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Multiple sclerosisis an immune-mediated disorder of the cen-
tral nervous system. T lymphocytes are thought to play a cen-
tral rolein theinitiation and potentially in the propagation of
this disease. Two signals arerequired for T-cell activation. The
first signal consists of the interaction of the T-cell receptor
with antigen presented by the MHC molecule on antigen-pre-
senting cells. The second signal requires engagement of costim-
ulatory receptorson T cellswith their ligands on antigen-pre-
senting cells. Several costimulatory pathways have been shown
to play an important rolein T-lymphocyte activation. Here we
will review the current literature on the contribution of the
B7-1/2-CD28/CTL A-4, inducible costimulatory molecule-B7h,
programmed death pathway 1-programmed death pathway
ligand 1/ligand 2, CD40-CD154, OX40-0X40 ligand, and
CD137-CD137 ligand pathways to the pathogenesis of multiple
sclerosis and their potential roles as therapeutic targets. (J
Allergy Clin Immunol 2003;112:837-49.)
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Multiple sclerosis (MS) is an immune-mediated disor-
der of the central nervous system (CNS) characterized by
inflammation, demyelination, and axonal damage.l Co-
stimulatory pathways facilitate the activation of certain
cell types, predominantly T cells. In addition, there is
increasing evidence that some costimulatory pathways
affect the function of other inflammatory cells, both in
the periphery and in the CNS, and also might modulate
neural and glial cell function. Here we will review the lit-
erature on the role of costimulatory pathways in the ini-
tiation and propagation of MS and its animal models, as
well as their potential as therapeutic targets.
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Abbreviations used
APC: Antigen-presenting cell
CNS: Central nervous system
EAE: Experimental autoimmune encepha omyelitis
ICOS: Inducible costimulatory molecule
MBP: Myelin basic protein
MS: Multiple sclerosis
OX40L: OX40 ligand
PD-1: Programmed death pathway 1
PD-L1: Programmed death pathway ligand 1
PD-L2: Programmed death pathway ligand 2
TCR: T-cell receptor

T-CELL ACTIVATION

T lymphocytes are thought to play a central rolein the
pathogenesis of MS.2 Activated myelin-reactive CD4* T
cells have been demonstrated both in the blood and cere-
brospinal fluid of patients with MS; in contrast, only
nonactivated, myelin-reactive T cells are present in the
blood of control subjects.3 T cellsare present in all of the
4 histopathologic subtypes of M S that have been recent-
ly described.4 Both CD4* and CD8* T cells have been
demonstrated in MS lesions, with CD8* T cells being
more frequent in chronic lesions, and CD4* T cellsbeing
more frequent in more acute lesions.>

Two signals are required for T-lymphocyte activation.
According to this 2-signal model,® signal 1 consists of
the interaction of the T-cell receptor (TCR) with antigen
presented by the MHC on the surface of antigen-present-
ing cells (APCs). Signal 2 consists of the engagement of
costimulatory receptors on the T cell by ligands present
on the surface of APCs.”:8 Both signals are required for
T-cell activation. After contact with specific antigen-
MHC complex and adequate costimulatory signals, T
cells start to proliferate, differentiate, and deliver a series
of signals, enabling effector functionsto other cells, such
as B cells and natural killer cells. T cells can thereby
orchestrate the immune response. Importantly, in the
absence of adequate costimulatory signals, T cells die or
become anergic in vitro and fail to initiate an effective
immune response in vivo. Therefore manipulation of co-
stimulatory signals represents an important mechanism
to inhibit immune activation.

Costimulatory molecules may deliver either a stimula-
tory (positive) or inhibitory (negative) signal for T-cell
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TABLE I. Costimulatory molecules that deliver a positive signal for T-cell activation

Receptor Location Ligand Location

CD28 Naive T cells B7-1, B7-2 B cells, macrophages, APCs

1COS Activated T cells B7h APCs, fibroblasts

CD154 Activated T cells CD40 Macrophages, dendritic cells, astrocytes, endothelial cells

OX40 Activated T cells OX40L Activated B cells, dendritic cells, endothelial cells,
macrophages, activated T cells

CD137 Activated T cells, monocytes, CD137L Macrophages, B cells, and dendritic cells

dendritic cells, B cells

TABLE II. Costimulatory molecules that deliver a negative signal for T-cell activation

Receptor Location Ligand Location
CTLA-4 Activated T cells B7-1, B7-2 B cells, macrophages, APCs
PD-1 Activated T cells PD-L1 Activated T cells, monocytes, dendritic cells, endothelial
cells, syncytiotrophoblasts
PD-L2 Activated monocytes, dendritic cells

activation.® The delicate balance between positive and
negative regulatory signals can determine the outcome of
a specific immune response. A list of costimulatory mol-
ecules that deliver either positive or negative signals for
T-cell activation is provided in Tables | and I1.

