
Asthma is characterized by a 50- to 100-fold increase in the
number of eosinophils relative to neutrophils in the bronchial
mucosa. This increase is not the result of a single molecular
event but of the cumulative and sequential effects of several
approximately 4-fold increases in selective eosinophil versus
neutrophil migration, occurring at a number of stages in the
life cycle of the eosinophil. These steps include (1) effects on
the bone marrow, mediated principally by IL-5, which result
in a 4-fold increase in circulating eosinophils, (2) selective teth-
ering of eosinophils to venular endothelium through the com-
bined effects of P-selectin/P-selectin glycoprotein ligand 1 and
very late activation antigen-4/vascular cell adhesion molecule-
1, which has the potential for an up to 10-fold increase in
eosinophil versus neutrophil adhesion, (3) selective chemotaxis
under the influence of CC chemokines, and (4) prolonged sur-
vival, again mediated by IL-5. These events are integrated and
directed by allergen-specific TH2 lymphocytes through the gen-
eration of IL-5, IL-4, and IL-13. The implications of this multi-
step process are that antagonists of IL-5, very late activation
antigen-4, P-selectin glycoprotein ligand 1, and CCR3 as well
as IL-4 and IL-13 each have the potential to markedly inhibit
eosinophil recruitment in asthma. (J Allergy Clin Immunol
1999;104:917-26.)
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It has been appreciated for many decades that allergic
diseases such as asthma are characterized by increased
numbers of eosinophils in the affected tissue.1 The
increase in eosinophils has a degree of selectivity, in that
it usually occurs without an increase in neutrophils. This
observation is one of the cornerstones of the current
hypothesis suggesting a central role for eosinophil-
derived mediators in causing asthma and related allergic
diseases. This review attempts to summarize, in terms of
a coherent framework, the fruits of the major research
effort that in recent years has attempted to explain the
molecular basis for selective eosinophil migration (Fig
1). This has been undertaken in the expectation that it

will result in increased understanding of the pathogene-
sis of asthma and identification of targets for therapeutic
intervention. Indeed, other than lymphocyte homing,
selective eosinophil accumulation is perhaps the best
studied model of how different patterns of cell accumu-
lation occur in various inflammatory diseases and, as a
result, offers insights into how selective leukocyte traf-
ficking may occur in other pathologic processes.

Early thoughts on eosinophil trafficking into tissues
were dominated by the idea of a selective chemoattrac-
tant. An activity, termed eosinophil chemotactic factor of
anaphylaxis (ECF-A) was detected in supernatants from
anaphylactically challenged guinea pig lung that
appeared to be selectively chemotactic for eosinophils.2

This was subsequently found to consist of a mixture of
leukotriene B4, which is active on guinea pig eosinophils
but less so on human eosinophils, and 18(s) 15(s) dihy-
droxyeicosatetraenoic acid.3 ECF-A from human lung
was later identified and characterized as 2 tetrapeptides,
Val-Gly-Ser Glu and Ala-Gly-Ser Glu.4 However, the
later characterization of effective eosinophil chemotactic
factors such as platelet-activating factor (PAF) revealed
that the ECF-A tetrapeptides had negligible activity.5

Indeed, there is limited evidence that anti-IgE challenged
human lung mast cells are an important source of selec-
tive eosinophil chemoattractants, and it is probable that
the effects of these cells on eosinophil migration are
largely indirect, through the generation of cytokines such
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as TNF-α, IL-4, and IL-13.6 In the late 1980s attention
turned toward the importance of IL-5 and the possible
role of adhesion pathways in controlling selective
eosinophil accumulation.7,8 More recently, the discovery
of chemokines has revived interest in the central role of
selective chemoattractants in directing eosinophil migra-
tion.

There has been a tendency to try to explain selective
eosinophil accumulation in terms of a single molecular
event. However, with many of the pieces of the
eosinophil migration puzzle now in place, a complex pic-
ture has emerged, with major cytokine, chemokine, and
adhesion receptor–mediated influences on selective
eosinophil accumulation occurring at each stage in the
life cycle of the cell, from hematopoiesis to apoptosis.
The up to 200-fold increase in eosinophils compared
with neutrophils that occurs in the airways in asthma
appears to be the result of the cumulative effect of sever-
al 2- to 5-fold increases that occur from bone marrow to
tissue. Borrowing from the events that control leukocyte
adhesion to endothelium, I have called this the multistep
paradigm of selective eosinophil accumulation.

