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Background: Induced pluripotent stem cells (iPSCs) hold
tremendous potential, both as a biological tool to uncover the
pathophysiology of disease by creating relevant human cell
models and as a source of cells for cell-based therapeutic
applications. Studying the reprogramming process will also
provide significant insight into tissue development.
Objective: We sought to characterize the derivation of iPSC
lines from nasal epithelial cells (NECs) isolated from nasal
mucosa samples of children, a highly relevant and easily
accessible tissue for pediatric populations.
Methods: We performed detailed comparative analysis on the
transcriptomes and methylomes of NECs, iPSCs derived from
NECs (NEC-iPSCs), and embryonic stem cells (ESCs).
Results: NEC-iPSCs express pluripotent cell markers, can
differentiate into all 3 germ layers in vivo and in vitro, and have
a transcriptome and methylome remarkably similar to those of
ESCs. However, residual DNA methylation marks exist, which
are differentially methylated between NEC-iPSCs and ESCs.
A subset of these methylation markers related to epithelium
development and asthma and specific to NEC-iPSCs persisted
after several passages in vitro, suggesting the retention of an
epigenetic memory of their tissue of origin. Our analysis also
identified novel candidate genes with dynamic gene expression
and DNA methylation changes during reprogramming, which
are indicative of possible roles in airway epithelium
development.
Conclusion: NECs are an excellent tissue source to generate
iPSCs in pediatric asthmatic patients, and detailed
characterization of the resulting iPSC lines would help us
better understand the reprogramming process and retention
of epigeneticmemory. (JAllergyClin Immunol 2015;135:236-44.)
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Generation of induced pluripotent stem cells (iPSCs) from
somatic cells offers enormous potential for modeling diseases,
generating cells for therapeutic purposes, and elucidating devel-
opmental processes.1-6 iPSCs are generated from a variety of so-
matic cells through ectopic expression of specific factors in these
cells, which induces a state of pluripotency that closely resembles
that of embryonic stem cells (ESCs).7,8 Since initial success with
integrating viral vectors in 2006,9 many groups have used nonin-
tegrating vectors,10,11 the delivery of reprogramming factor
RNAs or proteins, and small molecules8,12,13 or chemicals14 to in-
crease reprogramming efficiency, reduce random footprint muta-
tions, and minimize the tumorigenicity of the resulting iPSCs.

The reprogramming process through which a somatic cell
acquires pluripotency is an epigenetic transformation. Although
there are reports suggesting that these iPSCs are indistinguishable
from embryonic stem cells (ESCs) in terms of DNA methylation
and gene expression profiles,15-19 other reports, including
nucleotide-resolution DNA methylation mapping, suggest that
iPSCs have different epigenomic and gene expression profiles
compared with ESCs and that these differences are mitotically
transmittable.20-28 Furthermore, functional differences have been
noted between iPSCs and ESCs in some differentiation as-
says.23,24,28-30 Differences in induction, culture conditions, and
methods of assessing variation could explain these inconsistencies.
Additional complexity results from the source of the tissue and the
age of the donor, which affect the efficiency of reprogramming and
the differentiation capacity of iPSCs because of the retention of
epigenetic memory.23,24,28,31 Therefore iPSCs derived from adult
somatic tissues might harbor safety risks for therapeutic applica-
tions.32 Nevertheless, reprogramming cells that are readily acces-
sible might be more broadly applicable for modeling diseases and
generating autologous cells for therapeutics. Thus it is important
to evaluate newly generated human somatic cell–derived iPSCs
and select those iPSC clones with minimal residual markers from
the cells of origin for medical applications.

In this article we generated iPSCs from nasal epithelial cells
(NECs) isolated from the nasal mucosa of asthmatic children
(NEC-iPSCs). Nasal mucosa was chosen because it can be easily
sampled, even in pediatric populations, and this tissue is relevant
to asthma because the upper airway shares many similarities with
the lower airway epithelium.33 We characterized the epigenetic
and gene expression profiles of these NEC-iPSCs and compared
themwith those of ESCs and the nasal cells fromwhich they orig-
inated. We found that dynamic DNA methylation changes occur
during reprogramming and that the transcriptomes and
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methylomes of NEC-iPSCs are remarkably similar to those of
ESCs. Some DNA methylation marks of parental tissue origin
existed in NEC-iPSCs, even after 15 passages, but the expression
levels of nearby genes were indistinguishable from those in ESCs.
In addition, bioinformatic analysis on transcriptional and DNA
methylation profiles during reprogramming from NECs to iPSCs
revealed novel genes and pathways that might be involved in the
development of airway epithelium.
METHODS

