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Allergen-specific immunotherapy has been used for 100 years as
a desensitizing therapy for allergic diseases and represents the
potentially curative and specific method of treatment. The
mechanisms of action of allergen-specific immunotherapy
include the very early desensitization effects, modulation of
T-and B-cell responses and related antibody isotypes, and
migration of eosinophils, basophils, and mast cells to tissues, as
well as release of their mediators. Regulatory T (Treg) cells have
been identified as key regulators of immunologic processes in
peripheral tolerance to allergens. Skewing of allergen-specific
effector T cells to a regulatory phenotype appears as a key event
in the development of healthy immune response to allergens and
successful outcome in patients undergoing allergen-specific
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immunotherapy. Naturally occurring forkhead box protein
3–positive CD41CD251 Treg cells and inducible TR1 cells
contribute to the control of allergen-specific immune responses
in several major ways, which can be summarized as suppression
of dendritic cells that support the generation of effector T cells;
suppression of effector TH1, TH2, and TH17 cells; suppression of
allergen-specific IgE and induction of IgG4; suppression of mast
cells, basophils, and eosinophils; and suppression of effector
T-cell migration to tissues. New strategies for immune
intervention will likely include targeting of the molecular
mechanisms of allergen tolerance and reciprocal regulation of
effector and Treg cell subsets. (J Allergy Clin Immunol
2011;127:18-27.)

Key words: Regulatory T cells, immunotherapy, anergy, IgE, T cells,
IL-10, TGF-b, allergen immunotherapy, TH cells, immune tolerance,
IgE, IgG, T cells, B cells, mast cells, basophils, eosinophils

The immune system forms an interactive network with tissues
and makes its decisions on the basis of signals coming from
resident tissue cells, infectious agents, commensal bacteria, and
almost any environmental agents.1,2 In recent years, induction of
immune tolerance has become a prime target for prevention and
treatment strategies for many diseases in which dysregulation of
the immune system plays an important role. Immune tolerance to
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allergens can be defined as establishment of a long-term clinical
tolerance against allergens, which immunologically implies
changes in memory-type, allergen-specific T- and B-cell re-
sponses, as well as mast cell and basophil activation thresholds
that do not cause allergic symptoms.3-6 In addition, prevention of
new allergen sensitizations7 and progression to more severe dis-
ease, such as development of asthma8 after allergic rhinitis or de-
velopment of systemic anaphylaxis, are essential clinical
implications of immune tolerance.
The immunologic basis of allergic diseases is observed in 2

phases: sensitization and development of memory T- and B-cell
responses and IgE (early phase) and effector functions related to
tissue inflammation and injury (late phase).5 The differentiation
SARY

NTS: Substances that need to be administered together with

ntigens to elicit maximal T cell–dependent immune responses.

25 is the IL-2 receptor a chain. IL-2 plays a role in the generation

ival of Treg cells.

INES: Cytokines that induce themigration of cells, chemokines

inding to G protein–coupled receptors. Their function in the

system is to coordinate leukocyte trafficking and activation.

EXPANSION: An increase in the number of cells that express

receptors for the antigen.

ES: Proteins secreted by the cells of the innate and adaptive

system. Cytokines can stimulate the growth and differentiation

ocytes, activate different effector cells to eliminate microbes,

ulate the development of hematopoietic cells. Cytokines are

t as targets for therapeutic agents.

XIC T LYMPHOCYTE–ASSOCIATED ANTIGEN 4 (CTLA-4):

is structurally homologous to CD28, but CTLA-4 is expressed

tly activated CD41 and CD81 T cells, and its function is to inhibit

tivation.

b-LACTOGLOBULIN: Bovine b-lactoglobulin is a whey protein

(Bos d 5). Sequential (linear) allergenic (IgE) epitopes have been

on the caseins b-lactoglobulin and a-lactalbumin and have

related with the persistence of cow’s milk allergy.

TIC CELLS: Hematopoietic cells that function as antigen-

ng cells for naive lymphocytes. Their name is derived from

ltiple, thin membranous projections.

: A molecular region on the surface of an antigen capable of

an immune response and for binding of the specific antibody

d by such a response.

