing pulmonary disease. Despite current regulations and an in-
creasing awareness of the quality of the air we breathe, levels
of common air pollutants remain an issue in many areas world-
wide. Furthermore, the mechanisms of oxidant toxicity in the
lung and other organ systems remain incompletely understood.
In this review, we (1) provide a brief overview of the mechanisms
through which exogenous (airborne pollutants) and endogenous
oxidants may interact with bioreactive molecules (ie, proteins,
lipids, and DNA; cigarette smoke exposures are not discussed be-
cause many reviews on this topic currently exist); (2) describe the
role of oxidants in the pathogenesis of asthma, chronic obstruc-
tive pulmonary disease (COPD), acute respiratory distress syn-
drome (ARDS), and cystic fibrosis; and (3) discuss a number of
intrinsic and extrinsic factors that may enhance susceptibility to
oxidants. The review is not meant to be exhaustive but was

intended to highlight representative areas of investigation in
this important field, and to identify questions that remain to be
answered.

MECHANISMS OF OXIDANT-INDUCED TOXICITY

The mechanisms whereby oxidants exert their pathological
effects on the lungs have been the focus of numerous studies and
are still the subject of debate. Despite the diversity of these agents
and the multitude of complex mechanisms that exist, several
common themes have been identified that can serve as a platform
for future research. Many ambient air pollutants may induce
oxidative stress in the lung that arises when ROSs overwhelm
antioxidant defenses (Fig 1). After this imbalance is reached,
ROSs readily react with proteins, lipids, and DNA, resulting in
a number of pathological consequences.

Oxidant interaction with molecules

A primary consequence of oxidative stress is lipid peroxida-
tion, or the oxidative degeneration of lipids. Lipid peroxidation
is caused by a free radical chain reaction mainly involving mem-
brane polyunsaturated fatty acids. If not quenched, this reaction
can permanently damage cell membranes, ultimately leading to
cell death. Exposures to oxidant air pollutants cause lipid peroxi-
dation in human beings and rodents.'+"? Furthermore, the end
products of lipid peroxidation can lead to subsequent pathological
consequences. One of these end products, 4-hydroxy-2-nonenal
(HNE), has numerous downstream effects. In vitro treatment of
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cells with HNE can cause lipid peroxidation®” and may potentiate
oxidative stress through a depletion of intracellular glutathione
and induction of peroxide production.”’ HNE may also play a
role in airway remodeling through activation of the epidermal
growth factor receptor22 and induction of fibronectin produc-
tion.?? In addition, HNE-protein adducts have been found in the
lungs of mice and human beings after O3 exposure.**** Finally,
HNE can induce cell death of alveolar macrophages in mice.”¢
These studies provide evidence for the hypothesis that secondary
mediators generated by oxidant reactions with lipids, proteins, and
other biomolecules contribute to toxic effects of pollutants.

Another secondary mediator can be generated by a reaction of O3
with unsaturated fatty lipids. Ozone can react directly with unsatu-
rated fatty lipids in the epithelial lining fluid and cell membranes to
produce lipid ozonation products (LOPs), which also have patho-
logical downstream effects.”’ >’ These products are small, diffusi-
ble, and relatively stable, making them ideal mediators of Oj
toxicity. In vitro exposure of human airway epithelial cells to differ-
ent LOPs has shown that these products can activate eicosanoid me-
tabolism similar to O3 exposure.30 Furthermore, products involved
in eicosanoid metabolism are themselves highly reactive peroxides,
which can contribute to the oxidative stress—induced damage. Other
studies have shown that exposure of bronchial epithelial cells to
LOPs caused activation of phospholipases A2, C, and D as well
as the induction of inflammatory mediators such as platelet-activat-
ing factor, prostaglandin E,, IL-6, and IL-8.%%?° Treatment with
oxidized phospholipids from Os-exposed lung surfactant reduced
the viability of macrophages and epithelial cells by necrosis and
apoptosis, respective:ly.3 ! This treatment also stimulated the release
of IL-8 from epithelial cells. Taken together, these studies provide
evidence of a direct link between LOPs produced by O; exposure
and Os-induced inflammation and cell damage.