Human subjects and nasal mucosal cell sampling/

processing
Nasal epithelial samples were collected from participants of the Exposure

Sibling Study, a case-control study of asthmatic patients and their nonasthmatic

siblings living in the Cincinnati Metropolitan area. Four children (age, 13-17

years) with asthma were included in this study. A trained clinical research

coordinator obtained informed consent from participants and their parents/

guardians by using a protocol approved by the Cincinnati Children’s Hospital

Medical Center (CCHMC) Institutional Review Board. Asthma diagnosis was

confirmed with the diagnosing allergist/pulmonologist at the CCHMC or from

the child’s community pediatrician according to American Thoracic Society

criteria. These children did not show any signs or symptoms of atopy at the time

of recruitment and sample collection, according to parent questionnaires. Two

samples were used for induction to pluripotency, and 2 were used for fresh and

cultured sample comparison. Nasal mucosa sampling was performed with a

CytoSoft Brush (Medical Packaging Corp, Camarillo, Calif), and the samples

were immediately taken to the laboratory for processing, as previously

described.34TheNECswere cultured inbronchial epithelial cell growthmedium

(Lonza, Basel, Switzerland) before they were subject to reprogramming. DNA

and RNA were extracted immediately from a portion of the NECs with the

AllPrep DNA/RNA Micro kit (Qiagen, Hilden, Germany), according to the

manufacturer’s protocols.
Generation of iPSC lines from nasal mucosal

samples, foreskin, and blood
Nasal epithelial samples obtained from children as described above were

cultured in bronchial epithelial cell growth medium until they reached

confluence.35 Primary human foreskin fibroblasts (HFFs) from 3 healthy neo-

nates were cultured from foreskin tissue. Blood from a healthy donor was sub-

jected to Ficoll centrifugation to enrich for PBMCs. For lentiviral-mediated

reprogramming factor delivery, cells were transduced with a polycistronic

lentivirus expressing Oct4, Sox2, Klf4, c-Myc, and dTomato in the presence

of polybrene (Santa Cruz Biotechnology, Dallas, Tex).36 For integration-free

reprogramming, HFFs were nucleofected (program U20) with the EBNA1/

OriP-based episomal plasmids pCLXE-hOct3/4-shp53, pCLXE-hSox2-Klf4,

pCLXE-hLmyc-Lin28, and pCLXE-GFP obtained from Addgene (Cambridge,

Mass; ID nos.: 27077, 27078, 27080, and 27082).37 Cells were transferred to

mouse embryonic fibroblasts and cultured in standard human embryonic stem

cell (hESC) media containing 4 ng/mL basic fibroblast growth factor with or

without SPT cocktail (2 mmol/L SB431542 [Stemgent, Cambridge, Mass],
0.5 mmol/L PD0325901 [Stemgent], and 0.5 mmol/L thiazovivin [Stemgent])

for 10 days, followed by culture in hESC media without SPT cocktail. For

some experiments, cells were transferred toMatrigel (Corning, NY) 6 days after

lentiviral transduction and cultured in mTeSR1 media. Cultures were fed daily

until hESC-like colonies appeared. Colonies with similarmorphology to hESCs

were excised, transferred to feeder-free culture conditions consisting ofMatrigel

and mTeSR1, and expanded in culture similar to National Institutes of

Health–approvedESCs (WA09 orH9; Fig 1,B).38 PBMCswere reprogrammed,

as described previously.39 Materials and methods for further characterization

of these iPSCs are included in the Methods section in this article’s Online

Repository at www.jacionline.org.

RNA sequencing and gene expression analysis
RNA (approximately 1 mg) was used for Illumina sequencing (Illumina,

San Diego, Calif). Read alignment, splice identification, expression-level

quantification, and identification of differentially expressed genes were

performed by using previously described methods.40-47 The ggplot2 and

reshape2 library in R software were applied to draw the heat map of the cor-

relation matrix among samples based on log2-scaled expression levels.

