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Basis for the barrier abnormality in atopic dermatitis:
Outside-inside-outside pathogenic mechanisms

Peter M. Elias, MD,?® Yutaka Hatano, MD, PhD,*? and Mary L. Williams, MD®®  San Francisco, Calif

Until quite recently, the pathogenesis of atopic dermatitis (AD)
has been attributed to primary abnormalities of the immune
system. Intensive study revealed the key roles played by Ty1/
Ty2 cell dysregulation, IgE production, mast cell hyperactivity,
and dendritic cell signaling in the evolution of the chronic,
pruritic, inflammatory dermatosis that characterizes AD.
Accordingly, current therapy has been largely directed toward
ameliorating Ty2-mediated inflammation and pruritus. In this
review we will assess emerging evidence that inflammation in
AD results from inherited and acquired insults to the barrier
and the therapeutic implications of this paradigm. (J Allergy
Clin Immunol 2008;121:1337-43.)
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Until recently, atopic dermatitis (AD) has been viewed largely
as a disease of immunologic etiology.'™ Yet, the epidermis gener-
ates a set of protective/defensive functions (Table I) mediated by
its unique differentiation end product, the stratum corneum
(SC).®” These functions include the permeability barrier, which
retards transcutaneous evaporative water loss, allowing survival
in a potentially desiccating external environment, and an antimi-
crobial barrier, which simultaneously encourages colonization by
nonpathogenic “normal” flora while resisting growth of microbial
pathogens.® Although both a defective epidermal permeability”'?
and a propensity to secondary infection'*'> are well-recognized
features of AD, these abnormalities have been widely assumed
to reflect downstream consequences of a primary immunologic
abnormality (the historical inside-outside view of AD pathogene-
sis). We and others have long proposed that the permeability bar-
rier abnormality in AD is not merely an epiphenomenon but rather
the “driver” of disease activity (ie, the reverse outside-inside view
of disease pathogenesis)l("19 for the following reasons: (1) the
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Abbreviations used

AD: Atopic dermatitis
FFA: Free fatty acid
FLG: Filaggrin

GC: Glucocorticoid

LB: Lamellar body

NS: Netherton syndrome

SC: Stratum corneum

SP: Serine protease

extent of the permeability barrier abnormality parallels the sever-
ity of the disease phenotype in AD*1%12.(2) both clinically
uninvolved skin sites and skin cleared of inflammation for as
long as 5 years continue to display significant barrier abnormali-
ties'®!3; (3) emollient therapy comprises effective ancillary ther-
apy”’; and most importantly, (4) specific replacement therapy,
which targets the prominent lipid abnormalities that account for
the barrier abnormality in AD (see below), corrects both the
permeability barrier abnormality and comprises effective anti-
inflammatory therapy for AD (see the Therapeutic implications
section below).

BROAD BARRIER FAILURE IN AD

Like permeability barrier dysfunction, the antimicrobial bar-
rier is also compromised in patients with AD. Colonization by
Staphylococcus aureus is a common feature of AD,?' and
although colonization is highest on lesional skin, colony counts
often are high on the clinically normal skin of patients with
AD.'*!'5 Moreover, overt secondary infections, manifesting
commonly as impetiginization, widespread folliculitis, or, less
frequently, cutaneous abscesses or cellulitis, are well-recognized
complications in the management of AD. Furthermore, coloniza-
tion by superantigen-producing S aureus strains further exacer-
bates disease in patients with severe AD through generalized
augmentation of IgE production, as well as through development
of specific IgE directed toward staphylococcal exotoxins (see the
“Impaired antimicrobial defense further compromises barrier
function in AD” section below).19 In addition, patients with
AD are also susceptible to widespread cutaneous viral infections,
including molluscum contagiosum, herpes simplex (Kaposi’s
varicelliform eruption), and life-threatening vaccinia.”?> Wide-
spread dermatophytosis (tinea corporis) and Malassezia species
infections also occur in AD, and the latter, such as S aureus,
can stimulate specific IgE production.zz’23 Taken together, these
observations point to loss of a competent antimicrobial barrier in
AD. Although failure of both permeability and antimicrobial
function is well recognized in patients with AD, only recently
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TABLE I. Multiple protective functions of mammalian SC
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Function Principal compartment Structural basis Chemical basis Regulatory signals (receptors)
Permeability*t Extracellular matrix Lamellar bilayers Ceramides, cholesterol, nonessential IL-la Ca™ ™, pH, liposensors,
fatty acids in proper ratio serine proteases through
PAR2, TPRV1 and TPRV4
Antimicrobial*{ Extracellular matrix Lamellar bilayers Antimicrobial peptides, FFAs, Sph 1,25 (OH),D3, IL-1a
Antioxidantf Extracellular matrix Lamellar bilayers Cholesterol, FFAs, secreted ?

