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Completion of the human genome project and rapid progress in
genetics and bioinformatics have enabled the development of
large public databases, which include genetic and genomic data
linked to clinical health data. With the massive amount of
information available, clinicians and researchers have the
unique opportunity to complement and integrate their daily
practice with the existing resources to clarify the underlying
cause of complex phenotypes, such as allergic diseases. The
genome itself is now often used as a starting point for many
studies, and multiple innovative approaches have emerged
applying genetic/genomic strategies to key questions in the field
of allergy and immunology. There have been several successes
that have uncovered new insights into the biologic
underpinnings of allergic disorders. Herein we will provide an
in-depth review of genomic approaches to identifying genes and
biologic networks involved in allergic diseases. We will discuss
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genetic and phenotypic variation, statistical approaches for gene
discovery, public databases, functional genomics, clinical
implications, and the challenges that remain. (J Allergy Clin
Immunol 2010;126:425-36.)
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Human genome variation encompasses all of the genetic
characteristics observed within the human species. Genetic
variation occurs both within and among populations and is the
basis for natural selection. Insights regarding the distribution of
genetic variants among human populations have recently become
available.1 Interestingly, human genetic diversity decreases in na-
tive populations as the migratory distance from Africa increases,
presumably because of limitations in human migration.2

Nucleotide diversity is based on single mutations called single
nucleotide polymorphisms (SNPs) that occur at a rate of 1 SNP
per 1,000 bp.3 Currently, there are more than 12 million SNPs de-
posited in GenBank, 6.5 million of which have been validated
(http://www.ncbi.nih.gov/SNP). The bulk of variations at these
nucleotide levels are not visible at the phenotypic level.
A better understanding of the basis of genetic diversity was gained
with the publication of full sequences of individuals genomes.4,5

The Human Genome Project and a parallel project by Celera Ge-
nomics yielded 2 haploid sequences; however, analysis of diploid
sequences has revealed that non-SNP variation accounts for much
more human genetic variation than single nucleotide diversity.
Non-SNP variation includes copy number variation (CNV) and
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results from deletions, inversions, insertions and duplications.5

Copy number variation regions (CNVRs) have been found in
12% of the genome. CNVRs can be markedly different between
populations and contain hundreds of genes, disease loci, func-
tional elements, and segmental duplications.5 Taking into account
this variation, as well as SNPs, human-to-human genetic variation
is estimated to be approximately 0.5%. This 0.5% difference
amounts to a significant number of distinct genetic traits that
uniquely distinguish the genome of every person and contribute
to unique and distinct risks for diseases, responses to environmen-
tal exposures (including nutrition), and responses to pharmaco-
logic treatment.
EPIGENETIC VARIATION IN ALLERGIC DISORDERS
Epigenetic variation does not affect the underlying DNA code

but rather modifies how it is expressed through covalent modi-
fications, including DNA methylation, histone modifications, and
microRNAs. It is the structural adaptation of chromosomal
regions so as to register, signal, or perpetuate altered activity
states.6 Detailed analysis of methylation across several chromo-
somes has demonstrated that the promoter regions of nearly
20% of genes are methylated, many of which influence transcrip-
tion.7 Progressive accumulation of phenotypic differences be-
tween genetically identical monozygotic twins illustrates how
pollution, smoking, mold, diet, habits, or, in general, environment
can shape phenotype and disease susceptibility. Monozygotic
twins are epigenetically indistinguishable early in life but exhibit
substantial differences with age, particularly when they have led
different lifestyles and spent less of their lives together.8,9 There-
fore monozygotic twin discordance for many common disorders
could be interpreted as the result of external environmental fac-
tors that modulate susceptibility through a change in the profile
of epigenetic modifications that ultimately determine gene func-
tion. The field of epigenetics has emerged to explain how cells
with the same DNA can differentiate into alternative cell types
and how a phenotype can be passed from one cell to its daughter
cells. It is now well established that epigenetic mechanisms are
important to control the pattern of gene expression during devel-
opment and the cell cycle and in response to biologic or environ-
mental changes.10-13 Unlike genetic alterations, which are
permanent and usually affect all cells, epigenetic modifications
are cell type specific.14 Epigenetic regulation of the immune sys-
tem occurs at many levels, including the differentiation of
T cells.6,15-19 Epigenetic effects on gene expression can persist
even after the removal of the inducing agent and can be passed
on through mitosis to subsequent cell generations, constituting
a heritable epigenetic change. In a somatic cell a heritable change
can generate a dysfunctional clone of cells with phenotypic con-
sequences (eg, a tumor). In a germ-line cell a heritable change can
be transmitted to the germ cells themselves (sperm or ova) and po-
tentially to the next generation. In this model epialleles can be in
linkage disequilibrium (LD) with SNPs that are genotyped in
genome-wide association studies (GWASs). The role of epige-
netics in allergic disease is becoming increasingly evident. One
recent study showed that epigenetic reprogramming involving ab-
errant DNA methylation of a 59-CpG island in acyl-CoA synthe-
tase long-chain family member 3 (ACSL3) was significantly
associated with asthma risk in children born to mothers exposed
to air pollutants, such as traffic-related combustion emissions.20

Another study found that neonates of allergic mothers are born
with substantial changes in DNA methylation in their splenic den-
dritic cells and that these dendritic cells show enhanced allergen-
presenting activity in vitro.21 Current knowledge of epigenetics in
allergic diseases is limited, and novel applications of epigenetic
approaches, including genome-wide approaches to allergic dis-
eases, are necessary to uncover the role of epigenetics.
DEFINING PHENOTYPIC VARIATION IN ALLERGIC

DISEASE
The phenotype is defined as the observable characteristics of an

organism, as determined by both genetic makeup and environ-
mental influences, including individual physical, psychosocial,
and environmental exposures (Fig 1). The genotype is the descrip-
tor of the genome, which is the set of physical DNA molecules
inherited from the organism’s parents, whereas phenotype is
the descriptor of the phenome, the manifest physical properties
of the organism, including its physiology, morphology, and
behavior.