A primary function of ELF is to protect underlying tissue from
inhaled pathogens and toxins. However, current evidence suggests
that antioxidants and lipids found in the ELF mediate oxidant-
induced membrane oxidation. Thus, some defenses within this
barrier may also contribute to the toxicity of certain agents. The
capacity of O; to oxidize cell membrane proteins and lipids in vitro
was shown to be dependent on the presence of either of the antiox-
idants ascorbate or glutathione in the lining fluid.** These results
were corroborated by a study demonstrating that addition of ascor-
bate to the lining fluid increased cell injury in response to O3.>*
Other studies have shown similar mechanisms for NO,. Glutathi-
one and/or ascorbate are necessary components of the lining fluid
for NO,-mediated membrane oxidation in vifro.>*

Another mechanism whereby oxidant pollutants may exert
their pathological effects is through the modification of proteins.
ROSs can act directly or indirectly on proteins to cause oxidation
of the polypeptide backbone, peptide bond cleavage, protein-
protein cross-linking, or amino acid side chain modifications.*’
Amino acid composition, particularly cysteine and methionine
residues, can render proteins more susceptible to oxidation.*’
For example, oxidation of methionine residues in a-1-antitrypsin
by ROSs in vitro results in loss of antineutrophil elastase activ-
ity.36 Without protection from a-1-antitrypsin, the alveolar matrix
is susceptible to destruction by neutrophil elastase, which can
eventually contribute to emphysema. Oxidation of multiple me-
thionine residues by ROSs impairs rapid sodium channel inactiva-
tion.”” ROSs also oxidize methionine residues in surfactant
protein (SP)-B, leading to inactivation.*® Inactivation of SP-B re-
duced the ability of the surfactant film to reduce lung surface
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tension during breathing, which can contribute to respiratory dis-
tress syndrome. Similarly, acute exposure of guinea pigs to O3 al-
tered SP-A function, contributing to the inflammatory response.
Another study found that in vitro and in vivo O exposure caused
oxidative modifications in SP-A that reduced the ability to en-
hance phagocytosis of bacteria.*” Oxidative modification of sur-
factant proteins may also render the lung more susceptible to
lipid peroxidation, inflammation, and oxidative damage because
these proteins have been reported to inhibit these processes.*'***

Epidemiologic and experimental studies have shown that
exposure to air pollutants increases the risk of lung cancer.** A
potential mechanism for the increased cancer incidence in ex-
posed individuals is DNA damage. Prahalad et al*> demonstrated
that PM can cause DNA damage and that this effect was inhibited
by an OH scavenger and metal ion chelators, suggesting a role for
PM-generated free radicals and metals adsorbed onto the parti-
cles. Further evidence also showed that PM caused increased
DNA oxidative damage to human airway epithelial cells and
was associated with the amount of water-soluble metals contained
on these particles.‘“’ Another group demonstrated that DEPs in-
duced DNA damage in mice and that this effect was dependent
on the particle and not the organic chemicals adsorbed onto the
particle surface.*’ The authors proposed that alveolar macro-
phage generation of hydroxyl radicals during particle phagocyto-
sis may contribute to DNA damage. These and other studies
suggest that PM-induced DNA damage results from free radical
formation.*® DNA damage has also been shown in lung epithelial
cells exposed to Os, and this effect was reduced by pretreatment
with vitamins C and E.** It had also been reported that DNA back-
bone cleavages caused by O; were dependent on hydroxyl radi-
cals, whereas DNA base modifications were mainly caused by a
direct effect of 03.°° Furthermore, DNA-protein cross-linking
has been shown in the lungs of mice exposed to SO,.”! In addition
to potential cancer etiology, DNA damage may alter gene and
protein expression as well as cell death.

Oxidant-induced cell signaling

Activation of signaling pathways is another way in which
oxidant pollutants may cause pathological responses in the lung.
Air pollutants and ROSs can activate mitogen-activated protein
kinase (MAPK) signaling, which may ultimately promote inflam-
mation. For example, inhibition of c-Jun N terminal kinase in
mice attenuated Oz-induced inflammation and hyperresponsive-
ness.”” In addition, end products of lipid peroxidation activate
extracellular signal-regulated kinase p44/42 (Erk1/2), c-Jun N
terminal kinase, and p38MAPK, and activation can be blocked
by N-acetyl cysteine.”"*® Activation of these kinases was also
accompanied by increased DNA binding activity of the transcrip-
tion factor activator protein 1, which can lead to the transcription
of stress response genes including phase II enzymes (Fig 1).
Another study demonstrated that HNE could induce DNA binding
of the transcription factors nuclear factor erythroid-2 related
factor (NRF)-1, NRF2, JunB, c-Jun, FosB, c-Fos, Fral, and
Fra2.>® Oxidants also increase nuclear factor-xB (NF-kB) DNA
binding along with the release of the proinflammatory cytokine
IL-8 in lung epithelial cells, and this effect can be abrogated by
antioxidant pretreatment.54 Other studies have also demonstrated
the ability of air pollutants to activate NF-kB.>>¢ Activation
of stress response pathways by oxidative stress is likely a cause
of pollutant-induced NF-kB activation. PM-induced activation
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of NF-kB has been shown to be dependent on epidermal growth
factor receptor activation and the MAPK signaling pathway,
which is involved in the stress response.’’ Conversely, there is
also evidence that oxidants can downregulate inflammatory path-
ways through an inhibitory effect on NF- kB>