RECEPTOR TYROSINE-BASED INHIBITORY MOTIF (ITIM):

in the cytoplasmic tails of inhibitory receptors, ITIMs are

l for the signaling functions of these molecules. ITIMs recruit

ors wish to acknowledge Daniel Searing, MD, for preparing this glo
and clonal expansion of allergen-specific CD41 TH2 cells pro-
ducing IL-4 and IL-13 are essential to induce class switching to
the e immunoglobulin heavy chain in B cells and the production
of allergen-specific IgE antibodies during the sensitization phase.
Allergen-specific IgE binds to the FceRI on the surface of mast
cells and basophils, thus leading to the patient’s sensitization.9

When a new encounter with the allergen causes cross-linking of
the IgE-FceRI complexes on sensitized basophils and mast cells,
they are activated and subsequently release anaphylactogenic me-
diators responsible for the classical symptoms of the immediate
phase (type 1 hypersensitivity).
Depending on the innate immune response activating capacity

of the substances coexposed with the antigen, cosignals for
cell differentiation, and status of the cells and cytokines in the
microenvironment, CD41 naive T cells can differentiate into
TH1-, TH2-, TH9-, TH17-, or TH22-type memory and effector
cells. Based on their respective cytokine profiles, responses to
chemokines, and interactions with other cells, these T-cell subsets
can promote different types of inflammatory responses. During
the development of allergic disease, effector TH2 cells produce
IL-4, IL-5, IL-9, and IL-13,3-5,10,11 and probably other recently
identified cytokines, such as IL-25, IL-31, and IL-33, contribute
to TH2 responses.

12-18 These cytokines play a role in the produc-
tion of allergen-specific IgE, eosinophilia, permissiveness of
endothelium for the recruitment of inflammatory cells to inflamed
tissues, production of mucus, and decreased threshold of
phosphatase enzymes that counteract the effect of kinases in the

signaling cascades initiated by activating receptors.

INDUCIBLE COSTIMULATOR (ICOS): ICOS is a member of the CD28

family of costimulatory receptors on T cells. ICOS binds to ICOS ligand

on antigen-presenting cells.

ISOTYPE: Isotypes are a class of antibody. There are 5 different antibody

isotypes (IgM, IgD, IgG, IgA, and IgE) that are determined by the type of

heavy chain present.

LANGERHANS CELLS: A subset of dendritic cells found in the epithelia

and skin-draining lymph nodes. Because of their long cytoplasmic

processes, Langerhans cells occupy as much as 25% of the surface

area of the epidermis, even though they constitute less than 1% of the

cell population.

MUCUS: A substance lining mucous membranes that functions to

preserve the membranes, to act as a barrier, and to transport trapped

material (in conjunction with cilia). Normal airway mucus is 90% water,

and the remaining 10% is composed of protein, carbohydrate, and lipid.

PEPTIDE IMMUNOTHERAPY: Immunotherapy with allergen-derived

peptides representing T cell–activating epitopes, which do not react

with IgE antibodies.

PHLEUM SPECIES ALLERGEN MIXTURES: A genera of grasses that

contains timothy grass.

PIECEMEAL RELEASE: An induced vesicular transport of granular

content that does not involve direct granule extrusion.

SMOOTH MUSCLE: Muscle tissue that lacks cross-striations and is

found especially in vertebrate hollow organs and structures (eg, the

bronchus, intestine, and bladder) as thin sheets performing functions

not subject to direct voluntary control.

TOLERANCE: Unresponsiveness, noninflammatory response, or non-

anaphylactogenic response to anantigen that is inducedby immunologic

mechanisms that develop because of previous exposure to that antigen.

ssary.



FIG 1. Immunologic changes during the course of allergen SIT. Although

there is significant variation between subjects and protocols, right after the

first administration of allergens with native-like structures, an early de-

crease in mast cell and basophil degranulation and a decreased tendency

for systemic anaphylaxis are observed. This is followed by generation of

allergen-specific Treg cells and suppression of both allergen-specific TH1,

TH2, and maybe other effector cells. An early increase and a very late de-

crease in specific IgE levels is observed. In particular, the IgG4 level shows

a relatively early increase that is dose dependent. In some studies allergen-

specific IgG1 and IgA levels also increase. A significant decrease in the

allergen-specific IgE/IgG4 ratio occurs after several months. A significant

decrease in type I skin test reactivity is also observed relatively late in the

course of SIT. A decrease in tissue mast cell and eosinophil numbers and

a release of their mediators and decrease in the late-phase response is ob-

served after a few months. These effects are partially demonstrated in SLIT

and are rather weak compared with those seen in injection SIT. Novel aller-

gen SIT approaches might or might not show these effects, although they

still can be effective.