The literature on eosinophils in general and eosinophil
migration in particular is extensive and I apologize to
those authors whose work I have not quoted. I have con-

centrated in this article on more recent studies and refer
the reader, for more referencing of earlier work, to sever-
al detailed reviews on eosinophils that have appeared in
the last decade.1,9,10

HOW SELECTIVE IS EOSINOPHIL 

MIGRATION IN ASTHMA?

Selective accumulation of eosinophils in the airways
in asthma has become a central tenet of the pathology of
the disease. This is based on a number of different types
of studies, including postmortem analysis of the patholo-
gy of asthma deaths, studies of induced sputum, and the
use of fiberoptic bronchoscopy to obtain endobronchial
biopsy specimens and bronchoalveolar lavage fluid
(BAL).11 The majority of these studies have demonstrat-
ed a significant increase in the number of airway
eosinophils compared with appropriate controls, without
a corresponding increase in airway neutrophilia. The air-
way eosinophilia is very variable, but generally fairly
modest, the difference from nonasthmatic subjects being
the result of the paucity of eosinophils in normal airways.
In asthmatic BAL eosinophils generally make up about
3% of the leukocytes, similar to neutrophils and lympho-
cytes. In bronchial biopsy specimens, which are probably

FIG 1. Schematic representation of multistep paradigm of eosinophil recruitment into tissue, illustrating that
selective accumulation of eosinophils occurs as sequential and cumulative approximately 4-fold increases, in
eosinophils compared with neutrophils, at several stages in life cycle of cell, with each step under separate
molecular control, influenced either directly or indirectly by TH2 cytokine production. The first step involves
hematopoiesis and bone marrow egress mediated by IL-5 and chemotactic signals, the second step is through
IL-4 and IL-13 up-regulation of P-selectin and vascular cell adhesion molecule-1 (VCAM-1) on vascular
endothelium, the third step involves selective chemotaxis under influence of CC chemokines generated by IL-
4– and IL-13–stimulated epithelial, fibroblast, and smooth muscle cells, and the fourth step is prolonged sur-
vival, again mediated by IL-5. PSGL, P-selectin glycoprotein ligand; VLA, very late activation antigen.
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the most accurate reflection of the airway eosinophilia,
when data are taken from a range of studies of clinical
asthma, eosinophils are generally 2- to 4-fold more
numerous than neutrophils, whereas in the normal airway
neutrophils are 10- to 50-fold more numerous than
eosinophils, giving a 20- to 200-fold increase in the
eosinophil/neutrophil ratio in normal versus asthmatic
airways, with a median of 60-fold. These studies actual-
ly tell us relatively little about the numbers of eosinophils
and neutrophils that are migrating into the airways
because the number present in the tissues is the result of
balance between rate of migration and rate of removal.
No kinetic studies have been reported in clinical asthma
to fill this critical gap in the literature. However, it is like-
ly that eosinophil accumulation is a combination of both
increased migration and prolonged survival.

EOSINOPOIESIS, EOSINOPHIL EGRESS

FROM THE BONE MARROW, AND THE ROLE

OF IL-5 IN EOSINOPHIL TRAFFICKING

Eosinophils differentiate from bone marrow precursors
under the influence of growth factors, including IL-3 and
GM-CSF, which are active on early precursors, and IL-5,
which acts as a late differentiation factor.12 In humans IL-
5 appears to be only active on eosinophils and basophils.
There is plentiful evidence for an increase in IL-5 pro-
duction in the airways in asthma,13 and ectopic expression
of IL-5 in airway epithelium in transgenic mice resulted
in asthma-like changes in the airways.14 IL-5 generated in
the lung in asthma may therefore act hormonally on the
bone marrow to increase eosinophilopoiesis. Alternative-
ly, increased production of IL-5 locally in the bone mar-
row may be responsible.15 There is also evidence for
increased numbers of circulating eosinophil precursors in
the peripheral blood of allergic patients, which may be
able to migrate into the lung and differentiate in situ.16