Another important transcription factor involved in the response
to oxidative stress is NRF2. NRF2 contributes to the oxidative
stress response through its binding of antioxidant response
elements, leading to the induction of various genes involved in
mitigating oxidative damage.” Oxidant-induced activation of
NRF2 leads to the transcription of genes for antioxidants,
DNA damage recognition, glutathione homeostasis, free radical
metabolism, and a number of other elements involved in the
oxidative stress response.60 Mutations in NRF2 or a disruption
of the signaling pathway would likely render individuals more
susceptible to the adverse effects of pollutant exposure. Further
investigation of pollutant-induced activation of NRF2 and the
consequences of NRF2 mutation in the response to pollutant ex-
posure is needed to elucidate fully the role of NRF2 in mitigat-
ing the effects of oxidant pollutant exposure.

Endogenous sources of oxidants

Endogenous sources of ROSs may have an indirect role in the
toxicity induced by exposure to air pollutants. The main cellular
sources of ROSs in the lung include neutrophils, eosinophils,
alveolar macrophages, epithelial cells, and endothelial cells. Air
pollutant-induced lung inflammation involves the recruitment of
inflammatory cells that release ROSs, which can enhance inflam-
mation, tissue damage, and other pathological effects. In addition,
phagocytes can be activated by PM deposition in the lung and
cause ROS release, contributing to the oxidative d21rnage:.47’°1
Similarly, NO, has also been shown to induce the release of
ROSs from macrophages.®> The predominant ROSs produced
by inflammatory cells and macrophages are superoxide and hy-
drogen peroxide, respectively. Both oxidants can react with a
number of substrates and biomolecules to cause damage and gen-
eration of harmful radicals. ROSs are also produced in the body
during normal metabolic reactions such as aerobic respiration in-
volving the electron transport chain within the mitochondria, and
enzyme reactions involving cycloxygenases, lipoxygenase, per-
oxidases, and cytochrome-P450. Any alteration in these processes
or decrement in the antioxidants that offset the production of ROS
from them may also lead to tissue damage and other pathological
consequences. In addition, endogenously produced nitric oxide
can react with oxygen to form damaging nitrogen oxides, or it
can react with superoxide to form peroxynitrate.63 Peroxynitrate
has been shown to induce lipid peroxidation, DNA damage, and
protein oxidation.’**%*%® Furthermore, peroxynitrate can also re-
act with CO, to form NO,, which can lead to further oxidant-in-
duced damage.®” Taken together, these studies demonstrate how
endogenous sources of ROSs can contribute to air pollutant—in-
duced toxicity through an enhancement of the oxidative burden
within the lung.

OXIDANTS AND LUNG DISEASE

Because the lung interfaces with the external environment, it is
frequently exposed to airborne oxidant gases and particulates, and
thus prone to oxidant-mediated cellular damage. Enhanced levels
of oxidant production and cellular injury have been implicated in
many pulmonary diseases including asthma and other allergic
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diseases, COPD, ARDS, and cystic fibrosis. In the following
section, we briefly describe investigations on exacerbation of
these important pulmonary diseases caused by ROS.

Asthma

It is widely agreed that a link exists between oxidants and their
effect on various allergic diseases, particularly asthma pathogen-
esis. Oxidants can cause airway inflammation and airway hy-
perresponsiveness (AHR), which are major characteristics of
asthma.®® Patients with asthma have increased ROS production
by macrophages, eosinophils, and neutrophils, which leads to in-
creased hydrogen peroxide,® 8-isoprostane, and CO in their
breath condensates; increased pulmonary glutathione peroxidase
and superoxide dismutase in lung cells’®; and increased pulmo-
nary, serum, and urinary peroxidation products. Because eosino-
phils and neutrophils are the major cells in the inflammatory
infiltrate in asthma, increased levels of eosinophil peroxidase
and myeloperoxidase in the peripheral blood, induced sputum,
and bronchoalveolar lavage fluid (BALF) from patients have
been documented.”’’* Other markers of oxidant activity such
as malondialdehyde and thiobarbituric acid reactive products
have also been detected in urine, plasma, sputum, and BALF
that relate to the severity of asthma in these patients.”*’° Elevated
levels of nitrotyrosine' and chlorotyrosine™’” in BALF from pa-
tients with asthma also suggest oxidative protein damage.