BOX 1: Components of the immune response to allergens in

healthyandallergic subjectsand the response toallergenSIT

Allergen-specific T-cell response

Healthy

nonallergic subjects

No or very low-dose exposure: no

T-cell proliferation or cytokine

response, no sensitization

Low-dose exposure: TH0 response in

PBMCs and specific T-cell clones

with low frequency

High-dose exposure: TR1, particularly

IL-10–dominating response with

relatively high frequency

Allergic subjects TH2 response with varying quantities

of IL-4, IL-5, and IL-13 in the

presence of relatively low but

detectable IL-10 and IFN-g levels

Allergen SIT Decreased allergen-induced T-cell

proliferation and TH1 and TH2

cytokines, induction of Treg cells,

increased suppression by Treg cells

Specific antibodies in serum

Healthy

nonallergic subjects

No or very low-dose exposure: not

detectable, no sensitization

Low-dose exposure: detectable IgG1,

IgG4, and IgA

High-dose exposure: high amounts of

IgG4, detectable IgG1, IgA, and IgE

Allergic subjects Relatively high amounts of IgE together

with low or high amounts of IgG1,

IgG4, and IgA

Allergen SIT Induction of specific IgG4, very late

decrease in specific IgE levels
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contraction of smooth muscles.19 The commonly observed TH2
profile in patients with atopic diseases might be a result of (1) in-
creased differentiation and clonal expansion of TH2 cells

20 or (2)
increased tendency to activation-induced cell death of high IFN-
g–producing TH1 cells.21 TH1 cells also efficiently contribute to
the effector phase of allergic diseases with their role in apoptosis
of the epithelium in patients with asthma and atopic dermati-
tis22-24 and apoptosis of smooth muscle cells in patients with fatal
asthma.25

The discovery of TH17 cells fills an essential gap in our under-
standing of inflammatory processes. TH17 cells are characterized
by IL-17A, IL-17F, IL-6, IL-8, TNF-a, IL-22, and IL-26 expres-
sion.26-32 Neutralization of IL-17 and TH17-related functions re-
solves tissue pathology in autoimmunity models, improves joint
destruction in experimental arthritis, and reduces neutrophil infil-
tration in an experimental asthma model while increasing eosin-
ophil infiltration.33-36 It was shown in 2 recent studies that TGF-b
in the presence of IL-4 reprograms TH2 cell differentiation and
leads to the development of a new population of TH9 cells that
produce IL-9 and IL-10.37,38

AT-cell subset known as TH22 cells has been demonstrated in T
cells that independently express IL-22 with low expression levels
of IL-17, and these cells play a role in atopic dermatitis.39 All of
these T-cell subsets and related events represent targets in the treat-
ment of allergic diseases and the induction of regulatory T (Treg)
cells, and allergen tolerance can balance their overactivation.
The pivotal role of Treg cells in inducing and maintaining
immune tolerance has been demonstrated during the last 15 years,
during which their adoptive transfer was shown to prevent or cure
several T cell–mediated disease models, including asthmatic lung
inflammation, autoimmune diseases, and allograft rejection.40 In
the clinical setting both injection and sublingual versions of
allergen-specific immunotherapy (SIT) have been shown to in-
duce allergen-specific Treg cells in human subjects (Box 1). In
addition to Treg cells, several other factors appear to play a mech-
anistic role in allergen SIT (Fig 1).
SEQUENTIAL EVENTS IN ALLERGEN SIT AND

THEIR UNDERLYING MECHANISMS

Very early mast cell and basophil suppression–

related desensitization effect
Although decreases in IgE antibody levels and IgE-mediated

skin sensitivity normally require years of SIT, most patients are
protected against bee stings or tolerate skin late-phase response
challenges at early stages of respective venom or grass pollen
SIT.41,42 An important observation starting from the first injection
is an early decrease in mast cell and basophil activity for degranu-
lation and systemic anaphylaxis (Fig 1). There is surprisingly little
information about the mechanisms by which SIT modifies,
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suppresses, or both immune responses of basophils and mast cells,
in particular during repetitive administration of increasing doses of
allergens within the first hours. Although it seems similar to rapid
desensitization for hypersensitivity reactions to drugs, the mecha-
nism of this desensitization effect for SIT is yet unknown. Acute
oral desensitization in mice demonstrated that antigen-specific
mast cell desensitization is one of themain underlyingmechanisms
for oral desensitization.43 It has been shown that mediators of an-
aphylaxis (histamine and leukotrienes) are released during SIT
and sting challenges without inducing a systemic anaphylactic re-
sponse.44 Their piecemeal release below the threshold of systemic
anaphylaxis might decrease the granule content of mediators and
also might affect the threshold of activation of mast cells and baso-
phils because decreased mediator release in these cells is a well-
demonstrated feature a short time after the start of allergen
SIT.44-46 One of the main soluble factors liberated by effector cells
after allergen challenge is histamine, which mediates its effects
through histamine receptors (HRs). Thus far, 4 different human
HR types have been identified as HR1 to HR4.47 Both the expres-
sion pattern ofHRs andmodifications in the intensity of the expres-
sion of a single HR type are decisive for the nature of the
developing immune response.48,49 HR1 has significant proinflam-
matory and cell-activating properties, whereas HR2 has been
shown to be coupled to adenylate cyclase and phosphoinositide
second messenger systems and is supposed to be involved primar-
ily in tolerogenic immune responses.50 Although there are individ-
ual differences and risks for systemic anaphylaxis during the
course of allergen SIT, the suppression of mast cells and basophils
continues to be affected by changes in other immune parameters,
such as the generation of allergen-specific Treg cells and decreased
specific IgE levels. In a recent study significantly enhanced trypto-
phan degradation and increased human immunoglobulin receptor
inhibitory transcript expression in monocytes were found within
a few hours after the first injection on day 1, representing markers
of very early changes.51
Very early effects related to antigen-presenting