Although single-gene disorders in classical Mendelian inher-
itance result in direct genotype-phenotype correspondence, the
relationship between genotype and phenotype in traits of multi-
factorial (complex) inheritance is complicated. In complex dis-
eases with a multifaceted phenotype, such as asthma, a given
genotype can result in many different phenotypes, and there are
different genotypes corresponding to a given phenotype. Al-
though a subject’s genotype is fairly stable over a lifetime, his or
her phenotype is dynamic, influenced by both the environment
and the underlying genotype, including interactions between
them.22 The definition, measurement, and validity of phenotyping
need to be standardized to increase the quality of research and the
reproducibility of genetic studies.22 Indeed, recently, the National
Institutes of Health launched an initiative (Consensus Measures
for Phenotypes and Exposures [PhenX]) to address the need stan-
dardized phenotype and environmental exposure measures for
cross-study comparison in genetic studies.23 These measures do
not include information for allergic diseases; however, the
National Institute of Allergy and Infectious Diseases recently
partnered with the National Heart, Lung, and Blood Institute;
the National Institute of Environmental Health Sciences; the
National Institute of Child Health and Human Development; the
Agency for Healthcare Research and Quality; the Merck Child-
hood Asthma Network; and the Robert Wood Johnson Foundation
to host an Asthma Outcomes Workshop. The objective of this
workshop was to develop standardized definitions and data collec-
tion methodologies for established and validated asthma out-
comes measures. The goal is that these outcomes will be
broadly used in National Institutes of Health–funded studies.24



FIG 1. Genetic and environmental factors that interact to determine the overall phenotype.
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There are several important variables to consider when defining
a phenotype for studies of allergic disorders, including disease
definition, atopic status, comorbidities, and disease outcomes. For
example, severe asthma is a recognized asthma phenotype defined
by receiving ongoing treatment with high-dose inhaled cortico-
steroids, oral corticosteroids, or both for at least 6 months, with
persistent symptoms or exacerbations when the controller med-
ications are tapered.25 However, ‘‘severe asthma’’ is not a single
phenotype. Population studies have revealed differences in severe
asthma that begin in childhood versus adulthood.26-28 Childhood
asthma is often ‘‘allergic,’’ whereas adult-onset asthma is more
heterogeneous and often is not related to allergy but rather to other
influences, including aspirin sensitivity, hormonal influences, and
occupational exposures. This heterogeneity strongly supports the
need for genetic studies aimed at uncovering the mechanistic
bases for each distinct phenotype rather than the mixed phenotype
of asthma.

Age is an important factor in defining phenotypes for allergic
disorders. As a population ages, it will be exposed to more
environmental factors (eg, environmental tobacco smoke, diesel
exhaust, and air pollution) that contribute to the pathogenesis of
asthma and allergy, thus increasing sporadic (nongenetic) occur-
rences of these disorders. Thus when studying a cohort of adults,
there will be a proportion of subjects who could be classified as
having asthma because of environmental exposures without a
major genetic risk. Children, on the other hand, might reduce the
heterogeneity of the cause of asthma because they have had
minimal time to accumulate environmental exposures, which
would increase the risk of asthma. Given the risks of misclassi-
fication of asthma in the very young and heterogeneity in older
groups, serious attention should be focused on the ages of
participants. There has been a strong focus on powering genetic
studies with very large sample sizes; however, large cohorts might
not help improve our understanding of the genetic underpinnings
of allergy phenotypes as much as precise phenotyping. Pheno-
types can be defined through combinations of clinical information
and individual biomarker and molecular data.

The phenotypic definition of control subjects is another
important consideration, especially in studies of allergic disease,
in which some features might overlap. For example, allergic
sensitization might overlap with childhood asthma, and therefore
if a study aims to identify specifically childhood asthma genes,
the control group should include sensitized subjects without
asthma. The selection of the control subjects should be based on
the goals of the research. With the availability of genotypic and
phenotypic data through public resources, such as the Database of
Genotypes and Phenotypes (dbGAP; http://www.ncbi.nlm.nih.
gov/gap), it is enticing to consider the recruitment of control sub-
jects as unnecessary. However, control subjects unselected with
respect to phenotype increase the number of participants required
to obtain similar power when using control subjects who do not
have the phenotype of interest. This is compounded by the fact
that the publicly available control subjects are likely to be from
a different population than the cases. When this situation occurs,
researchers should consider applying genetic ancestry matching
(discussed below) to minimize population stratification.29
STATISTICAL APPROACHES TO FINDING GENETIC

VARIATION IN ALLERGIC DISORDERS
There are 3 main statistical approaches to gene discovery:

linkage, association, and admixture mapping. Linkage analysis
tests to determine whether a variant cosegregates with disease in
families, association analysis tests to determine whether a
genetic variant occurs more often in subjects with disease than
those without disease, and admixture mapping tests to determine
whether there are particular regions of the genome at which
inheriting DNA from ancestors from a certain region of the world
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predisposes one to particular diseases. Linkage studies can be
performed only in family-based studies, whereas association
testing and admixture mapping can be performed in both
population- and family-based studies. These approaches might
appear to ask the same questions, but statistically, these are
independent tests, and the strategy affects the hypotheses that can
be tested.