External oxidant stimuli also worsen existing allergic disease.
For example, O; may evoke asthma exacerbations. Ozone inhala-
tion was shown to increase AHR; induce higher IL-5, GM-CSF,
and granulocyte-colony stimulating factor levels; and indirectly
enhance the longevity of eosinophils via suppressing apoptosis in
a mouse model of allergic asthma.”®

Diesel exhaust particles and their components have been
demonstrated to enhance AHR in a murine model of asthma.”®
Human studies have also revealed that antioxidant enzymes, glu-
tathione-S-transferase M1 (GSTM1) and glutathione S-transfer-
ase pi (GSTP1), can alter adjuvant function of DEPs in allergic
inflammation and block DEP-induced IgE and IL-4 cytokine pro-
duction.®® DEP exposure leads to generation of ROSs in vitro®'
and in vivo.®? DEPs have also been advocated as an adjuvant in
allergic sensitization, mediating their effect via dendritic cells
(DCs). Chan et al*® showed that DEPs downregulated LPS-in-
duced CD86 and CD54, MHC class II maturation markers, and
IL-12 production by DCs, thereby interfering with DC function.
The interference in DC function was attributed to the NRF2 sig-
naling pathway.®?

Recent studies have also suggested that O3 and DEPs have an
additive effect on AHR and pulmonary inflammation in asthma.
For example, higher enhanced pause value, increased IL-4, and
reduced IFN-vy levels in BALF from ovalbumin-sensitized-chal-
lenged, Os-exposed, and DEP-exposed groups were observed
compared with ovalbumin-sensitized-challenged Os-exposed
groups and ovalbumin-sensitized-challenged DEP-exposed
groups.®*

COPD

Chronic obstructive pulmonary disease is a slow, progressive,
and irreversible disease state characterized by limited airflow
associated with gradual decline in lung function® with clinical
manifestations such as emphysema and chronic bronchitis.***’
Clinical and experimental investigations suggest that oxidants
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play arole in pathogenesis of COPD. The major contributing fac-
tors in COPD etiology are direct exogenous sources of oxidants
such as cigarette smoke rich in ROSs. Increased amounts of
ROSs are also generated endogenously by various inflammatory
and epithelial cells of the airways. Further, accumulating evi-
dence has implicated indirect local and systemic effects of oxi-
dants in COPD pathogenesis. Locally, higher levels of oxidants
have been found in exhaled breath condensate (EBCs), sputum,
and lavage fluid of patients with COPD. Large numbers of neutro-
phils and macrophages migrating into the lungs of patients with
COPD generate ROSs in excess such that these patients have
higher levels of superoxide anion and hydrogen peroxide re-
lease.®® "' Recently, hydrogen peroxide in exhaled air and IL-8
and soluble intercellular cell adhesion molecule 1 in serum were
found to be suitable markers in monitoring patients with exacer-
bated COPD.’”> Impairment in gene expression of protective
mechanisms (GSTP1, GSTMI, microsomal epoxide hydrolase,
and tissue inhibitor of metalloproteinase 2) against oxidants in
lung samples of patients with COPD was observed along with up-
regulation of chemokines involved in the inflammatory process.93
Locally generated 4-HNE has been shown to modify protein levels
in airway and alveolar epithelial cells and endothelial cells in hu-
man subjects with airway obstruction.” It also interacts with glu-
tathione, thereby reducing cells’ antioxidant ability.”>

Systemically, oxidants cause elevation of plasma lipid perox-
idation products such as malondialdehyde.96’97 Higher levels of
8-isoprostanes, products of ROS-mediated peroxidation of
arachidonic acid, are also found in breath condensates as well
as in the urine.”®% Erythrocyte superoxide dismutase, which
scavenges superoxide radical, was significantly higher in plasma
of patients with COPD than in healthy nonsmokers.'®

ARDS

Acute respiratory distress syndrome is a severe form of acute
lung injury (ALI) and a syndrome of acute pulmonary inflam-
mation characterized by sudden reduction in gas exchange and
static compliance as well as nonhydrostatic pulmonary edema. 101
The mechanisms of ARDS are an ongoing field of investigation.
However, ROSs have been suggested to play an important role
in pulmonary vascular endothelial damage,102 which is hypothe-
sized to be responsible for clinical manifestation of ARDS.
Recently, studies have suggested that pathogenesis of ARDS
involves enhanced production of ROSs and diminished
antioxidant levels.'"*'%* Patients with ARDS have high levels
of hydrogen peroxide in exhaled air and urine'® and high circu-
lating levels of 4-HNE.'% Levels of antioxidant defense system
including enzymes like superoxide dismutase and catalase as
well as other scavengers like glutathione and vitamins E and C
have been shown to drop with increasing levels of ROSs.'"’

