g
g
3
Q
3
&

PuD SmalAay

Molecular mechanisms in allergy and clinical immunology

Series editor: Lanny J. Rosenwasser, MD

CONTINUING MEDICAL EDUCATION ARTICLE

Credit can now be obtained, free for a limited time, by reading the following review. Please note the instructions
listed below.
Method of Physician Participation in Learning Process: The core material for this activity can be read in this issue of the
Journal or online at the JACI Web site: www.mosby.com/jaci. The accompanying test may only be submitted online at
www.mosby.com/jaci. Fax or other copies will not be accepted.
Date of Original Release: March 2003. Credit may be obtained for this course until February 29, 2004.
Copyright Statement: Copyright © 2003-2004. All rights reserved.
List of Design Committee Members:
Authors: Mark Larché, PhD, Douglas S. Robinson, MD, and A. Barry Kay, MD, PhD
Overall Purpose/Goal: To provide excellent reviews on key aspects of allergic disease to those who research, treat, or
manage allergic disease.
Target Audience: Physicians and researchers within the field of allergic disease.
Activity Objectives
(a) To understand the role of the T cell in the asthma process.
(b) To obtain a general understanding of molecular mechanisms involved in Ty2 cell function.
Accreditation/Provider Statements and Credit Designation: The American Academy of Allergy, Asthma and Immunolo-
gy (AAAAI) is accredited by the Accreditation Council for Continuing Medical Education (ACCME) to provide continuing
medical education for physicians. The AAAAI designates this educational activity for up to 1.0 hour in category | credit
toward the AMA Physician’s Recognition Award. Each physician should claim only those hours of credit that he or she

actually spent in the educational activity.

Recognition of Commercial Support: This activity has not received external commercial support.

The role of T lymphocytes in the
pathogenesis of asthma
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There is considerable evidence to support a role for T cells in
asthma, particularly the involvement of T2 cells both in
atopic allergic asthma and in nonatopic and occupational asth-
ma. There might also be a minor contribution from T2 CD8*
T cells. Several T2 cytokines have the potential to modulate
airway inflammation, particularly IL-13, which induces air-
way hyperresponsiveness independently of IgE and eosinophil-
ia in animal models. The identification of transcription factors
controlling Ty1 and Ty2 development further support the T2
hypothesis because GATA3 is overexpressed and T-bet is
underexpressed in the asthmatic airway. Specific T cell-direct-
ed immunotherapy might allow induction, modulation, or both
of T-cell responses, and elucidation of the mechanisms of regu-
latory T cells might allow further optimization of immunother-
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apy. Recent advances in our understanding of dendritic cell
function in directing T-cell responses might uncover further
therapeutic targets. The efficacy of cyclosporin A and anti-
CD4 treatment in patients with chronic severe asthma argues
for continued T-cell involvement, but whether remodeling con-
tributes to pathology inaccessible to anti-inflammatory treat-
ment or T-cell immunotherapy will be an important future
question. (J Allergy Clin Immunol 2003;111:450-63.)

Key words: Asthma, T cells, allergy, Ty2 cytokines, chemokines,
antigen-presenting cells, immunotherapy, T regulatory cells, atopy,
airway hyperresponsiveness, remodeling

In the late 1980s, it was suggested that in ongoing
asthma there were “chronically activated helper T cells
driven by (allergen, and) as yet undetermined antigens
(possibly viral) (which)... may perpetuate the inflamma-
tory response in and around the bronchi... (through)...
the release of T—cell-derived-lymphokines.”! The T-cell
hypothesis of asthma developed from studies of late asth-
matic reactions (LARs)? and acute severe asthma (status
asthmaticus)3 and was supported by the observation that
there was a Ty2-type T-cell cytokine profile in this dis-
ease.* A critical role for T2 cells in asthma is now wide-
ly accepted.>

Asthma is defined as a chronic inflammatory condition,
with characteristic eosinophilic inflammation and airway
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MDC: Monocyte-derived chemokine
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STAT: Signal transducer and activator of transcription
TARC: Thymus- and activation-regulated chemokine

remodeling.5:6 However, the relationship between T-cell
activation and immunopathology and the clinical features
of airway hyperresponsiveness (AHR), variable airway
narrowing and cough, are still not fully understood. Simi-
larly, the links between Ty2- and IgE-mediated atopy,
allergen challenge models in experimental animals and
human subjects, and day-to-day asthma of varying severi-
ty remain to be fully defined. This review will focus on
more recent data on the role of T cells in asthma, particu-
larly new insights into the control of T-cell function, how
T-cell activation contributes to clinical features, and the
potential for manipulation of the immune response in
treatment of this common and chronic disorder.

T CELLS AND T2 CYTOKINES IN ASTHMA

It is well known that allergen-specific IgE synthesis is
T cell dependent through cognate activation of B lym-
phocytes and T cell-derived cytokines, such as IL-4 and
IL-13.7 Thus in atopic asthma and allergic rhinitis aller-
gen processing and presentation to allergen-specific T
cells through antigen-presenting cells is a key initiation
step. Growing interest in the role of the T cell in asthma
arose from the concept that, in addition to participating in
IgE synthesis, T-cell products might also have direct
effects on the airways through the recruitment of inflam-
matory cells, particularly eosinophils. A number of stud-
ies showed evidence for CD4+ T-cell activation in the
peripheral blood of asthmatic patients during exacerba-
tions.2 Sampling of the airways either with bronchial
biopsy or bronchoalveolar lavage (BAL) revealed T cells
with features of activation.3-10 In some studies T-cell
activation could be related both to measures of asthma
severity, such as the degree of airway narrowing or AHR,
and to the bronchial eosinophil response.®-11.12 Similarly,
after the description of the Ty2/Ty1 dichotomy, mRNA+
cells for the signature T2 cytokines IL-4 and IL-5 were
detected in airway samples from atopic asthmatic
patients.!3 This linked IgE synthesis through IL-4 and
eosinophilic airway inflammation through IL-5, together
with IL-3 and GM-CSFE.1.14.15 In addition, a number of
investigators have isolated allergen-specific T-cell lines
and clones from the BAL fluid of asthmatic patients.!6:17