Linkage analysis is based on the assumption that the genetic
marker and the disease variant are in close proximity and
transmitted intact across generations.30 Thus markers in close
proximity to the disease-causing gene segregate with disease in
families. However, the resolution of linkage is poor, with
candidate regions encompassing hundreds of genes. Thus linkage
analysis only identifies regions and not genes or variants. Further-
more, because linkage is statistical evidence, replication is the
gold standard to minimize the risk of false-positive results.

An alternative approach is an association study, which can use
population- or family-based designs. It is important to recognize
that association does not equal causation. Association studies
simply measure statistical dependence between 2 or more vari-
ables. Significant associations can be due to one of several
misleading factors, including LD, population stratification, or
random chance. Once significance is achieved, replication is
required to ensure its validity.31

Admixture occurs when 2 or more genetically diverse popu-
lations merge to form a new population.32 Localizing disease
genes by using an admixed population is called admixture
mapping. In human admixture studies researchers combine infor-
mation about known population history with information
from subjects’ measured genotypes using known ancestry-
informative markers (AIMs). Studies consistently show that aller-
gic disorders, such as asthma, are more common in persons of
West African ancestry compared with persons of European ances-
try.33 The African American population is an admixed population
for which about 20% of the genetic material traces to European
ancestry.34 The association between increased asthma risk and
African ancestry and the admixed nature of the African American
population34 suggest that admixture mapping35 might be an im-
portant asthma gene–finding strategy to study genetically hetero-
geneous populations.

With current technology, it is not cost-prohibitive to perform
genome-wide linkage and association studies. An advantage of
the genome-wide approach is that it requires no a priori evidence
and thus has the ability to identify regions and variants in genes
previously not implicated in allergic disorders and provide insight
into the biologic underpinnings for these disorders. Researchers
using genome-wide approaches must adjust the level of signifi-
cance to ensure that findings did not occur by chance; with the in-
creased numbers of statistical tests, the likelihood of obtaining a
P value of .05 increases. For the current GWAS SNP chips (den-
sity of 1 million SNPs), significance thresholds of 1028 are re-
quired31 to control for multiple comparisons. Given this level of
significance, the number of samples required to obtain adequate
power in a GWAS is in the thousands for a gene with modest ef-
fect. By limiting the analysis to those gene regions that have
promising a priori evidence of being involved with asthma, the
severity of the correction for multiple testing becomes much
less severe. A candidate gene study examining 1,000 SNPs will
require only 60.5% of the sample size required by a GWAS study
examining 1 million SNPs to obtain the same statistical power of
80%. This reduced sample requirement might permit better
phenotyping and reduced heterogeneity, which will also improve
the power. Thus there are benefits to both GWASs and candidate
gene approaches.

Because asthma is a prevalent disorder, the classic population-
based sampling strategy is case-control. In this approach the
researcher collects subjects with disease (cases) and unrelated
subjects without disease (control subjects). This method is very
efficient; compared with a random sampling design, only 35% of
the total sample would be required for equivalent power (assuming
an asthma frequency of 10%). Although this approach appears
simple, the challenge is ensuring that the control subjects come
from the same ancestrally homogeneous population as the cases.
When cases and control subjects are not drawn from the same
ancestral population, population stratification can result in spuri-
ous associations.36 For example, suppose most persons of African
ancestry in a sample had brown eyes and also happened to have
asthma, whereas most persons of European ancestry were blue
eyed and asthma free. A naive analysis might conclude that the
brown-eyes SNP is responsible for asthma, even if eye color and
disease are completely unrelated; that is, the methods are likely
to nab the wrong SNP suspects because of ‘‘guilt by association.’’
This problem becomes more pronounced in studies surveying the
entire genome because of the huge number of ancestry-related
SNPs being tested. Researchers can test whether cases and control
subjects differ over a large number of variants not expected to be
associated with disease to address this genetic mixing problem. If
differences exist, adjustments can be made to minimize this ef-
fect.37 Currently, 3 fundamentally different methods are used to
correct for confounding in allergy genetic association studies.37-39

These methods are (1) genomic control, (2) structured association,
and (3) principal component analysis. Genomic control uses a set
of noncandidate unlinked loci to estimate an inflation factor, I,
which was caused by the population structure present and then
corrects the standard x2 test statistic for this inflation factor. The
structured association method uses Bayesian techniques to assign
subjects to ‘‘clusters,’’ or subpopulation classes, by using informa-
tion from a set of noncandidate unlinked loci and then tests for an
association within each cluster. An AIM panel can be used to con-
trol for population confounding by variations in background an-
cestry during structural association testing.35 Therefore AIMs
can be termed structural informative markers. These markers ex-
hibit differences in frequencies between population groups. Im-
portantly, care should be taken in selecting which AIMs to use
because some sets might be population specific.40 Principal com-
ponent analysis involves a mathematic procedure that transforms a
number of possibly correlated variables into a smaller number of
uncorrelated variables called principal components. It can be used
to identify and adjust for population substructure.37 Family-based
association tests protection against stratification, a decided advan-
tage of family-based designs.41
USE OF PUBLIC DATABASES TO INFORM GENETIC