Iron is also known to be a mediator of oxidative stress because
it can catalyze pro-oxidant reactions. Decreased plasma iron-
binding activity leading to decreased ability to prevent iron-
dependent ROS formation has been detected in patients with
ARDS. Transferrin receptor protein levels were found to be
significantly increased in lung biopsies of patients with ARDS,
implicating iron as a mediator of oxidative stress.'%®

Inflammatory mediators such as cytokines, chemokines, and
adhesion molecules expressed during ARDS can also indirectly
mediate production of ROSs'% and thereby lead to further dam-
age. High concentrations of TNF-« and IL-1f have been detected
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in high concentrations of BALF of patients with ARDS. IL-6
levels in the circulation are known to be a detector of ARDS of
different etiologies such a sepsis and acute pancreatitis.'®

Cystic fibrosis

Cystic fibrosis (CF) is a disease caused by an autosomal
recessive mutation in the cystic fibrosis transmembrane conduc-
tance regulator (CFTR) gene, resulting in dysfunction of a protein
involved in the transport of chloride ions across cell membranes.
The deficiency in chloride transport leads to production of
thickened mucus secretions in the respiratory system of patients
with CF who are commonly afflicted with recurrent episodes of
bronchitis and pneumonia. EBCs from children with CF ex-
pressed high levels of oxygen and carbon-centered radicals in CF
groups versus the healthy controls. Catalase abolished oxygen
radicals in EBC, whereas addition of hydrogen peroxide led to a
dramatic increase.''® In a similar study, myeloperoxidase and
3-cholorotryosine levels were 10-fold and 5-fold elevated, respec-
tively, in the BALF of young children with CF compared with the
controls."'! Nitrotyrosine was found elevated in the sputum of
patients with CE.'"?

Recent investigations have helped in understanding the
important role of CFTR in CF pathogenesis. CFTR is known
to regulate cellular glutathione (GSH) transport. CFTR gene
expression is suppressed by oxidative stress caused by tert-bu-
tylhydroquinone (BHQ), because it enhanced cellular glutathi-
one in CFTR-expressing T84 and Calu-3 epithelial cells.!'® In
another recent study, mutated CFTR caused increased ROS
levels and mitochondrial oxidative stress as a consequence of
lower GSH levels.''* The submucosal gland serous cell is the
principal site of expression of CFTR chloride ion channel,
which is known to malfunction in CE.'"> Cowley and Lindsell''®
proposed that ROS-stimulated anion secretion from serous cells
is CFTR-dependent. Absence of this compensatory protective
mechanism might expose lung to ROSs for extended periods,
which could be important in the pathogenesis of CF lung
disease.

Neutrophil-rich inflammation is a determinant of CF severity,
and findings from a recent genetic study show that the level of
myeloperoxidase (MPO) gene expression that governs the mi-
crobicidal and proinflammatory activities of neutrophils may
influence CF pathogenesis.''® Specifically, the -463GA myelo-
peroxidase promoter polymorphism has been shown to control
the severity of CF-related pulmonary inflammation.

SUSCEPTIBLE POPULATIONS

Interindividual differences in responses to air pollutant expo-
sures have been well documented.''”""?° That is, in populations
and clinical studies exposed similarly to air pollutants, pulmonary
inflammatory and function responses are more severe in some in-
dividuals than in others. Importantly, investigators have also dem-
onstrated high within-individual reproducibility of the responses
to air pollutant exposures.lzo The wide spectrum of adverse re-
sponses to the pollutants has been attributed to multiple intrinsic
(eg, age, sex, genetic) and extrinsic (eg, nutrition, pre- or concur-
rent exposure, pre-existing disease) factors. In the following sec-
tion, we identify and briefly discuss intrinsic (host) and extrinsic
factors that may influence susceptibility to oxidant air pollutants,
and the potential implications for increased risk of allergic
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FIG 2. Flowchart demonstrating the connection between oxidants and disease states, as well as the
mechanisms and susceptibility factors involved in the development of oxidant-induced diseases.

disease. Because of space limitations, most of the discussion is fo-
cused on age and genetic background.

Age

Preneonatal effects. Maternal exposure to air pollutants
during pregnancy may have adverse effects on the developing
fetus (see comprehensive review!2!"12%) Preterm neonates are
particularly susceptible to potential injurious effects of air pollu-
tants because exposure may disrupt normal fetal developmental
processes. Adverse birth outcomes, including intrauterine and
infant mortality124’126, preterm birth127'129, Jlow!30-133 (<2500
) and very low'**'?% (<1500 g) birth weight, intrauterine growth
restriction, and birth defects'*®!*® have been associated with
maternal exposure to Oz, NO,, SO,, and PM. Because low/very
low birth weight and prematurity are important predictors of
children’s health (eg, mortality, cardiovascular, pulmonary, im-
munologic, renal, central nervous system, and neurocognitive
deficits'?*'*?), understanding of the effects of oxidants has
important economic and public health implications. Interestingly,
although some investigations found positive associations between
maternal exposures to oxidant pollutants and adverse birth out-
comes, others suggested that exposures have little or no effects.'*?
However, the majority of studies suggest that maternal exposures
to oxidant air pollutants and the resultant effects on birth weight
and other adverse birth outcomes represent an important determi-
nant of susceptibility to lung development and diseases including
allergic diseases such as asthma (Fig 2).

