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Background: Genetic ancestry plays a role in asthma health
disparities.
Objective: Our aim was to evaluate the impact of ancestry on
and identify genetic variants associated with asthma, total
serum IgE level, and lung function.
Methods: A total of 436 Peruvian children (aged 9-19 years)
with asthma and 291 without asthma were genotyped by using
the Illumina Multi-Ethnic Global Array. Genome-wide
proportions of indigenous ancestry populations from
continental America (NAT) and European ancestry from the
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Iberian populations in Spain (IBS) were estimated by using
ADMIXTURE. We assessed the relationship between ancestry
and the phenotypes and performed a genome-wide association
study.
Results: The mean ancestry proportions were 84.7% NAT (case
patients, 84.2%; controls, 85.4%) and 15.3% IBS (15.8%;
14.6%). With adjustment for asthma, NAT was associated with
higher total serum IgE levels (P < .001) and IBS was associated
with lower total serum IgE levels (P < .001). NATwas associated
with higher FEV1 percent predicted values (P < .001), whereas
IBS was associated with lower FEV1 values in the controls but
not in the case patients. The HLA-DR/DQ region on
chromosome 6 (Chr6) was strongly associated with total serum
IgE (rs3135348; P 5 3.438 3 10–10) and was independent of an
association with the haplotype HLA-DQA1�HLA-
DQB1:04.01�04.02 (P 5 1.55 3 10–05). For lung function, we
identified a locus (rs4410198; P 5 5.536 3 10–11) mapping to
Chr19, near a cluster of zinc finger interacting genes that
colocalizes to the long noncoding RNACTD-2537I9.5. This novel
locus was replicated in an independent sample of pediatric case
patients with asthma with similar admixture from Brazil (P 5
.005).
Conclusion: This study confirms the role of HLA in atopy, and
identifies a novel locus mapping to a long noncoding RNA for
lung function that may be specific to children with NAT. (J
Allergy Clin Immunol 2021;nnn:nnn-nnn.)

Key words: Asthma, immunoglobulin E, lung function, admixture,
genome wide association analyses, Peru, ancestry, allergy

Asthma is the most prevalent noncommunicable chronic
disease in children and a major cause of emergency department
visits, hospitalizations, and school absences.1,2 African Ameri-
cans and Hispanics are more likely to have severe asthma and
worse asthma-related outcomes.3 Indeed, asthma is a complex
disease to which environmental and socioeconomic factors may
contribute. Nonetheless, there is evidence that these factors do
not completely explain these disparities and that genetics plays
a role in asthma development, atopy, and pulmonary function.4

The genome-wide association study (GWAS) approach has
been successful in identifying numerous loci/genes associated
with asthma.5 Recently, Pividori et al reported 60 unique loci
1
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associated with childhood onset of asthma in a cohort of
individuals of European ancestry.6 Genetic risk loci may however
differ by ancestral population.7 For instance, the Genes-
environments and Admixture in Latino Americans (GALA II)
study confirmed the existence of a strong association between
theORMDL3 locus on 17q21 that was previously identified in Eu-
ropean populations, but it identified a novel locus (MUC22) 6p21
in Latinos with asthma.5 The Consortium on Asthma among Af-
rican Ancestry Populations (CAAPA) also showed that the effect
of the genetic variants at theORMDL3 locus differed according to
the ancestral haplotype onwhich the variant was found.8 Thus, the
study of admixed populations such as those in Peru may provide
opportunities to confirm previously identified loci in this specific
population and also facilitate the identification of novel loci.

In the International Study of Asthma and Allergies in Child-
hood (ISAAC), Peru was one of the countries with the highest
prevalence of childhood asthma, with a significant proportion of
these children having severe disease.9 Our study goal was to
bridge the gaps stemming from a minimal representation of this
population in asthma genetics interrogations to date. We have
done so by determining the global estimates of ancestry for chil-
dren with and without asthma from the Genetic Asthma Suscep-
tibility to Indoor Pollution in Peru (GASP) study, and evaluating
whether these global ancestry estimates are associated with
asthma status, lung function, and total serum IgE level (IgE).
Acknowledging our limited sample size, we also performed a
GWAS for asthma, total serum IgE level, and lung function in
this pediatric sample from Peru.
METHODS

Study participants and setting
We analyzed data from the GASP study, which evaluated the association

between genetics, environment, and asthma status among children and

adolescents residing in Peru. As described in a previous article,10 case patients

and controls were recruited from 2 adjacent communities in Lima: Pampas de
San Juan de Miraflores (PAMPAS) and Villa El Salvador (VILLA) between

2011 and 2014. Subjects were eligible if they were 9 to 19 years of age. Chil-

dren were considered to have asthma if they reported a physician diagnosis of

asthma and asthma symptoms or taking asthma medications within the past

year. Patients with other chronic respiratory conditions; pregnancy; current

or past history of tuberculosis; history of hospitalization for cardiovascular

disease in the preceding 3 months; and/or history of ocular, abdominal, or

thoracic surgery in the past 3 months were excluded. Patients who were un-

willing or unable to provide a blood sample were also excluded. The controls

were children without asthma symptoms or the use of asthma medications in

the past year and a normal FEV1-to–forced vital capacity ratio and an FEV1

value above 80%.

At baseline, questionnaires were completed by each child or caregiver. The

questionnaire included demographic data, comorbidities (including other

allergic diseases), and data on asthma control and severity. Baseline

anthropometry and lung function were assessed, and predicted values and z

scores were calculated by using multiethnic reference values derived by the

Global Lung Function Initiative.11 Total serum IgE level was measured by us-

ing the ImmunoCAP 250 system (ThermoFisher Scientific, Waltham, Mass);

the levels in all samples were above the detection thresholds. For specific total

serum IgE antibody testing, a level higher than 0.10 kUa/L indicated a positive

total serum IgE antibody response to mixes of 3 common allergens (animal,

mold, and dust mite). The institutional review boards at the Johns Hopkins

University School of Medicine (Baltimore, Md) and AB PRISMA (Lima,

Peru) approved this study; all subjects or parents provided written consent.
Genotyping and quality control for GASP samples
GASP subjects were genotyped by using the Illumina Multi-Ethnic

Genotyping Array (MEGA), which was specifically designed to capture

genetic variation in populations with a significant African and Native

American contribution.12 Genotyping plates were balanced by asthma status

and sex. Duplicate sample concordance, HapMap concordance, and mende-

lian errors of HapMap trios were used as controls for each set of 91 samples

plated.13 Any unresolved sex mismatches and ambiguously imputed sex

(defined as sampleswith an F statistic value between 0.20 and 0.65, as assessed

using PLINK1.9) were removed.14,15 Thereafter, we excluded samples with a

genotyping rate less than 98.5%. We then excluded all samples with strong

cryptic relatedness (PI_HAT > 0.3) and excess heterozygosity (63 SDs

from the mean).

Genotyped single-nucleotide polymorphisms (SNPs) that did not pass

quality control procedures were removed by using 2 criteria: less than a 99%

call rate and/or deviations from Hardy-Weinberg equilibrium (P < 10–6).