ANIMAL MODELS IN MS RESEARCH

Animal models simulating features of MS provide a
powerful tool for investigating the pathogenesis of dis-
ease. Experimental autoimmune encephalomyelitis
(EAE) is an inflammatory CNS demyelinating disease
and can be induced in several animal types through
immunization with myelin proteins or peptides, eliciting
a CD4* T-cell response.10 EAE reproduces many of the
clinical and immunologic aspects of MS and has been
widely used to study the inflammatory response to
myelin components.11-13 Theiler's murine encephalo-
myelitis virus is a virally mediated model of CNS
inflammatory demyelination with some resemblance to
MS. Infection of mice with Theiler's virus results in a
virally mediated encephalomyelitis.14

The magjority of patients with MSinitially experience
a relapsing-remitting course of disease, followed by a
secondary progressive course, whereas a minority expe-
rience a primary progressive course.1> Different animal
models mimic different disease courses and might be
useful in understanding the pathogenesis of the disease
and the response to treatment.

THE B7-1/2-CD28/CTLA-4 PATHWAY

The B7-1/2-CD28/CTLA-4 costimulatory pathway
(Fig 1) has been studied in great depth and plays a cru-
cial rolein T-cell activation-tolerance. CD28 and CTLA-
4 (CD152) are highly homologous costimulatory mole-
cules that are present on the surface of T lymphocytes.
CD28 is constitutively expressed on the T-cell surface,

whereas CTLA-4 expression is upregulated on T-cell
activation.16 Ligation of CD28 delivers a positive signal
for T-cell activation, whereas ligation of CTLA-4 deliv-
ers an inhibitory signal for T-cell activation and servesto
terminate the immune response.1?

B7-1 (CD80)18 and B7-2 (CD86)1° are members of the
Ig superfamily20.21 and are ligands for both CD28 and
CTLA-4.22 B7-2 is constitutively expressed on most
APCs at alow level and is quickly upregulated after cell
activation. Meanwhile, B7-1 is only expressed after APC
activation. The binding kinetics of B7 moleculesto CD28
or CTLA-4 on T cells differ substantially.23-25 Because
CTLA-4 binds B7 molecules with a higher affinity than
does CD28, itsinhibitory signal eventually predominates,
leading to the termination of the immune response.24

CD28 synergizes with the TCR signal to promote T-
cell activation and likely regulates the threshold for T-cell
activation by reducing the number of TCR engagements
required.Z6 In vitro, the absence of CD28 signaling during
T-cell activation leads to cell death?7 or rendersthe T cell
functionally anergic2® and unable to respond to the pre-
sented antigen for several weeks. Signal transduction of
CD28 ligation leads to augmented T-cell proliferation,?!
induces IL-2 production,29:30 and regulates cytokine pro-
duction.31.32 Through these and other mechanisms, CD28
ligation prevents the induction of anergy.33 In addition,
ligation of CD28 induces the expression of the antiapop-
totic factor Bcl-x, , which enhances T-cell survival .34

CTLA-4 (CD152) is currently viewed as the major
negative regulator of T-cell activation. The temporal
appearance of CTLA-4 after T-cell activation suggests
that one of its major functions is to terminate the ongo-
ing immune response. Engagement of CTLA-4 induces a
crucial negative signal through inhibition of TCR- and
CD28-mediated IL-2 production, signal transduc-
tion,17.24.3536 and inhibition of cell-cycle progression.37
The absence of CTLA-4in CTLA-4—deficient mice leads
to massive lymphoproliferation and fatal multiorgan tis-
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CD28:B7 Family Members

APC -

FIG 1. The CD28-B7 family members. The CD28 family members contain a single Ig-V-like domain. CD28
and CTLA-4 molecules bind B7-1 and B7-2 through a MYPPPY motif. Binding of ICOS to its ligand B7h
occurs through a FDPPPF motif. PD-1 binds its ligands PD-L1 or PD-L2.

sue destruction.3839 Mice having no CTLA-4 and also
missing both B7 receptors do not have lymphoprolifera-
tive disease, %0 indicating that the unopposed interaction
of the B7 receptors with the intact CD28 is the cause of
thefatal disorder. Thusthe B7-CD28 costimulation path-
way delivers amajor positive signal for T-cell activation,
whereas CTLA-4 costimulation delivers amajor negative
signal for T-cell activation.