cells and adjuvants
Aluminium hydroxide is a commonly used adjuvant in aller-

gen SIT vaccines. Although generally proved to be efficacious
and having a good safety profile, novel adjuvants are needed to
overcome current problems in conventional immunotherapy.
For example, depending on the type of Toll-like receptor
(TLR), different types of antigen-presenting cells can be targeted.
TLR-triggering compounds that can control the overexpression of
TH2 cytokines or skew the TH1-TH2 balance toward a TH1 and
Treg profile have been effective in murine models of allergy.52

The epidermis contains high numbers of potent antigen-
presenting Langerhans cells. Accordingly, transcutaneous or ep-
icutaneous allergen SIT was recently introduced as a treatment
option for allergies.53 A few applications of allergens by means
of skin patches with a treatment duration of a fewweeks were suf-
ficient to achieve lasting relief. Similarly, oral mucosal Langer-
hans cells bind allergens after resorption, which significantly
increased their migratory capacity but attenuated their matura-
tion.54 Allergen challenge promoted the release of TGF-b1 and
IL-10 by oral mucosal Langerhans cells themselves, as well as
by cocultured T cells.
The tolerogenic function of different types of dendritic cells

(DCs) depends on certain maturation stages and subsets of
different ontogenies and can be influenced by immunomodula-
tory agents. A role for DCs in the induction of different subsets
of Treg cells in defined microenvironments has been supported
by several studies. In intestinal lamina propria, several subsets
of DCs reside and are in close contact with commensal bacteria
and food antigens/allergens.55,56 DCs from the lamina propria
of the small intestine and from the mesenteric lymph nodes are
noticeably better than splenic DCs at inducing the expression of
forkhead box protein 3 (FOXP3) in naive T cells in the presence
of exogenous TGF-b.55,56 Treg cells can be induced in the micro-
environment of tumors and chronic infections caused by DCs that
promote them. In some cases DCs conditioned by FOXP31 Treg
cells; pathogen-derived molecules, such as filamentous hemag-
glutinin57; and exogenous signals, such as histamine through
HR2,50 adenosine,58 vitamin D3 metabolites,59 or retinoic
acid60 can induce new populations of Treg cells. Antigen presen-
tation by partially mature airway DCs that express IL-10 induce
the formation of TR1-like cells, which inhibit subsequent inflam-
matory responses.61 In addition, depletion and adoptive transfer
of pulmonary plasmacytoid DCs has demonstrated an important
role for these cells in protection from allergen sensitization and
asthma development in mice.62

Virus-like particles as a novel, modular, and acellular antigen-
presenting system and as strong adjuvants are able to modulate
the responses of allergen-specific T cells. Displaying Fel d 1 on
virus-like particles prevents type I hypersensitivity despite greatly
enhanced immunogenicity and represents a novel therapy for cat
allergy. A single vaccination was sufficient to induce protection in
mice.63,64
Treg cells and peripheral T-cell tolerance to