Ancestral outliers in the data set were evaluated by using a set of linkage

disequilibrium (LD)-pruned SNPs in a combined data set of GASP and Thou-

sand Genomes Project (TGP) samples. Principal component (PC) analysis

(PCA) was performed by using King, GENESIS, and PC-AiR.16 Study sam-

ples approximately 6 SD away from the mean of the Peru sample for PCs 1

and 2 were dropped. Approximately 15% of subjects were filtered out, result-

ing in a total of 743 samples (for the PAMPAS sampling site, n5 408; for the

VILLA sampling site, n5 319) with high-quality genotype data (see Fig E1 in

this article’s Online Repository at www.jacionline.org) Before the analyses,

we excluded 16 additional subjects on account of ambiguity in their case

patient–control status.

Assessment of genetic ancestry: ADMIXTURE and

PCA
In all, 3 ancestral reference populations were used in the ancestry

deconvolution for the GASP samples: 107 TGP samples from the Iberian

populations in Spain (IBS), 88 TGP Yoruban (YRI) samples, and 43 samples

of indigenous ancestry populations from continental America (NAT).17 The

specific samples selected were those reported with no admixture themselves

and included Bolivian Aymara (n5 25),Maya (n5 6), Mixtec (n5 5), Nahua

(n5 1), Peruvian Quechua (n5 2), and Tlapanec (n5 4). We used IBS as the

European population, given the Spanish introgression and gene flow patterns

in Peruvians following the Spanish conquest.18 SNPs were LD-pruned on the

http://www.jacionline.org
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basis of an SNP window size of 50, variant count per step of 5, and variance

inflation factor of 214,15 on the combined data set of GASP and 3 reference

populations (IBS, YRI, and NAT). The number of SNPs after LD pruning

was 107,095. PCA was performed by using this set of 107,095 SNPs and

including all 3 reference populations by using King, GENESIS, and PC-

AiR.16

To obtain global estimates of ancestry, we used ADMIXTURE.19 The first

step was an unsupervised analysis conducted for clusters (K5 1-5 with cross-

validation) to find the number of putative source populations in GASP alone.

We found that a K value of 2 had the smallest cross-validation error. Data from

GASP were then merged with the IBS and NAT reference populations on the

basis of confirmation from the aforementioned PCA that these were the 2

major contributing reference populations.17 Global estimates of admixture

by using maximum likelihood estimates were then obtained by assuming a

K value of 2 ancestral clusters.
Imputation of data from the TGP Pilot
Subsequent to the aforementioned SNP-based quality control, we removed

SNPs with a minor allele frequency (MAF) less than .0001 and all ambiguous

allele SNPs. Additionally, strand flips were resolved before imputation by

using the Michigan Imputation Server against the TGP.20 A total of 956,459

SNPs were used as input for imputation. Only imputed variants with an

imputation quality (R2) greater than 0.3 were used in the downstream

association analysis; these included SNPs and short indels (insertion/deletion

variants) returned from the imputation server. Additional filters on allele

frequency are described in the following sections of this article.
Analysis of association between global genetic

ancestry and asthma susceptibility, total serum IgE

levels, and lung function
We tested for an association between the global estimates of ancestry and

asthma, lung function, and total serum IgE. For these analyses, the global

estimates of ancestry from ADMIXTURE were used for percentage of Utah

residents with ancestry from Northern and Western Europe (CEU) and

percentage of NAT. For asthma susceptibility, we used logistic regression, and

for total serum IgE level and lung function, we used a linear model. All models

included age, sex, and socioeconomic status. Asthma status was included as a

covariate for analyses of lung function and total serum IgE level that combined

case patients and controls. Other potential confounders were also included if

they were associated with the phenotype in univariate models. For asthma,

body mass index (BMI) was also included as a covariate and site in models

combining the PAMPAS and VILLA sampling sites. For lung function, we

used prebronchodilator FEV1 percent predicted and included height, BMI, and

site as additional covariates. The results were however similar with use of z

scores. Total serum IgE level was log-transformed and additionally adjusted

for site.
Statistical models for genetic association analysis
All tests for association were performed in the R package GENESIS,

version 2.4.021,22 by testing each variant (genotyped and imputed) under an

additive model. Primary GWASs were performed for (1) asthma, (2) log-

transformed total serum IgE level (log10[IgE] value) in the combined sample

of case patients and controls, and also (3) lung function in the combined sam-

ple by using covariates specified later in this article. Stratified analyses by case

patient group and control group were also performed for any GWAS signals

identified for total serum IgE level or lung function. Given our small sample

size, a MAF of 5% or higher was applied universally for genotyped and

imputed SNPs. As already described, any imputed SNP with an R2 value

less than or equal to 0.3 and any genotyped SNP with less than a 99% call

rate, and/or deviations from Hardy-Weinberg equilibrium (P < 10–6) was

also discarded. Finally, the quality of the resulting data set used for the

genome-wide analysis was confirmed by plotting Q-Q plots (see Fig E2 in

this article’s Online Repository at www.jacionline.org).
A logistic mixed effect model was used for asthma and linear mixed effects

models for total serum IgE and lung function. All 3 models included GASP-

specific PCs as covariates in addition to age, sex, and socioeconomic status.

The PCs used in these tests for association were derived by using a total of

246,361 LD-pruned genotyped SNPs in the GASP Peruvian samples (ie, these

PCs were calculated without any reference ancestral samples). This is a larger

set of SNPs than that used in the aforementioned analysis including ancestral

populations because there we had to limit the starting set of SNPs to those that

overlapped between the MEGA array and were used for the reference 43 NAT

reference population17; here we were able to perform LD pruning on the full

set of SNPs from the MEGA array. The first 20 PCs generated by using King,

GENESIS, and PC-AiR with reference16 were visually examined on a scree

plot, with the first 4 PCs identified as accounting for the most variance in

the data set, and used as covariates in association analysis models. Site was

not included as a covariate, as ancestry differences were addressed with the

inclusion of the PCs. BMI was also included as a covariate for asthma and

lung function. For total serum IgE level and lung function, asthma was

included as a covariate to account for any possible association with asthma

rather than with the total serum IgE level or lung function phenotype. For

any identified associations, we further performed stratified analyses within

the case patients and controls separately. All data cleanup, Manhattan, and

Q-Q plots were generated by using custom written scripts and the R package

qqman, version 0.1.23

We implemented standard GWAS thresholds for discovery (P < 53 10–8)

and suggestive evidence (P < 13 10–5) for each of the 3 phenotypes. Addition-

ally, we sought to replicate the 60 significant childhood asthma loci identified

by Pividori et al6 within extracted flanking regions of plus or minus 0.4 Mb

(similar to the scale of Pividori et al6). We used 2 significance thresholds

for these lookups: the first was a simple correction for number of loci tested,

which assumes a single causal variant per locus (P < .05/60), and the second

was a correction for the number of independent SNPs (at an Rsq R2 5 0.7)

tested across the 60 loci (P < .05/1,599).
Colocalization analysis of GWAS signals and cis-

eQTLs
Genotype-Tissue Expression (GTEx) analysis V7 (dbGap accession no.

phs000424.v7.p2) expression quantitative trait locus (eQTL) results were

downloaded from the GTEx portal for lung and whole blood tissues; a false

discovery rate of 0.05 or less was used to ascertain the significant transcripts.