THE ASTHMA PHENOTYPES

The contribution of allergy across the spectrum of
asthma has always been vigorously debated. One study
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showed that only about half of asthma is atopic,!8 and
therefore the following is an important question: What is
the role of T cells and, more particularly, T2 cells in the
nonatopic (intrinsic) form of the disease, as well as in
occupational asthma and acute exacerbations, in which
viruses often appear to be the triggering factor. Bronchial
biopsy specimens from nonatopic patients and patients
with occupational asthma have revealed remarkable sim-
ilarities to those from patients with atopic asthma, at least
at the level of immunopathology.19-2! Thus eosinophil
infiltration and cells bearing markers of T-cell activation,
such as CD25, were present in increased numbers in
bronchial biopsy specimens from all 3 forms of disease.
Similarly, the cytokine profile in the airways of patients
with nonatopic asthma also showed prominence of 1L-4,
IL-5, and IL-13, with no increase in IFN-y compared
with that seen in nonasthmatic control volunteers. More
recent data have demonstrated evidence for local IgE
synthesis in the bronchial mucosa of nonatopic asthmat-
ic patients, supporting a Tyx2- and IgE-mediated
immunopathologic process,?2 despite the absence of spe-
cific serum IgE or positive skin prick test responses.
Interestingly, it has been suggested that self-antigens
might drive the T2 response in nonatopic asthma.23 Fur-
ther work will be required to understand the role of IgE
in this disease, including how it might be triggered. Sim-
ilarly, some occupational asthma studies involving low-
molecular-weight agents, such as toluene diisocyanate,
suggest Ty2-type cytokine production in the airway,20.24
although it is of note that the IgE dependence of occupa-
tional asthma is not always demonstrated.

Initial studies of airway biopsy specimens were
restricted to patients with mild asthma with well-pre-
served lung function, although there was also evidence of
T-cell infiltration and activation in postmortem airway
tissue from asthmatic patients dying both from asthma
and from other causes,?> as well as BAL and trans-
bronchial biopsy studies in patients with more severe
asthma.26:27 In some patients there is marked
eosinophilic inflammation of the small airways together
with T-cell activation, but others show sparse inflamma-
tory changes or neutrophilic inflammation. Whether such
findings reflect different pathologic mechanisms or the
effect of treatment (often with high-dose inhaled or oral
corticosteroids) remains to be established.

EFFECTOR MECHANISMS: HOW DOT CELLS
CAUSE ASTHMA?

Over the past few years, a working hypothesis has
been that T2 cytokines contribute to asthma pathology
through IgE synthesis, maturation and activation of mast
cells and basophils (and thus acute asthma), and IL-
S5—mediated eosinophil infiltration, leading to epithelial
damage and AHR.S Some studies also showed Tyl
cytokines in serum and BAL fluid from asthmatic
patients,28 particularly during exacerbations, although
most studies confirm Ty2 predominance in stable dis-
ease. It also soon became apparent that mast cells,
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Remodeling
Airway narrowing

FIG 1. An overview scheme of possible interactions among mast cells, T2 cells, eosinophils, airway remod-
eling, AHR, acute bronchospasm, and chronic asthma. The interaction of allergen with specific IgE pas-
sively absorbed to mast cells leads to the noncytolytic, energy-dependent release of histamine and lipid
mediators from mast cells. This might account for the acute airway narrowing (bronchospasm) that occurs
within minutes of exposure to specific allergen. Antigen-presenting cells in the airways, particularly DCs,
process and present allergenic peptides to CD4 cells in an MHC class Il restriction fashion. Ty2 CD4 cells
elaborate IL-4 and IL-13, which are involved in IgE production by B cells; transforming growth factor j,
together with IL-4 and IL-13, have direct effects on fibroblasts, epithelial cells, and airway smooth muscle,
which in turn leads to the release of growth factors and fibrogenic factors involved in remodeling, AHR,
and airway narrowing. IL-5 derived from T2 cells and other cells facilitates the development and activa-
tion of eosinophils. Eosinophils have a direct effect on airway narrowing through the release of basic pro-
teins and lipid mediators and indirectly influence airway remodeling through the release of transforming
growth factor B, IL-4, and IL-13. These cytokines are also elaborated from mast cells, and this mechanism
might also amplify the chronic asthma process. LT, Leukotriene; Epi, epithelial cells; fib, fibroblasts; ASM,

airway smooth muscle; APC, antigen-presenting cell; TGF, transforming growth factor.

basophils, and eosinophils were themselves potential
sources of Ty2-type cytokines.29:30 Indeed, immunohis-
tochemical staining for cytokines in bronchial biopsy
specimens suggested that these cytokines localized main-
ly to non-T cells.3! However, these findings likely reflect
storage of cytokines in mast cells, eosinophils, and
basophils because mRNA for IL-4 and IL-5 localized
predominantly to T cells, with minor contributions from
mast cells, basophils, and eosinophils.!3

Data from animal studies (see below) suggested that
AHR could be initiated by T cells through mechanisms
that were not dependent on either IgE or eosinophils.
This might also be the case for human asthma because
direct interaction of T cells and airway smooth muscle is
suggested, and both IL-5 and IL-13 have been shown to
have the ability to increase smooth muscle contractility
to acetylcholine in vitro.32:33

ARET CELLS REQUIRED TO PERPETUATE
ASTHMA?