DATA
Publicly available databanks now contain billions of nucleo-

tides of DNA sequence data collected from over 260,000 different
organisms.42 This proliferation of data from genome sequencing
over the past decade has resulted in dramatic changes in the way
the scientific community is communicating and carrying out ge-
nomic research. Once a genome-wide or candidate gene study
has been performed, the investigator can readily obtain



FIG 2. Public databases can be used to rapidly provide key information about putative disease-associated

genetic variants.
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information about an identified SNP, including where it is located,
its potential functional significance, its frequency in different
populations, and whatever else might already be known (Fig 2).
A summary of available public resources appears in Table I.
The PubMed (http://www.ncbi.nlm.nih.gov/sites/entrez) site
will provide information on whether an SNP is in a gene and
whether there are reported genotypic and allelic frequencies for
major population groups. The database of genomic variants
(http://projects.tcag.ca/variation/) is also a useful tool. This site
permits the researcher to zoom out and get a broader view of
the genomic region containing the SNP of interest, including fea-
tures such as newly reported genes, transcripts, and copy number
variants. The Web site for the University of California, Santa
Cruz, Genome Browser (http://genome.ucsc.edu) also provides
excellent information about the features of the genome in a partic-
ular region. Although each of these sites is an excellent tool to
examine a small number of SNPs, a large number of SNPs can
be investigated efficiently by using a high-throughput method,
such as the SNP and CNV annotation database (http://
genemem.bsd.uchicago.edu/newscan). Once the most promising
SNPs have been identified, databases are available to provide es-
timates of putative functionality of the SNPs. FASTSNP (http://
fastsnp.ibms.sinica.edu.tw/pages/input_CandidateGeneSearch.jsp)
evaluates all SNPs in a gene region by using the methodology pro-
posed by Tabor and colleagues.43,44 If the SNP is nonsynony-
mous, then SNPeffect (http://snpeffect.vib.be/search.php) can
provide additional information about the molecular properties
of the variant. The Genetic Association Database (http://
geneticassociationdb.nih.gov/) is a useful tool to determine
what is already known about a specific SNP or genes in terms
of disease associations. It is an archive of genetic association stud-
ies and is searchable by both disease and gene.45 A catalog of pub-
lished GWASs is regularly updated and deposited at http://www.
genome.gov/GWAStudies.46 Another resource available is the re-
lationship between SNP variants and gene expression (http://
www.scandb.org).47
HAPMAP, TAGGING SNPs, AND IMPUTATION

ANALYSIS
The International HapMap Project in 2002 initiated the con-

struction of a genome-wide SNP database of common variation
(http://www.hapmap.org) to accelerate the identification of
common disease alleles. In brief, the phase I and II project has
genotyped more than 3 million SNPs in 269 samples from 4 pop-
ulations: 90 Utah Residents (30 parent-offspring trios) with
Northern and Western European Ancestry; 45 Han Chinese sub-
jects from Beijing, China; 44 Japanese subjects from Tokyo,
Japan; and 90 Yoruban subjects (30 trios) from Ibadan, Nigeria.
The average spacing of the map is 1 SNP per 1,000 bp, and this
vast resource is currently being used globally as a template for
both LD-based candidate gene studies and GWASs in allergic
disorders. The HapMap phase III has recently released a draft ver-
sion of the dataset (http://www.hapmap.org) to increase the sam-
ple size to more than 1,000 subjects in 11 populations. HapMap
genotypic data, allele frequencies, LD data, phase information,
and sample documentation are publicly and freely available for
download from the HapMap Web site (http://www.hapmap.org).

Although whole human genome sequencing is possible,48 the
costs and challenges with dealing with such a large quantity of
data make this approach untenable currently. However, SNPs
that are physically close to one another on the chromosome are
more likely to be inherited together than SNPs farther apart. LD
is a measure of this nonrandom correlation between pairs of
SNPs. Thus if a causal variant is in LD with a marker SNP, then
the marker will be associated with the phenotype proportional to
the degree of LD between them. Furthermore, there are blocks
of high LD conserved within populations.49 The coinheritance be-
tween SNP alleles showing strong LD enable most of the common
genetic variations in a region to be captured by genotyping subsets
of SNPs (termed haplotype-tagging SNPs) across a candidate gene
or region of interest. Because redundant information can be re-
duced (thus reducing cost), many studies will often use the tagging
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TABLE I. Summary of Web-based public databases and browsers of genetics/genomics tools

Categories Functional description Web site (URL)

Database/browser

dbSNP/NCBI Genomic database and browser http://www.ncbi.nlm.nih.gov/sites/entrez?db5snp

EBI/Ensembl Genomic database and browser http://www.ensembl.org/Homo_sapiens/index.html

Santa Cruz SNP, gene, or genomic region browser http://genome.ucsc.edu/cgi-bin/hgGateway

DDBJ DNA databank Japan http://www.ddbj.nig.ac.jp

Gene expression/ontology database

Gene Expression Omnibus Functional genomics data repository http://www.ncbi.nlm.nih.gov/geo

ArrayExpress Functional genomics data repository http://www.ebi.ac.uk/microarray-as/ae/

GO Gene and gene product attributes across species http://www.geneontology.org

UniProt Central repository for protein sequence and function http://www.uniprot.org/