DNA methylation microarray processing and

analysis
Genomic DNAwas bisulfite treated and assayed with the Illumina Infinium

HumanMethylation450 BeadChip (Illumina). Array quality was assessed by

using sample-independent and sample-dependent internal control probes

included on the array for staining, extension, hybridization, specificity, and

bisulfite conversion. One NEC-iPSC sample exhibited low intensity for all

sample-dependent controls, suggesting a problematic quality of the sample,

and was excluded from subsequent analyses. The remaining 11 samples had

greater than 98% CpG sites detected at a P value of .01 and approximately

95% bisulfite conversion. The signal intensities were then background

adjusted and normalized by using the methylation module and used to calcu-

late b values as follows:

b5
Signalmethylation

Signalmethylation 1 Signalunmethylation 1 100

The following CpG sites were excluded from analysis: (1) CpG sites that

were not detected in all samples at a P value of .01; (2) CpG sites on X and Y

chromosomes; (3) CpG sites with 1 or more bead number smaller than 5; and

(4) CpG sites with SNPs present nearby (>10 or <_10 bp from the query site).

These procedures resulted in 11 samples and 350,950 CpG sites.

The difference in b values for each of the CpG sites was tested. NECs and

cNECswere paired by subject, and therefore paired t tests were performed. For

other comparisons, 2-sample t tests were conducted. A false discovery rate

(FDR) was calculated by using the Benjamini-Hochberg procedure or with

the q value package to enhance the power in the identification of differential

methylation. CpG sites with FDRs of 0.05 or less and absolute b differences

of 0.1 or greater were selected as DMPs. Among the DMPs between NEC-

iPSCs and ESCs, we further separated sites with aberrant reprogramming

and those with parental memory. CpG sites with DNA methylation in NEC-

iPSCs significantly outside the range of cNECs and ESCs were considered

sites with aberrant reprogramming. The remaining sites with methylation in

NEC-iPSCs either between cNECs and ESCs or no significant difference

from cNECs were considered sites with potential memory.

Figs E1 to E3, Tables E1 to E8, and Video E1 can be found in this article’s

Online Repository at www.jacionline.org. Supplementary Methods for stan-

dard pluripotent stem cell maintenance and characterization, gene ontology

analysis, association of genome-wide DNAmethylationwith gene expression,

quantitative RT-PCR, and bisulfite pyrosequencing can also be found in this

article’s Online Repository.

RESULTS
Nasal mucosa samples were obtained from 2 children with

asthma (aged 13 and 17 years, respectively), and primary cultured

http://www.jacionline.org
http://www.jacionline.org


FIG 1. Reprogramming of pediatric NECs. A, Timeline and key steps for re-

programming. B, Representative morphology of NECs before transduction

and ESC-like colonies after transduction. hESCs and NEC-iPSCs before (top;

scale bar 5 500 mm) and after (bottom; scale bar 5 100 mm) transition to

feeder-free culture are also shown. C, SPT cocktail enhances reprogram-

ming efficiency. Purple color indicates alkaline phosphatase staining.

J ALLERGY CLIN IMMUNOL

JANUARY 2015

238 JI ET AL
nasal epithelial cells (cNECs) were subjected to transduction with
a polycistronic lentivirus (Fig 1, A).48 Transduced cells were
plated on mouse embryonic fibroblasts and cultured in standard
hESC media containing 4 ng/mL basic fibroblast growth factor
with or without SPT cocktail.14 Colonies with similar
morphology to ESCs were picked and expanded for several pas-
sages on mouse embryonic fibroblasts before transition to
feeder-free culture conditions consisting ofMatrigel andmTeSR1
(Fig 1, B). One iPSC line was generated from 1 donor, and 3 iPSC
lines were generated from the other donor. The addition of SPT
cocktail greatly enhanced the reprogramming efficiency from
0.0044% to 0.022% (Fig 1,C), which is consistent with a previous
report.14

Using immunocytochemistry, we analyzed NEC-iPSC lines for
expression of markers shared with ESCs. Consistent with their
hESC-like morphology (Fig 1, B), the iPSCs were positive for
OCT4, Tra-1-60, and alkaline phosphatase staining (Figs 1, C, and
2, A). Additional analysis demonstrated that, when compared with
NECs, homeobox transcription factor (NANOG) expression in
NEC-iPSCs was increased to a comparable level as seen in ESCs,
and the expressionof keratin 19 (CK19), amarker for epithelial cells,
was decreased (Fig 2, B). Consistent with the activation of endoge-
nous pluripotency-associated gene expression, reprogramming of
NECs was accompanied by demethylation of CpG sites at the
OCT4 and NANOG promoters (Fig 2, C).