We performed pairwise colocalization analysis of GWAS signals with cis-

eQTL data by using the R-package coloc.24,25 The method usef approximate

Bayes factor computations and tests pairwise colocalization of SNPs inGWAS

data set with eQTLs. It generates 5 posterior probabilities (PPs), namely, PP0,

PP1, PP2, PP3 and PP4, for the locus by using the evidence for competing hy-

potheses of either no colocalization or colocalization.24 A PP3 value of

approximately 75% indicated evidence against colocalization. In contrast, a

PP4 value of approximately 75% supported evidence of colocalization; there-

fore, the first step was to find all genes with a PP3 value less than 75% and a

PP4 value of approximately75% and to then examine the PP for each SNP

within the region for the likely causal variant.
Imputation of HLA alleles, haplotypes, and amino

acids
HLA alleles for the HLA class I genes HLA-A,HLA-B, and HLA-C and the

HLA class II genes HLA-DPB1, HLA-DQA1, HLA-DQB1, and HLA-DRB1

were imputed by using the R package HIBAG v1.326,27 with use of the attri-

bute bagging method to impute HLA alleles by using hg19 genome assembly

and Illumina Infinium Multi-Ethnic Global BeadChip prediction model with

2-field (4-digit) resolution. We filtered out all the genes with a call rate lower

than 95%, and analysis was limited to those alleles with a frequency approx-

imately 5% for each passing gene. Each allele was then analyzed under an ad-

ditive model in HIBAG for asthma, log-transformed total serum IgE level, and

lung function by incorporating the same covariates as used in the aforemen-

tioned GWAS analysis.

http://www.jacionline.org
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HLA haplotypes were generated acrossHLA-DQA1 andHLA-DRB1 by us-

ing the BIGDAWG R package.28 Only samples with complete haplotype data

(ie, those with alleles at both genes) were retained for analysis, and the anal-

ysis was limited to those alleles with a frequency of approximately 5%. Each

haplotype was then analyzed under an additive model in Plink by using the

exact analyses models for asthma, log10(IgE) value, and lung function stated

earlier in this article for the SNP association analysis; BIGDAWG could not

accommodate covariates and quantitative traits. Additional analyses were per-

formed within Plink to facilitate a conditional analysis to evaluate indepen-

dence of the identified SNP from the HLA alleles/haplotypes.
Replication of Chr19 locus for lung function
Replication for the genome-wide signification association on Chr19 with

lung function (FEV1 percent predicted) in GASPwas assessed in 4 studies: (1)

ProAR (Program for Control of Asthma and Allergic Rhinitis), (2) SCAALA

(Social Changes, Asthma and Allergies in Latin America) Program, (3) His-

panics participants randomized to a long-acting b-agonist and inhaled cortico-

steroids with or without rescue long-acting b-agonist and inhaled

corticosteroid combination therapy for 6 months in the AstraZeneca-

sponsored COMPASS trial,29 and (4) a large published GWAS of lung func-

tion in 400,102 individuals of European ancestry from the UKBiobank and

the SpiroMeta Consortium.30 A total of 12 SNPs with a discovery P value

less than 5E–08 were examined for replication in each of these data sets.

No correctionwasmade, as these 12 SNPs represent a single association signal

in GASP.

The ProAR severe asthma case-control study31 was carried out in the city of

Salvador, Bahia, Brazil, in 2013. Adult individuals (aged >18 years) with no

other lung diseases were recruited, and a total of 1065 individuals with

FEV1 percent predicted data available were included in the analysis. ProAR

DNA samples were genotyped on the Illumina MEGA array and imputed to

the CAAPA reference panel on the Michigan imputation server. Association

tests were performed by using PLINK and included age, sex, and the first

PC as covariates. The SCAALA cohort was used first to assess risk factors

for asthma and allergies in children and adolescents aged 4 to 11 years who

were living in the city of Salvador and later to study the genetics determinants

of such conditions. For this replication, we included 947 unrelated children

with available FEV1 percent predicted data.

SCAALA DNA samples were genotyped by using the commercial panel

2.5 HumanOmni Beadchip, which is available from Illumina (www.illumina.

com), and imputed to the 1000 Genomes Project (TGP) reference panel on the

Michigan imputation server. Association tests were performed by using

PLINK and included age, sex, and the first 4 PCs as covariates.

The COMPASS trial participants were genotyped on the Illumina Human

OmniExpress-12v1 chip and imputed to the TOPmed freeze 5 reference panel

on the Michigan imputation server. Pulmonary function was assessed from

data obtained during the run-in period of the COMPASS trial in 249

individuals with asthma from Argentina and 312 individuals from Mexico,

of whom 471 were adults (>18 years of age). Compass samples were

genotyped on the Illumina Human OmniExpress-12v1 chip and imputed to

the TOPMed freeze 5 reference panel on the Michigan imputation server

reference panel on the Michigan imputation server. Association tests were

performed by using PLINK and included age, sex, and the first 4 PCs as

covariates (n 5 947).

Summary statistics from the UK Biobank and the SpiroMeta Consortium

GWAS were obtained from the GWAS catalog (ftp://ftp.ebi.ac.uk/pub/

databases/gwas/summary_statistics/ShrineN_30804560_GCST007432/Shrine_

30804560_FEV1_meta-analysis.txt.gz), and the Chr19 variants associated

with lung function in GASP were extracted and assessed for replication.
RESULTS

Study subject characteristics
The characteristics of participants at enrollment are shown in

Table I. The cohort members from both sites were similar in age,
sex, total serum IgE level, FEV1 percent predicted value, and
distribution of the 2 ancestral populations. Compared with the
controls, the case patients included a higher proportion of males
(56% vs 47%) and they had higher total serum IgE levels (1233
vs 652 kU/L); case patients from both sites had a significantly
lower FEV1 percent predicted value (14% vs 118% [P 5 .003]).
Fig 1, A shows the ADMIXTURE global genetic ancestry propor-
tions among the study cohort by case patient–control status and
sampling site, allowing for 2-way admixture. The 2-way admix-
ture is also evident from the PCA analysis in Fig 1, B, which
shows the distribution of the GASP samples relative to 3 ancestral
reference groups with variability due largely to NAT and IBS
contribution. On average, the global genetic ancestry in the study
subjects was 15% European (IBS) and 85% indigenous ancestry.
Differences were observed between the 2 sites (Table I and Fig 1,
C), with higher indigenous and lower European ancestry in the
PAMPAS sampling site (86% and 14%, respectively) than in
the VILLA sampling site (82% and 18%, respectively)
(P <_ .001 and P < .001, respectively).
Association of genetic ancestry with asthma

