
Background: Eosinophils, basophils, and mast cells are
believed to be the central tenet cells in allergic conditions
including allergic rhinitis, asthma, and eczema. The molecular
mechanisms underlying the recruitment of these cells to sites
of allergic inflammation are poorly understood.
Objectives: Our aim was to identify a common adhesion mole-
cule that could potentially be responsible for mediating the
recruitment of the allergic cell types to the lungs and other
sites of allergy.
Methods: We have cloned a sialoadhesin molecule from a
human eosinophil library with the use of expressed sequence
tag technology and characterized its expression on allergic
cells by the use of flow cytometry and specific mAbs.
Results: With the use of expressed sequence tag sequencing,
we have identified a novel siglec molecule, SAF-2. SAF-2 has
homology with other sialoadhesin family members (CD33 and
siglec-5) and belongs to a subgroup of the Ig superfamily. SAF-
2 is a 431–amino acid protein composed of 3 Ig domains with a
358–amino acid extracellular domain and a 47–amino acid tail.
SAF-2 is highly restricted to eosinophils, basophils, and mast
cells. Antibodies to SAF-2 do not modulate Ca++ mobilization
or chemotaxis of human eosinophils induced by eotaxin.
Conclusion: SAF-2 is a highly restricted sialoadhesin molecule,
which may be useful in the detection and/or modulation of
allergic cells. (J Allergy Clin Immunol 2000;105:1093-1100.)
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Eosinophils, basophils, and mast cells have been impli-
cated as the major cell types producing inflammatory
mediators in response to helminthic infections, as well as
several diseases, particularly asthma, rhinitis, and atopic
dermatitis.1-3 In these situations the preferential accumula-
tion and activation of these cells has been noted. Although
considerable progress has been made in our understanding
of eosinophil recruitment to the site of inflammation, sev-
eral key points are still unclear, including the exact medi-
ators used for localization to these sites during the migra-
tion process. For example, activation of vascular
endothelial cell expression of adhesion molecules, notably
vascular cell adhesion molecule-1, is believed to be a key
event in this process during allergic inflammation.4 In
addition, a number of chemokines and other chemotactic
factors, such as those acting via CCR3, have been impli-
cated because of their involvement in eosinophil, basophil,
and mast cell chemotaxis.5-9 However, another possibility
is that these cells are selectively recruited and activated in
a specific way because of a unique cell surface phenotype.
Although eosinophils, basophils, and mast cells are readi-
ly identifiable on the basis of their tinctorial properties, as
yet, no cell surface marker that is unique to these cell sub-
sets has been identified.10,11 Here we describe the cloning
and characterization of the first cell surface marker for
eosinophils, basophils, and mast cells, SialoAdhesin Fam-
ily-2 or SAF-2.

METHODS

Identification and characterization of SAF-2

complementary DNA

Three expressed sequence tags (ESTs) for SAF-2 were identified
in a proprietary database (Human Genome Sciences) from an
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eosinophil complementary DNA library. The donor used to gener-
ate this library was diagnosed with asymptomatic hypereosinophil-
ia. The assembly of ESTs had significant homology to CD33. The
most 5´ clone, HEONN73, was obtained. Two independent clones
were obtained by PCR using leukocyte Marathon cDNA as a tissue
source (Clontech, Palo Alto, Calif).

TaqMan messenger RNA profiles

Poly A+ RNA from multiple tissues of 4 different individuals (2
males and 2 females [except prostate]) was reverse-transcribed
(with use of random primers), and specific gene messenger RNA
levels were measured in each sample (with appropriate gene-specif-
ic primers) in an ABI7700 sequence detector with TaqMan real-time
quantitative PCR (PE Applied Biosystems, Foster City, Calif) and
genomic DNA standards. Primer/probe details are as follows:
siglec-5, forward primer 5´-GGTGGGCTCAAATCTAGG-CC-3´,
reverse primer 5´-CAGAATGGGAAACTGAGGCAC-3´, probe 5´-
FAM-TGGCACTGTCATCAAGCAATTCACTGC-TAMRA-3´;
SAF-2, forward primer 5´-AGTGACCTCTGGTCGTCCTCA-3´,
reverse primer 5´-AACTTCCTGATGTTGCCATGG-3´, probe
6FAM-TGCTACACTCCTGACAGCACCATGACAGT-TAMRA;
glyceraldehyde-3-phosphate dehydrogenase, forward primer 5´-
CAAGGTCATCCATGACAACTTTG-3´, reverse primer 5´-CAA-
GGTCATCCATGACAACTTTG-3´, probe 5´-FAM-ACCACAGT-
CCATGCCATCACTGCCAT-TAMRA.