Population common/rare variances resequencing
HapMap Information on 3.1 million SNPs from multiple

reference/template populations

http://www.hapmap.org/cgi-perl/gbrowse

1000 Genomes Project Sequence variants with minor allele frequency of

1% from HapMap

http://www.1000genomes.org/page.php

The Exome Project High-throughput resequencing, protein-coding

regions

http://exome.gs.washington.edu

Single gene/variant browser

SNPper Map SNPs into genes and chromosome position http://snpper.chip.org/bio/snpper-enter

SPSmart SNP allele frequency summary from multiple

populations

http://spsmart.cesga.es/hapmap.

php?dataSet5hapmap

PupaSuite Explore SNPs with potential phenotypic effects http://pupasuite.bioinfo.cipf.es

Haplotter Detect signature of SNP natural selection http://hg-wen.uchicago.edu

SNPedia Wiki investigating the effects of variations in human

DNA

http://www.snpedia.com/index.php/SNPedia

BLAST Used for checking SNP assay primer designs http://blast.ncbi.nlm.nih.gov/Blast.cgi

SCAN Maps SNPs into genes, identifies flanking genes,

and associates with gene expression profiles

(can do multiple SNPs easily)

http://www.scandb.org/newinterface/about.html

SNPator Format (eg, creating) input files for different

analysis

http://www.snpator.org/public/new_login/index.php

Database Genomic Variants Maps SNPs onto the genome and identifies the

structural variation in the human genome

http://projects.tcag.ca/variation

SNAP SNP Annotation and Proxy Search based on LD;

excellent tool for determining SNPs in LD with

the SNP of interest

http://www.broadinstitute.org/mpg/snap

SNPselector Selecting SNPs for genetic association studies http://primer.duhs.duke.edu/

FastSNP Uses decision tree analysis to classify SNPs into

putative functional effect

http://fastsnp.ibms.sinica.edu.tw

Onto-Express Identify enriched functional ontologies/expressed

genes

http://vortex.cs.wayne.edu

SNPeffect Determines the putative functionality of SNPs in

coding and regulatory regions with rs no.

http://snpeffect.vib.be/search.php

SNPs3D Web site that assigns molecular functional effects of

nonsynonymous SNPs based on structure and

sequence analysis

http://www.snps3d.org

GeneSNPS Graphic view of SNPs in the context of gene

elements

http://www.genome.utah.edu/genesnps

PolyPhen Predicts the effect of amino acid substitution on the

structure and function of proteins

http://genetics.bwh.harvard.edu/pph

PolyDoms Web-based application that maps synonymous and

nonsynonymous SNPs onto known functional

protein domains

http://polydoms.cchmc.org/polydoms

GVS: Genome Variation Server Integration of dense, gene-centric SNP maps from

dbSNPs with genomic HapMap SNPs

http://gvs.gs.washington.edu/GVS

Consensus Measures for Phenotypes

and Exposures (PhenX)

Cross-study comparisons by providing standard

measures of phenotype and environmental

exposures

https://www.phenxtoolkit.org

Prioritization of candidate genes in linkage or genomic region

GeneSeeker Extraction and integration of human disease–related

information from Web-based genetic databases

http://www.cmbi.ru.nl/GeneSeeker

(Continued)
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http://www.ncbi.nlm.nih.gov/sites/entrez?db=snp
http://www.ncbi.nlm.nih.gov/sites/entrez?db=snp
http://www.ensembl.org/Homo_sapiens/index.html
http://genome.ucsc.edu/cgi-bin/hgGateway
http://www.ddbj.nig.ac.jp
http://www.ncbi.nlm.nih.gov/geo
http://www.ebi.ac.uk/microarray-as/ae
http://www.geneontology.org
http://www.uniprot.org/
http://www.hapmap.org/cgi-perl/gbrowse
http://www.1000genomes.org/page.php
http://exome.gs.washington.edu
http://snpper.chip.org/bio/snpper-enter
http://spsmart.cesga.es/hapmap.php?dataSet=hapmap
http://spsmart.cesga.es/hapmap.php?dataSet=hapmap
http://spsmart.cesga.es/hapmap.php?dataSet=hapmap
http://pupasuite.bioinfo.cipf.es
http://hg-wen.uchicago.edu
http://www.snpedia.com/index.php/SNPedia
http://blast.ncbi.nlm.nih.gov/Blast.cgi
http://www.scandb.org/newinterface/about.html
http://www.snpator.org/public/new_login/index.php
http://projects.tcag.ca/variation
http://www.broadinstitute.org/mpg/snap
http://primer.duhs.duke.edu/
http://fastsnp.ibms.sinica.edu.tw
http://vortex.cs.wayne.edu
http://snpeffect.vib.be/search.php
http://www.snps3d.org
http://www.genome.utah.edu/genesnps
http://genetics.bwh.harvard.edu/pph
http://polydoms.cchmc.org/polydoms
http://gvs.gs.washington.edu/GVS
https://www.phenxtoolkit.org
http://www.cmbi.ru.nl/GeneSeeker


TABLE I. (Continued)

Categories Functional description Web site (URL)

PROSPECTR Prioritize genes in linkage region http://www.genetics.med.ed.ac.uk/prospectr/search.

shtml

SUSPECTS Prioritization of positional candidates http://www.genetics.med.ed.ac.uk/suspects/search.

shtml

Prioritizer Positional candidate gene prioritization http://pcdoeglas.med.rug.nl/prioritizer

G2D Candidate gene priorities and link to phenotype http://www.ogic.ca/projects/g2d