Much attention has been focused on airway remodeling
in asthma.34 This encompasses changes in the epithelium,
subepithelial basement membrane deposition of collagen
and other extracellular matrix proteins, increased vascular-
ity, and smooth muscle hypertrophy and hyperplasia. It has

been suggested that the smooth muscle changes alone are
sufficient to sustain AHR.35 Bronchial mucosa biopsy
specimens of asthmatic patients compared with those from
patients with eosinophilic bronchitis (which is character-
ized by cough without reversible airway narrowing or
AHR) showed no differences in mucosal eosinophil or T-
cell infiltration. However, mast cell infiltration of smooth
muscle was seen in the asthmatic patients but not in the
patients with eosinophilic bronchitis, and it was therefore
suggested that AHR and airway narrowing in asthma were
more related to smooth muscle and mast cell interaction
than the eosinophil-T cell axis.3¢ These findings raise the
question of whether T cells are important in sustaining
chronic asthma or in initiating the pathologic process.
Data discussed below showing that T cell-directed thera-
py is effective in chronic asthma argue for a continued
role, although it is equally true that the persistent AHR and
incomplete abolition of symptoms after broad anti-inflam-
matory treatment (eg, with corticosteroids) might result
from structural airway changes. The development of spe-
cific T cell-directed therapy and better animal models of
chronic airway inflammation might provide further infor-
mation in this important area. An overview scheme of pos-
sible interactions between mast cells, Ty2 cells,
eosinophils, airway remodeling, AHR, acute bron-
chospasm, and chronic asthma is shown in Fig 1.
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TABLE I. T cell-related cytokines in asthma
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Cytokine associated

T 1/Ty2/

Treg

Actions

Producer cells in
human patients

Animal models of
airway inflammation

Human asthma

IL-2
IL-3

IL-4

IL-5

IL-6

IL-8

IL-9

IL-10

IL-11

IL-12

IL-13

IL-15
IL-16
IL-17

IL-18

1L-23

1L-25

IL-27
GM-CSF

TNF-0.
TGF-B

IFN-y

Tyl
Tyl/T2

T2

Tyl/Ty2

T2

Treg

Tyl
Tyl/Ty2

Treg

T-cell growth factor
Differentiation and activation of Eos, Neu,
Baso, MC

B-cell switch to IgE synthesis, MC
development, Eos and Baso activation,
mucus, secretion, favors T2 production,
increased Endo VCAM expression

Eos, Baso differentiation, maturation, and
activation

T- and B-cell growth factor, cofactor for
IgE synthesis

Neu activation-chemotaxis; weak Eos
chemotaxis

MC and Eos development, AHR, mucus
secretion

Suppresses Ty 1/Ty2 function, Eos/MC/Baso
activation, favors Treg production, B-cell
switch to IgG4

AHR, eosinophilia, mucus hypersecretion,
airway remodeling

Favors Tyl production, inhibits IgE synthesis

MC development, B-cell switch to IgE
production, eosinophilia, AHR, mucus
hypersecretion

T-cell growth factor; expands Treg
Chemoattractant for CD4 cells, Mono, Eos

Induces inflammatory cytokine production by

Fib, Mac, Epi, Endo

Induces IFN-y production by T cells, NK cells;

favors Ty 1 expansion

Cofactor for Tyl development, activates DCs

Favors Ty2 development and IL-4, IL-5, and
IL-13 production

Favors Ty expansion
Differentiation and activation of Eos, Neu,
Easo, MC

Activation of Endo and Epi
Suppresses Ty 1/Ty2 function, favors Treg

induction, cofactor for IgA secretion, fibrosis
Inhibits IgE synthesis, inhibits T2 induction,

activates Eos and Mac

Tyl cells, Eos
Tyl/Ty2 cells, Eos,
MC, Baso, Mac/

Mono, Fib
Ty2 cells, Eos, MC,
Baso

Ty2, Eos, MC, Baso

Ty /T2 cells, Mac,
Endo

Endo, Epi, Mac, Fib,
T cells

T2 cells, Eos, MC,
Baso

T cells, Mac

Fib, Mac, Endo, Epi

Mac, B cells

Ty2 cells, Eos, MC,
Baso

Many non-T cells
CD8*, MC, Eos
CD4 memory cells

Mac

Various hemopoietic
cells
Ty2 cells

APC

Ty1/Ty2, Mac, Eos,
MC, Baso, Fib, Epi,
Endo

Mac, NK cells, T cells

Eos, MC, Baso,
T cells, Mono, Mac
Tyl cells, NK cells

Decreased

Increased: blocking
decreases
eosinophilia

Increased; blocking
decreases AHR
(but some residual)

Increased; knockout
or blocking
decreases Eos and
AHR

Transgene showed
increased AHR and
inflammation,
knockout less

IL-8 receptor
knockout decreased

AHR and neutrophils

Transgene had Eos,
AHR, and mucus;
knockout no effect

Adenoviral transfer
decreased inflam-
mation

Transgene had AHR
and changes of
remodeling

Exogenous IL-12
blocked eosinophils
and AHR

Increased; soluble
IL-13 receptor
blocked AHR but
not Eos or IgE

?

Increased

Provokes airway
neutrophilia

Knockout increased
Eos and AHR,
exogenous IL-18
(with IL-12)
decreased AHR and
Eos

Not studied

Adenoviral transfer
induces T2

cytokines, Eos, AHR,

and mucus

Not studied

Increased; transgene
has airway inflam-
mation

Increased

Increased

Decreased

Increased
Increased

Increased; soluble
IL-4 receptor had
some steroid-
sparing effect

Increased; antibody
decreased
eosinophils but not
AHR

Increased (in severe
asthma)

Increased

Increased

Decreased/
increased

Increased

Decreased; exoge-
nous IL-12
decreased Eos but
not AHR

Increased

Decreased
Increased
Increased

Reduced

Not studied

Not studied

Not studied
Increased

Increased
Increased

Increased in viral
infection and
exacerbations

Treg, T-cell regulatory cell; Eos, eosinophil; Neu, neutrophil; Baso, basophil; MC, mast cell; Mac, macrophage; Mono, monocyte; Fib, fibroblast; VCAM, vas-

cular cell adhesion molecule; Endo, endothelial cell; Epi, epithelial cell; APC, antigen-presenting cell; TGE transforming growth factor.
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NEW CYTOKINES, INTRACELLULAR
CONTROLLERS OF T-CELL FUNCTION AND
ANIMAL MODELS: WHAT DO THEY TELL US
ABOUT ASTHMA?

