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Background: Eosinophils cluster along airway nerves in

patients with asthma and release eosinophil major basic

protein, an antagonist of inhibitory M2 muscarinic receptors on

nerves. Blocking M2 function increases bronchoconstriction,

leading to airway hyperreactivity. Intercellular adhesion

molecule-1 (ICAM-1) mediates eosinophil adhesion to nerves.

Objective: We investigated mechanisms of ICAM-1 expression

by parasympathetic nerves.

Methods: ICAM-1 expression was examined by

immunocytochemistry of lung sections from ovalbumin-

sensitized and challenged guinea pigs. ICAM-1 was measured

in parasympathetic nerves isolated from subjects and guinea

pigs and in human neuroblastoma cells by real-time RT-PCR,

immunocytochemistry, and Western blot.

Results: ICAM-1 was not detected in control airway

parasympatheric nerves in vivo or in cultured cells. ICAM-1

was expressed throughout antigen–challenged guinea pig lung

tissue and was selectively decreased by dexamethasone only

in nerves. ICAM-1 was induced in human and guinea pig

parasympathetic nerves by TNF-a and IFN-g and was

inhibited by dexamethasone and by an inhibitor of nuclear

factor-kB (NF-kB). In neuroblastoma cell lines TNF-a and

IFN-g–induced ICAM-1 was blocked by an inhibitor of NF-kB

but not by inhibitors of mitogen-activated protein kinases.

Dexamethasone did not inhibit ICAM-1 expression in

neuroblastoma cells.

Conclusions: ICAM-1 induced in nerves by antigen challenge

and proinflammatory cytokines is sensitive to dexamethasone.

ICAM-1 expression is also sensitive to inhibitors of NF-kB.

Neuroblastoma cells mimic many, but not all, characteristics

of ICAM-1 expression in parasympathetic nerves.

Clinical implications: Dexamethasone and NF-kB inhibitors

could prevent eosinophils from adhering to nerves by blocking

ICAM-1 expression on parasympathetic nerves, thus protecting

inhibitory M2 muscarinic receptors and making this pathway a

potential target for asthma treatment. (J Allergy Clin Immunol

2007;119:1415-22.)
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Neuroimmune interactions in disease pathogenesis
involve bidirectional communication between neurons
and inflammatory cells. Neurotransmitters substantially
affect leukocyte function.1 For example, catecholamines
stimulate CD41 lymphocytes to produce TH2 cytokines
after antigen exposure,2 whereas acetylcholine suppresses
endotoxin-induced TNF-a production by macrophages
with a concomitant decrease in mortality.3 Conversely,
inflammatory cells, when recruited to nerves, profoundly
affect neural function and neurotransmitter expression, as
seen in neuropathies and other chronic inflammatory dis-
eases.4 Moreover, inflammatory cell proteins directly alter
neurotransmitter release, as, for example, eosinophil major
basic protein5 blocking inhibitory M2 muscarinic recep-
tors on nerves6 and inducing acetylcholine release.

Eosinophils cluster along airway nerves in asthmatic
patients and antigen-challenged animals.7,8 Eosinophil-
mediated blockade of M2 muscarinic receptors increases
acetylcholine release, causing airway hyperreactivity in
animal models of asthma5,7,9,10 and might explain the
M2 muscarinic receptor dysfunction that has been shown
in human subjects with allergic asthma.11 It is specifically
eosinophil presence around airway nerves, rather than
eosinophil number in lungs, that causes airway hyperreac-
tivity. Redistributing eosinophils away from airway nerves
by treating with either dexamethasone12 or a CCR3 antag-
onist13 prevents antigen-induced hyperreactivity and pro-
tects M2 receptor dysfunction. Airway nerves express
eotaxin,13 which signals through CCR3 to attract eosino-
phils. However, little is known about the signals mediating
eosinophil adhesion to nerves.