ENDEAVOUR Candidate genes prioritization through genomic data

fusion

http://homes.esat.kuleuven.be/%7Ebioiuser/

endeavour/tool/endeavourweb.php

ToppGene Prioritize candidate genes based on functional

similarity to training gene list

http://toppgene.cchmc.org

CANDID Candidate gene identification program https://dsgweb.wustl.edu/hutz/candid.html

FitSNP Prioritizes differentially expressed genes and causal

variants

http://fitsnps.stanford.edu/index.php

AILUN Reannotates all gene expression/proteomics data

from Gene Expression Omnibus by relating all

probe IDs to Entrez Gene IDs

http://ailun.stanford.edu/geneSearch.php

GeneChaser Identifies differentially expressed genes in biologic

and clinical conditions

http://genechaser.stanford.edu

Genomics Portals Web platform for mining genomic data http://GenomicsPortals.org
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SNP approach. A challenge is that tagging SNPs are not selected
for their likelihood to be functional. However, recent work has
shown that information from unmeasured SNPs can be imputed
by using tagging SNPs.50,51 Imputation requires use of a reference
population in which genotypic information is available for a large
number of SNPs.52 Although some of these SNPs would overlap
with the genotyped tagging SNPs in a given study, others would
be untyped SNPs in LD with the genotyped SNPs. By delineating
the genotype patterns in the reference set, researchers can make
reasonable inferences about what genotypes are likely to be car-
ried by subjects at untyped SNPs in their study. It is essential
that the reference population is similar in ancestry to the popula-
tion in which imputation will be performed. Fortunately, Hap-
Map53 provides publicly available information on more than 3
million SNPs in 4 major ancestry groups. Once imputation is per-
formed, imputed SNPs can be tested for association with disease
in the population of interest.52 Because imputation interrogates
all common variants, the likelihood of identifying biologically rel-
evant associations (eg, with functional variants) is greater. An-
other advantage of imputation is that studies might not use the
same SNPs in the original discovery phase. With imputation,
even studies that have investigated different SNPs can be com-
bined to determine the overall evidence for a given association.52
RARE VARIANTS IN ALLERGIC DISORDERS
Most genetic studies, including GWASs, investigating com-

mon diseases have focused on common genetic variants on the
assumption that common variants are mostly likely to contribute
to common diseases (common disease/common variant hypoth-
esis).54 There is emerging interest in association studies of rare
variants, and it is hypothesized that rare variants are more likely
to be functional than common variants. Furthermore, recent evi-
dence supports that rare genetic variants can create synthetic as-
sociations that are credited to common variants.55 Although
genetic association and linkage studies are well suited to find
common variants for common diseases, they are not optimal for
identification of rare variants.56 Rare alleles with major pheno-
typic effects can contribute significantly to common traits in the
general population.57 Sequencing of candidate genes or entire ge-
nomes is the optimal way to identify rare variants. Unfortunately,
most current studies are not designed or powered to identify, test,
or both the contributions of rare SNPs to common disease.
Although current approaches are not optimal to elucidate rare var-
iants, they can identify regions of interest, which harbor rare var-
iants; these regions can then be further analyzed by means of deep
resequencing (the determination of a new genome sequence rela-
tive to a reference genome is often referred to as resequencing).

Recently, approaches have been used to study the potential
health effects of private SNPs (ie, SNPs that have only been found
in a given population).58 In one study investigators explored pri-
vate SNPs in specific populations that might have phenotypic
effects. They found that these SNPs contribute to variability in
several cellular processes.59 Such variability might provide clues
regarding ethnicity-specific responses to diseases or drugs. An-
other recent study found that in African American subjects private
SNPs were associated with asthma.60 Investigation of rare and
private SNPs requires deep-sequencing approaches. The 1000
Genomes Project, a deep-resequencing project aimed at providing
detailed genetic variation data on more than 1,000 genomes from
11 populations around the world, will aid these efforts (www.
1000genomes.org). This project will identify more than 95% of
the variants with allele frequencies of greater than 1% in the hu-
man genome, substantially enhancing the HapMap data. Results
from the 1000 Genomes Project will provide data to allow evalu-
ation of the common disease/common variance hypothesis versus
the common disease/many rare variants hypothesis.61

FUNCTIONAL GENOMICS
Once a genetic study has been performed and allergy-causing

variants have been identified, the investigator can gain informa-
tion to unify the biologic function of gene products. Several
groups have reported that genes involved in predisposing to a
given polygenetic disease tend to share more commonalities
(annotated by similar Gene Ontology [GO] terms) in their
molecular function or biologic pathway than genes chosen at
random or genes not involved in the same disease.62-69 GO (http://
www.geneontology.org) can be used to identify commonalities

http://www.1000genomes.org
http://www.1000genomes.org
http://www.geneontology.org
http://www.geneontology.org
http://www.genetics.med.ed.ac.uk/prospectr/search.shtml
http://www.genetics.med.ed.ac.uk/prospectr/search.shtml
http://www.genetics.med.ed.ac.uk/suspects/search.shtml
http://www.genetics.med.ed.ac.uk/suspects/search.shtml
http://pcdoeglas.med.rug.nl/prioritizer
http://www.ogic.ca/projects/g2d
http://homes.esat.kuleuven.be/&percnt;7Ebioiuser/endeavour/tool/endeavourweb.php
http://homes.esat.kuleuven.be/&percnt;7Ebioiuser/endeavour/tool/endeavourweb.php
http://toppgene.cchmc.org
https://dsgweb.wustl.edu/hutz/candid.html
http://fitsnps.stanford.edu/index.php
http://ailun.stanford.edu/geneSearch.php
http://genechaser.stanford.edu
http://GenomicsPortals.org