susceptibility, total serum IgE level, and lung

function
We did not find any significant association between indigenous

ancestry or European ancestry and asthma susceptibility (see
Table E1 in this article’s Online Repository at www.jacionline.
org). European ancestry was associated with a lower FEV1 value
(percent predicted and z score [FEV1 percent predicted,
b5 –0.192;P5.001]; given 2-way admixture, the exact opposite
was noted for indigenous ancestry (b 5 0.192; P 5 .001) (see
Table E2 in this article’s Online Repository at www.jacionline.
org). In analyses stratified by asthma status, these associations
between ancestry and lung function remained statistically
significant in the controls but not in the case patients; although
the direction of effect was the same between the 2 groups, the
magnitude of the effect was larger in the controls (for NAT,
b 5 0.272; P 5 .001) than in the case patients (for NAT,
b 5 0.111; P 5 not significant). As seen in Table E2, European
ancestry was associated with lower total serum IgE levels
(b 5 –0.010; P < .001), and this effect was highly consistent be-
tween the case patients with asthma (b 5 –0.009; P 5 .004) and
the controls (b 5 –.025011; P 5 .02). Once again, given 2-way
admixture, the exact opposite was observed for indigenous
ancestry. Given the observation (in Fig 1, B) of some African
contribution to a small set of samples, a sensitivity analysis was
performed by using a K value of 3 in ADMIXTURE. We were
able to confirm the robustness of our results with a K value of
2: there was virtually no change in the NAT estimation (ie, any
YRI ancestry was absorbed into the IBS ancestry), and the
described patterns with NAT remain unchanged.
Genome-wide association analyses
Manhattan plots and Q-Q plots of the primary GWAS for

asthma, total serum IgE level, and lung function are shown in
Fig 2 and Fig E2 (in this article’s Online Repository at
www.jacionline.org) (L 5 ;1), respectively.

Asthma status. We did not find any variants that met
GWAS significance (P < 53 10–8) in the asthma GWA analysis
(Fig 2, A). However, there were 13 variants spanning 9 loci that
met the suggestive GWAS threshold (P < 1 3 10–5); 12 of 13

http://www.illumina.com
http://www.illumina.com
ftp://ftp.ebi.ac.uk/pub/databases/gwas/summary_statistics/ShrineN_30804560_GCST007432/Shrine_30804560_FEV1_meta-analysis.txt.gz
ftp://ftp.ebi.ac.uk/pub/databases/gwas/summary_statistics/ShrineN_30804560_GCST007432/Shrine_30804560_FEV1_meta-analysis.txt.gz
ftp://ftp.ebi.ac.uk/pub/databases/gwas/summary_statistics/ShrineN_30804560_GCST007432/Shrine_30804560_FEV1_meta-analysis.txt.gz
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TABLE I. Baseline participant characteristics by site and case-control status

Characteristic

PAMPAS sampling site VILLA sampling site

Case patients Controls

P value

Case patients Controls

P value(n 5 256) (n 5 152) (n 5 180) (n 5 139)

Demographic characteristic

Age (y), mean (SD) 13.5 (2.7) 13.8 (2.6) .28 13.3 (2.6) 12.8 (2.7) .07

Male, no. (%) 151 (59) 73 (48) .03 94 (52) 65 (47) .33

SES (no.), mean (SD)* -0.35 (1.6) -0.81 (1.6) .005 0.92 (1.4) 0.38 (1.5) .001

Total serum IgE level, kU/L (%)� 1202 (1523) 599 (758) <.001 1257 (1498) 658 (1092) <.001

Atopic disease, no. (%)�
Eczema 36 (14.6) 19 (13.2) .69 17 (10.3) 3 (2.2) .005

Rhinitis 21 (15.2) 2 (3.7) .03 21 (20.4) 1 (3.1) .02

Ancestry (no.), mean (SD)

Indigeneous (NAT) 85.7 (9.2) 86.8 (9.7) .22 82.0 (10.3) 83.9 (9.6) .10

European (IBS) 14.3 (9.2) 13.2 (9.7) .22 18.0 (10.3) 16.1 (9.6) .10

Clinical characteristic

BMI (ng/m2), no. (%)

Underweight/normoweight§ 146 (57.0) 102 (67.1) .10 77 (42.8) 83 (59.7) .01

Overweight 77 (30.1) 32 (21.1) 66 (36.7) 37 (26.6)

Obese 33 (12.9) 18 (11.8) 37 (20.6) 19 (13.7)

Baseline FEV1 (% predicted), mean (SD) 114.1 (14.5) 118.4 (13.8) .003 113.6 (15.6) 119.2 (13.9) <.001

Baseline FEV1 (raw in liters), mean (SD) 2.86 (0.82) 3.03 (0.80) .04 2.86 (0.78) 2.80 (0.77) .48

Baseline FEV1 (z score), mean (SD) 1.22 (1.25) 1.58 (1.20) .004 1.18 (1.34) 1.66 (1.22) <.001

Asthma severity, no. (%)

Mild intermittent 40 (20.4) N/A N/A 31 (22.6) N/A N/A

Mild persistent 82 (41.8) N/A 64 (46.7) N/A

Moderate persistent 41 (20.9) N/A 23 (16.8) N/A

Severe persistent 33 (16.8) N/A 19 (13.9) N/A

Sensitivity to environmental allergens, no. (%)

House dust mix (Der pter, Der far, Bla g) 195 (76) 88 (58) .001 132 (73) 76 (55) <.001

Mold and yeast mix (Pen, Clad, Asp, Candida,

Alternaria, Setomelanomma)

154 (62) 49 (35) <.001 76 (42) 35 (25) .001

Animal and epidermal mix (Can f, Fel d, Mus m1, rat, guinea pig) 118 (46) 30 (20) <.001 79 (44) 28 (20) <.001

Exhaled nitric oxide (ppb), median (IQR) 37.1 (34.9) 21.7 (24.6) <.001 44.2 (41.0) 24.3 (31.1) <.001

Asp, Aspergillus; Bla g, Blattella germanica; Can f, Canus familiaris; Clad, Cladosporium; Der far, Dermatophagoides farinae; Der pter, Dermatophagoides pteronyssinus;

Fel d, Felinus domesticus; IQR, Interquartile range; N/A, not available; SES, socioeconomic status.

*SES score is based on a PCA that includes 12 household assets, parental level of education, and number of persons in the household. Higher number denotes higher SES.

�All total serum IgE levels in the samples were above the level of assay detection.

�Eczema (390 subjects in the PAMPAS sampling site and 300 in the VILLA sampling site [690 of 727 subjects]) and rhinitis (192 in the PAMPAS sampling site and 135 in the

VILLA sampling site [327 of 727 subjects]); data collected on only a subset of patients.

§Between both sites, only 3 individuals fell into the underweight category.
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mapped to intronic regions, whereas 1 SNP was located in an
intergenic region, with the nearest gene being IP6K2.
(see Table E3 in this article’s Online Repository at
www.jacionline.org).

Total serum IgE level. Association analysis for total serum
IgE resulted in 30 variants that met the GWAS threshold; all of
them were located on Chr6 in the HLA region closest to
HLA-DQA1 (Table II and Fig 2, B). The most significant SNP
in the region was rs3135348 (P 5 3.4383 10–10). An additional
414 variants in the same HLA region also met the suggestive
GWAS threshold (see Table E3). The region spans a broader range
of HLA genes containing HLA-DR/DQ genes. There were an
additional 68 variants that met the suggestive GWAS threshold
outside of the HLA region, primarily spanning Chr1, Chr2,
Chr16, and Chr17 (see Table E3).