Cohesion (integrity) Extracellular matrix CD

— desquamation*¥
Mechanical/rheologict

Corneocyte Cornified envelope,

keratin filaments

Chemical Extracellular matrix Extracellular
(antigen exclusion)*} lacunae

Psychosensory interfacef Extracellular matrix Lamellar bilayers

Hydrationt Corneocyte Cytosol

UV light Corneocyte Cytosol

Initiation of inflammation Corneocyte Cytosol

(1° cytokine activation)*t

vitamin E, redox gradient

Intercellular DSG1/DSC1
homodimers

v-Glutamyl isopeptide
bonds

Hydrophilic products of CD

pH, Ca*™" (TPRV)

Ca™™, CholSOy, liposensors
Same as for permeability barrier
GCs, heat (TPRV3)

Osmotic changes (TPRV1 and
TPRV4), aquaporin 3

Barrier lipids
FLG proteolytic products, glycerol

Trans-urocanic acid (histidase activity)

Proteolytic activation of pro-IL-1a/f pH, serine protease activation

TPRYV, Transient receptor potential vanilloid; Sph, sphingomyelin; CD, corneodesmosomes; DSG1, desmoglein 1; DSCI, desmocollin 1.

*Regulated by SC pH.
fAbnormal in AD.

has it become clear that these 2 functions are both coregulated
and interdependent.”* Thus failure of the permeability barrier
in itself favors secondary infection, and conversely, pathogen
colonization/infection further aggravates the permeability barrier
abnormality.

Finally, several other critical defensive functions of the SC are
also compromised in patients with AD, including (1) SC integrity
(cohesion), as reflected by excess scale (abnormal desquamation),
and (2) diminished SC hydration, as reflected by lifelong cuta-
neous xerosis in these patients, even after overt inflammation
recedes (Table I).>'%'* Like the defective permeability and
antimicrobial barriers, SC hydration decreases in both the lesional
and nonlesional skin of patients with AD, with its severity paral-
leling disease activity.”'? Decreased SC hydration is not merely
of cosmetic concern because it alone suffices to stimulate epider-
mal hyperplasia and early evidence of inflammation, such as mast
cell degranulation, even in normal skin.?> Whether additional
defensive functions of the SC, such as antioxidant or UV defense,
also fail in patients with AD remain unknown. Nevertheless, AD
can be viewed as a disease of broad barrier failure.

BASIS FOR THE PERMEABILITY BARRIER
IN NORMAL SKIN

The permeability barrier resides in the SC, a multilayered
tissue composed of flattened anucleate corneocytes surrounded by
multiple planer lamellae sheets enriched in ceramides, choles-
terol, and free fatty acids (FFAS).26 It is the localization of these
highly hydrophobic lipids within the extracellular domains of
the SC that inhibits the outward movement of water. These lipids
are delivered to the SC as their precursors through secretion of a
unique organelle, the epidermal lamellar body (LB).%° As the SC
forms, this organelle delivers not only lipid constituents (eg,
cholesterol) and lipid precursors (eg, glucosylceramides and
phospholipids) but also the enzymes (B-glucocerebrosidase,
acidic sphingomyelinase, and secretory phospholipase Aj)
required to generate ceramides and FFAs, which are required

for their organization into mature membrane structures.”® In
parallel, LB-derived proteases and their inhibitors orchestrate
the orderly digestion of corneodesmosomes, transient intercellular
junctions that are progressively degraded, allowing corneocytes to
shed invisibly at the skin surface.?’*® Finally, antimicrobial pep-
tides also are delivered to the SC intercellular domains through
secretion of LB contents.?”"