B7-1/2-CD28/CTLA-4 pathway in EAE

Severa studies have helped to elucidate the role of the
B7-CD28/CTLA-4 pathway in EAE. The expression pat-
tern of these molecules in part reflects their function.
During the course of EAE, B7-2 expression in the CNS
correlated with clinical disease, whereas B7-1 was exclu-
sively expressed during remissions.4! Interestingly, B7-1
was demonstrated on neurons during disease remis-
sion.#1 CD28 was highly expressed in the CNS and cor-
related with the clinical signs of EAE. CTLA-4, on the
other hand, was expressed by substantially fewer cells
during the effector phase of disease and peaked during
disease remission.4!

Studies using anti-CD28 antibodies demonstrated that
CD28 blockade during both the initiation of disease and
after disease onset ameliorates EAE.42 In contrast,
administration of a blocking anti-CTLA-4 antibody dur-
ing priming (at the time of immunization) exacerbated
EAE, whereas administration after disease onset and dur-
ing remission induced relapses.43

CTLAdIg is afusion protein composed of a CTLA-4
surface molecule linked to an Ig tail. It binds B7-1 and
B7-2 and thereby blocks their interaction with CD28.
CTLA4Ig has been found to profoundly suppress EAE,
even when administered after the onset of clinical dis-
ease.44 Disease suppression was associated with inhibi-
tion of Tyl cytokines in the CNS of treated animals but
sparing of T2 cytokines, suggesting that cytokine shifts
are important in CTLA4lg-induced tolerance.#> Further-
more, the inhibitory effect of CTLA4Ig could be abro-
gated by anti-TGF-—neutralizing antibody.46 TGF-3 has
been shown to play a regulatory role in EAE4748 and
may play a key role in tolerance induction.

Epitope spreading refers to a process whereby epi-
topes distinct from an inducing epitope become the
major targets of an ongoing immune response. Thereby,
epitope spreading might induce chronicity of disease.49
Systemic administration of CTLA4lg prevents epitope
spreading in a relapsing-remitting model of EAE.50

The current hypothesis is that the CTLA-4 molecule
binds B7 molecules and prevents B7-CD28-induced co-
stimulation of the T cell, thereby preventing disease
induction. However, CTLA4lg might have more diverse
effects. APCs treated ex vivo with antigen plus CTLA4Ig
have the ability to suppress EAE when transferred to
newly immunized recipients.5! This may be due to the
production of regulatory T2 cells or through reverse sig-
naling by the B7 receptors to APCs. Recent studies have
shown that CTLA4lg can engage B7 on the surface of

-0
5%
;'U
25
= 3




g
g
3
[}
3.
2

PUD SMBIASY

840 Chitnis and Khoury

J ALLERGY CLIN IMMUNOL
NOVEMBER 2003

TNF:TNFR Family Members

FIG 2. The TNF-TNF receptor family members. Members of the TNF-TNF receptor family include the co-
stimulatory molecules CD154-CD40, CD27-CD70, OX40-OX40L, and CD137-CD137L. CD154, present on acti-
vated T cells, binds to its ligand, CD40, on APCs. Similarly, OX40 binds to its ligand, OX40L, initiating co-

stimulatory signals.

dendritic cells, leading to their conditioning and local
control of tryptophan catabolism, which resultsin control
of T-cell proliferation and survival .52 Thus CTLA4lgisa
potentially powerful therapy for autoimmune and
immune-mediated conditions and, in addition to EAE,
has been used successfully in models of autoimmune
lupusS3 and diabetes™ and a series of animal transplanta-
tion models.55-57

In the complete absence of the CD28 molecule, mice
are resistant to the development of EAE induced through
standard immunization techniques.58-61 Immunization
with a higher dose of antigen induced mild disease, sug-
gesting that CD28 costimulation is required to lower the
threshold for autoimmune T cells to trigger an immune
response.61 Despite the resistance to disease induction, T
cells from CD28-deficient mice were adequately primed
to the immunizing myelin antigen.58.60.61 There appears
to be a defect in cell trafficking into the CNS in the
absence of CD28 signaling.58:62

Absence of both B7-1 and B7-2 rendered C57BL/6
mice resistant to the induction of EAE.5® However,
absence of either B7-1 or B7-2 on the C57BL/6 back-
ground did not significantly alter disease course, sug-
gesting overlapping functions of these 2 molecules.®® In
contrast, absence of either B7-1 or B7-2 on the NOD
background resulted in disease attenuation.50 Interesting-
ly, the absence of both B7-1 and B7-2 on SJL mice did
not significantly attenuate disease.63 This suggests that
genetic background is a major determinant of the B7

requirement for the induction of autoimmunity.