Lung function: FEV1. We identified 12 variants that met the
GWAS threshold of significance (P < 5 3 10–8). All of these
SNPS were located on Chr19, near zinc finger interacting genes
(Table II and Fig 2,C). The SNP with the most significant P value
(P 5 5.536 3 10–11) was rs4410198, which was located in
LOC107985322, a noncoding transcript near the zinc finger
interacting genes. There were an additional 118 variants that
met the suggestive GWAS threshold of significance
(P < 1 3 10–5) outlined in Table E3.

Overview of the Chr6 and Chr19 loci showing sig-

nificant association with total serum IgE and lung

function, respectively. To further investigate the 2GWAS loci
identified for total serum IgE level and lung function, we
performed separate stratified analyses within the groups of case
patients with asthma and controls and plotted the variant in each
region by using Locus Zoom.32 The peak SNP for total serum IgE
level in the analysis including all subjects (with adjustment for
asthma status), rs3135348, was located at position
Chr6:32,394,098 (Fig 3, A [left]). We observed evidence for
association at rs3135348 in the control analysis (n 5 291
[Fig 3, C (left)]; b 5 –0.2588; P 5 5.448 3 10–5) and a slightly
stronger signal in the asthma-only analysis (n 5 436 [Fig 3, B
(left)]; b 5 –0.2020; P 54 .257 3 10–6). rs3135348 was a
significant eQTL for a large number of HLA genes across a
variety of tissues in the GTEx data (HLA-DQA1, HLA-DQA2,
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FIG 1. Summary of ancestry de-convolution in the GASP study subjects. A, Global admixture estimates by

asthma case–control status and by PAMPAS and PAMPAS sampling sites, as estimated by using

ADMIXTURE. Ancestry was estimates by using 107 TGP Iberian samples from Spain (IBS [red]) and 43

NAT samples (green) as reference populations. B, PCs for the Peruvian GASP samples, including 88 African

samples (YRI [green]), 107 TGP Iberian samples from Spain (IBS [red]), and 43 NAT samples (green) as
reference populations. C, PC analysis for the GASP study subjects alone showing the first 2 components

by sampling site and by asthma case patient–control status.
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HLA-DQB1, HLA-DQB1-AS1, HLA-DQB2, HLA-DRA, HLA-
DRB1, HLA-DRB5, HLA-DRB6, and HLA-DRB9).33

The peak SNP for lung function, rs4410198, was located at
position Chr19:56,122,538 (Fig 3, A [right]). At this locus, the
strength of the association was high in the asthma-only analysis
(n 5 436 [Fig 3, B (right)]; b 5 6.870; P 5 1.547 3 10–8)
and was found to a lesser degree in the nonasthma analysis
(n 5 291 [Fig 3, C (right)]; b 5 4.514; P 5 .00057). Formal
colocalization analysis was performed for this novel locus to
identify a potential target gene.
Replication of prior asthma GWAS
We compared the results from our GWAS to what is to date

the most comprehensive asthma GWAS focused on childhood
asthma (ie, that by Pividori et al6). The authors of that study
identified 61 significant asthma loci by using UK Biobank
data from both children and adults. Because GASP is a pediat-
ric cohort, we focused on the 60 loci identified exclusively
from childhood-onset asthma or shared between children and
adults. We selected variants from our asthma association ana-
lyses that overlapped with each loci and highlighted these on
a Manhattan plot (Fig 2, A), and we used 2 significance thresh-
olds for these lookups: the first was a simple correction for
number of loci tested, and the second was a correction for
the number of independent SNPs tested across the 60 loci.
Although none of the variants within the 60 known loci reached
GWAS significance, we were able to replicate 2 loci at the
locus-corrected threshold (Fig 2, A [green line]). Both loci
identified, namely, 12q13.2 and 17q12, are exclusively child-
hood related (Fig 2, A [red dots]). The peak SNP on Chr12
was rs12578859 (P 5 .0001), and on Chr17, it was
rs12450091 (P 5 .0002); neither of these cross the threshold
correcting for number of independent SNPs tested.

Next, we investigated the overlap of the 60 loci with our results
for total serum IgE level association analysis. One shared locus
(ie, between adult and childhood asthma), namely, 6p21.32,
overlapped the sameHLA-DR/DQ gene region that we reported as
meeting GWAS level of significance (Fig 2, B) for total serum IgE
level. There were an additional 4 loci (ie, 2p25.1, 6p21.33,
7p15.1, and 18q21.33) that were replicated when the
locus-corrected threshold was used. The 6p21.33 locus spans a
broader HLA region that includes bothHLA-B andHLA-C genes.
The peak SNP on Chr2 was rs57838855 (P5 .0005), on Chr7 the
peak SNP was rs6962289 (P 5 .0004), at 6p21.33 it was
rs9378247 (P 5 .0002), and on Chr18 it was rs56173102 (P 5
1.82E-05). Only rs56173102 met the threshold correcting for
number of independent SNPs tested, and it is interesting to note
that this was the only childhood-specific locus from the prior pub-
lished GWAS; the other 3 were shared with adult and childhood
asthma loci.

Using the same approach for lung function association
analysis, we found a single locus, 8q24.21, replicated at the
locus-corrected threshold (Fig 2, C). The peak SNP was



FIG 2. Genome-wide Manhattan plots for asthma (A), IgE level (B), and lung function (C). Plots are

annotated on the basis of prior signals for childhood-onset asthma (unique or shared with adult-onset

asthma) from 60 different loci (defined as 60.4 Mb from the reference SNP values in Table 2 of Pividori

et al6); 3 levels of statistical significance are shown.
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rs4645958 (P 5 .0007), and it did not meet the threshold
correcting for number of independent SNPs tested.

Finally, because the Pividori et al6 GWAS is a study of subjects
who are largely European in ancestry and may not be
representative of genetic contributions to asthma and its related
phenotypes in this Peruvian cohort of predominantly indigenous
ancestry, we looked up a set of additional variants identified
from the non-European samples within the EVE34 and CAAPA8

consortia. We were able to replicate only 1 variant, namely,
rs335016 (P 5 .003), for asthma; however, the effect size was
not in the same direction (see Table E4 in this article’s Online
Repository at www.jacionline.org).
Chr19 region colocalization with cis eQTLs of

CTD-2537I9.5 in lung tissue
We jointly analyzed the GWAS data with cis-eQTLs in lung

and whole blood tissues from GTEx. We identified 37 significant
transcripts in lung tissue within an approximately 1-Mb region of
the peak SNP for lung function, rs4410198. Among these
transcripts, only the long noncoding RNA (LncRNA)
CTD-2537I9.5 showed strong evidence of colocalization
(PP35 0.02 and PP45 98% [see Table E5 in this article’s Online
Repository at www.jacionline.org]). The top colocalizing
SNP, namely, rs34164618, had a GWAS association P value
(P 5 2.44E–710), eQTL association P value (P 5 3.47E–06),
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TABLE II. Genetic variants passing the GWAS threshold (P < 53 10–8) for any of the 3 phenotypes of asthma, total serum IgE level,

and lung function

rsID Chr

hg19

position Ref/Alt MAF Genotyped R2

Nearby

gene(s)