INHERITED BARRIER ABNORMALITIES IN ATOPIC
DERMATITIS

Based on inherited abnormalities either in serine protease (SP)/
antiprotease expression or filaggrin (FLG) production, the devel-
opment of AD is now increasingly linked to primary defects in the
structure and function of the SC. The most compelling case for the
role of excess SP activity in the pathogenesis of AD comes from
Netherton syndrome (NS), an autosomal recessive disorder
caused by loss-of-function mutations in SPINKS, the gene encod-
ing the SP inhibitor lymphoepithelial Kazal-type trypsin inhibi-
tor.”> NS is characterized by severe AD, mucosal atopy, and
anaphylactic reactions to food antigens.*>*® Residual lymphoepi-
thelial Kazal-type trypsin inhibitor expression in NS correlates
inversely with excess SP activity within the outer epidermis,33
resulting in a severe permeability barrier defect and dramatic thin-
ning of the SC because of unrestricted, SP-dependent degradation
of lipid-processing enzymes and corneodesmosome-constituent
proteins, respectively.>*** Pertinently, several European, Ameri-
can, and Japanese case-control studies of patients with AD or
mucosal atopy have found an increased frequency of single
nucleotide polymorphisms (Glu420Lys) in SPINKS.*> Con-
versely, a British case-control study described putative gain-
of-function polymorphisms (AACCAACC vs AACC) in the 3’
region of KLK7, which encodes the SP SC chymotryptic enzyme or
KLK7.3> Moreover, transgenic mice forced to express human
KLK7 display a severe AD-like dermatosis.*® Yet the incidence
of both these polymorphisms is quite high in unaffected healthy
patients,‘w’39 and it is not yet known whether either of these
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FIG 1. Inherited and acquired activation of serine proteases converge to affect multiple SC functions but by
divergent mechanisms. SPI, Serine protease inhibitor; DSG1, desmoglein 1; CD, corneodesmosome; LEKTI,
lymphoepithelial Kazal-type trypsin inhibitor; PAR2, plasminogen activator type 2 receptor; KLK7, kallikrein 7.
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FIG 2. FLG proteolytic pathway affects multiple SC functions: potential implications for pathogenesis of AD.
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single nucleotide polymorphisms alters expression of its respec-
tive protein product or products. Nevertheless, in experimental
animals a net increase in SP activity, achieved by a variety of
means, has been shown to compromise barrier function through
accelerated degradation of both corneodesmosomes (accounting
for flawed SC integrity) and degradation of extracellular lipid-pro-
cessing enzymes (ie, 3-glucocerebrosidase and acidic sphingomy-
elinase; Fig 1).*° SP-mediated degradation of the extracellular
hydrolytic enzymes would, in turn, result in a failure to generate
ceramides, a characteristic lipid abnormality in AD.*"**?

Increased SP activity likely provokes the barrier abnormality
through a second and unrelated mechanism by signaling of the
plasminogen activator type 2 receptor, which in turn down-
regulates LB secretion,*’ entombing these organelles in nascent
corneocytes.44 Failure of LB secretion accounts, in turn, for
another characteristic abnormality in AD, a global decrease in
SC lipids,“’45 which correlates with the observed decrease in
extracellular lamellar bilayers'? in patients with AD (Fig 1).
Thus increased SP activity alone induces abnormalities that
parallel those in AD, providing a mechanistic basis for the global
reduction in extracellular lipids and further decrease in ceramide
levels that occur in patients with AD.