Vascular cell adhesion molecule 1 (VCAM-1) and
intercellular adhesion molecule 1 (ICAM-1) are important
in eosinophil migration. VCAM-1 interacts with very late
activation antigen 4, whereas ICAM-1 interacts with
CD11a/CD18 (LFA-1) and CD11b/CD18 (Mac-1) on
eosinophils.14,15 We have demonstrated that VCAM-1 is
constitutively expressed in parasympathetic nerves but is
not upregulated by proinflammatory cytokines and is not
required for eosinophil adhesion to nerves.16 In contrast,
ICAM-1 plays a central role in eosinophil adhesion to
parasympathetic nerves.16 ICAM-1 is a 70-kd to 110-kd
cell-surface glycoprotein with 5 extracellular immuno-
globulin-like domains. Inappropriate ICAM-1 expression
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Abbreviations used
c-JNK: c-Jun N-terminal kinase

ICAM-1: Intercellular adhesion molecule-1

MAP: Mitogen-activated protein

NF-kB: Nuclear factor-kB

VCAM-1: Vascular cell adhesion molecule 1

can contribute to clinical manifestations of allergic rhini-
tis,17 eczema,18 multiple sclerosis,19 atherosclerosis,20 and
certain neurological disorders21 by interfering with normal
immune function.

ICAM-1 is increased in the lungs of sensitized animals
compared with values in the lungs of nonsensitized
animals.22 A physiologic role for ICAM-1 in asthma is
suggested because antibody to ICAM-1 inhibits bron-
chial hyperreactivity and reduces eosinophils in lungs of
antigen-challenged monkeys.23 ICAM-1 mediates
eosinophil adhesion to parasympathetic nerves in vitro.16

Eosinophil adhesion to ICAM-1 leads to degranulation,24

and thus ICAM might be an important physiologic mech-
anism for eosinophil activation at airway nerves. Here we
demonstrate that ICAM-1 is present in vivo in airway
nerves of antigen-challenged guinea pigs and test whether
proinflammatory cytokines, dexamethasone, and inhibitors
of mitogen-activated protein (MAP) kinase and nuclear
factor-kB (NF-kB) regulate ICAM-1 in neuroblastoma
cells and in guinea pig and human parasympathetic
neurons.

METHODS

Pathogen-free Dunkin-Hartley guinea pigs (300–350 g; Hilltop,

Scottsdale, Pa) were kept in particulate-filtered air cages and handled

as established by the National Institutes of Health guidelines. All

protocols were approved by the Oregon Health and Science

University Animal Care and Use Committee.

Guinea pigs were sensitized and challenged with ovalbumin, as

previously described.12 Twenty-one, 22, and 23 days later, dexameth-

asone (6 mg/kg administered intraperitoneally) or vehicle was given

daily. One hour after the last dexamethasone dose, animals were

exposed to aerosolized ovalbumin (5%) for 5 minutes, and airway

tissues were harvested and fixed in formalin 24 hours later. Lung

sections were dewaxed and treated with antigen-unmasking fluid at

908C for 10 minutes, and sequential sections were incubated with

either mouse mAb to PGP 9.5 diluted 1:1000 or ICAM-1 diluted

1:400 in 10% normal goat serum. Staining was visualized with bioti-

nylated goat anti-mouse IgG or biotinylated goat anti-rabbit IgG

(both from Vector Laboratories, Burlingame, Calif), both diluted

1:400, and streptavidin-linked horseradish peroxide substrate

(Vector Laboratories) and DAB-Ni (Vector Laboratories). Omission

of the primary antibody served as a negative control.

Parasympathetic neurons from guinea pig or human tracheas were

isolated and maintained in serum free medium13 in 4-chambered

slides so that each culture had an internal control. Five days later,

TNF-a (2 ng/mL) and IFN-g (50 ng/mL) were added for 48 hours.

In some experiments dexamethasone or Bay11-7082 was added 2

hours before cytokine stimulation. Nerves were fixed with methanol

and acetone (1:1) for immunostaining.
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The human neuroblastoma cell lines SK-N-SH (depleted of

fibroblasts25), SH-SY-5Y, and Be-(2)-M17 (from ATCC) were cul-

tured in minimum essential medium Eagle with 10% FBS, 100 U/

mL penicillin, 0.1 mg/mL streptomycin, and 10 mg/mL gentamicin

to 80% confluence before TNF-a (2 ng/mL) and/or IFN-g (1000 U/

mL) or IL-4 (1 ng/mL and 10 ng/mL) was added for 1 to 24 hours

(for real-time PCR) or 48 hours (for Western blotting). In some exper-

iments pharmacologic inhibitors of signaling pathways were added

90 minutes before application of TNF-a and IFN-g.

ICAM-1 expression in parasympathetic nerves from guinea pig or

human tracheas was identified by using species-appropriate anti-ICAM-

1 antibodies diluted 1:50. Secondary antibodies were species specific,

labeled with Alexa fluro 594, diluted 1:4000, and incubated for 60

minutes at 378C. Normal serum (Vector Laboratories) replaced primary

antibodies as a control. All slides were mounted in aqueous medium

with 49-69diamino-2-phenylindole (DAPI, Vector Laboratories).