Asthma log10 (total serum IgE) Lung function

OR P value Effect size P value Effect size P value

rs6913471 6 32339925 T/A 0.273 Imputed 0.955 0.965605416 .7811 0.215 4.93E–08 –1.099 .2016

rs4496841 6 32389997 C/T 0.719 Imputed 0.988 0.854704059 .1852 –0.209 1.39E–08 1.363 .08916

rs3135359 6 32390578 T/C 0.736 Imputed 0.995 0.878973966 .2832 –0.218 5.33E–09 1.147 .1599

rs9296027 6 32393062 C/G 0.241 Imputed 0.995 1.093080656 .4805 0.218 2.74E–08 –1.303 .1278

rs9469109 6 32393161 A/T 0.241 Imputed 0.995 1.094174284 .4793 0.218 2.73E–08 –1.304 .1275

rs3135348 6 32394098 A/G 0.687 Imputed 0.966 0.922193691 .4957 –0.229 3.44E–10 1.464 .06675

rs9501400 6 32394184 G/A 0.247 Imputed 0.996 1.112934254 .398 0.221 1.50E–08 –1.433 .09281

rs9501622 6 32394251 T/A 0.241 Imputed 0.998 1.095269005 .4695 0.218 2.64E–08 –1.311 .1254

rs732163 6 32394911 G/A 0.24 Imputed 1.000 1.11516235 .3907 0.218 2.70E–08 –1.213 .1563

rs4959100 6 32397813 C/T 0.237 Imputed 1.000 1.122995872 .3612 0.216 4.63E–08 –1.358 .1152

rs9469110 6 32398525 G/T 0.237 Genotyped 1.000 1.122995872 .3613 0.216 4.64E–08 –1.358 .1151

rs3129854 6 32398781 G/C 0.719 Imputed 1.000 0.862431115 .2136 –0.224 1.16E–09 1.231 .1263

NA 6 32398853 T/TA 0.719 Imputed 1.000 0.862431115 .2136 –0.224 1.16E–09 1.231 .1263

rs984778 6 32400088 C/T 0.719 Genotyped 1.000 0.862431115 .2136 –0.224 1.16E–09 1.231 .1263

rs9501626 6 32400344 C/A 0.237 Genotyped 1.000 1.122995872 .3613 0.216 4.64E–08 –1.358 .1151

rs3135338 6 32401217 C/T 0.719 Genotyped 1.000 0.862431115 .2136 –0.224 1.16E–09 1.231 .1263

rs3135336 6 32401829 G/A 0.72 Imputed 0.995 0.860707976 .2091 –0.225 1.16E–09 1.238 .1254

rs3135335 6 32401845 C/G 0.72 Imputed 0.995 0.860707976 .2091 –0.225 1.16E–09 1.238 .1254

rs2027856 6 32402705 G/A 0.237 Genotyped 1.000 1.122995872 .3613 0.216 4.64E–08 –1.358 .1151

rs3135397 6 32403941 A/T 0.719 Imputed 1.000 0.862431115 .2136 –0.224 1.16E–09 1.231 .1263

rs3129866 6 32404065 G/C 0.719 Imputed 1.000 0.862431115 .2136 –0.224 1.16E–09 1.231 .1263

rs3129867 6 32404220 G/C 0.723 Imputed 0.999 0.884263663 .3042 –0.22 2.57E–09 1.243 .1233

rs2395173 6 32404859 A/G 0.719 Genotyped 1.000 0.862431115 .2136 –0.224 1.16E–09 1.231 .1263

rs3135395 6 32405192 T/G 0.719 Genotyped 1.000 0.862431115 .2136 –0.224 1.16E–09 1.231 .1263

rs2395178 6 32405362 G/C 0.719 Imputed 1.000 0.862431115 .2138 –0.224 1.16E–09 1.231 .1263

rs3129869 6 32405671 A/C 0.72 Genotyped 0.999 0.863293977 .2186 –0.224 1.09E–09 1.237 .1244

rs3129871 6 32406342 A/C 0.709 Imputed 0.999 0.832768156 .1245 –0.211 1.05E–08 1.153 .1516

rs9271364 6 32586787 A/G 0.689 Imputed 1.000 0.923116346 .5037 –0.201 4.97E–08 0.497 .5375

rs9272518 6 32606446 G/T 0.495 Imputed 0.701 HLA-DQA1 1.044982355 .7238 –0.228 4.78E–09 1.725 .04204

rs9273395 6 32627094 C/T 0.634 Imputed 0.936 0.88603396 .3118 –0.206 3.47E–08 1.365 .09296

rs4335869 19 56085656 T/A 0.297 Imputed 0.872 1.065026839 .6251 –0.022 .5873 5.489 1.33E–10

NA 19 56086758 GA/GAA 0.328 Imputed 0.848 1.030454534 .8187 –0.023 .5706 5.433 1.43E–10

rs28699417 19 56087272 T/C 0.323 Imputed 0.887 1.034584607 .7907 –0.021 .6048 5.279 2.54E–10

rs28379489 19 56087281 T/A 0.323 Imputed 0.887 1.035619709 .7818 –0.021 .6044 5.276 2.65E–10

NA 19 56088110 C/CA 0.249 Imputed 0.593 1.09089668 .6007 –0.025 .6331 6.372 5.19E–09

rs12972695 19 56088487 A/G 0.33 Imputed 0.892 1.010050167 .9379 –0.026 .5089 5.144 4.73E–10

rs10403008 19 56089947 C/G 0.307 Imputed 0.903 ZNF579 1.057597684 .6543 –0.009 .8208 5.211 3.39E–10

rs34164618 19 56090076 G/T 0.306 Imputed 0.903 ZNF579 1.071436209 .5838 –0.009 .8128 5.271 2.44E–10

rs12609355 19 56105932 G/A 0.3 Imputed 0.904 FIZ1 1.108491409 .4255 –0.014 .7245 5.195 1.14E–09

rs3803890 19 56110700 G/A 0.288 Imputed 0.879 FIZ1 1.133148453 .3485 –0.008 .8501 5.369 8.98E–10

rs4410198 19 56122538 G/A 0.296 Imputed 0.832 ZNF865 1.087628894 .5364 0.001 .9873 5.83 5.54E–11

rs146619376 19 56127441 C/G 0.277 0.854 ZNF865 1.068226717 .626 –0.006 .8831 5.351 2.51E–09

Alt, Alternative; NA, not available; OR, odds ratio; Ref, reference; rsID, rs identifier.