Preparation of recombinant SAF-2

The full-length coding region of SAF-2 was subcloned into the
mammalian expression vector pCDN with the use of PCR. The
sequence of the insert was confirmed before being transfected into
HEK293 cells with Ca++ phosphate. Clones were selected in 500
µg/mL G418 (Gibco BRL, Gaithersburg, Md) and evaluated for
expression with Northern blot analysis, followed by fluorescence-
activated cell sorter analysis. The extracellular domain of SAF-2 was
subcloned by PCR and inserted in frame with a factor Xa cleavage
site and the Fc portion of human IgG1. The sequence was confirmed
before electroporation of the vector into CHOEA1 cells. Stably
expressing clones were selected, expanded, evaluated for Fc expres-
sion, and scaled up. SAF-2/Fc fusion was purified from supernatant
with use of protein A Sepharose, and an aliquot was cleaved with
factor Xa to generate the SAF-2 used for antibody generation.

Generation of antibodies to SAF-2, ELISA,

and BIAcore analysis

Mice were immunized with SAF-2 (25 µg) in CFA and then
received 2 booster injections (25 µg) at 2 and 4 weeks. On the basis
of a good serum antibody titer to SAF-2, one mouse received a fur-
ther immunization of 20 µg of SAF-2 in PBS administered intra-
venously. The spleen was harvested 4 days later and fused with
myeloma cells according to the method described by Zola.12 Posi-
tive hybridomas were tested for binding in 96-well microtiter plates
coated with SAF-2/Fc at 0.5 µg/mL and detected with europium-
conjugated anti-mouse IgG. Positive hybridomas were re-screened
by immunoassay and BIAcore analysis and then cloned by the lim-
iting dilution method. Several mAbs were purified by ProsepA
chromatography (Bioprocessing, Consett, UK). Monoclonal anti-
body 2C4 used in this study was isotyped as IgG1 κ. The antibodies
were confirmed to be specific for SAF-2 by ELISA, BIAcore analy-
sis, and flow cytometry with use of transfected cell lines.

Purification and culture of cells

Eosinophils were purified from peripheral blood after Percoll
removal of PBMCs, lysis of red blood cells (RBCs), and immuno-
magnetic removal of neutrophils.13 The resulting population was

>95% eosinophils. In some experiments purified eosinophils were
cultured for up to 2 days in complete RPMI medium containing
10% FCS and 1 or 10 ng/mL IL-5, or 10 or 50 ng/mL eotaxin
(Peprotech, Rocky Hill, NJ), C3a, or C5a (Advanced Research
Technologies).14 Viability after 2 days or less of culture was >80%.
Enrichment of peripheral blood for basophils was performed with a
double-Percoll density gradient separation, increasing the number
of basophils to 3% to 10% of the total leukocyte count,15 or with
further immunomagnetic negative selection to at least 50% (Mil-
tenyi Biotec, Auburn, Calif). Human cord blood–derived mast cells
were generated as previously reported.16,17 The purified CD34+

cells were cultured in Iscove’s modified Dulbecco’s medium sup-
plemented with 10 µg/mL insulin, 5.5 µg/mL transferrin, 6.7 ng/mL
selenium, 5 × 10–5 mol/L 2-mercaptoethanol, 5% FBS, 100 U/mL
penicillin, 100 µg/mL streptomycin, 100 ng/mL stem cell factor
(generously provided by Amgen, Thousand Oaks, Calif), and 50
ng/mL IL-6 (Biosource, Camarillo, Calif) for at least 10 weeks and
1 ng/mL IL-3 (Biosource) for the first 7 days. The purity of mast
cells was determined by staining with May-Grünwald Giemsa
reagents and routinely reached 99% to 100% by 14 to 16 weeks of
culture. For these experiments, cells used were harvested at 16 to 17
weeks of culture. Bone marrow–derived eosinophils were cultured
as follows: light density cells of human bone marrow in Ficoll were
cultured in Iscove’s modified Dulbecco’s medium/20% FCS with
20 ng/mL recombinant human GM-CSF and 20 ng/mL recombinant
human IL-5 (R&D Systems) at 1.5 × 106 cells/mL at 37°C in 5%
carbon dioxide.18 The cell lines HL-60 and EOL3 were treated with
sodium butyrate to differentiate them to a more eosinophil-like phe-
notype.19