Selective blockade of B7-1 with CTLA4IgY 100F (a
mutant form of CTLA4Ig that binds and blocks B7-1 but
not B7-2) did not protect from disease or worsened disease
in some treated mice.54 However, other studies have
shown that treatment with anti-B7-1 attenuated disease,
whereas anti B7-2 antibody worsened disease.65.6 |nter-
estingly, we have shown that in CD28-deficient mice dis-
ease could be induced through administration of anti-B7-1
and anti-CTLA-4 antibodies but not through administra-
tion of anti-B7-2 antibody, suggesting theat B7-1-CTLA-4
is the dominant pathway for disease suppression.>8

In summary, the B7-CD28-CTLA-4 pathway plays an
important role in the induction of EAE and therefore
might play an important role in the pathogenesis of MS.

B7-1/2-CD28/CTLA-4 pathway in MS

Lesionsin the CNS of patients with MS were found to
be exclusively associated with the expression of B7-1in
perivenular lymphocytes. In contrast, B7-2 was
expressed on macrophages in both MS and in other neu-
rologic diseases.5” Several studies have examined in vitro
and ex vivo expression of B7 molecules on microgliaand
astrocytes in MS and EAE and have attempted to eluci-
date their role in antigen presentation in the CNS,68-72
with variable results. Thus the role of the B7 pathway in
antigen presentation in the CNSis still under debate.

Blood samplesisolated from patients with M S showed
increased expression of B7-1 on both CD4* and CD8*
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cells in patients with rapidly progressive disease com-
pared with in those with stable disease or normal control
subjects.” In a separate study, B7-1 expression was
enhanced during M S relapses and localized to B cells.74
Treatment of patients with IFN-f3 1b, a standard treat-
ment for relapsing-remitting M S, reduced the number of
B7-1-expressing B cells and increased the number of
B7-2 monocytes. In total, these observations suggest that
the B7-CD28-CTLA4 pathway is activated in MS and
that B7-1 in particular might play an important role in
regulating disease activity.

Myelin basic protein (MBP)—reactive T cells have
been identified in patients with MS, as well asin healthy
control subjects,37> and are thought to play arolein the
pathogenesis of disease. In patients with MS but not in
healthy control subjects, these cells can be activated in
the absence of CD28-B7 costimulation, thus implying
that they have been previously activated in vivo.” Fur-
thermore, in patients with MS, MBP-reactive T cellsiso-
lated from the cerebrospinal fluid have increased expres-
sion of the IL-2 receptor,3 which is consistent with a pre-
viously activated or memory phenotype. MBP-reactive T
cells from patients with MS were less responsive to
CTLA-4 blockade compared with those from healthy
control subjects,”” suggesting that in patients with MS,
these cells are not subject to the normal regulatory mech-
anisms. Although the contribution of MBP-reactive T
cells to the pathogenesis of MS is currently unknown,
their differential response to costimulatory signals sug-
gests that costimulatory pathways play a role in the
immune regulation of this disease.

Genetic polymorphisms might contribute to disease
susceptibility. Three CTLA4 gene polymorphisms were
found in patients with M'S but not in healthy control sub-
jects’®; however, no association was found with disease
course or severity.” In an Olmstead County study 2
polymorphisms were associated with the presence of
M S.80 The Canadian Collaborative Study found no asso-
ciation of CTLA4 polymorphisms with the disease course
of MS.81 The exon 1 A/G polymorphism was associated
with the presence of oligoclonal bands in the cere-
brospinal fluid.82 Thus dysregulation of CTLA-4 signal-
ing might contribute to susceptibility to MS.

In a recent human clinical trial in patients with a T
cell-mediated skin disease, psoriasis vulgaris, treatment
with CTLA4Ig caused a marked reduction in skin-infil-
trating T cells associated with excellent clinical results.83
No clinically significant adverse effects were observed.
Safety and dose-dependent effectiveness were also seen
in arheumatoid arthritis pilot, multicenter, multinational
clinical trial.8 A phase | safety study of CTLA4lg
(Repligen-RG2077), as well as a multicenter study of
CTLA4Ig (BMS-188667), for MS are ongoing.

INDUCIBLE COSTIMULATORY
MOLECULE/B7h

Inducible costimulatory molecule (ICOS) is a new
member of the CD28 subfamily.85 It shares a 39% simi-
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larity with CD28 but lacks the MYPPPY motif that is
required for CD28 and CTLA-4 binding to B7-1 and B7-
2.86 |COS hinds to its ligand B7h (also known as B7RP-
1, LICOS, GL50, or ICOS-ligand), which is predomi-
nantly expressed on APCs (see below).