A strong association with the previously implicated HLA-DR/DQ region on Chr6 with total serum IgE level was identified, as was a novel locus mapping to chromosome 19, near

zinc finger interacting genes for lung function. Boldface indicates significance at the P < 5 3 10–8 threshold.
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and a 50% PP (see Fig E3 in this article’s Online Repository at
www.jacionline.org). A total of 30 significant transcripts were
identified in whole blood tissue; however, none of them showed
evidence of colocalization (see Table E5). Similar analysis was
done for the peak SNP for total serum IgE levels, namely,
rs3135348, in both tissues, but no evidence of colocalization
was observed for any significant transcript.
Testing for association with HLA alleles imputed for

the Chr6 region
Given that the HLA region is one of the strongest genetic loci

across atopic diseases,35 we imputed HLA alleles for class I and II
genes. Table E6 (in this article’s Online Repository at
www.jacionline.org) shows the genes and alleles that were
imputed in these data. There were 14 alleles with a frequency
of 5% or higher, which were tested individually for the 3 primary
phenotypes as shown in Table E7 (in this article’s Online
Repository at www.jacionline.org). Similar to the associations
at the SNP level, the strongest associations were observed for
IgE level. With use of a multiple-testing threshold of
.05/(14*3), 3 alleles had significant associations with log10(IgE)
value: HLA-DQA1*04:01 (P 5 4.47 3 10–5), HLA-
DQB1*03:02 (P 5 2 .13 3 10–4), and HLA-DQB1*04:02 (P 5
4.34 3 10–5). These allelic associations were largely
represented by the haplotypes across the HLA-DQA1 and
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FIG 3. Locus zoom plots of the HLA region (left) and zinc finger region (right) that passed GWAS

significance for total serum IgE level and lung function, respectively. LD between the peak SNP and other

variants within the region is color-coded and calculated on the basis of 727 specific GASP samples used

in the analysis. Variants are filtered in a minor allele count greater than 10 and a MAF of 0.05 or higher.

To facilitate examination of the association signal by case patient–control status, we used full analysis

based on all 727 adjusted for asthma (A), analysis limited to case patients with asthma (B), and analysis

based on the asthma-free controls (C). The purple diamond represents the reference SNP and is defined

on the basis of the peak SNP in the combined analysis from (A).
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HLA-DQB1 genes (HLA-DQA1;HLA-DQB1):04.01;04.02
(P 5 1.55 3 10–5). Given the strong LD that has been well
documented in this HLA region, we were unable to separate the
independence of the association between the peak SNP in this re-
gion for log10(IgE) value and the final haplotype HLA-
DQA1;HLA-DQB1:04.01;04.02. Even after adjustment for
the effect of the haplotype, the peak variant from the GWAS,
namely, rs3135348, retained its significance, although it was
somewhat reduced (see Table E7)
Replication of the novel Chr19 locus for lung

function
Replication evidence for the Chr19 locus for lung function and

the 4 independent data sets is presented in Table E8 (in this
article’s Online Repository at www.jacionline.org). Significant
replication is noted at 7 of the SNPswithin the pediatric SCAALA
study, with the strongest evidence at rs12609355 (P 5 .005) and
rs10403008 (P5 .008) and with consistent directions of effect be-
tween the discovery (b5 5.195) and replication (b5 2.028) data.
No evidence for replication was noted in the adult PROAR cohort,
the COMPASS study (with only a limited number of pediatric
case patients), or the study by Shrine et al,30 which was based
on the largely European UK Biobank sample.
DISCUSSION
Given the evidence that Peru is one of the countries with the

highest prevalence of childhood asthma and high disease
severity,9 our study goal was to understand whether ancestry
was associated with asthma status, lung function, and total serum
IgE levels in a cohort of Peruvian children. Recognizing the
limitations of a relatively modest sample size, we not only
performed a GWAS but specifically sought to replicate prior
risk loci associated with childhood-onset asthma and lung
function.

We found that participants had a high proportion of indigenous
ancestry (85%) but lower proportion of European ancestry (15%),
similar to the proportions in prior studies showing indigenous
American ancestry as the predominant ancestry in Peruvians.18

Latino populations worldwide represent some of the most diverse
and admixed populations, which has implications for health and
disease.36,37 The source of indigenous American ancestry could
also differ between Latino populations, with differing frequencies
of risk alleles between these types,38 and this could account for
the difference in the effect of the ancestral population on
development of asthma.39 The differences in the relationship
between European ancestry and asthma in these admixed popula-
tions are complex, and these differing effects (ie, risk vs

http://www.jacionline.org
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protection) could be due to significant contributions from African
ancestry (where there is 3-way admixture), and/or the variability
in origin of indigenous ancestry.

With respect to total serum IgE level, we found that European
ancestry is associated with lower total serum IgE levels and
indigenous ancestry is associated with higher total serum IgE
levels. These findings are consistent with those of prior studies
showing that populations of Amer-indigenous ancestry descent
have higher total serum IgE levels than do populations with higher
European ancestry.40-42

Finally, with respect to lung function, consistent with multiple
prior studies,5,43,44 we found indigenous American ancestry to be
associated with higher lung function and European ancestry to be
associated with lower lung function. When stratified by asthma
status, this effect remained statistically significant in the controls
but not in the case patients. There is remarkable diversity in the
genes associated with lung function, and these genes could differ
between patients with asthma and those without asthma.45 It is
also possible that the higher effect seen in controls is a better
reflection of the overall effect of genetic ancestry on lung function
because the presence of asthma in itself could mediate the rela-
tionship between ancestry and lung function. Following the devel-
opment of asthma, ancestry might lead to smaller differences in
lung function when a child with asthma is compared with another,
whereas in those without asthma, ancestry may play a larger role
in lung function.

Our GWAS was unable to identify genome-wide associations
of asthma, and this is likely due to the small sample size; a power
calculation of the extremes of effect sizes (odds ratio 5 1.013-
1.97) noted in Pividori et al6 shows that our power even for asthma
replications was less than 60%. However, wewere able to identify
associations for total serum IgE level and FEV1 value.We found a
strong association between theHLA-DQA1 region and total serum
IgE levels. Although the most significant SNP in the region,
namely, rs3135348, has not been previously reported in the
GWAS literature or the GWAS catalog, the MHC region on
Chr6, which harbors HLA genes, has consistently been docu-
mented to be associated with asthma46-48 and total serum IgE
levels40,49-53 in diverse populations. In the GABRIEL consortium
which looked at genetic signals for asthma, the SNP with the
strongest association, rs9271300, was located in the MHC region
between HLA-DRB1 and HLA-DQA1.46 Similarly, in the EVE
Asthma Genetics Consortium, which had better representation
of Latino and African American participants, HLA-DRB1 had
the strongest association with total serum IgE levels.40 The
MHC region contains immune-regulating genes, including
HLA-DR-B1 variants, which modulate antigen presentation to
TH cells, leading to TH2 skewing.50 This is an important step in
the development of allergies and in total serum IgE produc-
tion.50,54 Multiple other genes in the HLA region, including
HLA-G, HLA-A and HLA-DQA2, have also been shown to be
associated with total serum IgE levels.52

Beyond associations with specific SNPs, the association with
specific alleles and haplotypes for MHC class I and II genes has
also been demonstrated in prior studies.35,55-58 In these
populations from Peru, our extension to looking at alleles at the
HLA class I and II genes that were imputed with a MAF of
approximately 5% mirrors the patterns of association from the
GWAS; associations are identified for HLA-DQA1 (04:01) and
HLA-DQB1 (03:02 and 04:02) alleles only for total serum IgE
level, with evidence coming from both the case patients and the
controls. The extensive LD within this region is recapitulated in
haplotypes across the 2 genes, which includes the alleles driving
the association with total serum IgE level. The strongest
association is with HLA-DQA;HLA-DQB1*04.01;04.02, with
a haplotype frequency of 19% in this Peru sample. Although
the haplotype has an increased risk for asthma (odds ratio 5
1.18), this is not statistically significant (P5 .296), and it supports
the interpretation that this association is driving atopy and not
asthma in these samples. A conditional model with the peak
SNP from the GWAS, along with the haplotypes, reveals that
there is an independent effect at the SNP beyond the HLA
haplotype.