FIG 3. From phenotypes to genotypes and back to phenotype. An overview of how integrated genetic and

genomics approaches can be used to inform current knowledge about allergic disorders.
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between gene products in the form of an agreed ontology. It pro-
vides a controlled vocabulary about genes and gene products
based on known or predicted molecular function, cellular loca-
tion, and biologic process.70 Because of the existing homologies
between proteins among different taxa, the GO terms provide re-
searchers with a powerful way to query and analyze functional ge-
nomic information in a way that is independent of species.70,71

Once genetic analyses determine which genes (among the thou-
sands analyzed) might be related to the phenotypes, functional ge-
nomics experiments allow the scaling of the classical functional
experiments to a genomic level.72 The GO analysis could poten-
tially be used to reduce the number of targets of a large group of
correlated genes and to find biologic functions potentially af-
fected by multiple genes. In summary, GO annotation terms are
enriched among genes linked to the trait, and such commonalities
are often sufficient to narrow the list of candidate genes.69
INTEGRATION OF GENE EXPRESSION AND

SEQUENCE VARIATION APPROACHES IN

ALLERGIC DISORDERS
Both coding and noncoding variability contribute to genetic

variation. Novel approaches to capture human genetic variation
have integrated global gene expression arrays, DNA sequence
variation arrays, and public databases (Fig 3).73 This strategy has
been successfully applied to asthma.74 In association studies the in-
vestigators found markers on chromosome 17q21 to be reproduc-
ibly associated with childhood asthma. They then evaluated the
relationships between the markers and transcript levels of genes
in cell lines derived from children in the association study. The
SNPs associated with childhood asthma were associated with tran-
script levels of ORM1-like protein 3 gene (ORMDL3), suggesting
that genetic variants regulating ORMDL3 expression are determi-
nants of susceptibility to childhood asthma. Thus gene expression
data informed the genetic data and provided insights regarding the
biologic mechanisms that might be involved. Gene expression ar-
rays can also be used in a discovery approach to identify dysregu-
lated genes and pathways. The gene expression profiles can be used
to identify key regulatory networks, to identify novel potential can-
didate genes, and to define phenotypes, which can then serve as
quantitative traits for genetic studies. Variation in gene expression
is an important mechanism underlying susceptibility to complex
disease. An integrated genetic/genomic approach allows the map-
ping of the genetic factors that underpin individual differences in
quantitative levels of expression (expression quantitative trait
loci).75 The major public data repositories, ArrayExpress and
Gene Expression Omnibus, house raw microarray data and serve
as warehouses for processed experimental data, facilitating gene-
based queries of multiple expression profiles. ArrayExpress
(http://www.ebi.ac.uk/microarray-as/ae) is a public repository for
experimental microarray data that is able to be queried based on
a range of gene annotations, including gene symbols, GO terms,
and disease associations.76 Gene Expression Omnibus (http://
www.ncbi.nlm.nih.gov/geo) is a public repository that archives
and freely distributes microarrays, next-generation sequencing,
and other forms of high-throughput functional genomic data.

SUCCESSES AND CLINICAL IMPLICATIONS
By using a candidate gene approach, common mutations in the

filaggrin gene (FLG, 1q21) have been implicated in the causation

http://www.ebi.ac.uk/microarray-as/ae
http://www.ncbi.nlm.nih.gov/geo
http://www.ncbi.nlm.nih.gov/geo
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of ichthyosis vulgaris.77-79 Filaggrin80 (filament aggregation pro-
tein) is a major epidermal protein involved in maintaining the skin
barrier,81 and previous studies have demonstrated that filaggrin
was absent or reduced in the skin cells of subjects with ichthyosis
vulgaris.82 Several independent replication studies have now pro-
vided convincing evidence of an association of FLG mutations
with atopic dermatitis (AD).83-85 The estimated penetrance varies
from 42% to 79%86,87; that is, between 42% and 79% of subjects
with 1 or more FLG null mutations are likely to have AD. The dis-
covery that null mutations in FLG are associated with atopic ec-
zema represents the single most significant breakthrough in
understanding the genetic basis of this complex disorder. In addi-
tion, this association has yielded important insights into the bio-
logic underpinnings of AD and support for the hypothesis that a
barrier defect might be a contributory mechanism for the patho-
genesis of AD and related atopic disorders.83,88 The exact contri-
bution of FLG to atopic disorders remains to be delineated. The
identification of patients with these FLG mutations might facili-
tate the targeting of novel therapies to repair or replace the defec-
tive epidermal barrier.89

GWASs have also yielded successes. As discussed above, the
association of ORMDL3 with asthma was first identified by means
of a GWAS.74 Since the initial report, multiple groups have repli-
cated the association between ORMDL3 variants and asthma.90-96