There is considerable evidence that IL-5 is fundamen-
tally required to mount an eosinophilic response in aller-
gic disease. Antibodies against IL-5 in a number of ani-
mal models have prevented the peripheral blood and
airway eosinophilia associated with antigen challenge
and IL-5 gene deleted mice were unable to mount an
eosinophilic response to allergic stimuli, although
eosinophil production was not completely ablated.17,18

IL-5, as well as regulating eosinophilopoiesis, is also
able, as discussed below, to affect eosinophil tissue accu-
mulation through its ability to prolong the survival of
mature eosinophils. In addition, although not chemotac-
tic in its own right, IL-5 is a potent enhancer in vitro of
the chemotactic effects of established eosinophil
chemoattractants.19 Interestingly, this effect was only
seen in eosinophils from normal donors, suggesting that
in asthma they have already been primed in vivo. The
importance of this synergism between IL-5 and chemoat-
tractants has been demonstrated in animal models. The
tissue eosinophilia induced by cutaneous injection of
both leukotriene B4 and eotaxin in guinea pigs was great-
ly enhanced by systemic administration of IL-5 and the

cutaneous eosinophilia induced by eotaxin in wild-type
mice was not seen in IL-5–deficient mice.20,21 As well as
a priming effect, the increase in the peripheral blood
eosinophilia produced by systemic IL-5 may also have
contributed to these observations because studies reintro-
ducing the IL-5 gene in gene-deleted mice found that
restoration of the peripheral blood eosinophilia was
required to obtain a pulmonary eosinophilia after aller-
gen challenge.22

The increased numbers of eosinophils seen in the
blood of allergic individuals is a combination of
increased hematopoiesis and rate of egress (Fig 1). The
mechanisms involved in leukocyte migration from the
marrow sinuses into the peripheral blood are still unclear.
However, with use of an in vivo model in guinea pigs,
Palframan et al23,24 have demonstrated that eotaxin given
intravenously caused a rapid peak of eosinophil egress
from the bone marrow occurring over a few minutes,
whereas intravenous IL-5 resulted in a delayed but more
prolonged release. The 2 agents together resulted in a
synergistic increase in migration, once again emphasiz-
ing the cooperative effects of IL-5 and a chemotactic
stimulus on eosinophil locomotory behavior. Adhesion
receptors were also involved in regulating eosinophil
migration into the blood, with an anti-VLA-4 mAb accel-
erating egress and anti-Mac-1 preventing egress.

ADHESION

Whatever the percentage of circulating eosinophils,
unless there are local signals on bronchial postcapillary
endothelium leading to adhesion and transmigration, tis-
sue accumulation of eosinophils will not occur. The pat-
tern of expression of eosinophil adhesion receptors is in
general similar to that of other leukocytes although
eosinophils, unlike human neutrophils, express function-
al forms of very late activation antigen (VLA)-4, VLA-6,
and α4β7.25 MAdCAM-1, the ligand for α4β7 and
almost exclusively expressed on gut endothelium, may
be important in directing eosinophils to the intestinal
wall where they normally reside. Eosinophils also
express the newly described member of the β2 integrin
family αdβ2, which like VLA-4 binds vascular cell adhe-
sion molecule (VCAM)-1, although this receptor may be
more important in modulating the function of tissue
rather than peripheral blood eosinophils.26 I will discuss
selective signals for eosinophil endothelial adhesion in
terms of each step of the established paradigm for leuko-
cyte adhesion to endothelium: tethering, activation, and
firm arrest (Fig 2).