Infants and children. Development of the lung is a complex,
highly orchestrated process that starts in the embryo, where the
lung begins as an avascular epithelial bud and reaches maturation
at approximately 6 to 8 years of age.m‘g’144 Transcription factors
and other molecular signals control development of respiratory
bronchioles, epithelium, capillaries, and immune cell populations
and processes over a number of well defined stages.'** The lung is
particularly vulnerable to adverse effects of oxidant pollutants
and other toxicants during postnatal growth and development pro-
cesses. 21123 However, little is known about the mechanisms
through which inhaled oxidant toxicants affect the human devel-
oping lung, although animal models have provided important in-
Sight.144 The airway epithelium, in particular, is thought to be

highly vulnerable, and the immune system, such as polarization
of Ty cells, could also be affected by oxidants and inflammatory
stimuli.'*’

Large cohort investigations have associated exposure to air
pollutants with changes in children’s lung function.'? 146-149
Children are particularly susceptible not only because the lung
is developing, but also because children are often very active out-
doors and have very different ventilatory parameters compared
with adults'** that facilitate deeper and greater lung deposition
of particles and gas/cell membrane interactions. Gauderman
et al'*® reported that among more than 3600 children in southern
California communities, those who lived within 500 m of a free-
way had significant deficits in pulmonary function (FEV, maxi-
mum midexpiratory flow) compared with children who lived at
least 1500 m away from the freeway. Delfino et al'*’ evaluated
the relationship between daily changes in FEV; and ambient
and personal air pollutant exposures in subjects with asthma be-
tween the ages of 9 and 18 years. These investigators found that
decrements in FEV | were significantly associated with increasing
hourly peak and daily average personal PM, 5 and NO,. Interest-
ingly, FEV; decrements were not found with ambient PM, 5 and
only weakly with ambient NO,. They concluded that pollutant as-
sociations with lung function deficits might be missed using am-
bient data alone, and stress the importance of using personal
exposure to identify independent effects of specific pollutants.

An increasing body of population-based and epidemiologic
literature also indicates that children with asthma are at great risk
for asthma exacerbation with exposure to traffic-related air
pollution (see reviewlso). Asthma exacerbations have been dem-
onstrated in many urban environments worldwide including Hong
Kong,'*! Mexico City,"** and Los Angeles.'>* Air pollutants have
also been associated with the development of asthma in children.
For example, McDonnell et al'>* found that the relative risk of de-
veloping asthma was 3.3 times greater in children who played 3 or
more outdoor sports in southern California communities with
high O; concentrations compared with children playing no out-
door sports. The investigators found that the number of sports
had no influence on asthma incidence in low O3 communities.
Further support for the hypothesis that air pollutants contribute
to atopic diseases in children was provided by a prospective birth
cohort study that found strong positive associations between the
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distance to nearest main road and asthmatic bronchitis, hay fever,
eczema, and sensitization during the first 6 years of life.'>

The relatively greater increases in urban asthma have been
attributed to many factors, including socioeconomic status. So-
cioeconomic status and ethnic disparities in asthma prevalence and
morbidity have been well documented,156 and environmental fac-
tors may account for asthma disparities including greater traffic air
pollution, disparities in treatment and access to care, housing con-
ditions, and indoor exposure to allergens.

Elderly. Evidence has accumulated that suggests the elderly
(>65 years) may be susceptible to adverse effects of air pollutant
exposures (see reviews'>"!158). The mechanisms for increased
susceptibility in this subpopulation are not well understood, but
age-related decline in lung function, 160 underlying cardiovas-
cular and/or pulmonary disease,'®"'°® and potential decline in an-
tioxidant defense capacity of the respiratory tract lining fluid'*®
have been proposed. It is generally agreed that lung function de-
clines with age, and oxidant stress related to smoking, chronic
lung inflammation, and related diseases may increase the rate of
decline.'®® Furthermore, decline in antioxidant capacity has
been correlated with increased risk of mortality with multiple
causes.'®® Supplementation with antioxidants (see review'>®) or
treatments with other oxidant-reducing drugs (eg, statins'®*)
may reduce the rate of decline in lung function. Interestingly, a re-
cent investigation found in relatively small groups of young sub-
jects, older current smokers, and older nonsmokers that NRF2
expression decreased in the alveolar macrophages of older current
smokers and patients with COPD relative to the other groups.'®’
However, the use of antioxidant therapies to treat diseases such as
COPD that are associated with decreased lung function have been
equivocal.'® The explanation for inconsistent protective effects
of antioxidant therapies for these diseases is not clear, although
the presence of large interindividual variation in antioxidant
levels in smokers suggest that protective response mechanisms
may exist in which oxidant stress stimulates upregulation of anti-
oxidant mechanisms.'*® Understanding whether differential in-
ducibility of antioxidant defenses because of loss-of-function
polymorphisms in antioxidant enzyme genes or other mecha-
nisms (eg. posttranslational modification of proteins) in aging
normal and diseased individuals could provide important insight
into development of effective strategies to prevent or reduce loss
of lung function. For example, Alexeeff et al'®® found that acute
effects of O3 exposure were exacerbated in elderly men with pol-
ymorphisms in the antioxidant genes GSTPI and heme oxygenase
1 (HMOX]) relative to those with wild-type genotypes. Interest-
ingly, antioxidant supplementation to reduce change in lung func-
tion caused by Oj; in children with asthma was effective only in
those with genetic deficiency in GSTMI, suggesting nutrition
by gene interaction may be important in this setting.167 Further in-
vestigation of interactions between antioxidant supplementation
and genetic background may have implications for other subpop-
ulations, including the elderly.