allergens
The induction of a tolerant state in peripheral T cells represents

an essential step in allergen SIT (Fig 1). Peripheral T-cell tolerance
is characterized mainly by generation of allergen-specific Treg
cells65-67 and initiated by IL-10 andTGF-b, which are increasingly
produced by the antigen-specific Treg cells.65-68 Subsets of Treg
cells with distinct phenotypes and mechanisms of action include
the naturally occurring, thymic selected CD41CD251 Treg cells
and the inducible TR1 cells.69 Different studies show roles for
both subsets, suggesting an overlap particularly in the inducible
subsets of Treg cells in human subjects. Their first effect is realized
by suppression of allergen-specific TH2 and TH1 cells. The
suppression by these cells could partially be blocked by the use
of neutralizing antibodies against secreted or membrane-bound
IL-10 and TGF-b. In coherence with this, it has been shown that
CD41CD251 Treg cells from atopic donors have a reduced capa-
bility to suppress the proliferation of CD41CD252 T cells.70 The
presence of local FOXP31CD251CD31 cells in the nasal mucosa,
their increased numbers after immunotherapy, and their associa-
tion with clinical efficacy and suppression of seasonal allergic
inflammation strengthen the concept of allergen tolerance based
on Treg cells in human subjects.71 These findings were coined
by tracking specific T cells with allergen class II tetramers: clinical
tolerance induction in human subjects is associated with a marked
loss of IL-4–producing T cells and the acquisition of IL-10–pro-
ducing and FOXP31 antigen-specific CD41 T cells.72 In addition
to conventional immunotherapy, peptide immunotherapy in pa-
tients with allergic asthma generates IL-10–dependent immuno-
logic tolerance associated with linked epitope suppression.
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Treatment with selected epitopes from a single allergen resulted in
suppression of responses to other (‘‘linked’’) epitopes within the
same molecule.73

IL-10–producing antigen-presenting cells, such as B cells74

and DCs,61 as well as clonally expanded IL-10–producing
allergen-specific TR1 cells,66,75 all contribute to the suppressive
effects of IL-10 in different models. IL-10 suppresses T cells
by blocking CD2, CD28, and inducible costimulator (ICOS)
costimulatory signals in a rapid signal transduction cascade.76

In the presence of IL-10, a direct inhibition on CD2, CD28,
and ICOS signaling in T cells occurs through use of Src homol-
ogy 2 domain-containing tyrosine phosphatase (SHP-1) by
IL-10.76,77 SHP-1 rapidly binds to CD28 and ICOS and dephos-
phorylates them.76 Supporting these findings, spleen cells from
SHP-1–deficient mice show increased proliferation with CD2,
CD28, and ICOS stimulation in comparison with that seen in
wild-type mice, which was not suppressed by IL-10. Generation
of dominant negative SHP-1–overexpressing T cells or silencing
of the SHP-1 gene by small inhibitory RNA both altered SHP-
1 functions and abolished the suppressive effect of IL-10.76-78 In-
terestingly, the suppressive effect of IL-10 was not observed in
other IL-10 family cytokines, such as IL-19, IL-20, IL-22, and
IL-24.79 In addition to T cells, IL-10 also exerts an inhibitory ef-
fect on activated monocytes and macrophages.80 It has been
shown in monocytes and DCs that IL-10 suppresses costimula-
tory molecules and downregulates MHC class II molecules and
antigen-presenting cell capacity.81 Furthermore, IL-10 induces
the expression of the suppressor of cytokine-signaling 3 gene
(SOCS3), which might play a role in the inhibition of the
IFN-g–induced tyrosine phosphorylation of signal transducer
and activator of transcription 1.82

TGF-b is essential for the maintenance of immunologic self-
tolerance.83 TGF-b induces the conversion of naive CD41CD252

T cells into CD41CD251 T cells by means of the induction of
FOXP3,84 and TGF-b signaling is required for in vivo expansion
and immunosuppressive capacity of CD41CD251 T cells.85 In
addition, runt-related transcription factors 1 and 3 play an essen-
tial role in FOXP3 development both in human subjects and
mice.86 However, the exact suppressive mechanisms behind
TGF-b activation of Smad pathways remain to be elucidated.
Treg cells in healthy immune response to allergens

in subjects exposed to high doses
Two high-dose allergen exposure models have been studied in

human subjects. These are immune responses to bee venom
allergens in beekeepers and immune responses to cat allergens in
cat owners.69,87 If a detectable immune response is mounted, TR1
cells specific for common environmental allergens consistently
represent the dominant subset in healthy subjects (Box 1). They
use multiple suppressive mechanisms, IL-10 and TGF-b as se-
creted cytokines, and cytotoxic T lymphocyte antigen 4 and pro-
grammed death 1 as surface molecules. Healthy and allergic
subjects exhibit all three (ie, TH1-, TH2-, and TR1-type
allergen-specific subsets in different proportions).75 Accordingly,
a change in the dominant subset and the balance between TH2 and
Treg cells might lead to either allergy development or recovery.
It was found in allergic children that Treg cells increase during

the pollen season.88 Whether these CD41CD25high T cells di-
rectly contribute to inflammation or their increased levels keep
the inflammation at low levels remains an important research
question. Circulating allergen-specific CD41CD25highFOXP31