ICAM-1 expression was quantified in a blind fashion in guinea

pig airway nerves by using Metamorph (Molecular Devices Corp.,

Downingtown, Pa). Each slide was photographed with the same ex-

posure. ICAM-1–labeled neurites from TNF-a– and IFN-g–treated

and untreated cells were selected at random and outlined by

hand. Nerve cells were difficult to distinguish individually and

therefore were not included in the analysis. Average intensity was col-

lected from 20 to 30 separate neurites from each group from each

guinea pig, and the mean 6 SE was calculated from the collected

data.

Total RNA was isolated, reverse transcribed into cDNA, and

subjected to real-time RT-PCR according to previous protocols.13

Primer pairs for hICAM-1 were as follows: 59-GGCTGGAGC

TGTTTGAGAAC-39 and 59-ACTGTGGGGTTCAACCTCTG-39.

18S ribosomal RNA was used as an internal control, and the primer

pairs were as follows: 59-GTAACCCGTTGAACCCCATT-39 and

59-CCATCCAATCGGTAGTAGCG-39.

Neuroblastoma cells were lysed with 1% NP-40, 0.5% Triton

X-100, 10% glycerol, 0.15 M NaCl, 1 mM EDTA, and 0.05 M Tris

in distilled H2O and centrifuged. Thirty milligrams of supernatant

protein was run per lane of a 10% SDS-PAGE gel, transferred to a

nitrocellulose membrane, blocked with 10% milk in TTBS buffer

(50 mM Tris-HCl, 150 mM NaCl, and 0.001% Tween 20, pH 7.4)

and incubated with antibodies to ICAM-1 and actin (both 1:100 dilu-

tion). Labeled proteins were visualized by means of chemilumines-

cence of peroxidase-labeled secondary antibodies, as described by

Amersham (Arlington Heights, Ill).

Reagents and drugs

Dexamethasone (D-2915), HP-CD (C-0926, the carrier for dex-

amethasone), human rTNF-a (T0157), human rIFN-g (I3265), and

Bay11-7082 were obtained from Sigma (St Louis, Mo). Mouse

rTNF-a (315-01A) and mouse rIFN-g (315-05) were obtained from

Peprotech (RockyHill, NJ). Human IL-4 (IL004) was obtained from

Chemicon (Temecula, Calif). Human cytokines were used in human

nerves, and mouse cytokines were used in guinea pig nerves. The

c-Jun N-terminal kinase (c-JNK) inhibitor (SP600125), MAP kinase

kinase inhibitor (PD 98059), and p38 MAP kinase inhibitor

(SB202190) were supplied by TOCRIS (Ellisville, Mo). Agents

were dissolved as directed and diluted in prewarmed cell-culture

medium when used.

Antibodies

Rabbit anti-mouse ICAM-1 (Sc-1511) was used in guinea pig

tissues, and goat anti-human ICAM-1 (Sc-7891) was used in human

tissues. These, along with mouse anti-actin antibody (Sc-8432), are

all from Santa Cruz. Mouse mAb to PGP 9.5 is from Biogenesis

(Sandown, NH).
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FIG 1. Lung sections from control (A-C), sensitized and challenged (D-F), and dexamethasone (Dex)–pre-

treated, sensitized, and challenged guinea pigs (G and H) are stained for ICAM-1 (left column). Nerves (arrows)

are labeled with PGP9.5 in sequential sections (middle column). Negative controls are shown in the right

column; absence of ICAM-1 (C and F) and absence of PGP9.5 (I) are also shown. Magnification bar, 50 mm.

FIG 2. ICAM-1 is not normally found in guinea pig parasympathetic

nerves (A) but is induced after 24 hours’ exposure to TNF-a and

IFN-g (B). Negative controls, in the absence of primary antibody,

are shown in insets. Magnification bar, 50 mm.

FIG 3. ICAM-1 is not normally expressed in human parasympa-

thetic nerves (A) but is induced after 24 hours’ exposure to TNF-a

and IFN-g (B-E) on both nerve cell bodies (arrow; C) and neurites

(arrows; B, D, and E). Negative controls are shown in insets in A

and B. Magnification bar, 50 mm.
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FIG 4. TNF-a and IFN-g induce ICAM-1 mRNA (A) and protein (B) in SK-N-SH cells. ICAM-1 expression is dose

dependent (C: ED50 5 16 U/mL; 4 hours’ incubation) and time dependent (D). IL-4 did not increase ICAM (D).