In the 10 years since the description of Ty2 cytokines
in asthma, an array of novel cytokines has been described,
and our understanding of the molecular control of T-cell
activation and differentiation has improved. Studies from
animal models and some human data support the rele-
vance of some of these factors in human asthma.

T cell-derived cytokines and cytokines that
act onT cells

Many more cytokines with potential relevance to asth-
ma have been described. IL-25 acts in Ty2 differentia-
tion; IL-9, IL-11, IL-13, IL-16, and IL-17 have been
linked to asthma; and IL-12, IL-18, IL.-23, and IL-27 are
involved in Tyl development and IFN-y production,
which might be deficient in patients with asthma (Table
I). Mouse models of asthma usually involve relatively
short-term sensitization and inhaled challenge protocols
more akin to allergen challenge than chronic asthma, and
results vary with the strain studied.3’ Nonetheless, these
have given considerable insight into the potential for T
cells and cytokines to act in the airway.

Most data come from removing the cytokine by means
of gene disruption (knockouts), the use of blocking anti-
bodies, or overexpression by transgenes. These models
support the T2 hypothesis in that adoptive transfer of dif-
ferentiated T2 cells can induce airway eosinophilia and
AHR on inhaled challenge (whereas Ty1 cells do not), and
IL-4 and IL-5 were both implicated in airway eosinophilia
and AHR for challenge in different knockout and antibody
studies.37-39 TL-9 was implicated in AHR initially from
studies linking strain differences in baseline AHR with IL-
9 expression and increased AHR and eosinophilia in IL-9
transgenics,*041 although response to airway challenge was
not reduced in sensitized IL-9 knockout animals.#Z Like IL-
9, transgenic expression of IL-11 and IL-13 in the airway
of mice was sufficient to induce eosinophilia, AHR, hyper-
secretion, and variable changes similar to those caused by
remodeling.#344 Transgenic expression of IL-11 in the air-
way leads to lymphocytic infiltration and remodeling yet
inhibits the Ty2 response to inhaled antigen.*> IL-11 has
also been reported to favor T2 polarization of naive T
cells.46 Thus IL-11 can be associated with T2 responses
and chronic repair and remodeling.

IL-4 and IL-5 were implicated in different mouse
models of asthma.38:39 Interestingly, a soluble IL-13
receptor could reverse AHR in a mouse model without
affecting serum IgE or airway eosinophilia.4748 Similar-
ly, Hogan et al* reported that blocking IL-4 in an IL5
gene—deleted mouse did not completely abrogate AHR or
airway eosinophilia in response to inhaled challenge and
that the residual AHR was T-cell dependent.# This group
has also suggested that non-IgE- and non—eosinophil-
induced T-cell dependent AHR was not a feature of mice
deficient for IL-5, eotaxin, and IL-13.50
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IL-16 is a CD4* lymphocyte chemoattractant,>!
whereas IL-17 is a T cell-derived cytokine that can
induce fibroblast production of proinflammatory
cytokines, including GM-CSF.52 [L-25 is a more recent-
ly characterized cytokine with homology to IL-17 and
drives T2 IL-4, IL-5, and IL-13 production in murine T
cells.53 Adenoviral transfer of IL-25 into the lungs of
mice causes eosinophilic inflammation, epithelial
changes, mucus hypersecretion, and AHR.54 All of these
cytokines (except IL-25) have been reported to be over-
represented in the airways of asthmatic subjects when
compared with levels in nonasthmatic control volunteers,
and IL-11 was detected in patients with severe asthma, in
whom it might act in remodeling.55-58

Because the array of T-cell cytokines with potential to
contribute to asthma pathology has expanded, this might,
in turn, explain the disappointing results of single
cytokine-directed therapy for asthma. Cytokines involved
in Tyl development and phenotype expression have also
been studied in animal models and human asthma. Thus
IL-12 and IL-18 (with IL-12) have the potential to reduce
airway inflammation to inhaled challenge after Tp;2 sen-
sitization, and AHR and eosinophilia was increased in IL-
18—deficient animals compared with in wild-type control
animals.>-6! Similarly, it has been suggested that IL-12
and IL-18 are deficient in human airway samples in asth-
ma, and this might relate to similar relative underexpres-
sion of T-bet.02-64 To date, IL-23 and IL-27 studies in
models of human asthma have not been reported.