Tethering

Because of its lack of expression on human neu-
trophils, VLA-4 has attracted considerable interest as 
a possible receptor mediating selective eosinophil adhe-
sion. VLA-4 can promote both tethering and firm arrest.
IL-4 and IL-13 up-regulate expression of VCAM-1,
the ligand for VLA-4, on human umbilical vein endothe-
lial cells (HUVEC) and transmigration through IL-
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4/13–stimulated HUVECs was shown to be dependent on
VLA-4.8 IL-4/13-induced endothelial expression of
VCAM-1 in the absence of a costimulus such as TNF-α
is, however, weak, especially on cultured lung microvas-
cular endothelium.27,28 Consistent with this, we and oth-
ers have found variable and often weak expression of
VCAM-1 on airway endothelium in clinical asthma, with
no increase over that of control subjects.25 Some investi-
gators have reported increased VCAM-1 expression,
although the difference from controls has been mod-
est.29,30 A more consistent increase in VCAM-1 has been
observed after antigen challenge with a correlation with
eosinophil influx.8,25 Peripheral blood eosinophils can
constitutively bind VCAM-1 by VLA-4, although bind-
ing to VCAM-1 and fibronectin can be further enhanced
by manganese and activating mAbs such as TS2/16 and
8A2 but not by physiologic stimulus such as IL-5 and
RANTES, which, however, do up-regulate β2 function.31

VLA-4 can tether eosinophils under flow. Thus the num-
ber of eosinophils rolling on IL-1–stimulated rabbit
mesenteric vascular endothelium was partially decreased
by anti-VLA-4 mAb32 and eosinophils became tethered
to purified VCAM-1 under flow conditions, although at a
lower sheer stress than P-selectin.33 VLA-4 was also
important in mediating tethering of eosinophils to TNF-
α–stimulated HUVECs.34 A number of studies using a
variety of animal models have demonstrated that block-
ing VLA-4 or VCAM-1 inhibited eosinophil migration
into the lung and skin and prevented the development of
bronchial hyperresponsiveness (BHR),8,25,35 although
these 2 effects have not always correlated.36

There is increasing evidence for a role for P-selectin in
mediating eosinophil adhesion. Eosinophils bound with
greater avidity to purified P-selectin than did neutrophils
under shear conditions, especially at suboptimal concen-
trations of P-selectin.33,37 The P-selectin gene promoter

contains 2 STAT-6 binding sites38 and chronic surface
expression of P-selectin on HUVECs was induced by IL-
4 and IL-13, although, unlike in the mouse, not by IL-1 or
TNF-α.39,40 Eosinophils, but not neutrophils, were able to
adhere to IL-4– or IL-13–stimulated HUVECs under sheer
stress, and binding was mediated both by antibodies
against P-selectin/ P-selectin glycoprotein ligand 1
(PSGL-1) and VLA-4/VCAM-1, demonstrating a cooper-
ative effect between these 2 pairs of receptors.40,41 P-
selectin was the only selectin involved in eosinophil adhe-
sion to nasal polyp endothelium.42 The reduced eosinophil
infiltration seen in nasal polyps after treatment with fluti-
casone was associated with a reduction in expression of P-
selectin but not VCAM-1.43 The importance of P-selectin
in eosinophil accumulation in allergic disease has been
further underlined by studies in animal models. In a rag-
weed peritonitis model eosinophil accumulation was
reduced by 75% in P-selectin–deficient mice with an addi-
tional contribution from VCAM-1 and intercellular adhe-
sion molecule-1 (ICAM-1).44 Eosinophil accumulation
was reduced in the airways of P-selectin–deficient mice
after antigen challenge45,46 and anti-P-selectin, but not E-
selectin, reduced eosinophil influx into the pleural cavity
in a mouse pleuritis model.47 In contrast to P-selectin, neu-
trophils bind with greater avidity to E-selectin than
eosinophils,8,33,48 although E-selectin did make a minor
contribution toward eosinophil adherence to TNF-α–stim-
ulated endothelium34 and eosinophil influx into the skin in
mice, consistent with the preferential expression of E-
selectin in this organ.49 There are no very clear-cut differ-
ences in L-selectin function between eosinophils and
neutrophils, although anti-L-selectin did partially inhibit
eosinophil binding to rabbit mesenteric endothelium.32

The reasons for the differences in the avidity of
eosinophils and neutrophils for E and P selectin are not
clear. PSGL-1 is a mucin-like homodimeric receptor,