We found a GWAS association between 12 SNPs mapping to a
locus on Chr19 and FEV1 value among the case patients and
controls. Notably, we were able to replicate this novel finding at
7 SNPS in similarly admixed pediatric samples from SCAALA,
but wewere unable to replicate it in either similarly admixed adult
samples or the largely European UK Biobank samples. This re-
gion on Chr19 houses multiple zinc finger genes, including
ZNF579, ZNF865, and FIZ1. Prior studies have shown that zinc
finger genes are associated with bronchodilator response and
airway remodeling. The Childhood Asthma Management Pro-
gram study showed that variants in the ZNF432 gene were
involved in the bronchodilator response among children with
asthma and that inhaled steroids modified this response,59

whereas prior studies in patients with chronic obstructive pulmo-
nary disease (COPD) have suggested that transcription factors of
zinc finger family of proteins are involved in airway remodeling
and COPD pathogenesis.60,61 Colocalization analysis was unable
to identify a regulatory overlap between our peak association
signal and these zinc finger genes. We did find strong evidence
for colocalization with the LncRNA CTD-2537I9.5. Although
not much is known specifically for this LncRNA, there is well-
documented evidence for the role of LncRNAs in lung biology
in general. LncRNAs are a diverse class of transcribed but not
translated RNAs that are approximately 200 nucleotides in length.
Although they do not encode proteins, they can interact with both
RNA and DNA in the cell and have been shown to lead to tran-
scriptional activation of other proteins such as HIF1a and Myc,
for example.62 In addition, they have been implicated in altering
methylation of DNA, presumably by binding to DNA fragments
and preventing methylation and thereby influencing epigenetic
regulation.62-64 Although the majority of studies have implicated
LncRNAs in cancer, and specifically in lung cancer,63 they have
also been implicated in almost all types of lung disease, including
the following65: acute lung injury, in which they have been pro-
posed to function as decoys to some miRs; COPD, in which their
regulation is altered with cigarette smoke; idiopathic pulmonary
fibrosis, in which they have been implicated in fibroblast prolifer-
ation; and pulmonary arterial hypertension with smooth muscle
proliferation.

Several loci from prior GWASs replicated in our Peruvian
cohort. For asthma, we found the replication of 17q12 and
12q13.2 shown by Pividori et al6 as being associated with
childhood-onset asthma. 17q12 was the most significant locus
associated with childhood-onset asthma, with each copy of the
risk allele conferring onset approximately 2.5 years earlier
than in individuals without the risk.6 GSDMB, a major
protein-encoding gene in this region, maps to a broad region
of high LD with multiple other genes associated with asthma
in Latino and non-Latino populations, including ORMDL3 and
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IKZF3.66,67 Chr17q12–q21 is associated with asthma risk, and it
demonstrates significant ancestral heterogeneity, with the risk
increasing as the proportion of European ancestry increases.8,68

For total serum IgE level, 6p21.32, a shared locus for adult and
childhood asthma, directly overlaps the HLA-DR region, which
met the GWAS level of significance for total serum IgE level in
our analyses. The 6p21.33 locus spans a broader region that
includes both HLA-B and HLA-C genes. This validates prior
evidence that the MHC region on Chr6 plays an important
role in allergy.40,47,48,51,52 For lung function, 8q24.21 reached
the Bonferroni-corrected threshold. This was one of 2 loci iden-
tified as being associated with asthma in the genome-wide
meta-analyses from populations of African ancestry in
CAAPA.8 It is also the only locus that passes our more stringent
correction for multiple testing based on the number of indepen-
dent SNPs evaluated. This replication in our sample of individ-
uals with predominantly indigenous ancestry supports the idea
that this locus may be particularly relevant in admixed popula-
tions. The TATDN1 gene in the region of Chr8q24 has increased
expression in airway smooth muscle cells of patients with
asthma, and the adjacent binding site for CCAAT/enhancer-
binding protein b, is a transcription factor involved in the IL-
17 signaling pathway that modulates the effect of house dust
mite on lung function.8,69

One of the biggest limitations of our work is its limited sample
size. Nonetheless, wewere able to identify statistically significant
associations for total serum IgE level and FEV1 value We also
replicated prior observations regarding the relationship between
indigenous ancestry and lung function and total serum IgE level.
Although the association between HLA and total serum IgE is not
novel, it recapitulates the importance of theHLA region in allergy
with a strong association for total serum IgE level in this allergy
asthmatic pediatric sample from Peru. We have shown that
there is an HLA haplotype, DQA1:04*01;DQB1:04*02, that is
strongly associated with total serum IgE. Even after this
haplotype is taken into account, the peak GWAS SNP retains
some significance, confirming the inability to fully disentangle
quantitative (ie, regulatory eQTL effects) and qualitative (ie,
alleles representing antigen-specific binding) effects.70 Despite
our study’s limitation regarding sample size, we identified a novel
locus for lung function that we were able to replicate in an
independent pediatric population also with indigenous central
American admixture. We acknowledge that although our
colocalization analysis does hone in on a potential LncRNA
(CTD-2537I9.5) as a target for our novel Chr19 signal, little is
known about its specific role in lung physiology and further
work is needed to gain mechanistic insights. The peak variants
mapping to our GWAS signal are common in both European
and American ancestry populations in the 1000 Genomes Euro-
pean and American ancestry populations. A notable exception
is rs146619376, which has a MAF of 27% in GASP but a MAF
of 4% and 13% in 1000 Genomes European and American popu-
lations, respectively. The higher MAF of rs146619376 in GASP
suggests that this association may be population specific, and
formal analyses utilizing local ancestry in the future would be
valuable to resolve the potential for ancestry-specific effects at
this local; however, our current data are hampered by sparse gen-
otyping in the reference data. In conclusion, our replication of a
novel finding in only a similarly admixed pediatric population
and not in adults or Europeans validates the importance of
including underrepresented samples in additional explorations
of the genetics of allergy and asthma. This is particularly impor-
tant as we continue to work toward implementing precision med-
icine initiatives and eliminating health disparities in genetics
research.

Key messages

d Genetic ancestry is associated with asthma-related pheno-
types of lung function and total serum IgE.

d A novel locus mapping to a LncRNA for lung function
may be specific to children with continental American
admixture.
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