Controls of T-cell cytokine production

A number of transcription factors and signaling mole-
cules have been shown to have potential roles in animal
models, including c-maf, nuclear factor kB (NF-xB),
nuclear factor of activated T cells, and signal transducer
and activator of transcription 6 (STAT6).64 At least 2 tran-
scription factors with the potential to control Tyl or T2
development have been described. GATA3 is implicated
in T2 development in mouse and human T cells and is an
important controller of the /L5 gene locus.%5 In mouse
models blocking GATA3 with a dominant negative con-
struct or antisense DNA could prevent Ty;2 cytokine acti-
vation, eosinophilia, and AHR in challenge models.66.67
Further knockout mice with a p5S0 NF-kB defect failed to
mount a GATA3 or T2 response in an antigen sensitiza-
tion and airway challenge model, suggesting that NF-kB
might control GATA3 expression in developing Ty2
cells.%8 Numbers of GATA3-expressing cells were
increased in bronchial biopsy specimens from asthmatic
patients, supporting this as a target for control of T2 cells
in asthma.®® Christodoulopoulos et al’0 have examined
other transcription factors and showed increased expres-
sion of cells bearing GATA3, c-maf (a transcription factor
for IL-4), and STAT6 (which transduces signals for IL-4
and IL-13) in bronchial biopsy specimens from both
atopic and nonatopic asthmatic patients compared with in
specimens from control subjects. However, STAT6
expression was less prominent in nonatopic asthma, sug-
gesting IL-4 signaling might play a less important role.
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FIG 2. A diagrammatic representation of factors influencing the regulation, recruitment, and effector func-
tions of T2 cells. The recruitment of CD4 T2 cells is dependent on the expression of receptors for CC
chemokines and CD4. T,;2 cells express CCR3, CCR4, CCR8, and CRT2. Their respective ligands are shown.
IL-16, the ligand for CD4, also serves as a specific chemoattractant. The regulation of elaboration of effec-
tor T2 cytokines is dependent on cytokines that favor T2 (IL-4 and IL-25) and its respective transcription
factors, GATA-3, STAT6, and c-maf, whereas negative regulation occurs through cytokines that favor Ty1
(ie, IL-12, IL-18, IL-23, and IL-27). These Ty1 transcription factors include T-bet and STAT4. T regulatory cells
elaborating IL-10 might also be involved in the inhibition of effector functions of CD4+ T2 cells. The effec-
tor Ty cytokines display considerable pleotropism. For example, in addition to IgE production, IL-4 is
involved in mucus hypersecretion, eosinophil and basophil recruitment, and mast cell differentiation. APC,

Antigen-presenting cells; MCE monocyte chemotactic protein; T regs, T-cell regulatory cells.

Recently, T-bet was described as a controller of Tyl
development and is shown to direct IFN-y production and
IL-12 receptor B2 expression.”l:72 Finotto et al’3
described reduced numbers of cells staining for T-bet in
bronchial biopsy specimens from asthmatic patients and
spontaneous AHR in mice deficient in T-bet. These find-
ings again suggest that asthma is associated with reduced
airway Tyl cells, and the authors speculate that a defect
in Tyl development through a deficiency in T-bet might
predispose to Ty2 responses. It is of note that Ty2
cytokines in human T cells appear to be coordinately reg-
ulated’* through the activity of a number of these tran-
scription factors, and it might thus be possible to target a
range of cytokines through therapy directed an interfer-
ing with this process. However, this remains hypothetical
at present. A diagrammatic representation of factors that
influence the regulation, recruitment, and effector func-
tions of T2 cells is shown in Fig 2.

PROVOKED ASTHMA UNDER CONTROLLED
CLINICAL CONDITIONS

Inhaled allergen challenge of sensitized atopic asth-
matic patients has been used for many years as a model
of asthma to study both the early and late reaction.”
Although the early reaction is thought be IgE and mast
cell dependent, the cause and significance of the LAR

and associated increased AHR is less certain. Although
cutaneous late responses could be induced by passive
transfer of IgE and rechallenge,’® the skin and lung
response are associated with eosinophil and T-cell infil-
tration, and studies at 24 hours after challenge show
increases in T-cell activation and Ty2 cytokine expres-
sion, which can be correlated with the preceding airway
narrowing during the LAR.77-80 This model is essential-
ly similar to that used in mouse models, except that
there is background chronic inflammation in the airway
in human asthmatic patients. How it relates to chronic
asthma is uncertain, but like the mouse models, human
allergen challenge has proved instructive. T-cell depen-
dence in mouse models could be directly demonstrated
by means of anti-CD4 antibody depletion of T cells.4?
Data to support a role of T cells in the human LAR
came from inhibition of the LAR with cyclosporin A, a
drug that targets T-cell activation through nuclear factor
of activated T cells—driven IL-2 production and also
inhibits T-cell IL-5 production.8! However, cyclosporin
A was also reported to act on mast cell and basophil
degranulation.82.83 In a further study, bronchoscopy
revealed that inhibition of the LAR by cyclosporin A
was associated with accelerated apoptosis of BAL fluid
CD3+ cells, as well as decreases in eosinophils and IL-
5.84 This provided indirect evidence that cyclosporin A
is effective in this human model of asthmatic allergic
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FIG 3. Different patterns of airway response after challenge with
whole allergen or T-cell peptides. In approximately 50% of allergic
asthmatic patients, inhalation of whole-allergen extract results in
a biphasic reduction in FEV,. The early asthmatic reaction occurs
within the first hour. The LAR is initiated between 2 and 4 hours
and peaks at 6 to 9 hours. Challenge of allergic asthmatic patients
through either the intradermal route or the inhaled route results
in anisolated LAR. A, Whole cat dander. An asthmatic patient with
cat allergy was challenged with either nebulized saline (open cir-
cles) or nebulized whole cat dander allergen extract (filled circles)
through the inhaled route. In contrast to saline, challenge with
allergen resulted in both early asthmatic response and LAR. A
reduction of 20% in FEV, was arbitrarily considered significant to
allow for normal variation in airway caliber in an asthmatic sub-
ject (dotted line). B, Intradermal peptides. An asthmatic patient
with cat allergy was challenged with either saline or a mixture of
overlapping peptides spanning the majority of the Fel d 1 mole-
cule. Administration of saline or peptide was through intradermal
injection in the volar aspect of the forearm. In contrast to the
saline control, injection of peptides resulted in an isolated LAR. C,
Peptides by inhalation. An asthmatic patient with cat allergy was
challenged with either saline or a mixture of overlapping peptides
spanning the majority of the Fel d 1 molecule. Administration of
saline or peptide was through inhalation of nebulized material
(particle size of approximately 5 um). In contrast to challenge with
saline, peptides induced an isolated LAR.
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inflammation principally through its effects on the T
cells and associated eosinophil events, rather than
actions on mast cells and basophils.