The strongest evidence for a primary structural abnormality of
SC underlying the pathogenesis of AD derives from the recent
link between loss-of-function mutations in the gene encoding
FLG and AD.**>' Up to 50% of European kindreds with AD
reveal single- or double-allele or compound mutations in FLG
on chromosome 1q21. Although 15 different mutations have

been reported, the 2 most common (R501X and 2282del4)
account for the majority of cases,”” and because of their proximal
location on the FLG gene, they also predict more severe loss of
function.>®>> Yet although the logic for the link between excess
SP activity and the barrier abnormality in AD seems clear, how
loss of FLG (an intracellular protein) provokes a permeability
barrier abnormality (almost always an extracellular defect) is
not known. Loss of this quantitatively important protein could
alter corneocyte shape (eg, flattening) sufficiently to disrupt the
organization of the extracellular lamellar bilayers. Alternatively,
or in addition, FLG is generated during cornification as its precur-
sor protein, profilaggrin, which is then proteolytically processed
into FLG during the abrupt transition from the granular cell layer
to corneocyte.56 Whereas FLG initially aggregates keratin fila-
ments into keratin fibrils, subsequently, it is itself proteolytically
degraded into amino acids, which are further deiminated into
polycarboxylic acids, such as pyrrolidine carboxylic acid and
trans-urocanic acid.’’ These metabolites, in turn, act as osmo-
lytes, drawing water into corneocytes, thereby accounting in large
part for corneocyte hydration (Fig 2). Hence the most immediate
result of FLG deficiency in patients with AD is decreased SC hy-
dration, leading in turn to a steeper water gradient across the SC,
which likely drives increased transcutaneous water loss. Thus de-
creased SC hydration, leading to increased water loss, is the first
and most obvious cause of barrier dysfunction in AD. However,
neither corneocyte flattening nor decreased SC hydration alone
would suffice to enhance antigen penetration, which is best ex-
plained by another consequence of FLG deficiency (ie, decreased
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FIG 3. Outside-inside initial provocation of AD eventually can lead to an outside-inside-outside vicious
cycle. hBD2, Human B-defensin; AR, amphiregulin; NGF, nerve growth factor.

downstream production of acidic metabolites resulting from
FLG proteolysis). Indeed, trans-urocanic acid, in particular, is a
purported, endogenous acidifier of the SC.’® Thus decreased
generation of FLG products could result in an initial increase in
the pH of SC in patients with AD sufficient to increase the
activities of the multiple SPs in SC (Fig 1), which all exhibit
neutral-to-alkaline pH optima.?® Such a pH-induced increase in
SP activity, if prolonged, could precipitate downstream structural
and functional alterations that would converge with those that
result from inherited abnormalities in SP/antiprotease expression
(Fig 1).

One important downstream consequence of increased SP
activity is generation of the primary cytokines IL-lo and
IL-18°%% from their 33-kd proforms, which are stored in large
quantities in the cytosol of corneocytes (Fig 1). The putative
pH-induced increase in SP activity would generate 17-kd active
forms of these cytokines,®” the first step in the cytokine cascade
that we propose is a primary contributor to inflammation in AD
(Fig 3). Sustained antigen ingress through a defective barrier lead-
ing to a Ty2-dominant infiltrate is a second cause of inflammation
in AD.> Accordingly, correction of the barrier abnormality alone
should ameliorate both causes of inflammation in AD.

EXOGENOUS AND ENDOGENOUS STRESSORS
FURTHER AGGRAVATE BARRIER FUNCTION IN AD

Acquired pH-dependent increases in SP activity could also
contribute to AD pathogenesis. That FLG mutations alone do not
suffice is shown in ichthyosis vulgaris, where the same single- or
double-allele FLG mutations reduce FLG content, but inflamma-
tion (ie, AD) does not always occur."*%? Certain stressors could
elicit disease by aggravating the barrier abnormality by provoking
an incremental increase in the pH of the SC, leading to a further
amplification of SP activity. Such a barrier-dependent increase in
pH (and SP activity) likely accounts for the precipitation of AD
after the use of neutral-to-alkaline soaps (Fig 1), a well-known
exogenous stressor of clinical AD.%?