Phenotypic and functional analysis

Expression of integrins or SAF-2 was evaluated in anticoagu-
lated whole blood or in enriched cells with use of single-color
indirect immunofluorescence and flow cytometry as previously
described.14,15 Dual-color detection of basophils was also per-
formed.15 Monoclonal antibodies used included the following:
control IgG1, CD18 (7E4), CD51 (AMF7, all from Coulter-
Immunotech, Hialeah, Fla), CD9 (Immunotech), and an SAF-2
antibody (2C4, murine IgG1). Also used was R-phycoerythrin–
conjugated or FITC-conjugated F(ab´)2 goat-anti-mouse IgG
(Biosource) and FITC-conjugated polyclonal goat anti-human
IgE (Kierkegaard and Perry, Gaithersburg, Md). All samples were
fixed in 0.1% paraformaldehyde (Sigma, St Louis, Mo) and ana-
lyzed with a FACSCalibur flow cytometer (Becton-Dickinson,
Mountain View, Calif). At least 1000 events were collected and
displayed on a 4-log scale, yielding values for mean fluorescence
intensity.

Functional responses (Ca++ and chemotaxis) were determined as
previously described.20

RBC binding assay

COS-1 cells were transiently transfected by electroporation with
full-length constructs of SAF-2 in pCDN, siglec-5 in pCDN, CD33
in pcDNA3,21 and CD22 in pcDNA1.Amp22 and then re-plated 24
hours later at 2 × 105 cells per well in 6-well tissue culture plates in
Dulbecco’s modified essential medium containing 0.5% FCS.
Occasionally, cells were incubated with 2 mmol/L sodium butyrate
overnight before the assays to enhance expression. Transfection
efficiency was checked by flow cytometry before all assays. Bind-
ing assays with human RBCs were performed 48 to 72 hours after
transfection, as previously described, with or without sialidase pre-
treatment of COS cells and human RBCs.23 To quantify binding, the
percentage of COS cell rosettes (defined as COS cell binding to
more than 20 RBCs) was scored from counting at least 200 COS
cells.
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RESULTS

Identification of a cDNA for SAF-2 and

homology to other siglecs

The cDNA for SAF-2 was identified from 3 ESTs that
were assembled into a contiguous sequence with homol-
ogy to CD33. The most 5´ clone, HEONN73, was
obtained and sequenced. HEONN73 contained a 2875-
bp insert coding for a 431–amino acid protein (Fig 1)24

with homology to the sialoadhesin family. The extracel-
lular domain is 358 amino acids folded into 3 Ig domains
and contains 4 putative N-linked glycosylation sites. Fol-
lowing the transmembrane region, there is a 47–amino
acid cytoplasmic domain with no known signaling
motifs. SAF-2 has the highest homology to siglec-7
(68%), CD33 (49%), and siglec-5 (42%) (Fig 1). 

The sialic acid binding site for CD22 and sialoadhesin
requires an arginine in the N-terminal Ig domain.25,26 All
siglecs discovered thus far have an R at this position,
including SAF-2 (Fig 1). Conversely, the conserved N-
linked glycosylation site implicated in modulating sialic

acid binding in other siglecs is not conserved in SAF-2
(Fig 1). When this site is mutated in CD22, sialic acid
binding is completely lost; however, when mutated in
CD33, it unmasks a ligand binding function.27