Studies from our own group have shown that direct T-
cell activation through intradermal injection of short pep-
tides derived from the cat allergen Fel d 1 could induce an
isolated LAR in asthmatic patients with cat allergy.35.86
Peptides were shown to be capable of binding to MHC
class II molecules but did not cross-link IgE in a basophil
histamine release assay. The peptide-induced LAR was
MHC restricted in that it only occurred in those individu-
als with MHC class II able to bind the injected peptides,
further supporting a role for T cells in the observed
response. The mechanism of LARs induced by means of
intradermal injection of peptide (without reaction in the
skin) is uncertain. Unlike LAR induced after inhalation of
whole allergen, bronchoscopic analysis of peptide-
induced LAR showed no evidence of eosinophil infiltra-
tion or T-cell activation in the airway, with no change in
IL-5, IL-13, histamine, or leukotriene levels detected in
paired BAL samples from peptide- and diluent-chal-
lenged subjects. This might be because the LAR was
elicited through the circulation rather than through the air-
way or that there is direct T cell-mediated smooth muscle
contraction. We have recently shown that inhaled peptide
can also induce LAR in asthmatic patients with cat aller-
gy.87 Reactions induced by inhaled peptides were accom-
panied by sputum eosinophilia, suggesting that changes in
inflammatory mediators and mucosa infiltration of effec-
tor cells is only detectable by means of bronchoscopy
after topical challenge with peptides. The potential for
such peptides in therapy is discussed below. Examples of
the different patterns of airway response after challenge
with whole allergen or T-cell peptides is shown in Fig 3.

ACTIVATION OFT CELLS IN ASTHMA:
ANTIGEN-PRESENTING CELLS

In addition to presentation of antigen peptide in the
context of MHC, T-cell activation requires costimula-
tion and additional signals.88 A number of factors
might influence antigen-presenting cells, and dendritic
cells (DCs) are plastic in their ability to drive T-cell
responses to Tyl- or Ty2-type responses.8? DC func-
tion is partially controlled by signals from the innate
immune system, in part through toll-like receptors,
through control of IL-12 and IL-10 production. Differ-
ent costimulation molecules and other factors might
also influence DC function. Recent data suggest that
inducible costimulator (ICOS) costimulation in the
mouse lung favors an IL-10—producing T cell with
potential suppressive activity.?0 However, other mouse
data suggest that ICOS favors Ty2 responses, and
blocking ICOS can reduce AHR and eosinophilia in an
animal model of allergen challenge.®! The role of
ICOS in human asthma remains to be defined. We have
shown that human BAL T cells can be activated with
allergen to proliferate and secrete IL-5 and that this
was CD86 dependent. Furthermore, adherent cells
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from BAL fluid obtained from patients with asthma
(predominantly alveolar macrophages) were as effec-
tive at presenting antigen to T cells as blood mono-
cytes.92 Histamine has also been shown to affect DC
function, driving DCs to favor Ty2 cell expansion
through H1 and H2 receptors.?3 This could clearly be
relevant to asthma. Whether targeting of costimulation
or DC function can be sufficiently specific to be useful
for asthma therapy remains to be established.

CD8T CELLS AND y$ CELLS

There are several reports that suggest that CD8* cells
might participate in the asthma process. An early study
involving BAL after allergen inhalational challenge sug-
gested that CD8* cells might be involved in the regula-
tion of the expression of the LAR because there were rel-
ative increases in OKT8+ lavage cells in early-phase
compared with late-phase responders.2 On the other
hand, several studies have indicated that CD8* cells
might be proinflammatory in the airways. In both atopic
and nonatopic asthmatic patients, mRNA for IL-4 and
IL-5 colocalized predominantly to CD4+ cells but also to
CD8+ T cells,!3 findings in agreement with those of Till
et al,16 who found that CD8*, as well as CD4+, T-cell
lines from BAL fluid from asthmatic patients elaborated
the IL-5 protein. Cho et al were able to demonstrate
increased numbers of IL-4 protein/CD8* cells in blood
from atopic patients with mild asthma. All these obser-
vations are compatible with the concept of a population
of CD8* T cytotoxic type 2 (T¢2) lymphocytes. Some
studies have suggested increases in CD8* cells in occu-
pational asthma,5 and in a mouse model it was shown
that virus-specific CD8* cells switch to IL-5 production
and induce airway eosinophilia.”¢ This raises the possi-
bility that in asthma certain viruses or chemical haptens
might modify intrinsic antigens, which in turn are target-
ed by CD8* cytotoxic cells.

Although some animal data suggest that yo T cells
might be important in models of asthma or allergic sen-
sitization,%7-99 there is conflicting evidence to support a
role in human asthma.!00-102