Next, we evaluated the differentiation potential of the NEC-
iPSCs using invitro embryonic body formation and invivo teratoma
induction. NEC-iPSCs readily formed embryonic bodies in vitro,
and genes specific to each of the 3 embryonic germ layers were
expressed (Fig 3, A). In addition, NEC-iPSCs differentiated into
beating cardiomyocytes in vitro (see Video E1 in this article’s
Online Repository). When NEC-iPSCs were injected into NOD/
SCID gC2/2 mice, they formed well-differentiated cystic tera-
tomas containing tissues derived from all 3 germ layers (Fig 3,
B).Cytogenetic analysis showednormalkaryotypes (Fig3,C), indi-
cating that reprogrammingdid not introducegross chromosomal re-
arrangements. Collectively, our analyses indicate the successful
reprogramming of human primary NECs into pluripotent iPSCs.

To broadly investigate the molecular similarity between NEC-
iPSCs and ESCs, we generated genome-wide gene expression and
DNA methylation profiles. Comprehensive RNA sequencing
analysis from 13.9 to 18.2M reads per sample revealed that
NEC-iPSCs are indistinguishable from ESCs in terms of gene
expression (Fig 4,A). Furthermore,NEC-iPSCs andESCs showed
great similarity, as evidenced by more than 0.9 correlation coeffi-
cients between them (Fig 4, B), which was greater than observed
between ESC lines.49 However, 54 genes (16 upregulated and 38
downregulated genes in iPSCs) were differentially expressed with
an FDR of less than 0.05 after multiple testing corrections (edgeR
R package, version 2.13). Nineteen of these 54 genes were differ-
entially expressed among ESCs, NEC-iPSCs, and cNECs (Fig 4,
C). Fourteen of 54 differentially expressed genes were further
visualized after filtering out genes with high variability within
their own group (see Fig E1). Interestingly, 7 of these 14 genes
in NEC-iPSCs are different from all other cell types, suggesting
that NEC-iPSCs might acquire these distinct expression patterns
during reprogramming (Fig E1). The expression levels of 3 genes
(FAAH, TRPC4, and RP11-455F5.3) in NEC-iPSCs are similar to
those in cNECs, suggesting that these expression signatures are
footprints of their parental tissue (Fig E1).

We also elucidated the changes in gene expression during
reprogramming from cNECs to NEC-iPSCs. In total, 4944 genes
(2096 upregulated and 2848 downregulated genes in NEC-iPSCs)
are significantly differentially expressed (FDR < 0.05; Fig 4,C-E,
and see Table E1). As expected, the reprogramming process re-
sulted in loss of the nasal epithelial profile and acquisition of a
pluripotent stem cell profile (Table E2).

Along with the dynamic expression changes from cNECs to
iPSCs, DNA methylation profiles of NEC-iPSCs became distinct
from NECs and cNECs and similar to ESCs (Fig 5, A). DNA
methylation changes at many CpG sites were negatively correlated
with expression alterations at genes locatedwithin 1500 bp (see Fig
E2). To identify methylation patterns important to maintaining an
airway epithelial phenotype, we compared primaryNECs to iPSCs.
CpG sites (84,864 [24.2%]) underwent significant DNA methyl-
ation changes (FDR <_ 0.05, difference in b >_ 0.10; see Table E3).
Seven thousand two hundred thirty-four (8.5%) of these CpG sites
were previously identified differentially methylated regions, many
related to cancer or reprogramming. Among the 91.5% newly iden-
tified differentially methylated points (DMPs), 34.4% (26,717) are
locatedwithin enhancers, and 9.3% (7,198) are associatedwith pro-
moters. Gene ontology and pathway analysis of the top 3,000 most
significant hits reveal that many of them are located close to or
within genes involved in transcriptional regulation and organ devel-
opment (seeTableE4). Specifically, there is an enrichment of genes
that are important for gene ontology terms, such as respiratory sys-
tem development, lung development, and epithelial tube formation,
including 102 CpG sites in MUC genes, which encode proteins
coating the epithelia of the airways, intestines, and other mucous
membrane–containing organs. Many other airway-specific
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markers, including KRT5, NGFR, ARG2, KRT16, and CFTR, are
also less methylated in NECs compared with NEC-iPSCs (Fig 5,
B, and see Table E3). Transcription factors and pathways known
to direct airway development, including WNT3A, FGF2, SHH,
FGF7, FGF10, and BMP4,48,50 undergo dynamic DNA methyl-
ation changes during reprogramming (see Table E3). There are
also significant differences in DNAmethylation comparing cNECs
and NECs, suggesting that culturing primary cells from tissues al-
ters DNA methylation profiles of functionally important genes
(Fig 5).