FIG 2. Schematic representation of steps mediating eosinophil adhesion to vascular endothelium. Eosinophils
enter postcapillary endothelium under flow conditions and become tethered to endothelium through com-
bined effects of VLA-4/VCAM-1, P-selecting glycoprotein ligand 1 (PGSL-1)/P-selectin and in some circum-
stances L-selectin. Activation, possibly through chemoattractant receptors, results in binding of CD18 inte-
grins leukocyte function–associated antigen-1 (LFA-1) and Mac-1 to intercellular adhesion molecule-1
(ICAM-1), which are the major receptors involved in transmigration, although VLA-4/VCAM-1 also make a con-
tribution at this stage.
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although expression does not always correlate with func-
tion. For example, all lymphocytes express PSGL-1 but
only about 15% can bind P-selectin. The majority of the
P-selectin binding function is found in the N-terminal 19
amino acids of PSGL-1 and is crucially dependent on
sulfation of at least 1 of 3 tyrosine residues as well as the
appropriate glyocosylation of a single O-linked sugar
residue in this region. In contrast, E-selectin, which can
also bind PSGL-1 although with lower affinity than P-
selectin, binds to the central mucin-like, O-linked, carbo-
hydrate-rich region of the receptor. E-selectin binding
correlates with expression of sialyl Lewis X–like carbo-
hydrate moieties, expression of which is regulated by the
glyocosyltransferase, fucosyltransferase V11. Although
P-selectin binding function is also dependent on fucosyl-
transferase V11 as well as appropriate sulfytransferases,
binding appears to be through sugars other than sialysl
Lewis X.50 Eosinophils, unlike neutrophils, express only
low levels of sialyl-Lewis X, which probably explains
their weak E-selectin binding. Eosinophils express a lit-
tle more PSGL-l than neutrophils37 which may explain
increased binding affinity. Alternatively there may be, as
yet to be defined, functionally important differences in
glycosylation of PSGL-1 between the 2 cell types that
influence binding.

In summary, the tethering step, which is an essential
requirement of leukocyte transmigration into tissue, can
play a major part in selective eosinophil migration
through the combined effects of VLA-4/VCAM-1 and
PSGL-1/P-selectin. Certainly, under conditions in which
only IL-4 and IL-13 are expressed, as may be seen in
mild to moderate asthma, only eosinophils would be
expected to bind to endothelium, with P-selectin playing
a major role in eosinophil capture. However, in more
florid disease, for example, after allergen challenge or in
exacerbations of asthma, in which larger amounts of
TNF-α and IL-1 are likely to be generated, neutrophils
would also be expected to be recruited by E-selectin and
VLA-4/VCAM-1 would be the dominant receptor-medi-
ating eosinophil capture.

Activation and firm arrest

After leukocytes become tethered to the endothelium,
activation results in functional up-regulation of integrins
that bind to ICAMs and VCAM expressed by the
endothelium, resulting in the firm arrest that is a prereq-
uisite of transmigration. The activation step is thought to
be mediated by chemoattractants on the endothelium act-
ing through G protein–linked pertussis toxin (PT)–sensi-
tive serpentine receptors.51 This process can be modeled
in vitro by observing the behavior of leukocytes in flow
chambers binding to purified adhesion proteins. Thus,
when neutrophils flow across slides coated with P or E
selectin and ICAM-1, they roll but do not stop unless an
activating stimulus is exogenously added. Similarly, on
HUVECs stimulated with optimal concentrations of
TNF-α or IL-1 the majority of tethered neutrophils rapid-
ly arrest. The activating stimulus expressed by the
endothelium that stimulates neutrophil β2 integrin-medi-