Prolonged exposure to reduced environmental humidity, as
occurs in radiant-heated homes in temperate climates during the
winter, is also a well-known risk factor for AD. Under these
conditions, transcutaneous water loss would accelerate across a

defective SC, aggravating the underlying permeability barrier
abnormality and amplifying cytokine signaling of inflammation.
Because FLG proteolysis is regulated by changes in external
humidity,”” sustained reductions in environmental relative
humidity could further deplete residual FLG in single-allele
FLG-deficient patients. Finally, sustained psychologic stress (PS)
aggravates permeability barrier function in human subjects,**%>
and PS is both a well-known precipitant of AD and a cause of
resistance to therapy. In the case of PS, however, the likely mech-
anism differs from either surfactant use or decreased environmen-
tal humidity. In experimental animals psychologic stress induces
an increase in endogenous glucocorticoids (GCs), which in turn al-
ter permeability barrier homeostasis, SC integrity, and epidermal
antimicrobial defense.?'**>%” The putative mechanism for the neg-
ative effects of psychologic stress is GC-mediated inhibition of
synthesis of the 3 key epidermal lipids that mediate barrier func-
tion (ie, ceramides, cholesterol, and FFAS).68 Accordingly, a top-
ical mixture of these 3 lipids largely normalizes all of these
functions, even in the face of ongoing PS or GC therapy.*!*®

OUTSIDE-INSIDE AND THEN BACK TO OUTSIDE
PATHOGENIC MECHANISM IN AD

Despite accumulating evidence in support of a barrier-initiated
pathogenesis of AD, recent studies suggest specific mechanisms
whereby Ty2-generated cytokines could also further aggravate
AD. Exogenous applications of the Ty2 cytokine IL-4 impede per-
meability barrier recovery after acute perturbations.®” The basis
for the negative effects of IL-4 could include (1) the observation
that exogenous IL-4 also inhibits ceramide synthesis,70 providing
yet another mechanism accounting for decreased ceramide levels;
(2) the observation that IL.-4 also was shown recently to inhibit
expression of keratinocyte differentiation-linked proteins, most
notably FLG’'; and (3) the observation that desmoglein 3 expres-
sion is also inhibited by exogenous IL-4.7 Together, these
observations provide acquired mechanisms that could further
compromise barrier function in patients with AD.”"’* Thus
primary inherited barrier abnormalities in AD ultimately
stimulate downstream paracrine mechanisms that could further
compromise permeability barrier function, completing a potential
outside-inside-outside pathogenic loop in AD (Fig 3).



J ALLERGY CLIN IMMUNOL
VOLUME 121, NUMBER 6

ELIAS, HATANO, AND WILLIAMS 1341

T8S. aureus
colonization

LFFA, sphingosine I

_— lLampP
1 e T
1° Sustained -
e e A Folliculitus/
T- + B-cell Impetigo
LCéramide activation
thesi
synthesis N BN /

Pruritus
r‘_“_g_ﬂ
T Spemf ic IgE -

TToxin- + superantigen-
producing strains

| Scratching/excoriations I

7 om

FIG 4. Role of secondary infections in further aggravation of AD. AMP, Antimicrobial peptides; FFA,

free fatty acids.