Treg cells do not show a major difference between nonatopic
and atopic subjects.89 However, it was demonstrated that
FOXP3 expression shows a negative correlation with IgE, eosin-
ophilia, and IFN-g levels, and the FOXP31/CD41 ratio is signif-
icantly low in patients with asthma and atopic dermatitis.90

CD41CD251 Treg cells have been associated with the spontane-
ous remission of cow’s milk allergy. Children who outgrew their
allergy (tolerant children) had higher frequencies of circulating
CD41CD251 T cells and decreased in vitro proliferative re-
sponses to bovine b-lactoglobulin in PBMCs compared with
children who maintained clinically active allergy.91 Peripheral
tolerance uses multiple mechanisms to suppress allergic inflam-
mation. Treg cells contribute to the control of allergen-specific
immune responses by means of (1) suppression of antigen-
presenting cells that support the generation of effector T cells;
(2) suppression of TH2 and TH1 cells; (3) suppression of
allergen-specific IgE and induction of IgG4; (4) suppression of
mast cells, basophils, and eosinophils; and (5) interaction with
resident tissue cells and remodeling (Fig 2).69
Modulation of allergen-specific IgE and IgG

responses during allergen SIT
Peripheral T-cell tolerance is rapidly induced during SIT;

however, there is no evidence for B-cell tolerance in the early
course.65 Allergen SIT induces a transient increase in serum spe-
cific IgE levels, followed by a gradual decrease over months or
years of treatment (Fig 1).92,93 In pollen-sensitive patients desen-
sitization prevents the increase of serum specific IgE levels during
the pollen season.94 The changes in IgE levels cannot explain the
diminished responsiveness to specific allergen because of SIT be-
cause the decrease in serum IgE levels is relatively late and does
not correlate with clinical improvement after SIT.
Subclasses of IgG antibodies, especially IgG4, are thought to

capture the allergen before reaching the effector cell–bound IgE
and thus to prevent the activation of mast cells and basophils.
IgG4 antibodies can be viewed as a marker of introduced allergen
dose, and they have the ability to modulate the immune response
to allergen. However, the relationship between the efficacy of SIT
and the induction of allergen-specific IgG subgroups remains a
controversial issue, with serum concentrations of allergen-
specific IgG correlating with clinical improvement in some
studies but not in others.95,96 Allergen-specific IgG might be di-
rected against the same epitopes as IgE, resulting in direct compe-
tition for allergen binding and a ‘‘blocking’’ effect. The concept of
blocking antibodies has been re-evaluated. Analysis of the IgG
subtypes induced by means of SIT has shown specific increases
in IgG1 and particularly IgG4, with levels increasing 10- to
100-fold.97,98 There is accumulating evidence that SIT also influ-
ences the blocking activity on IgE-mediated responses by IgG4.
Results suggest that successful SIT is associated with an increase
in IgG-blocking activity that is not solely dependent on the quan-
tity of IgG antibodies.99,100 In a recent study inhibition by IgG re-
quired Fcg receptor IIB. One IgG against a single epitope on the
major allergen was able to block the degranulation of basophils
from subjects with cat allergy. The inhibitory potential of IgG an-
tibodies increased when larger allergen-IgG complexes were
formed.101 It seems to be relevant rather to measure the blocking
activity, affinity, or both of allergen-specific IgG or IgG subsets,
particularly IgG4 and also IgG1, instead of their levels in sera.



FIG 2. FOXP31CD41CD251 and TR1 cells contribute to the control of allergen-specific immune responses in

several major ways: suppression of DCs that support the generation of effector T cells; suppression of TH2

and other effector cells; suppression of allergen-specific IgE and induction of IgG4, IgA, or both; suppres-

sion of mast cells, basophils, and eosinophils; interaction with resident tissue cells and remodeling; and

suppression of effector T-cell and other inflammatory cell migration to tissues.
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There are several features of IgG4 that might play a role in
its noninflammatory role. The IgG4 hinge region has unique
structural features that result in a lower affinity for certain Fcg
receptors, and the ability to separate and repair by means of
dynamic Fab arm exchange leads to bispecific antibodies that are
functionally monomeric.102,103 Furthermore, IgG4 does not fix
complement and is capable of inhibiting immune complex forma-
tion by other isotypes, giving this isotype anti-inflammatory char-
acteristics. In a clinical trial with 5 recombinant Phleum species
allergen mixtures, all treated subjects had very strong allergen-
specific IgG4 and also increased IgG1 antibody responses. Some
patients whowere not initially sensitized to Phl p 5 had strong spe-
cific IgG4, but not IgE antibody responses specifically against that
allergen.97 This demonstrates that extract-based antibodymeasure-
ments might provide the wrong information and studies on mech-
anisms of allergen SIT should be performed with single allergens.
It is highly possible that the decrease in IgE/IgG4 ratio during