ated binding in these circumstances include PAF and IL-8.52

Some chemoattractants such as PAF and eotaxin, but not
RANTES, induced β2- and VLA-4–mediated eosinophil
adhesion to HUVECs in static assays.25,53 Eosinophil bind-
ing to purified adhesion proteins was up-regulated by
RANTES, monocyte chemotactic protein (MCP)-3, and
C5a in a VLA-4– and Mac-1–dependent fashion by PT-
inhibitable receptors.54 VLA-4–, unlike Mac-1–, dependent
increases in adhesion, were transient and relied on actin
polymerization. C3a and C5a were able to mediate firm
arrest of eosinophils to rabbit mesenteric endothelium under
flow conditions.55 However, despite apparent eosinophil
active chemokine production, eosinophil adhesion to TNF-
α– and IFN-γ–stimulated HUVECs under flow was only
slightly inhibited by either anti-CCR3, the major chemokine
receptor on eosinophils, or PT. When HUVECs were stim-
ulated with IL-4 alone, no eosinophil-active chemokine
release was detected, suggesting that under conditions more
relevant to allergic disease CC chemokines may not be play-
ing a major role in the activation step.56 Consistent with this,
we observed only rolling behavior when eosinophils bound
to IL-4– and IL-13–stimulated HUVECs,40 although this
was not the experience of Patel41 who found that all the
eosinophils arrested. A confounding factor is VCAM-1,
which may be able to promote eosinophil arrest in the
absence of an activating stimulus. In our studies of binding
to nasal polyp endothelium, whereas neutrophil adhesion
was inhibited by PT, an anti-IL-8R antibody and a PAF
antagonist, eosinophil adhesion, although activation depen-
dent, was not inhibited by PT or anti-CCR3.57 This suggests
that alternative endothelial-associated pathways may exist
for activation of eosinophil β2 integrins.

A number of studies of eosinophil adhesion and trans-
migration through HUVECs have shown that these
events are mediated by a combination of VLA-4/VCAM-
1 and the β2 (CD18) integrins binding to ICAM-1, the
relative importance of either pathway depending on the
cytokines involved in stimulating the endothelium.
Leukocyte function–associated antigen-1 and Mac-1 are
both involved in CD18-mediated binding.8,25,27,28

Eosinophil accumulation was reduced in ICAM-1
gene–deleted mice and by the use of anti-ICAM-1
mAbs.44,45,58 The contribution from the CD18 integrins
remains substantial even in the presence of good VCAM-
1 expression, suggesting that this is not a site at which
selection of eosinophils versus neutrophils occurs to any
great extent. Consistent with this, in the frozen section
assay (FSA) we found that most of the integrin contribu-
tion for both eosinophil and neutrophil migration was by
β2 rather than by VLA-4/VCAM-1.57 Interestingly, in
the ICAM-2 gene–deleted mouse eosinophil accumula-
tion was increased in the lung after antigen challenge
through an unknown mechanism.59

In summary, the major contribution at the adhesion
stage for selective eosinophil migration appears to be at
the capture step, with P-selectin and VCAM-1 cooperat-
ing to tether eosinophils, but not neutrophils, to IL-4–
and IL-13–stimulated endothelium. There are, however,
potentially important differences in the activation step
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between the 2 cell types that could result in further levels
of specificity.

SELECTIVE CHEMOATTRACTANTS

Until this last decade most effective eosinophil
chemoattractants that had been identified, such as PAF
and C5a, were also active on neutrophils. Then, in 1992,
RANTES (activating eosinophils through CCR-3 and
CCR-1) and macrophage inflammatory protein (MIP)-1α
(CCR-1) were shown to be effective eosinophil chemoat-
tractants that were not active on neutrophils.60,61 Charac-
terization of a number of other eosinophil-active CC
chemokines has since followed, including eotaxin (CCR-
3)62,63 eotaxin-2 (CCR-3),64 MCP-2 (CCR-3),65 MCP-3
(CCR-3),66 MCP-4 (CCR-3),67 and MIP-5 (CCR-1 and
CCR-3).68 Eotaxin and eotaxin-2 only signal through the
CCR-3 receptor, whereas the other chemokines can bind
to alternate noneosinophil-expressed chemokine recep-
tors. The major chemokine receptor on eosinophils is
CCR-3, which is also expressed by basophils and a small
subset of peripheral blood T cells, but no other leuko-
cytes, so that it is an attractive therapeutic target for the
treatment of eosinophilic inflammation.69,70 Expression
of CCR-1 by eosinophils is generally low or absent,
although higher levels have been detected on about 10%
of both nonatopic and atopic donors.71 There is some
functional evidence that eosinophils may express other, as
yet unidentified, chemokine receptors.72 There are also
some reports of IL-8 being a chemotactic factor for
eosinophils73 and IL-5 was reported to induce expression
of IL-8 receptors,74 although the literature is contradicto-
ry in this regard with some investigators being unable to
detect IL-8 receptors on eosinophils.75 In our hands IL-8
was only active on eosinophils from highly eosinophilic
donors.76