*Significantly different from control; �significantly different from TNF-a and IFN-g by using the unpaired

2-tailed Student t tests (mean 6 SE, n 5 3). Western blot (B) is representative of 3 experiments.
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RESULTS

ICAM-1 expression on airway nerves
in antigen-challenged animals

ICAM-1 was not detected histologically in control
lungs (Fig 1, A). However, in sensitized and challenged
animals ICAM-1 was present throughout the lung, includ-
ing airway nerves, which were identified by antibody
PGP9.5 in sequential sections (Fig 1). There was no stain-
ing in the absence of primary antibodies in control (Fig 1,
C and I) or sensitized and challenged animals (Fig 1, F).

TNF-a and IFN-g induce ICAM-1 in
parasympathetic neurons

Similar to parasympathetic nerves in lungs of control
guinea pigs, ICAM-1 was not expressed in isolated
parasympathetic nerves from guinea pig (Fig 2) or human
(Fig 3) tracheas. TNF-a and IFN-g induced ICAM-1 in
parasympathetic nerves from guinea pigs (Fig 2, B). The
average intensity per pixel was 112 6 10 above threshold
and significantly different from the control value (P <
.001), as determined by using the paired 2-tailed Student
t test. Similarly, TNF-a and IFN-g induced ICAM-1 ex-
pression in human parasympathetic neurons, as demon-
strated by means of immunofluorescence (Fig 3, B-E).
ICAM-1 expression was visible on nerve cell bodies and
neurites (Fig 3, B-E). The pattern of staining suggests
that ICAM-1 is expressed on cell membranes (Fig 3, B-E,
arrows). Neither TNF-a nor IFN-g alone induced ICAM-
1 expression in guinea pig parasympathetic neurons (data
not shown).

TNF-a, IFN-g, or both induce ICAM-1
in SK-N-SH neuroblastoma cells

Similar to parasympathetic nerves, neuroblastoma cells
did not normally express ICAM-1, as measured with
Western blotting (Fig 4, A and B). Both TNF-a (2 ng/mL)
and IFN-g (1000 U/mL) alone and in combination induced
ICAM-1 (Fig 4, A and B). TNF-a induction of ICAM-1
was dose dependent, with a median effective dose that
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produces 50% maximum response (ED50) of 16 U/mL (0.16
ng/mL; Fig 4, C), and time dependent (Fig 4, D). IL-4 did
not increase ICAM-1 levels (Fig 4, D). Thus ICAM-1 was
induced in neuroblastoma cells by either of the proinflam-
matory cytokines IFN-g or TNF-a.

TNF-a–induced ICAM-1 in nerves is
NF-kB dependent

Bay11-7082, an IkB-a phosphorylation inhibitor that
prevents NF-kB activation, significantly decreased TNF-
a–induced ICAM-1 mRNA in SK-N-SH cells (Fig 5, A).
Bay11-7082 inhibition of ICAM-1 was dose dependent
between 1 and 5 mM; higher doses were cytotoxic. In
the absence of TNF-a, Bay11-7082 itself did not change
ICAM-1 mRNA. MAP kinase inhibitors (PD98059, a
MAP kinase kinase inhibitor; SB202190, a p38 inhibitor;
or SP600125, a c-JNK inhibitor) alone or in combina-
tion did not inhibit TNF-a–induced ICAM-1 mRNA (Fig
5, B). In human parasympathetic neurons Bay11-7082
also reduced TNF-a/IFN-g–induced ICAM-1 mRNA
(Fig 6, A), confirming the role of NF-kB in induction of
ICAM-1.

Dexamethasone prevented ICAM-1 induction in air-
way nerves of antigen-challenged guinea pigs (Fig 1, G)
and in human and guinea pig parasympathetic nerves
treated with TNF-a and IFN-g (Fig 6, B and C).
However, in SK-N-SK cells dexamethasone did not reduce
ICAM-1 expression at either the mRNA (Fig 7, A) or pro-
tein (Fig 7, B) level. In 2 additional neuroblastoma cell lines
TNF-a and IFN-g also independently induced ICAM-
1 (Fig 7, C). However, although TNF-a had the dominant
effect in SK-N-SH cells, IFN-g had the dominant effect
in SH-SY-5Y and Be(2)-M17 neuroblastoma cells. Thus,
different neuroblastoma cell lines respond differently to
TNF-a and IFN-g. It is possible that no neuroblastoma
cell line accurately represents parasympathetic nerves, in-
cluding their response to dexamethasone.