To determine the polymorphic nature of SAF-2, two
independent clones were obtained from leukocyte cDNA
by PCR. From these clones, 5 polymorphisms were iden-
tified. The polymorphisms were found at positions 31,
272, 374, 421, and 424 (Fig 1). At position 31, there is a
conservative change from a V (as found in siglec-5 and
CD33) to an M as found in siglec-7, whereas at position
272 there is an S (siglec-7) or a P (siglec-5 or -6). At
position 374, one clone had an L, which is not found in
any other sialoadhesin family member. The cytoplasmic
region, which is difficult to align with other family mem-
bers because of a lack of amino acid sequence conserva-
tion, has 2 polymorphisms, at position 421 (F→L) and
424 (P→L). Other siglecs also have polymorphisms; for
example, comparison of siglec-5 with OB-BP-2 shows 2
amino acid differences,24 and there are 3 known alleles
for mouse CD22.28

FIG 1. Predicted protein alignment of SAF-2 (GenBank No. AF223403), CD33 (GenBank No. M23197), siglec-
5 (AF170484), siglec-6 (D86358), and siglec-7 (AF170485). Alignment was performed with Clustal analysis in
MegAlign (Lasergene) and optimized by eye. Residues conserved in all sequences are boxed, and those
conserved in 3 of the 5 are shaded. Strand predictions and domains were based on the work of Cornish et
al.24 The predicted signal peptide, strand predictions, Ig domains, TM, and cytoplasmic regions are marked
above the alignment. The N-linked glycosylation site that has been shown to modulate sialic acid binding
for CD22 and CD33 but is not conserved in SAF-2 is marked with the first asterisk (amino acid 106). The con-
served R in the F strand of the N-terminal Ig domain is marked with the second asterisk (amino acid 125).
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Messenger RNA expression of SAF-2 

To understand the potential role of SAF-2, TaqMan
analysis (quantitative PCR evaluation of mRNA expres-
sion) of SAF-2 and siglec-5 was performed on mRNA
obtained from tissues from 4 healthy donors. Analysis
revealed that SAF-2 was expressed at very low copy
numbers in several tissues with a slightly higher copy
number in lung, kidney, spleen, and PBMCs (Fig 2). This
contrasts in magnitude with siglec-5, which is expressed
at a much higher copy number in the same tissues, as
well as in bone marrow. This lower copy number in mar-
row may be due in part to SAF-2’s expression pattern in
“allergic” cells of the eosinophil, mast cell, and basophil
lineages that are known to comprise a smaller percentage
of the bone marrow milieu than other cell types. North-
ern blots were also performed and demonstrated a pre-
dominant band of ~3 kb in spleen, PBLs, and lung, in
agreement with the TaqMan expression (data not shown).

Expression of SAF-2 on human eosinophils,

basophils, and mast cells

Using whole blood, as well as purified leukocyte sub-
populations, we analyzed the distribution of SAF-2 by
FACS analysis with a specific antibody (2C4) as
described in the Methods section. SAF-2 was localized to
eosinophils (Fig 3) and was absent from other purified
cell populations including neutrophils, monocytes, B
cells, and T cells (data not shown). 

Using dual-color flow cytometry and 6 separate blood
donors, basophils in whole blood (n = 2, purity <1%),
after density gradient centrifugation (n = 2, purity 5% in
both) or further immunomagnetic enrichment (n = 2,
46% and 51% purity), all expressed low but consistently

detectable levels of SAF-2. Using mean fluorescence
intensity, the IgG controls averaged 6.6 ± 0.5, while
SAF-2 staining was 9.5 ± 0.9 (mean ± SEM, n = 6, P <
.03 by paired t test). According to percent positive, this
was equivalent to 19.3% ± 4.3% positive (n = 6, P < .03
by paired t test). Mature human cord blood–derived mast
cells also strongly expressed SAF-2, although the pattern
of expression was somewhat more heterogeneous than
for blood leukocytes in that the peaks were not perfectly
unimodal (Fig 3). 