There has been considerable interest in which
chemokines may be involved in eosinophil recruitment in
asthma. In asthma increased expression of a number of
eosinophil-active chemokines, including eotaxin,77,78

RANTES,79 MCP-380 and MCP-4,78 and MIP-1α,79 has
been demonstrated by a combination of reverse tran-
scription–PCR, in situ hybridization, ELISA, and
immunohistochemistry. In some cases expression has
correlated with eosinophil counts. Low levels of consti-
tutive expression have usually been detected in healthy
control subjects.

A number of animal models have been used to study
the role of chemokines (as well as growth factors and
adhesion receptors) in asthma, in particular ova-sensi-
tized and ova-challenged mice. The mouse model is par-
ticularly powerful because of the ability to study genetic
modifications of the gene of interest, although substantial
differences in the anatomy of the mouse and human lung
caution against overinterpretation of the data, particular-
ly in terms of the relationship between inflammatory
changes and BHR. Evidence for a role for most of the
CCR-3–binding chemokines, but particularly eotaxin,
has been obtained with use of animal models.21,81-87

However, as might be expected, complete abrogation of
eosinophil migration has not been observed by negating
any single chemokine.88 Results with the CCR-3–gene
deleted mouse, where a more profound effect might be
expected, are awaited with interest. T cells, in particular
TH2 cells, do not appear to be a major source of CC
chemokines, which are generated by structural cells such
as the bronchial epithelium, endothelium, fibroblast, or
smooth muscle. In this context it is particularly interest-
ing that IL-4 and IL-13 stimulated the production of
eotaxin from fibroblasts and epithelial cells, so linking
eosinophil chemoattractant release with TH2-related
immunologic events.89-91

PROLONGED SURVIVAL

Eosinophils rapidly undergo apoptosis unless provid-
ed with support from eosinophil growth factors such as
IL-5, GM-CSF, and IL-3, which have each been shown to
be present in increased amounts in the airways of asth-
matic patients. The signaling pathways involved in
growth factor–induced eosinophil survival involve the
Lyn, Jak 2, Raf 1, and mitogen-activated protein kinas-
es.92 Prolonged survival under the influence of locally
generated growth factors has been considered to be an
important mechanism for selective eosinophil accumula-
tion in allergic disease. Direct evidence for prolonged
survival was provided by a study where anti-IL-5 anti-
bodies caused rapid loss of eosinophils from cultured
explants of nasal polyps.93 Triggering of eosinophil
apoptosis in the airways of mice using an anti-Fas mAb
resulted in decreased airway eosinophilia after allergen
challenge.94 The number of apoptotic eosinophils in the
airways of asthmatic patients was increased in subjects
treated with inhaled glucocorticoids (GC),95 possibly as
a result of either inhibition of growth factor production,
or as a direct effect on eosinophil survival.96

THE MULTISTEP PARADIGM OF SELECTIVE

EOSINOPHIL RECRUITMENT: IMPLICATIONS

FOR DRUG DEVELOPMENT

I have estimated that there is a 50- to 100-fold increase
in the accumulation of eosinophils over neutrophils in the
airways in clinical asthma. Increased neutrophil migra-
tion may also occur in some individuals, so the total
increase in eosinophils trafficking is likely to be even
greater, but it is the mechanisms of selective trafficking
that I am particularly focusing on here. The relative con-
tribution of each stage in the life cycle of the eosinophil
to selective trafficking can only be estimated and in any
case probably varies both between and within individuals
at different times in the disease process. The effect of
increased hematopoiesis and release from the bone mar-
row on selective eosinophil migration can, however, be
calculated from the peripheral blood eosinophil count,
which in terms of both percentage and total numbers is
about 4-fold greater in asthma compared with normal
subjects, although there is considerable variability.97
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Adhesion to endothelium is an absolute requirement
for migration to occur. IL-4– and IL-13–stimulated
endothelial cells support eosinophil but very little neu-
trophil binding, whereas TNF-α stimulation supports
binding of both cell types equally.98 The contribution of
adhesion to selective eosinophil recruitment will there-
fore depend crucially on the relative amount of these
cytokines that are generated. In our experiments with the
FSA a striking finding was that up to 10-fold more
eosinophils than neutrophils bound to nasal polyp
endothelium (NPE),37 giving support to the idea that the
endothelium is indeed an important site for eosinophil
enrichment. The combined effect of bone marrow and
adhesion events therefore could easily result in the region
of a 20-fold increase in eosinophils relative to neu-
trophils tethered to the endothelium.