allergen SIT is a feature of skewing from allergen-specific TH2 to
Treg cell predominance. IL-10 is a potent suppressor of both total
and allergen-specific IgE, whereas it simultaneously increases
IgG4 production.66,104 Thus IL-10 not only generates tolerance
in T cells but also regulates specific isotype formation toward a
noninflammatory phenotype. The healthy immune response to
Der p 1 is associated with increased specific IgA and IgG4 levels,
small amounts of IgG1, and almost undetectable IgE antibodies in
serum (Box 1).67 In the same study house dust mite SIT did not
significantly change specific IgE levels after 70 days of treatment;
however, a significant increase in specific IgA, IgG1, and IgG4
levels was observed.67 The reason for the long time gap between
the change in T-cell subsets but not IgE levels is not easily ex-
plainable by the half-life of this antibody. In this context the
role of bone marrow–resident IgE-producing plasma cells with
a very long lifespan remains to be investigated.105
Suppression of effector cells and inflammatory

responses during allergen SIT
Allergen SIT efficiently modulates the thresholds for mast cell

and basophil activation and decreases IgE-mediated histamine
release.106 Treg cells play a role in this finding to some extent. IL-
10 was shown to reduce proinflammatory cytokine release from
mast cells.107 In addition, IL-10 downregulates eosinophil func-
tion and activity and suppresses IL-5 production by human resting
TH0 and TH2 cells.

108 During birch pollen SIT, there are reduced
plasma levels of eosinophil cationic protein, a marker of eosino-
phil activation, as well as decreased chemotactic factors for eosin-
ophils and neutrophils correlated with decreased bronchial
hyperreactivity and clinical improvement.109 Inhibition by aller-
gen SIT of the seasonal increase in eosinophil priming has also
been demonstrated.110

In a model of myocarditis, IL-10 gene transfer significantly
reduces mast cell density, local histamine concentration, andmast
cell growth and prevents mast cell degranulation.111 Treg cells di-
rectly inhibited the FceRI-dependent mast cell degranulation
through cell-cell contact involving OX40–OX40 ligand interac-
tions between Treg cells and mast cells, respectively. When acti-
vated in the presence of Treg cells, mast cells showed increased
cyclic AMP concentrations and reduced Ca11 influx.112 In this
way several aspects of immediate-type hypersensitivity reactions
are inhibited by Treg cells.
Long-term SIT is associated with reduction of not only

the immediate response to allergen provocation but also the
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late-phase reaction in the nasal and bronchial mucosa or in the
skin. The mechanism of late-phase reaction is different from that
of the mast cell–mediated immediate reaction and involves the
recruitment, activation, and persistence of eosinophils and acti-
vated T cells at the sites of allergen exposure.5 Successful SIT
results not only in the increase of allergen concentration neces-
sary to induce an immediate response or late-phase reaction in
the target tissue but also in decreased response to nonspecific
stimulation. Bronchial, nasal, and conjunctival hyperreactivity
to nonspecific stimuli, which seems to reflect underlying mucosal
inflammation, decreases after SITand correlates with clinical im-
provement.113 In addition, protein expression signatures in serum
during sublingual immunotherapy (SLIT) showed an increase in
apolipoprotein A-IV, which decreases histamine release from ba-
sophils.114 Recently, it was demonstrated that allergin-1, which
contains an immunoreceptor tyrosine-based inhibitory motif
(ITIM)–like domain preferentially expressed on mast cells, sup-
pressed IgE-mediated degranulation of bone marrow–derived
mast cells.115 Mice deficient in allergin-1 experienced enhanced
passive systemic and cutaneous anaphylaxis. Mast cells are not
only enhancers of allergic inflammation. In certain models they
play a role in downmodulating the allergic inflammation in which
IL-10 plays an important role.116,117
Mechanisms of SLIT
Sustained and disease-modifying effects of SLIT have been

confirmed in large-scale, randomized, double-blind, placebo-
controlled trials and also in children.118-122 In addition, it repre-
sents very high activity for novel treatmentmodalities, and several
novel immunotherapies are under development, including oral
immunotherapy for food allergy.53,123-126 Oral mucosal tissue
has a natural tolerogenic character without any acute inflamma-
tion in spite of high bacterial colonization and rapid wound heal-
ing without scar development. Lack of inflammatory cells around
mucosal tissue and high permeability for allergens suggest a
method of action for sublingual allergen immunotherapy.127