WhenNEC-iPSCswere comparedwith ESCs, 99.5% (349,219/
350,950) of the CpG sites were similarly methylated. Such
similarity with ESCs in DNA methylation is superior to iPSC
lines generated from 6 other sources (with differences from ESCs
varying between 0.92%and 3.82%),51,52 suggesting thatNECs are
an excellent resource for iPSC generation. Despite the large sim-
ilarity in methylation patterns, differential methylation was still
detected in 1731 CpG sites (q <_ 0.05, absolute difference in b >_
0.10; see Table E5, A). These differences could either be due to
aberrant DNA methylation profiles introduced by reprogram-
ming51,52 or memory of the tissue of origin, as documented in
other iPSC lines.23,24,28 We identified 458 CG sites with potential
aberrant DNAmethylation introduced by reprogramming (see Fig
E3, A, and Table E5, B), including 14 CpG sites located in 3 pre-
viously reported genes (TMEM132C, FAM19A5, andDPP6). The
remaining 1273 CpG sites can process memory from NECs (see
Fig E3, B, and Table E5,C). From this, gene ontology analysis re-
vealed that 20CpG sites are close to orwithin 15 genes involved in
epithelial cell differentiation and morphogenesis (cluster 4 in
Table E6, A), supporting the existence of epigenetic memory
from epithelial cells. Indeed, these CpG sites have similar DNA
methylation in NEC-iPSCs compared with that seen in their
parental NECs (Fig 6, A). A CpG site located in the promoter of
RPTN is differentially methylated between NEC-iPSCs and
ESCs, with a similar methylation level in NEC-iPSCs compared
with that seen in their parental tissue (Fig 6, B). This difference
in DNA methylation persisted for 15 passages, suggesting the
retention of thismemory.RPTN encodes reptin, a protein involved
in cornified cell envelope formation.53,54 Similarly, we observed
differential methylation at a CpG site located in the SPRR2A pro-
moter; however, this difference disappeared after 15 passages (Fig
6,C), which is consistent with the previous observation that epige-
neticmemory at selected loci disappears after extensive passaging
in vitro.23,28 In addition to the memory related to epithelial line-
age, we also observed significant lower DNA methylation in
NEC-iPSCs compared with ESCs at a CpG site located within
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the promoter of the CAT gene, even after 15 passages (Fig 6, D,
and see Table E5, C). CAT encodes catalase, a key antioxidant
enzyme in defense against oxidative stress, and contributes to
asthma.55-57 Importantly, residual DNA methylation marks in
SPRR2A and CAT are specific to the NEC-iPSCs we generated
because iPSCs derived from HFFs and PBMCs have significantly
different DNAmethylation levels (Fig 6,C andD). No significant
gene expression differences were associated with these DNA
methylation differences between NEC-iPSCs and ESCs (Fig E3,
C and D). Collectively, our data demonstrated the persistence of
epigenetic memory in NEC-iPSCs, particularly in genes related
to epithelial function and asthma.
DISCUSSION
In the present study, for the first time, we report the generation

of iPSCs fromNECs of asthmatic children. NEC-iPSCs generated
in the present study are functionally similar to hESCs and
comparable with the iPSCs generated from airway epithelial
cells from a healthy donor.19 The transcriptome andmethylome of
the NEC-iPSCs were also remarkably similar to those of the
hESCs, the gold standard of pluripotent stem cells. However,
several previously uncovered DNA methylation markers in
epithelium-specific and disease-related genes persist in our
NEC-iPSCs, even after multiple passages, which is suggestive
of a stable epigenetic memory of their tissue of origin. Compara-
tive analysis between NEC-iPSCs and NECs also identified novel
candidates that can contribute to normal development of airway
epithelium. In addition to providing a novel and readily accessible
somatic cell source for iPSC generation from pediatric popula-
tions, these NEC-iPSCs offer new innovative methods to model
disease and can be used for drug screening and regeneration.