IMPAIRED ANTIMICROBIAL DEFENSE FURTHER
COMPROMISES BARRIER FUNCTION IN AD

In the prior sections, we discussed first how genetic and
acquired factors can converge to provoke or amplify AD and
second how inflammation can be attributed both to an epidermis-
derived cytokine cascade, as well as to stimulation of a Ty2-dom-
inant inflammatory infiltrate because of sustained antigen ingress.
Increased colonization with S aureus™'*"* occurs as a result of the
barrier abnormality (a structurally competent, lipid-replete, acidic
SC itself comprises a formidable barrier to pathogen coloniza-
tion®), and it can further aggravate barrier function in AD through
several mechanisms (Fig 4). The antimicrobial barrier is inti-
mately linked to the permeability barrier,”* and as with water
egress, pathogen ingress occurs through the extracellular do-
mains.”* Moreover, an impaired permeability barrier alone
predisposes to pathogen colonization, not only because of the
increase in surface pH75 but also because levels of FFAs and the
ceramide metabolite sphingosine, which exhibit potent antimicro-
bial activity,”*® are reduced in AD.® Surface proteins on S aureus
can downregulate epidermal FFA production,’’ thereby aggravat-
ing both permeability and antimicrobial function in parallel, a
strategy that could also facilitate microbial invasion. In addition,
members of 2 key families of antimicrobial peptides, the human
cathelicidin product LL-37 and human (-defensins 2 and 3, are
downregulated in a Ty2-dependent fashion in AD (Fig 4).”>7®
Notably, both the human cathelicidin aminoterminal fragment
cathelin’® and human B-defensin 3*>*' display robust activity
against S aureus. LL-37 is required for normal epidermal perme-
ability barrier function (notably, LL-37 is also important for the
integrity of extracutaneous epithelia).””> Thus it is likely that
decreased LL-37 levels amplify the barrier defect in AD (Fig 4).

Over time, nontoxigenic strains of S aureus that colonize
patients with AD can be replaced by enterotoxin-generating
strains,®? which in turn could aggravate AD through at least
3 mechanisms (Fig 4): (1) toxigenic strains are more hkely to pro-
duce clinical infections than are nontoxigenic strains®?; (2) some
toxins stimulate prurltus 3 and productlon of specific IgE15‘84’86;
and (3) some toxins serve as “superantigens” that stimulate
T- and B-cell proliferation, as well as immunoglobulin class-
switching to allergen specific or “superallergens” that stimulate

IgE production.ls’87 Activated T cells produce IL-31, which
also induces pruritus.*® Finally, clinical infections, particularly
folliculitis, are notoriously pruritic, even in nonatopic subjects,
eliciting an itch-scratch vicious cycle that creates additional
portals of entry for pathogens (Fig 4). It is self-evident that
excoriations create further defects in the permeability barrier,
representing yet another potentially important vicious cycle in
AD pathogenesis (Fig 4).

THERAPEUTIC IMPLICATIONS

Together, the converging pathogenic features described above
create a strong rationale for the deployment of specific strategies
to restore barrier function in patients with AD. Based on the
mechanisms described above, these approaches could range from
a simple reduction in the pH of SC alone (hyperacidification),
applications of SP inhibitors, topical plasminogen activator type 2
receptor antagonists, general moisturization measures, or specific
lipid replacement therapy. Moisturizers are widely used in AD
and, when used under nursing supervision, have been shown to
reduce topical steroid use.?’ Of these approaches, the last is well
into development as triple-lipid, ceramide-dominant, barrier
repair therapy for AD, provided in an acidic formulation.* Two
clinical studies support the efficacy of targeted, ceramide-
dominant lipid replacement therapy in AD. An open-label study
demonstrated dramatic improvements in clinical activity,
permeability barrier function, and SC integrity when an over-
the-counter version of this technology (TriCeram; Osmotics
Corp, Denver Colo) was substituted for standard moisturizers in
children with severe recalcitrant AD.'? More recently, a higher-
strength, US Food and Drug Administration—approved prescrip-
tion formulation (EpiCeram cream; Ceragenix Corp, Denver,
Colo) demonstrated efficacy that was comparable with that of a
midpotency steroid (fluticasone, Cutivate cream) in an investiga-
tor-blinded, multicenter clinical trial of pediatric patients with
moderate-to-severe AD.* These studies, although still prelimi-
nary, suggest that pathogenesis-based therapy, directed at the lipid

*Dr Elias is a coinventor of this University of California patented technology and is an
officer of Ceragenix Corporation, the licensee of this technology.
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biochemical abnormality that is responsible for the barrier defect
in AD, could comprise a new paradigm for the therapy of AD. Yet
an important question remains: Will restoration of permeability
barrier function simultaneously improve antimicrobial defense
in patients with AD? Because recent studies have shown that these
2 key functions are both regulated in parallel and interdepen-
dent,?* there is reason to be optimistic on this score as well.

We gratefully acknowledge the superb editorial assistance of Ms Joan
Wakefield, including her preparation of the graphics.
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