The 1COS gene was mapped to a region of chromo-
some 1, which also contains genes encoding CD28 and
CTLA-4. ICOSisexpressed only on activated T cellsand
on resting memory T cells.8587 The inducible expression
of 1COS shortly after T-cell activation indicates that
ICOS might be particularly important in providing co-
stimulatory signals to activated and memory T cells in
contrast to CD28, which is essential in the activation and
differentiation of naive T cells.88 Interestingly, in vitro
expression of 1COS can be downregulated by the T,1
cytokine IL-12,89.90 syggesting that the ICOS-B7h path-
way might be an important costimulator of T2, but not
Ty1, effector cells. In vivo expression of ICOS s limited
to germinal centers, suggesting that this pathway plays a
role in promoting differentiation of B cells into memory
cells and plasma cells.8

B7h or B7RP-1, a murine B7-related protein 1, isa
type | transmembrane protein with 20% and 19%
amino acid identity to murine B7-1 and B7-2, respec-
tively.87.91 B7h does not bind to either CD28 or CTLA-
4 but binds exclusively to ICOS. B7h is expressed on
APCs, constitutively and inducibly, and expression is
also inducible on fibroblasts and other cellsin response
to TNF-a.88

ICOS-deficient cells retain CTLA-4 and CD28
expression but, despite this, proliferate poorly. The defi-
ciency in proliferation was rescued in vitro by addition
of 1L-2.92 |COS-deficient cells were able to produce
IFN-y and IL-10 but failed to produce IL-4 when res-
timulated.®2 1COS-deficient mice displayed profound
deficits in lg isotype class switching, which was depen-
dent on CDA40 stimulation, as well asimpaired germinal
center formation.93

Thusthe ICOS-B7h pathway playsimportant rolesin IL-
2 regulation, T2 cytokine production, and Ig production.

ICOS-B7h pathway in EAE

|COS-deficient mice on a C57BL/6X129 background
had profoundly severe EAE compared with control mice,
with massive cellular infiltrates in the CNS.92 Interest-
ingly, this was not associated with atered expression of
IL-4, IL-10, or IFN-y but was associated with decreased
production of IL-13, which may be important for
macrophage activation.

Blockade of the ICOS-B7h pathway with a blocking
anti-1ICOS antibody during the priming stages of EAE
(days 0-10) exacerbated disease, whereas blockade dur-
ing the effector stages of disease (days 9-20) abrogated
disease.%4 IFN-y production and antigen-specific prolif-
eration was increased in animals treated during the prim-
ing stage, suggesting that early 1COS blockade promotes
Tyl differentiation. Therefore ICOS-B7h costimulatory
signals might favor a T2 phenotype, which has general-
ly been found to be protective in EAE.%
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PROGRAMMED DEATH PATHWAY 1/
PROGRAMMED DEATH PATHWAY LIGAND 1/
PROGRAMMED DEATH PATHWAY LIGAND 2

Recently, a novel negative regulatory molecule and a
new member of the B7-CD28 superfamily has been
described, termed programmed death pathway 1 (PD-
1).96 Expression was originally thought to be associated
with apoptosis but was later shown to be associated with
cellular activation and not cell death.97.98 PD-1 is found
on activated CD4* and CD8* T cells and binds to 2
known ligands, programmed death pathway ligand 1
(PD-L1) and programmed death pathway ligand 2 (PD-
L2), found on APCs, as well as on diverse parenchymal
cell types.96:99-102 | jgation of the PD-1 receptor leads to
diminished IL-2 production, and CD8* T cells appear to
be more sensitive to this effect than CD4+ cells.101

PD-1-deficient animals have diverse autoimmune
conditions, such as autoimmune cardiomyopathy and a
lupus-like syndrome with arthralgias and nephritis.103,104
The precise autoimmune phenotype was dependent on
the genetic background of the animal in which the
knockout was devel oped. These autoimmune phenotypes
are reminiscent of that of CTLA-4—deficient animals,
leading to the suggestion that this pathway might play a
central role in the maintenance of peripheral tolerance
toward autoantigens.100

The PD-1 ligands (PD-L1 and PD-L2) are expressed
not only on hemopoietic APCs but also on numerous
parenchymal cells, such as cardiac myocytes, renal tubu-
lar cells, and microvascular endothelial cells,100,105-107
This pattern of expression might alow for the termina-
tion of an immune response in inflamed tissues, thereby
limiting organ damage. Furthermore, the expression of
PD ligands and not B7-1 or B7-2 (which interact with
CTLA-4) on epithelia or endothelia cells might under-
lie the findings that such cells, expressing class I| MHC
molecules after an inflammatory stimulus, can present
antigen to T cells, but rather than activating the T cell,
instead render them anergic.108

The PD-1-PDL1/L2 pathway provides a secondary
inhibitory signal for T-cell activation.