Genetic background. A role for genetic background in
pulmonary responses to the adverse effects of oxidant exposures
was initially suggested on the basis of reproducible interindividual
variation in pulmonary spirometric responses (FEV, specific air-
way resistance) by normal healthy volunteers after controlled O;
exposures.m Similar observations were independently reported
by other laboratories.''” Furthermore, investigators found that
O5-induced inflammation as indicated by the number of polymor-
phonuclear leukocytes found in BALF also varied widely between
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subjects.'!” Because the subjects in all of these studies were oth-
erwise healthy, nonsmoking, young adults, an intrinsic factor was
suggested to be an important determinant of the variation.'>*

To evaluate more formally whether genetic background was an
important determinant of susceptibility to Oz-induced lung in-
flammation and injury, multiple inbred strains of mice were ex-
posed to O3.'®® Significant interstrain variation in Os-induced
inflammation was found, and linkage analyses identified quantita-
tive trait loci (QTLs) that harbor candidate susceptibility genes.
Proof of concept investigations have implicated TNF (Tnf'®%)
and Toll-like receptor 4 (Tir4 170y as determinants of O3-induced
lung inflammation and hyperpermeability, respectively. However,
these susceptibility QTLs (and candidate genes) account for only
approximately 20% to 30% of the genetic variance in O3 respon-
siveness, which indicates that other QTLs likely interact to deter-
mine O3 response phenotype.

Evidence exists that genetic loci for inflammatory and antiox-
idant processes are also important in human responses to air
pollutants (see review'’!). For example, Bergamaschi et al'’?
found that polymorphisms in genes for phase I xenobiotic metab-
olizing enzymes NAD(P)H:quinone oxidoreductase 1 (NQOI)
and GSTM associated with pulmonary function and epithelial in-
jury responses to O3 in exercising subjects. Yang et al'” found
that among 51 adult subjects exposed to O3 during intermittent
exercise, those with the TNF -308 G/G genotype (wild-type)
had a significantly greater fall in FEV; (-9% of baseline) com-
pared with subjects with a loss-of-function -308 A allele (G/A
or A/A genotype). Interestingly, a similar association of TNF
genotypes was found in adult subjects with asthma exposed to
0.5 ppm SO O3 during moderate exercise.'™*

The role of TNF was also investigated by Li et al,'”> who found
that children with -308 G/G TNF genotype had decreased risk of
asthma and lifetime wheezing compared with children who had
1 or more of the mutant alleles. They also found that the protective
effect of the G/G genotype on wheezing was greater in low O;
communities compared with high O3 communities. Furthermore,
they found that reduction of the protective effect of the -308 G/G
genotype with higher O3 exposure was most evident in children
who had antioxidant GSTM1 null and GSTP]I 1le/lle genotypes.
Results suggested that the -308 G/G genotype may be important
in the pathogenesis of asthma and wheezing, which in turn is de-
pendent on airway oxidative stress. Others'’®!”” have also found
that polymorphisms in NOO! and GSTM 1 confer differential risk
to asthma in oxidant environments, thus strengthening the notion
that interaction of environmental oxidants and these phase II en-
zyme genes (ie, gene-by-environment interaction) are important
in the pathogenesis of asthma.

Hyperoxic lung injury induces inflammation and noncardiogenic
edema in the lung, which are phenotypes of ALI and ARDS. In
positional cloning studies, the nuclear transcription factor NRF2
was identified as a potential candidate gene for susceptibility to hy-
peroxic lung injury in inbred mice.'”® Studies in mice with targeted
deletion of NRF2 confirmed a role for this gene in the hyperoxia
model.'> Interestingly, NRF2 has also subsequently been found
important in the pathogenesis of asthma phenotypes in a mouse
model.'” Furthermore, recent investigations have also suggested
a role for NRF2 in PM-induced exacerbation of asthma, '8!