Furthermore, these variants have recently been found to associate
not only with ORMDL3 expression but also with transcripts of
multiple genes in this region.92 Increased expression of ORMDL3
has been associated with the unfolded-protein response.97 There
is still much work to be done in this area, but it further illustrates
how genetic/genomic approaches can provide insights into novel
biologic networks and potential disease mechanisms.
MISSING HERITABILITY AND FUTURE DIRECTIONS
Genetic associations, including GWASs, have identified hun-

dreds of genetic variants associated with complex human dis-
eases, including 43 replicated genes for asthma.98 Most variants
identified thus far confer relatively small increments in risk and
explain only a small proportion of disease heritability. This has
led to considerable speculation regarding the sources of the re-
maining ‘‘missing heritability.’’99 Much of the speculation has fo-
cused on the possible contribution of rare variants (minor allele
frequency, 0.5% to 5.0%). Such variants are not sufficiently fre-
quent to be captured by current genotyping arrays nor do they
carry sufficiently large effect sizes to be detected by current stud-
ies. With the completion of the human genome, more focus has
gone into dense resequencing of regions. Because the cost of se-
quencing is still high, researchers often sequence DNA pools to
identify variants that that can be explored with additional geno-
typing.100,101 The pooled samples reliably detect variants at a
frequency of 1% or greater with as little as 287 samples.100 Fur-
thermore, if overlapping pools are used, these samples can be
used to estimate allele frequencies.101 Once variants are identi-
fied, the next challenge is how to proceed. Much larger samples
are needed for the identification of associations with variants
than those needed for the detection of the variants themselves.
One technique that has been used is to group rare variants such
that the presence of any one of a number of rare variants is exam-
ined for disease association. However, this is complicated by the
fact that the rare variants might have disparate effects on pheno-
type, making this approach uninterpretable.
Structural variants, including copy number variants (including
insertions and deletions) and copy neutral variation (including
inversions and translocations), might account for some of the
unexplained heritability.102 Although the variation affecting large
chromosomal regions can result in large phenotypic perturbations,
small/regional CNVs can have minimal-to-severe effects on phe-
notype.103 In 2006, the first comprehensive CNV map of the human
genome was published.104 Since then, CNVs have been associated
with many different diseases, including asthma.105 The challenge
for copy number variants is detection.102 Furthermore, in a recent
study 2 copy number algorithms resulted in poor agreement.106

Thus although CNVanalysis offers promise, the technical and sta-
tistical assessment of CNVs is still evolving.107,108

The modest size of genetic effects detected thus far confirms
the multifactorial cause of these complex disorders. The next
frontier of genetic studies will require innovative approaches to
look for the sources of missing heritability. This will include
application of whole-genome sequencing to persons with extreme
phenotypes, use of expanded genome variation data provided by
the 1000 Genomes project, development of novel methods to
detect additional sources of variation, improved phenotyping and
use of expression quantitative trait loci, expanded efforts in
epigenetics and identification of epigenetic variation, rigorous
assessment of environmental influences and gene-environment
interactions, assessment of gene-gene interactions, and the design
of meta-studies with well-defined consistent phenotypes spanning
across large population sets.

What do we know?
d Genetic variation plays a large role in asthma and allergic

disease risk.

d Non-SNP variation accounts for much more human ge-
netic variation than single nucleotide diversity. CNVRs
have been found in 12% of the genome.

d Whole-genome information and high-throughput tools
are now available for high-resolution mapping.

d Gene-environment interactions play an important role in
allergic diseases and have been relatively well studied in
model organisms.

d Epigenetic effects on gene expression can persist even af-
ter removal of the inducing agent and can be passed on,
through mitosis, to subsequent cell generations, constitut-
ing a heritable epigenetic change.

d There are 3 main statistical approaches to identify
disease-associated genes: linkage, association, and admix-
ture mapping.

d Recent evidence has revealed that rare alleles with major
phenotypic effects can contribute significantly to common
traits in the general population. Sequencing of candidate
genes or entire genomes is currently the optimal way to
identify rare variants.

d Recent evidence has revealed that rare/private SNPs can
contribute significantly to common traits in the general
population. Although genetic association and linkage stud-
ies are well suited to find common variants for common dis-
eases, they are not optimal for identification of rare
variants. Sequencing of candidate genes or entire genomes
is currently the optimal way to identify rare variants.
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d Novel approaches to capture human genetic variation
have integrated global gene expression arrays, DNA se-
quence variation arrays, and public databases. Variation
in gene expression is an important mechanism underlying
susceptibility to complex disease. An integrated genetic/
genomic approach allows the mapping of the genetic fac-
tors that underpin individual differences in quantitative
levels of expression (expression quantitative trait loci).

What is still unknown?
d Identified variants account for a small proportion of dis-

ease, and the factors that contribute to the majority of the
heritability of allergic diseases are still unknown.

d The effect of structural variation (including CNV) on
asthma and allergic disease is unclear. Furthermore, the
technical and statistical assessment of CNVs is still evolving.

d Linkage of genetic variation to phenotypic variation and
to translation into biologic function is still in its infancy.

d Rigorous quantitative assessment of environmental influ-
ences will be necessary to elucidate gene-environment in-
teractions in human subjects.

d Approaches to efficiently dissecting the role of gene-gene
and gene-environment interactions, epigenetics, and im-
printing are lacking.

d A positive association does not imply causality or a direct
effect on gene expression or protein function.

d The role of rare variants is unclear. Furthermore, al-
though genetic association and linkage studies are well
suited to find common variants for common diseases,
they are not optimal for identification of rare variants.

d Although rare and private SNPs are largely unknown, the
1000 Genomes Project, a deep-resequencing project, will
provide detailed genetic variation data on more than
1,000 genomes from 11 populations around the world.

d Genetic studies have identified hundreds of genetic vari-
ants associated with complex human diseases, including
43 replicated genes for asthma. The variants identified
thus far confer relatively small increments in risk and ex-
plain only a small proportion of disease heritability. The
clinical implications (ie, the contribution of the genetic
variation to asthma subphenotypes, variations in treat-
ment response, and different disease outcomes) remain
largely undetermined.
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