PD-1-L1/PD-L2 pathway in EAE

We have recently shown that treatment with a block-
ing anti-PD-1 antibody during the priming stages of dis-
ease exacerbates myelin-oligodendrocyte glycoprotein—
induced EAE in wild-type C57BL/6 mice.199 Treatment
during the effector or later stages of disease had no
effect. Interestingly, CD28-deficient mice, which are nor-
mally resistant to EAE, had a severe form of disease
when treated during the priming stages of disease, sug-
gesting that the PD-1 pathway functions independently
of the CD28-B7 pathway and might be the dominant
inhibitory pathway for T-cell activation, overriding the
B7-CTLA-4 pathway. In both anti-PD1-treated wild-
type and CD28-deficient mice, more severe disease was
associated with increased infiltration of CD4* cells,
macrophages, and, in particular, CD8* cellsin the CNS.
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In addition, proliferation and production of IFN-y was
enhanced in antigen-specific splenocytes from anti-
PD1-treated mice. Treatment with anti-PD-L1 had little
effect on wild-type mice, whereas treatment with anti-
PD-L2 antibody exacerbated disease, suggesting that
PD-1-PD-L2 is the dominant pathway in the regulation
of the immune response in EAE.

PD-1 expression in the CNS during the course of EAE
began at the onset of disease and peaked with maximal
clinical disease and appeared to colocalize with infiltrating
T cells.110 PD-L1 expression followed the same pattern;
however, expression was colocalized to astrocytes and in
part to microglia, as well as infiltrating cells, suggesting
that PD-L1 might play a role in the immune privilege of
the CNS. There wasllittle to no expression of PD-L2 inthe
CNS in naive animals or during EAE, suggesting that
PD1-PD-L2—mediated inhibition of T-cell activation in
EAE occurs in the periphery and not in the CNS.

CD40-CD154

Recently, there has been great interest in the pathway
mediated by CD40 and its ligand, CD154, both members
of the TNF receptor family (Fig 2).111 CD40 is expressed
primarily on B cells and APCs, including monocytes-
macrophpages and dendritic cells but has been reported on
other cells, such as astrocytes, keratinocytes, and endothe-
liad cells. CD154, also known as gp39, is expressed on
activated T cells.111

CD40 is constitutively expressed on the surface of
resting B cells.111 Expression of CD40 on microglia is
upregulated by IFN-y and TNF-al12 and is mediated
through a signal transducer and activator of transcription
1-dependent mechanism.113 Binding of CD40 to CD154
has many effects on the APCs, including the induction of
B7 expression (particularly B7-1).114115 Activation of
the CD40-CD154 pathway is crucial for B-cell activation
and differentiation, as well as for isotype switch-
ing.116117 There is also evidence to suggest that engage-
ment of CD154 may provide a direct costimulatory sig-
nal to the T cell independent of CD28.118

Ligation of CD40 moleculestriggers|L-12 production
in dendritic cells!19 and microglia.120 IL-12 is critical for
signal transducer and activator of transcription 4-mediat-
ed Ty cell differentiation and promotes growth and acti-
vation of monocytes.121 Therefore CD40-mediated IL-12
production represents an important control point in the
regulation of disease.

CD40-CD154 interactionsinfluence avariety of immune
functions, including T, 1 cell differentiation, B-cell activa-
tion, and Ig production, as well as B7 molecule expression.

CD40-CD154 in EAE

In EAE, increased expression of both CD40 and
CD154 correlated with clinical relapses.41 In a marmoset
model of MS, CD40 expression was localized to
macrophages in the CNS.122

Treatment of EAE with an anti-CD154 antibody inhib-
ited the induction of disease, dramatically reduced the
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severity of established disease,123124 and reduced the
appearance of further clinical relapses when administered
during disease remission.125 Disease suppression could be
reversed by the administration of 1L-12.126 Blockade of
EAE with both anti-CD40 ligand antibody and CTLA4Ig
had additive effects and resulted in disease suppression
with complete absence of CNSinflammatory infiltrates.127

CD154-deficient mice transgenic for the MBP
TCR,116 as well as those on a C57BL/6 background,124
were resistant to the induction of EAE. Ex vivo studiesin
these mice demonstrated inhibition of T-cell proliferation
and IFN-y production to the immunizing antigen. Toler-
ance to disease induction was reversed by the addition of
B7-1-expressing APCs in vivo,116 suggesting that the
primary function of the CD154 molecule during EAE is
the induction of B7 expression, which is necessary for
CD28 costimulation.

Activating CD40 antibody—treated cells but not con-
trol antibody—treated cells could induce EAE on passive
transfer.128 This was associated with enhanced 1L-12
production, suggesting that activation of the CD40-
CD154 pathway might be sufficient to overcome normal
tolerance mechanisms.