Because the tissues of origin have a significant effect on iPSC
reprogramming and differentiation caused by the epigenetic
memories they might harbor, the somatic cells used for iPSC
reprogramming and the methods used to reprogram need to be
carefully evaluated considering their downstream clinical appli-
cations. The reprogramming of iPSCs is an epigenetic process,
and it has been previously reported that residual memory of the
tissue of origin exists in iPSCs and that some persisted even after
extensive passaging.21,23,24,58-60 Such differences in genomic
methylation might not alter the behavior of undifferentiated
stem cells but could become apparent when the stem cells are
differentiated.23,24,28 We used NECs, an easily accessible tissue
for the pediatric population, and the resulting iPSCs seem to har-
bor fewer epigenetic differences (0.5%) from ESCs compared
with other tissues (0.92% to 3.82%).51,52 Cultured NECs that
we reprogrammed have altered molecular profiles compared
with those of patients’ nasal cells (Figs 4, A and D, and 5). The
progenitor-like phenotype of these proliferating cells might be
beneficial given that previous studies have found that progenitor
cells are easier to reprogram than terminally differentiated cells.61

We observed epithelial lineage-specific DNA methylation marks
in all NEC-iPSCs, and some persisted even after multiple pas-
sages, supporting the notion that there are persistent lineage-
specific epigenetic markers in iPSCs. However, our RNA
sequencing data demonstrated that thesemarkers did not correlate
with any detectable gene expression differences between ESCs
and NEC-iPSCs (see Fig E3, C and D). Interestingly, the expres-
sion levels of several genes located adjacent to these residual
marks are different between NEC-iPSCs and cNECs (see
Fig E3, D), even though their methylation status is similar. This
implies that transcriptional reprogramming occurred at these
genes, possibly throughmechanisms other thanDNAmethylation
at these loci, thus leaving footprints of DNA methylation from
their origin. In addition to memory of epithelial lineages, we
also observed persistent residual DNAmethylation marks at other
genomic locations, such as a CpG site in the promoter of CAT, a
gene involved in response to oxidative stress and asthma patho-
genesis. CAT expression is significantly downregulated in NEC-
iPSCs during reprogramming (see Table E1), yet its DNAmethyl-
ation remains similar to that seen in NECs (Fig 6,D, and see Table
E5, C). Our observations support the use of DNA methylation
profiling in addition to gene expression and functional analysis
to carefully characterize newly generated iPSC lines, although
the functional effect of such memory and a mechanistic basis
for escaping reprogramming warrant further investigation.

Gene ontology and pathway analysis of genes that are
differentially expressed and epigenetically modified during
reprogramming revealed many known genes related to epithelial
differentiation from stem cells, supporting the successful epige-
netic reprogramming from epithelial lineages to pluripotent cells.
Our study also identified many novel candidates that might play
important roles in airway epithelium development; however,
because we started reprogramming from proliferating primary
nasal cells in culture, our studymight not reveal genes involved in
the terminal airway differentiation steps, such as tight junction
formation or cilia development. For example, we identified a
significantly demethylated CpG site within theMUC15 promoter
and within ANO3 in NECs compared with NEC-iPSCs and ESCs.
ANO3 encodes anoctamin-3, which might function as a calcium-
activated chloride channel and is associated with asthma and
eczema.62 The expression ofKRT5 and SPRR2A is turned off dur-
ing reprogramming (Fig 4, D and E). KRT5 encodes type II cyto-
keratin, which is specifically expressed in the basal layer of the
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epidermis with its family member KRT14 by all stratified squa-
mous epithelia.63 SPRR2A is one of the small proline-rich protein
genes (SPRRs) that encode precursors of the cornified cell enve-
lope, which are specifically expressed during keratinocyte termi-
nal differentiation.64 How these genes contribute to airway
epithelium development is currently unknown, and they are novel
candidates for follow-up. Recently, ESCs and patient-specific
iPSCs were progressively differentiated into Nkx2.1-expressing
lung progenitors and proximal lung epithelial cells, providing a
useful platform for disease modeling and in vitro drug
testing.48,50,65 Despite this recent success, the regulation of
airway epithelium development is poorly understood compared
with that of other systems. Therefore the identification of novel
regulators of these processes in our study will facilitate the
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optimization of such directed differentiation and establishment of
functional airway epithelium for in vitro modeling of diseases.
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Key messages

d iPSCs from NECs are remarkably similar to ESCs, and
NECs are excellent tissue sources to generate iPSCs.

d Residual DNA methylation markers from parental tissue
persist in iPSCs, which are located in genes related to
epithelial function and asthma.
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