DISCUSSION

Here we show that ICAM-1 expression was induced in
airway nerves in vivo by means of antigen challenge (Fig
1). Neuronal ICAM-1 was induced by TNF-a and IFN-g,
mediated by NF-kB, and suppressed by dexamethasone.
ICAM-1 was not expressed in nerves of control guinea
pigs (Figs 1 and 2) or nonasthmatic human subjects (Fig
3). However, it was induced in cultured guinea pig16

(Fig 2) and human (Fig 3) parasympathetic nerves after
incubation with proinflammatory cytokines. ICAM-1 in-
duction in primary nerve cells required both TNF-a and
IFN-g. Neither cytokine alone induced ICAM-1 (data
not shown). However, ICAM-1 in human neuroblastoma
cells was induced by either TNF-a or IFN-g. The effects
were additive at 4 hours (Fig 7, C) and synergistic at 24
hours (Fig 4, A).

It has previously been shown that cytokines regulate
ICAM-1 expression in a cell-specific manner.14 Thus it is
important to understand which signaling pathways
regulate ICAM-1 in cells of neuronal origin. In airway
epithelium and smooth muscle, ICAM-1 is mediated by
MAP kinases26 and NF-kB.27-29 However, we found
that in neuroblastoma cells inhibitors of 3 different
MAP kinases did not block TNF-a–induced ICAM-1
expression either alone or in combination (Fig 5).

FIG 5. Bay11-7082, an IkBa kinase inhibitor, administered 90

minutes before 2 ng/mL TNF-a, blocked ICAM-1 induction in SK-

N-SH neuroblastoma cells measured with real-time RT-PCR (A).

Neither PD98059 (PD), a MAP kinase kinase inhibitor; SB202190

(SB), a p38 inhibitor; nor SP600125 (SP), a c-JNK inhibitor, blocked

ICAM-1 (B). *Significantly different from untreated; �significantly

different from TNF-a by using the unpaired 2-tailed Student t tests

(mean 6 SE, n 5 3).
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FIG 6. In human parasympathetic nerves 2 hours’ preincubation

with 5 mM of the IkB-a kinase inhibitor Bay 11-7082 (A) or 1025 M

dexamethasone (Dex; B) inhibited TNF-a/IFN-g–induced ICAM-1

expression measured 24 hours later by means of RT-PCR. *Sig-

nificantly different from untreated; �significantly different from

TNF-a/IFN-g alone; unpaired 2-tailed Student t tests (mean 6 SE,

n 5 3). Dexamethasone decreased ICAM-1 staining of guinea pig

parasympathetic nerves (C).
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Bay11-7082, an NF-kB inhibitor, did block TNF-a–in-
duced ICAM-1 expression. Similarly, in parasympathetic
neurons from human subjects, the NF-kB inhibitor de-
creased ICAM-1 induction. NF-kB inhibition was less ef-
fective in parasympathetic nerves than in neuroblastoma
cells. This might be because parasympathetic nerves had

FIG 7. Dexamethasone (Dex) did not reduce TNF-a or TNF-a/IFN-g–

mediated ICAM-1 expression in neuroblastoma cells, as shown by

means of real-time RT-PCR (A) and Western blotting (B). Different

cell lines responded differently to TNF-a and IFN-g, as shown by

different patterns of ICAM-1 mRNA expression (C). Data shown

are means 6 SE of 3 experiments. The Western blot (Fig 7, B) is rep-

resentative of 4 experiments.
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to be stimulated with both TNF-a and IFN-g (which might
signal through Janus kinases/signal transducers and activa-
tors of transcription30) because neither alone had any ef-
fect. Thus, ICAM-1 expression in nerves is regulated
through NF-kB. Because NF-kB is common to ICAM-
1 expression in airway epithelium,29,31 airway smooth
muscle,27,32 and airway nerves (Figs 5 and 6), blockade
of NF-kB might decrease ICAM-1 expression throughout
the lungs.