HOMING OF T CELLS TO THE AIRWAY IN
ASTHMA

It has been established for some time that T cells use
adhesion molecules, such as intercellular adhesion mol-
ecule 1 (ICAM-1) and vascular cell adhesion molecule 1
(VCAM-1), during trafficking to the airway, but there is
increasing interest in the role of specific chemokines in
either tissue-directed T-cell homing or in recruitment of
different T-cell subtypes. Most of the current data come
from mouse models or human allergen challenge stud-
ies. In vitro mouse and human T2 cells are polarized to
preferentially express CCR3, CCR4, and CCRS8 and
interact with their ligands: eotaxin, monocyte-derived
chemokine (MDC), thymus- and activation-regulated
chemokine (TARC), and I-309/TCA-3. In experiments
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involving adoptive transfer of polarized T-cell receptor
transgenic Ty2 cells to recipient mice followed by
inhaled challenge, early infiltrating T cells (first chal-
lenge) were predominantly CCR3+, and influx was
reduced by blocking antibodies to eotaxin, whereas later
T-cell infiltration was of CCR4+ T cells and was blocked
by antibody to MDC.103 However, the effects of CCR3,
CCR4, and CCR8 knockout in mice are complex, and
lack of these receptors does not totally prevent T2 cell
infiltration and AHR after antigen sensitization and
inhaled challenge. In the CCR3 knockout mice there
was a reduction in eosinophil trafficking to the lung after
allergen challenge but an increase in intraepithelial mast
cells and an overall increase in airway hyperresponsive-
ness to challenge.194 In the CCR4 knockout mice there
was no effect on eosinophils or AHR in an ovalbumin
antigen challenge model,195 but inflammatory response
and AHR were reduced in an Aspergillus species
model.106 For CCRS, the knockout mouse showed
diminished eosinophil recruitment in response to oval-
bumin or cockroach allergen sensitization and airway
challenge, but AHR was not measured, and there was no
change in T cell numbers.197 Some of these changes
might relate to the finding that CCRS is expressed by
murine eosinophils.!08 In human patients Panina-Bor-
dignon et all0 observed that virtually all T cells from
endobronchial biopsy specimens from asthmatic
patients taken 24 hours after allergen challenge
expressed IL-4 and CCR4.199 CCR8 was coexpressed
with CCR4 on 28% of the T cells, whereas CCR3 was
associated with eosinophils but not on T cells. Interest-
ingly, expression of the CCR4-specific ligands MDC
and TARC was strongly upregulated on airway epithelial
cells on allergen challenge, suggesting an involvement
of this receptor-ligand axis in the regulation of lympho-
cyte recruitment into the asthmatic bronchi. In contrast
to asthma, T cells infiltrating the airways of patients
with chronic obstructive pulmonary disease and pul-
monary sarcoidosis produce IFN-y and express high lev-
els of CXCR3, while lacking CCR4 and CCR8 expres-
sion. These data supported a role of CCR4, its ligands
MDC and TARC, and CCRS in the pathogenesis of
allergen-induced late asthma and a role for T cells in
LARs. However, Campbell et alll0 examined BAL T
cells from asthmatic patients compared with those from
nonasthmatic control subjects and showed no differ-
ences (although the numbers were small) in the expres-
sion of CCRS and CXCR3, with only low expression of
CCR4. Such differences might result from analysis of
allergen challenge versus baseline asthma, and further
studies are required. Small-molecule antagonists of
CCR3 and other chemokine receptors should be avail-
able for study in human patients in the near future.

T CELLS AND TREATMENT OF ASTHMA

Corticosteroids

Inhaled corticosteroids are the mainstay of asthma
management, and these agents are extremely effective
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in vitro as inhibitors of T-cell activation and cytokine
production.!!! There are many studies showing a reduc-
tion in T-cell activation and cytokine expression in the
airways of asthmatic patients after steroid treat-
ment.! 12113 Tt is of interest that patients with cortico-
steroid-resistant asthma did not have reduced IL-5 lev-
els in airway biopsy specimens after treatment with oral
prednisolone.!!4 The mechanism is unclear, but the T
cell can be rendered steroid resistant in vitro by IL-2
and IL-4, and such patients fail to suppress T-cell acti-
vation markers in vivo after corticosteroid treatment
and show abnormalities in T-cell transcription factor
expression (AP-1, STATS, and NF-kB), all of which
suggests that this might be a T-cell defect.!15-117

Cyclosporin A

Further support for the T-cell hypothesis of asthma
was obtained from controlled clinical trials of
cyclosporin A in patients with chronic asthma. In a
group of patients with severe steroid-dependent asthma,
treatment over a 12-week period with cyclosporin A at
low dosage (5mg-kg-l-d-l) was associated with
improvement in lung function and a reduction in the
numbers of disease exacerbations requiring an increase
in corticosteroid dosage.!!8 Reductions in the concentra-
tions of serum IL-2 receptor after treatment with
cyclosporin A were also observed. Two further studies
have shown a corticosteroid-sparing effect of cyclo-
sporin A in patients with steroid-dependent asth-
ma.!19:120 Both showed improvements in lung function
despite the reduction in corticosteroid dose, although in
one patient this improvement was small.

More direct evidence of a role for T cells in the patho-
genesis of chronic asthma was described by Kon et al,121
who treated patients with severe corticosteroid-depen-
dent asthma with a single infusion of a chimeric (prima-
tized) mAb to human CD4. Subjects were treated in 3
separate dose groups in addition to a placebo arm.
Patients receiving a single infusion of 3.0 mg/kg dis-
played a significant change in the morning and evening
peak expiratory flow rates, with a trend toward an
improvement in symptom scores. Taken together, these
studies, in which T lymphocytes, particularly CD4+ T
lymphocytes, were targeted in allergic asthma, provides
support for a significant role of these cells in the patho-
genesis of asthma.

Studies with mAbs or receptor fusion proteins to
block individual T cell-derived cytokines have been
disappointing. Although our recent findings suggest
that anti-IL-5 does not completely deplete airway
eosinophils,!22 the lack of clinical efficacy of this
treatment argues against a major direct effect of IL-5
on airway smooth muscle as an important contributor
to AHR.!123 Some effects of a soluble IL-4 receptor
have been reported in a protocol of steroid withdraw-
al in patients with mild asthma.!24:125 Human studies
on IL-13 might be of interest, but, as stated, targeting
single T-cell cytokines seems unlikely to be very
effective.
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ANTIGEN-DIRECTED TARGETING OFT CELLS
AND REGULATORY T CELLS: THE FUTURE
FOR ASTHMA THERAPY?