We therefore hypothesized that polymorphisms in NRF2
resulting in decreased function similarly predispose human be-
ings to ALI. Resequencing of NRF?2 in 4 different ethnic popula-
tions identified 3 new NRF2 promoter polymorphisms at positions
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-617 (C/A), -651 (G/A), and -653 (A/G)."®* The -617 polymor-
phism alters the consensus recognition sequences for NRF2,
and suggests that this polymorphism may affect NRF2 transcrip-
tion. In vitro transcription factor binding analyses confirmed a
loss-of-function effect of the -617 C/A polymorphism. Further-
more, among major trauma patients, those with the -617 A single
nucleotide polymorphism (SNP) had a significantly higher risk
for developing ALI (odds ratio, 6.44; 95% CI, 1.34-30.8; P =
.021) relative to patients with the wild type (-617 CC).'®* These
studies provided insight into the molecular mechanisms of sus-
ceptibility to ALI, and may help identify patients who are predis-
posed to develop ALI under at risk conditions, such as trauma and
sepsis. Furthermore, because animal models have implicated an
important role for NRF2 in asthma/allergy phenotypes, evaluation
of the NRF2 promoter polymorphisms may have relevance in
these and other diseases with oxidant stress etiologies.

Conclusion and future directions

Oxidative stress can cause cellular damage by oxidizing
nucleic acids, proteins, and membrane lipids. ROSs have been
implicated in the pathogenesis of many diseases and important
biological processes including carcinogenesis, atherosclerosis,
aging, and inflammatory disorders. Moreover, because of its
interface with the environment, the lung is a major target organ for
injury by exogenous oxidants such as environmental pollutants
and endogenous ROSs generated by inflammatory cells. Lipid
peroxidation products such as isoprostanes, thiobarbituric acid
reactive products, and malondialdehyde can be detected in EBCs,
BALF, urine, or plasma to give an indirect measure of oxidative
stress. Levels of HO, in EBCs can also be used to estimate oxi-
dative stress within the lungs. Furthermore, levels of antioxidants
such as GSH in EBCs or BALF are another indirect measure of
oxidative stress. These endpoints are indirect measures of oxida-
tive stress and are not specific to air pollutant exposure, and con-
siderable variability may arise from confounding factors such as
collection methods and individual lifestyle habits. Markers of
DNA oxidation such as 8-hydroxy-2-deoxyguanosine and and
8-oxo-guanosine can be detected in the urine. Protein carbonyl
levels in the plasma can be used to assess protein oxidation. All
of the biomarkers mentioned do not discriminate between differ-
ent oxidative insults and are merely indicators of oxidative dam-
age. Further investigation is needed to discover biomarkers that
correlate well with severity of pollutant-induced injury as well
as exposure to the pollutants. These markers are essential to pro-
vide a means to estimate exposure and facilitate identification of
at risk individuals.

Although considerable progress has been made to understand
the mechanisms through which oxidants initiate and propagate
cell and tissue toxicity, critical questions remain to be addressed.
For example, specific signaling pathways and mechanisms of
transcription factor activation by specific oxidant pollutants are
not well understood. Characterization of precise cellular mech-
anisms may provide a means for intervention to prevent or protect
against disease pathogenesis, particularly in populations that are
at risk because of pre-existing disease, age (very young and
elderly), or other predisposing conditions such as poor nutrition.

Because of the impact that oxidants may have on lung function,
a better understanding of factors that may influence individual
susceptibility remains an important issue. In utero and neonatal
exposures to oxidants can have profound effects on the
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developing lung and may affect childhood and adult health con-
siderably. Studies designed to investigate how early life exposures
to specific oxidants affect airway morphology, immune function,
and the epigenome are necessary if we are to understand the long-
term differences in morbidity/mortality outcomes, including
asthma and other allergic diseases.

Genetic background is also an important determinant of
responsiveness to oxidant exposures in children and adults. Using
association analyses in clinical and epidemiological investiga-
tions, functional polymorphisms in a number of candidate
susceptibility genes (eg, NQOI, GSTMI, TNF) have provided
some insight to the importance of genetics in interindividual var-
iation in oxidant responsiveness. However, responsivity to oxi-
dant exposures and disease pathogenesis is a complex,
multigenic process, and the contribution of each gene in a com-
plex trait is relatively minor. Therefore, it is critical to identify
each of the genes that ultimately determine complex traits such
as environmental lung diseases. Discovery of genes that affect
physiology and pathophysiology will occur only if multidisciplin-
ary investigations use model systems to exploit the accumulating
data available for comparative genetics and genomics.'®® Further-
more, susceptibility genes almost certainly interact with multiple
environmental exposures or stimuli that are important in the etiol-
ogy of a disease, and these interactions may vary with age and
from one population to another.'3* It is only through investigation
of the basic mechanisms and translational application that we will
understand the complex interplay of gene-environment interac-
tions and oxidant-mediated lung disease.

We thank Drs Donald Cook, Michael Fessler, and Dianne Walters for
reviewing the manuscript and Dr Sue Edelstein for her hard work on the figures.
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