Glucocorticoids are widely used for treatment of
asthma. Dexamethasone suppressed ICAM-1 expression
in airway nerves in guinea pigs in vivo (Fig 1) and in
human parasympathetic nerves in culture (Fig 6). We
previously showed that dexamethasone completely in-
hibits airway hyperreactivity in antigen-challenged guinea
pigs12 by selectively preventing eosinophil recruitment to
airway nerves without affecting eosinophil numbers in
whole lungs. Here we show that dexamethasone selec-
tively inhibited ICAM-1 expression in nerves while not
affecting ICAM-1 expression in other airway tissues
(Fig 1). This agrees with data showing that dexamethasone
only partially and transiently inhibits TNF-a–induced
ICAM-1 expression in human airway smooth muscle.27

Selective inhibition of eosinophil recruitment to nerves
might explain the ability of dexamethasone to prevent air-
way hyperreactivity,12 although it does not inhibit cyto-
kines or eosinophils in bronchoalveolar lavage fluid.33

In contrast to in vivo data (Fig 1) and to parasympathetic
neurons in cell culture (Fig 6, B and C), dexamethasone
did not inhibit TNF-a–induced ICAM-1 expression in
SK-N-SH cells (Fig 7). Although it is known that SK-
N-SH cells have glucocorticoid receptors, stimulation of
these cells with dexamethasone did not suppress NF-kB
activation.34 Thus, it is not surprising that dexamethasone
did not inhibit TNF-a–induced ICAM-1 expression in
neuroblastoma cells (Fig 7), which was NF-kB dependent
(Fig 5, A).

Neuroblastoma cells are not predictive of parasympa-
thetic neurons in other ways. For example, both TNF-a
and IFN-g were required to induce ICAM-1 expression in
human and guinea pig parasympathetic nerves, whereas
either TNF-a or IFN-g alone induced ICAM-1 expression
in 3 neuroblastoma cell lines (Fig 7). There was also no
agreement between the neuroblastoma lines. TNF-a was
more potent in SK-N-SH cells, whereas IFN-g was more
potent in the SH-SY-5Y and Be(2)-M17 neuroblastoma
cell lines (Fig 7, C). Thus, it is necessary to confirm data
obtained from cell lines in neurons of interest.

It is known that eosinophil adhesion to ICAM-1 leads
to degranulation24 and potentiates cytokine-induced de-
granulation in vitro.35 We have previously demonstrated
that eosinophil recruitment to nerves is mediated by
CCR3 agonists13 and is inhibited by dexamethasone,12

which selectively blocks ICAM-1 expression in nerves
(Fig 1). However, eosinophil recruitment to nerves is inde-
pendent of eosinophil activation.10 Once eosinophils
are associated with nerves, they can be activated by sub-
sequent challenges, including antigen challenge,36 viral
infection,10 or ozone inhalation.37 This results in M2
muscarinic receptor dysfunction and airway hyperreactiv-
ity that is mediated by major basic protein.5,38 Thus
ICAM-1 might facilitate the interaction of eosinophils
with nerves by anchoring eosinophils or by increasing re-
lease of eosinophil proteins onto neuronal M2 receptors.

We have shown here that TNF-a is an important mediator
for induction of ICAM-1 expression in neuroblastoma
cells and parasympathetic neurons. TNF-a expression,
TNF-a receptor 1, and TNF-a–converting enzyme levels
are increased in lavage specimens from asthmatic subjects
compared with those from healthy subjects.39-41 Etanercept
(a TNF-a receptor-Fc fusion protein) was effective in treat-
ing patients with severe asthma.41 TNF-a upregulates
ICAM-1 on airway epithelium and smooth muscle.42 Addi-
tionally, TNF-a and TNF-a–converting enzyme have been
detected in immune-mediated inflammatory demyelinating
disorders of the peripheral nervous system.43 Our data indi-
cate that TNF-a also increases ICAM-1 expression on par-
asympathetic nerves and thus might induce or perpetuate
neural inflammation and airway hyperreactivity.

Association of eosinophils with nerves is not limited to
the airways but is characteristic of many diseases, includ-
ing eczema,44 inflammatory bowel disease,45 and chronic
pancreatitis,46 and is found along the optic nerves in a
model of multiple sclerosis.47 Neural expression of che-
mokines and adhesion molecule expression is central to
recruitment and activation of inflammatory cells. Thus,
neuronal expression of ICAM-1 might be important in
an array of inflammatory and immune disorders, and ab-
normal ICAM-1 induction might contribute to the clinical
manifestations of a variety of diseases. Our data suggest
that interfering with ICAM-1 expression could be an at-
tractive strategy to prevent eosinophil migration to nerves.

We thank the Pacific Northwest Transplant Bank, Portland, Ore,
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