Allergen injection immunotherapy has long been
used for the treatment of allergic asthma in many
countries (although not in the United Kingdom). Cur-
rent evidence suggests that immunotherapy modulates
the T-cell response to allergen, either through immune
deviation to a Tyl response or through induction of a
modified Ty2 or regulatory T-cell response with high
IL-10 secretion.!26 TL-10 inhibits T-cell activation and
cytokine secretion and switches B cells from IgE to
IgG4 production.!27 Whole-allergen immunotherapy
has modest effects in asthma compared with corticos-
teroids, 128 possibly because of dose limitation because
of the potential for anaphylaxis caused by IgE cross-
linking. We have focused our own efforts on attempts
to produce a safe immunotherapeutic for allergic asth-
ma by using MHC class II-restricted peptide frag-
ments of allergen that inactivate T cells but do not
cross-link IgE.

Previous studies demonstrated that peripheral T-cell
tolerance could be induced in naive and primed mice by
means of subcutaneous injection of peptides from the
major cat allergen Fel d 1.129 Subsequently, Norman et
al130 and others131-133 treated patients with cat allergy
by means of subcutaneous injection of 2 peptides
(termed IPC1 and IPC2) that spanned a large proportion
of chain 1 of Fel d 1. Although in some studies IPC1 and
IPC2 were efficacious at high doses, their administration
was associated with allergic symptoms that occurred
between 10 minutes and 6 hours after subcutaneous
injection. Because of their length (27 amino acids), the
IPC1/IPC2-induced immediate reactions might have
been the result of IgE cross-linking. For this reason, we
subsequently synthesized 3 Fel d 1 chain 1 peptides of
relatively small size (16/17 residues) to enable them to
be presented to T cells in the absence of antigen pro-
cessing and without cross-linking allergen-specific
IgE.85:86 The peptides stimulated in vitro proliferative
responses in PBMCs from the majority of allergic and
nonallergic individuals but displayed virtually no hista-
mine-releasing activity from sensitized blood basophils,
even at doses of greater than 100 pg/mL. As indicated
earlier, intradermal administration of these peptides
resulted in the induction of isolated LARs in certain
individuals. Reactions were both dose dependent and
MHC restricted, supporting the hypothesis that bron-
choconstriction occurred as a result of direct and tran-
sient T-cell activation by the peptides.

Several studies in mice have shown that the develop-
ment of T-cell tolerance in vivo is preceded by transient
T-cell activation. Webb et al!34 reported that the clonal
elimination of VB+ cells responding to a superantigen
was preceded by marked expansion of these cells, where-
as Vidard et all35 found that before the establishment of
specific T-cell tolerance to ovalbumin, T cells displayed
transient responsiveness and synthesized IL-2 on anti-
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genic stimulation in vitro. Similar findings were reported
by Hoyne et al!36 by using an immunodominant peptide
derived from house dust mite. In this model a strong,
transient, T-cell CD4+ response in vitro preceded the
development of tolerance in vivo. Tsitoura et all37
observed transient T-cell activation and production of
Tyl and Ty2 cytokines after tolerogenic intranasal
administration of ovalbumin.

Rechallenge of asthmatic subjects with Fel d 1 pep-
tides through the intradermal route resulted in reduction
or abrogation of the isolated LAR in those individuals in
whom such reactions occurred after initial chal-
lenge.85:138.139

Additionally, the magnitude of both early-phase and
late-phase skin reactions to whole allergen challenge
were also reduced, together with a reduction of proin-
flammatory immunologic parameters and an increase in
the immunomodulatory cytokine IL-10.139 Miiller et
all40 observed similar changes in immunologic parame-
ters after treating patients with bee venom allergy with
peptides from phospholipase A,.

Analysis of the extent of reduction in the magnitude of
peptide-induced LARs and the interval between the first
and second challenge with peptides demonstrated a win-
dow of optimal tolerance induction that appeared when
injections were administered between approximately 2
weeks and 2 months apart. One implication of this obser-
vation is that the ability of peptides to activate a memory
T-cell response that manifests itself as an isolated LAR in
certain individuals and the ability to induce hyporespon-
siveness in the allergen-specific T-cell compartment are
unlikely to be linked temporally. Furthermore, reductions
in early-phase and late-phase skin reactions to whole
allergen challenge were observed with equal frequency
and magnitude in those subjects who experienced an
LAR and those who did not.

Thus it appears likely that the induction of transient T-
cell activation and induction of hyporesponsiveness in
this clinical model are separate events. Whether these can
be separated and whether this treatment can reduce AHR
and symptoms in asthma is the subject of ongoing work.
Also of relevance for the future of immunotherapy is
whether specific immunotherapy can be used to prevent
asthma: certainly initial data are promising.14!

There is much current interest in regulatory T cells. A
number of such suppressive T-cell subsets have been
described in mice and human patients, including natural-
ly occurring CD4+CD25* T cells, IL-10—producing T
cells, and Tyl cells.!42 Whether such cells can be
induced therapeutically in asthma remains to be estab-
lished, although, as discussed above, this is one possible
mechanism of immunotherapy (both with peptides and
whole-allergen extracts). One type of regulatory T cell
was induced by a combination of corticosteroids and vi-
tamin D3,143 and corticosteroids increase IL-10 both in
vitro and in vivo in asthma.!44.145 Thus it might be pos-
sible to manipulate long-lasting regulatory T-cell
responses by pharmacologic means in asthma or to use
drugs as adjuvants for immunotherapy.
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CONCLUSIONS

There is now considerable evidence for the role of T
cells in asthma. The hypothesis has generated a number
of potential avenues for future therapy. Important
remaining questions include the following:

» Will direct targeting of T cells, such as through peptide
therapy, be effective for chronic asthma, or does air-
way remodeling preclude major responses to T
cell-directed treatment?

* What drives the T-cell response in nonallergic intrinsic
asthma?

e Are non-Ty2 products important in T cell-dependent
airway narrowing?

* What controls the activation of airway T cells in atopic
nonasthmatic patients and healthy individuals?

e Can treatments be developed that target multiple
cytokines yet remain more specific than cortico-
steroids?

* What chemokines and receptors are important in T-cell
recruitment and retention in the asthmatic airway?
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