Eosinophil chemoattractants, particularly chemokines,
are clearly important in directing eosinophils into tissue.
However, a number of studies have demonstrated
increased expression of effective neutrophil chemoattrac-
tants, particularly IL-8,99 in allergic disease so that any
neutrophils that adhere to the vascular endothelium in
allergic disease should be able to efficiently transmigrate
into tissue. The effect of the chemotaxis step on selective
trafficking of eosinophils versus neutrophils may there-
fore not be as great as has been suggested by the animal
models discussed above, in which relatively few neu-
trophils are recruited. How much selectivity occurs at the
chemotaxis stage is therefore guesswork, but for illustra-
tive purpose let us estimate 4-fold. Similarly, although
prolonged survival is undoubtedly a factor in maintaining
eosinophil numbers in tissue, the magnitude of this effect
on selective recruitment is difficult to gauge. Neutrophil
survival factors, particularly GM-CSF, are also expressed
in asthma, and these may have a comparable effect on
neutrophil persistence. The exact numbers do not matter
other than to illustrate that each stage can have a marked
effect on selective recruitment and that it is unlikely that
any single stage, let alone any single molecule, is likely
to be wholly responsible. It can be seen that the cumula-
tive effects of each stage are more than enough to result
in very considerable enrichment of eosinophils seen in
disease (Fig 1).

Although multiple molecular events direct recruit-
ment, these events are integrated and controlled by the
cytokines IL-5, IL-4, and IL-13.100 In atopic disease at
least, these cytokines are likely to be largely generated in
a coordinate fashion by allergen-stimulated CD4 +ve
TH2 lymphocytes.

What does this multistep process mean for the devel-
opment of drugs to inhibit eosinophil recruitment? An
important feature of the paradigm that I have outlined
above is that it should be possible to inhibit recruitment
at each of the stages. IL-5 is crucial at a number of steps,
but particularly in eosinophilopoiesis and in enhanced
chemotactic responsiveness in the periphery. IL-5 antag-
onists are almost certainly going to have profound and
specific effects on eosinophil trafficking in allergic dis-
ease, and the results of continuing trials with humanized

mAbs against IL-5 are awaited with interest. P-
selectin/PSGL-1 and VCAM-1/VLA-4 cooperate to teth-
er eosinophils to endothelium and it is likely that antag-
onists of either receptor pair will inhibit eosinophil
recruitment. The results of current clinical trials of low-
molecular-weight potent VLA-4 antagonists in asthma
are awaited with interest. There has been less progress in
the development of potent selectin antagonists for asth-
ma, although results in animal models of allergic disease
suggest that sPSGL-1 could form the basis for a thera-
peutic strategy.101 The plethora of eosinophil chemoat-
tractants released in allergic disease, including lipid
mediators,102 may limit the effectiveness of individual
chemokine antagonists, although CCR-3 antagonists are
likely to be more effective. Clinical trials of CCR-3
antagonists may not be long coming because it appears
considerably easier to develop low-molecular-weight,
orally effective drugs against serpentine receptors than
growth factor or adhesion receptors. However, the best
strategy may be to suppress the production of TH2-asso-
ciated cytokines, for example, by altering the response to
allergen sensitization toward a TH1 response or through
antagonizing transcription of TH2 cytokines.103

In summary, the enormous effort that has gone into
understanding the molecular basis for selective eosinophil
recruitment in asthma and related diseases over the last 30
years has borne fruit, and in the coming 5 years we should
have several drugs available that will more or less specifi-
cally inhibit their tissue accumulation. At the very least
this will help us to ask the central question that has con-
cerned eosinophil biologists for the last 3 decades. Do
eosinophils really cause asthma?
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