The first step of SLIT is to uptake the allergen by Langerhans
cells128 within the oral mucosa through high-affinity surface IgE
receptors.129 This leads to secretion of IL-10 and induction of T
cells with a regulatory phenotype in vitro.130 The mechanism
of action of SLIT has been found in the same direction as in injec-
tion immunotherapy associated with increases in sublingual
FOXP3-expressing cells and increased allergen-specific IgG4,
IgA, and serum inhibitory activity for IgE-facilitated allergen
binding to B cells.131
CONCLUSION
Allergen SIT and high-dose allergen exposure models repre-

sent efficient tools for the understanding of the mechanisms of
action of curative treatment of allergic diseases and now enlighten
the complex interactions of effector cells with tissues and Treg
cells. In addition to allergy, these mechanisms might have
implications in autoimmunity, organ transplant tolerance, tumor
cell growth, parasite survival/clearance, and chronic infections.
Suppression of an immune response by TR1 or FOXP31 Treg
cells seems to show beneficial effects in the case of allergic reac-
tions. However, it might be harmful in other cases, such as tumor
antigen tolerance during cancer development or immune toler-
ance to chronic infectious agents, which prevents complete
neutralization. Changes in the fine balance between allergen-
specific Treg cells and TH2, TH17, TH22, and/or TH1 cells is
very crucial in the development and also treatment of allergic dis-
eases. Taking these findings into account, along with the recent
advances in the knowledge of Treg cells and related peripheral
tolerance mechanisms, developments of safer approaches and
better treatment of allergy, asthma, and other immune-mediated
diseases will soon be made. In addition to the treatment of estab-
lished allergy, it is essential to consider prophylactic approaches
using similar mechanisms before the initial sensitization takes
place. Preventive vaccines that induce Treg cell responses could
be developed, and allergen-specific Treg cells, which will become
predominant, might in turn dampen allergic inflammation, ensur-
ing a well-balanced immune response.

What do we know?

In the course of allergen SIT:

d Increased IL-10–secreting TR1-like cells are observed.

d Increased suppressive capacity of TR1 and CD41CD251

Treg cells is observed.

d Decreased allergen-specific T-cell proliferation and de-
creased TH1 and TH2 cytokine levels are detected.

d Increased IL-10 and TGF-b are released from T cells.

d Increased specific IgG4 levels are determined in serum.

d Multiple suppressor factors, such as IL-10, TGF-b, IL-10
receptor, TGF-b receptor, cytotoxic T lymphocyte antigen
4, programmed death-1, and HR2 play a role.

d Decreased clinical and experimental late-phase responses
are observed.

d Decreased numbers of tissue mast cells, eosinophils, and
their mediators are detected.

d Increased IL-10, TGF-b, and CD41CD251FOXP31 Treg
cell numbers are found in nasal mucosa.

d IL-10 and TR1 cells, as well as IgG4, play a role in toler-
ance to high-dose exposure to bee venom and cat allergen.

d Peptide immunotherapy, SLIT, and high-dose allergen ex-
posure induce similar Treg cell–related mechanisms.

d IL-10, TR1 cells, and CD41CD251 T cells induce IgG4
and suppress IgE in vitro.

d Linked suppression to epitopes presented with the same
MHC class II molecule occurs.

What is still unknown?
d Molecular mechanisms of how Treg cells are generated in
vivo

d Allergen SIT vaccine adjuvants that specifically induce
Treg cells

d In vivo lifespan of Treg cells induced by allergen SIT

d How to balance the possible deleterious role of Treg cells,
such as immune tolerance to tumor antigens and chronic
infectious agents

d Clinical effects of vitamin D3, retinoic acid, HR2, and
adenosine receptor–targeting strategies in the induction
of Treg cells and benefit to patients

d Contribution of resident tissue cells to immune tolerance
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d Mechanisms of spontaneous healing, remission, and exac-
erbation of allergic disease and the contributions of Treg
cells in these processes

d Most of the local events during SLIT and epicutaneous
SIT

d Early molecular markers and predictors of starting, stop-
ping, and success

d Whether there are differences in the mechanisms of high-
dose and low-dose allergen SIT

d Mechanisms of long-term maintenance of allergen
tolerance
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