Activation of purified eosinophils with optimal con-
centrations of eotaxin, C5a, C3a, or IL-5 for 1, 24, or 48
hours before analysis did not alter the levels of SAF-2
expression on the cell surface (data not shown). Two cells
lines, HL-60 and EOL3, which have been reported to
become more eosinophil-like after differentiation with
sodium butyrate for 5 days, were examined for the
expression of SAF-2.29 Under these culture conditions,
HL-60 and EOL3 failed to express SAF-2 (data not
shown). Finally, when eosinophils were generated from
bone marrow in vitro, no SAF-2 expression was noted.
Eosinophils could be identified by day 14 by staining
with CD9 (3%-12% of the cells) and Wright stain (data
not shown). Thus it appears that SAF-2 expression may
be a later marker for eosinophil differentiation.

SAF-2 mediates sialic acid—dependent bind-

ing to human RBCs

One of the defining properties of previously character-
ized members of the siglec family is their ability to medi-
ate sialic acid–dependent binding of human RBCs. SAF-
2, expressed as a full-length protein on COS cells, can
bind human RBCs (Fig 4); as with other siglecs, this
binding is abolished by sialidase pretreatment of the

FIG 2. TaqMan analysis of SAF-2 and siglec-5. For each tissue, 4 different samples were measured for
expression of SAF-2 and siglec-5 mRNA by using templates derived from 1 ng of polyA+ RNA. Data are
shown as mean ± SEM. Expression of the housekeeping gene GAPDH is shown for comparison. 
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RBCs (data not shown). There is growing evidence that
the lectin activity of the siglecs can be masked and hence
regulated by sialylation on the same cell surface.23, 24,30,31

We therefore tested whether this was also true for SAF-2
(Fig 4). As previously reported, CD33, the smallest
member of the sialoadhesin family with only 2 Ig-like
domains, could only bind RBCs when COS-CD33 cells
were pretreated with sialidase. Siglec-5, which has 4 Ig-
like domains, showed some binding on untreated COS
cells, although less so than CD22, which has 7 Ig-like
domains and showed almost equivalent binding with or
without sialidase pretreatment. Binding activity of COS-
SAF-2 cells was also inhibited by endogenous sialic
acids, because sialidase pretreatment of the transfected
COS cells augmented red cell adhesion by about 50%
(Fig 4). However, perhaps surprisingly because SAF-2
has only 3 Ig-like domains, untreated COS-SAF-2 cells
showed significant binding of RBCs. This may be
explained by SAF-2 having a higher binding avidity than
other siglecs or a different sialic acid–binding specifici-
ty. However, another interesting potential contributing
factor is that SAF-2 lacks the conserved N-linked glyco-
sylation site (aa 106), which has been shown to unmask
sialic acid–binding activity when mutated in CD33.26

Although this is only a model system, these results sug-
gest that SAF-2 on eosinophils might participate in inter-
actions with other cells, although this is likely to be reg-
ulated at least in part by endogenous eosinophil
sialylation.

Other possible functions of SAF-2 on

eosinophils

In an attempt to determine the role of SAF-2 in
eosinophil biology, specific SAF-2 mAbs were ana-
lyzed for their ability to affect eosinophil function.
First, the antibodies were tested for their ability to
cause a Ca++ flux in purified eosinophils, either on their

own or after cross-linking with a second antibody.
Compared with eotaxin, which produced a robust Ca++

response, none of the mAbs to SAF-2 caused a Ca++

flux in eosinophils over a 15-minute time course (data
not shown). The mAbs were then tested for the ability
to modulate the Ca++ response to eotaxin in purified
eosinophils. The eosinophils were pre-incubated with
anti-SAF-2 with or without a cross-linking antibody
and then simulated with eotaxin. Again, the mAbs did
not influence the Ca++ flux in response to eotaxin (data
not shown). In addition, we also evaluated the mAbs in
an eosinophil chemotaxis assay, using eotaxin as the
chemotactic agent; again, the mAbs failed to modulate
eosinophil function (data not shown). Finally, SAF-2
mAbs had no effect on spontaneous or IL-5–induced
eosinophil survival (data not shown).

DISCUSSION

SAF-2 was one of several clones identified when an
EST database was searched for novel sialoadhesin fami-
ly members. Its expression pattern is distinct from that of
other family members because it is found on eosinophils,
mast cells, and basophils. Although CD33 has been
found to be expressed on basophils and mast cells as
well, it is not exclusive to “allergic” cells.32,33 Basophils
express very low levels of SAF-2 compared with

FIG 3. Expression of SAF-2 on human peripheral blood
eosinophils, basophils, and 16-week-old cord blood–derived cul-
tured mast cells. Histograms shown are representative of 3 to 4
experiments with virtually identical results for each cell type.
Monoclonal reagents used as positive and negative controls are
also shown. FIG 4. Binding of human RBCs to SAF-2 expressed on COS cells.