CD40-CD154 in MS

Expression of both CD40 and CD154 wasincreased in
lesions from postmortem brains of patients with MS
compared with control brains. CD40 was expressed on
macrophages and microglia, whereas CD154 colocalized
with the CD4 T-cell marker.123 Expression of CD154 was
found to be higher in peripheral blood monocytes isolat-
ed from secondary progressive M'S compared with relaps-
ing-remitting MS or healthy control subjects!?9.130 and
was reduced by |FN-y treatment.131

PBMCs from patients with SPM S produced more IL-
12 and IFN-y when restimulated in vitro compared with
those from healthy control subjects.132 |L-12 production
was found to be dependent on CD40-CD154 interac-
tions.132 Expression of 1L-18 in patients with SPM'S was
also dependent on CD40-CD154 interactions between
APCs and activated T cells.133 Therefore, as has been
observed in EAE, the CD40-CD154 pathway is impor-
tant for the regulation of T1 cytokine productionin MS.

Clinical trials with an anti-CD40 ligand antibody
(Biogen) in autoimmune disease, such as idiopathic
thrombocytopenia and lupus, were terminated because of
the occurrence of thromboembolic events. Another for-
mulation of the antibody (IDEC pharmaceuticals) is
under investigation. A phase | clinical trial in patients
with MS was recently performed with good safety data,
and therapeutic effects are currently under investigation.

0X40-0X40 LIGAND

OX40 is a member of the TNF receptor superfamily
and is expressed on activated T cells.134 Itsligand, OX40
ligand (OX40L), aso a member of the TNF family, is
expressed on activated B cells,134 dendritic cells,135 and
endothelial cells!36 and, under some circumstances, acti-
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vated T cells.137 OX40-OX40L interactions can mediate
T-cell proliferation and IL-2 production in the absence of
CD28.138 |n contrast to CD28-deficient T cells, which
have impaired IL-2 production, OX40-deficient T cells
have relatively normal 1L-2 production, cell division, and
expansion.139 However, OX40-deficient T cells failed to
maintain high levels of the antiapoptotic factors Bel-x;
and Bcl-2 after activation and were highly susceptible to
apoptosis, with the converse seen with OX40 signal-
ing.139 Antigen-specific effector-memory T cells were
found to require OX40 signaling for long-term sur-
vival.140.141 Thus the OX40-OX40L pathway might be
required for clonal expansion and long-term survival of
the memory T-cell pool and may cause preferential sur-
vival of T, 2-type cells.142.143

CD28-dependent OX40 ligation of CD4 T cells at the
time of priming is linked with upregulation of CXCR5
expression and migration of T cells into B-cell areas to
support germinal center formation.144 Activation of
OX40L enhances B-cell proliferation and Ig heavy chain
production and may be important for the delivery of T-
cell help to B cells.134145

OX40-- mice display defective T-cell proliferation
and IFN-y production.146 OX40L~~ mice had impaired
T-cell priming and a reduction of both T,1 and T2
cytokines, with impaired intrinsic APC function.147

Therefore the OX40-OX40L pathway appears to be
important for the clonal expansion and long-term sur-
vival of the memory T-cell pool, as well as for B-cell
activation and Ig production.

0X40-0X40L in EAE

OX40L—deficient mice experienced a milder course of
EAE, particularly in the chronic phase of the disease.148
Ex vivo studies demonstrated decreased antigen-specific
T-cell proliferation and diminished IFN-y, IL-2, and IL-6
production.148 OX40L—transgenic mice had a greater
severity of EAE despite adelayed onset but failed to have
disease in the absence of CD28 or CD40.

OX40L expression colocalized to CD11b-positive
macrophages-microgliawithin the CNS during EAE, and
expression was associated with clinical relapse.149 In
vitro blockade of OX40L on macrophages-microglia ex
vivo inhibited T-cell proliferation, implying that the
OX40 pathway can mediate T-cell reactivation within the
CNS. In addition, expression was found on endothelia
cells, 150 suggesting arole in transmigration.

In vivo blockade with a soluble OX40R-1g molecule
resulted in a milder course of EAE.149 Treatment with
anti-OX40L antibody ameliorated disease in both
actively induced and adoptively transferred EAE mod-
€ls.150 Surprisingly, cells from draining lymph nodes
exhibited enhanced antigen-specific T-cell proliferation
and IFN-y production. However, disease attenuation
was associated with reduced T-cell and monocytic infil-
tration into the CNS.150

We have shown that resistance to disease induction in
CD28-deficient mice can be overcome with the adminis-
tration of a second dose of antigen 2 weeks after the ini-
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tial immunization. Disease, in this case, could be selec-
tively inhibited through the administration of blocking
anti-OX40 ligand antibodies, suggesting that in the
absence of CD28, the OX40-OX40L pathway provides
sufficient costimulatory signals to produce clinical dis-
ease.58 MBP-reactive T cells that receive both CD3 and
OX40 stimulation in the absence of CD28 stimulation are
able to mediate encephalitogenicity in a passive transfer
model of EAE.151 Thus the OX40-OX40L pathway
might provide sufficient costimulatory signals, even in
the absence of CD28 to mediate encephalitogenicity.
These findings have important implications for the treat-
ment of MS and EAE through costimulatory blockade.