Binding assays were performed with COS cells mock-transfected
or transiently expressing SAF-2, siglec-5, CD22, or CD33. Human
RBCs were added to untreated (black bars) or sialidase-pretreat-
ed (white bars) COS cells and allowed to bind for 30 minutes at
4°C. After washing, cells were fixed and percentage of COS cells
with RBC rosettes (defined as COS cell binding more than 20
RBCs) was scored by counting at least 200 COS cells per well. All
constructs were expressed at comparable levels as determined
by flow cytometric analysis before assays (data not shown).
Results shown are mean ± SD of triplicate wells from a repre-
sentative experiment.
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eosinophils and mast cells; perhaps this reflects differ-
ences in maturation state or activation of the basophils.
Eosinophils differentiated from bone marrow fail to
express SAF-2, indicating that it may be a later marker
for eosinophil differentiation. An examination with spe-
cific mAb has failed to detect any change in SAF-2 sur-
face expression on eosinophils after activation in vitro.
SAF-2 is a member of the sialoadhesin family of pro-
teins, also known as the I-type lectins and recently
renamed the siglec family (sialic acid–binding Ig-like
lectins).34 The siglecs are an ever-expanding family of
cell surface molecules expressed almost exclusively on

hematopoietic cells, but their function remains poorly
understood. Other siglec family members include
sialoadhesin (siglec-1), CD22 (siglec-2), CD33 (siglec-
3), myelin-associated glycoprotein (MAG or siglec-4),
siglec-5,24 OB-BP-1/siglec-6,35 and AIRM1 or siglec-
736,37 (Fig 5). With the exception of siglec-4, all are
expressed on various subsets of hematopoietic cells.
Siglecs belong to the Ig supergene family and have an N-
terminal V-set Ig domain, followed by 1 to 16 C2-set Ig
domains. Siglecs mediate sialic acid–dependent adhesion
with other cells generally preferring either α2,3 linkages
(siglec-1, -3, and -4) or α2,6 linkages (siglec-2).34

FIG 5. Schematic representation of siglec family. The most N-terminal Ig domain belongs to the V-set sub-
type and is represented by a dark blue structure. This is followed by varying numbers of C2-set Ig domains
represented by red circles. Cytoplasmic domains are drawn to scale relative to each other. Tyrosines in the
cytoplasmic domain are represented as black dots; most tyrosines fall into ITIMs or ITAMs and are thought
to participate in signaling.
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Most family members have either immunoreceptor
tyrosine-based inhibition motifs (ITIMs) or immunore-
ceptor tyrosine-based activation motifs (ITAMs), which
participate in signaling through Src homology 2 (SH2)
domain binding to the phosphotyrosine of the ITIM or
ITAM (Fig 5). This has been demonstrated for CD22,
CD33, and AIRM1.23,36,38 However, SAF-2 lacks any
cytoplasmic ITIMs or ITAMs. Whether SAF-2 can act
as a signaling molecule is not known. So far, these
mAbs do not induce Ca++ flux in purified eosinophils,
affect Ca++ flux or migration responses to eotaxin, or
alter eosinophil survival (data not shown). Given the
sialic acid–binding capability of this molecule and its
unique distribution on eosinophils, basophils, and mast
cells, it is tempting to speculate that it may serve as a
ligand for foreign organisms, especially helminths.
Clearly, the function of SAF-2 on these cells will
require further study. However, in keeping with the
siglec nomenclature, we propose that SAF-2 be
renamed siglec-8. Although it represents a specific
marker for the “allergic” cell types, more work is need-
ed to understand the biology of this molecule and its
role in various disease processes.

Note added in proof. An article describing the same
siglec was recently published (Floyd et al. Siglec-8: a
novel eosinophil-specific member of the immunoglobu-
lin superfamily. J Biol Chem 2000;275:861-6).
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