CD137-CD137L

CD137 (4-1BB) is a member of the TNF receptor
superfamily and is expressed on activated CD4* T cells
and CD8* T cells,152.153 as well as myeloid cells, includ-
ing monocytes, neutrophils, and dendritic cells.154-157
Expression has aso been reported in the gray matter of
the brain.1%8 Its ligand, CD137L (4-1BBL) is expressed
on activated APCs, including macrophages, B cells, and
dendritic cells.159 Stimulation of T cells with agonistic
anti-4-1BB antibodies increased TCR-induced prolifera-
tion and cytokine production160 and enhanced CD8* T-
cell surviva through increased expression of the anti-
apoptotic genes encoding Bcl-x, and Bfl-1.161 There
appears to be a preferential role for CD137 in the co-
stimulation of CD8* T cells,162.163 although CD4* T-cell
costimulation has also been reported.164.165 CD137 can
provide CD28-independent costimulation; however, it is
most effective in the presence of a strong TCR signal .166
Signaling through the CD137 pathway can induce the
preferential expansion of CD8* cytotoxic T lymphocytes
that in turn can enhance tumor rejection.167

CD137-CD137L in EAE

Paradoxically, administration of an agonistic anti-4-
1BB (CD137) mAb resulted in profound suppression of
EAE; however, treatment of donor cells did not amelio-
rate passive transfer of disease.168 EAE attenuation was
associated with a suppression of Tl cytokine produc-
tion in antigen-stimulated cells and delayed-type hyper-
sensitivity responses. Interestingly, the initial expansion
of CD4* cellswas not inhibited, but deletion of activated
CD4*+ T cells was enhanced. Taken with previous data,
this suggests that CD137 signaling induces preferential
survival of CD8* T cells and preferential deletion of
CD4+ T cells. Further studies are required to elucidate
the role of CD137 signaling in EAE and MS.

CONCLUSIONS

Costimulatory signals are necessary for the activation,
differentiation, and survival of several immune cell types,
particularly T cells. T cells may play an important role in
the pathogenesis of MS and have proven to be critical in
the induction of EAE. Costimulatory signals, such as
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CD28, ICOS, CD154, and OX40, deliver a positive signa
for T-cell activation, whereas CTLA-4 and PD-1 deliver
inhibitory signals. Severa costimulatory pathways play
overlapping roles, and one pathway might replace anoth-
er in its absence. In vitro studies have largely shown that
absence of positive signals results in anergy or cell death,
whereas the absence of negative signals results in lym-
phoproliferation. However, in vivo, as has been demon-
strated in the EAE animal model, the roles of these cos-
timulatory pathways might be more complex, mediating
not only cell activation and survival but also T1/T2 dif-
ferentiation, production of factors necessary for cell traf-
ficking into the CNS, Ig production, and APC functions.
Within the CNS, costimulatory pathways potentially have
effects on the activation, differentiation, and survival of
severa other cell types, including myeloid cells and glia
cells. Thus costimulatory signals potentially play arolein
the induction of disease in the periphery and in the prop-
agation of disease in the CNS (Fig 3).

The CD28-B7-CTLA-4 pathway has been extensively
studied in MS. There is evidence that this, as well as
other costimulatory pathways, play an important role in
the regulation of disease. Thus targeting costimulatory
pathways, in particular the CD28-B7-CTLA-4 pathway
with CTLA4Ig might be a viable therapeutic option for
the treatment of MS.

Further studies on the mechanisms of costimulation in
the immune regulation of M S are required.

Key concepts

Costimulatory signals are necessary for T-cell activa-
tion, differentiation, and survival.

Costimulatory receptors on T cells are activated by
their ligands present on antigen-presenting cells.
Costimulatory signals such as CD28, 1COS, CD154,
OX40, and CD137 deliver a positive signal for T-

cell activation.

Costimulatory signals such as CTLA-4 and PD-1
deliver a negative signal for T-cell activation.

Absence or blockade of the CD28-B7 pathway
reduces the severity of EAE.

CTLA4lg can block activation of the CD28-B7 path-
way and can regulate the function of antigen-pre-
senting cells.

CTLA4Ig is an effective therapy in EAE, an animal
model of MS.

Blockade of the CD154-CD40 pathway attenuates
EAE.

Manipulation of costimulatory signals is a viable
therapeutic option for the treatment of MS.
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