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Background: Cytotoxic eosinophil granule proteins are consid-
ered important in the pathogenesis of inflammatory airway
diseases, including asthma, rhinitis, and polyposis. However,
little is known about the mechanismsinvolved in the deposi-
tion of these tissue-damaging granular productsin vivo.
Objective: We sought to determine the occurrence of degranu-
lating eosinophils, those with morphologic evidence of cytolysis
with associated clusters of free eosinophil granules (Cfegs),
and to identify the frequency of apoptotic eosinophilsin
inflamed upper airway tissue.

Methods: Eosinophil-rich nasal polyps were processed for
transmission electron microscopy and for light microscopic
evaluation of whole-mount preparations subjected to deep tis-
sue staining for eosinophil peroxidase.

Results: The mean proportion of eosinophil subtypeswere
intact and resting (6.8%), intact but degranulating (83%),
cytolytic or Cfegs (9.9%), and apoptotic (0.0%). All degranu-
lating eosinophils exhibited piecemeal degranulation. The
occurrence of Cfegs was confirmed in nonsectioned whole-
mount preparations. Depending on the appear ance of their
core and matrix, the specific granules were divided into four
subtypes, and a degranulation index (altered per total gran-
ules) was calculated for each eosinophil. Cytolytic eosinophils
had a much lower degranulation index than intact eosinophils
present in the same tissue (P < .001).

Conclusions: These data indicate that eosinophil cytolysisis
present in human airway mucosa, that its occurrence is not an
artifact of the means of tissue handling, and that cytolysis of
eosinophils may occur without prior extensive degranulation.
We suggest that eosinophil cytolysisisa major activation
mechanism, which occurs along with, but isdistinct from,
other types of degranulation. (J Allergy Clin Immunol
1998;102:286-94.)
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Abbreviations used
Cfegs: Clusters of free eosinophil granules
EPO: Eosinophil peroxidase
PBS: Phosphate-buffered saline
PMD: Piecemea degranulation

The activation of eosinophils and release of eosinophil
granule mediators in the airway mucosais considered an
essential process in the pathogenesis of asthma, allergic
rhinitis, and nasal polyposis.14 There is also ample evi-
dencefor the presence of granule products, such as major
basic protein and eosinophil cationic protein, in airway
tissues and secretions or exudations.257 However,
despite research focused on the airway eosinophil, little
is as yet established regarding several basic features of
degranulation of eosinophilsin inflamed airway tissues.

On the basis of ultrastructural evidence, it is possible
to discern at least two degranulation events in
eosinophils: piecemeal degranulation (PMD), whereby
the granular content is released from intracellular gran-
ules leaving more or less empty granules in the intact
cell,89 and eosinophil cytolysis, whereby the cell mem-
brane ruptures, causing the release of clusters of free
eosinophil granules (Cfegs).10 There is general agree-
ment as to the occurrence of PMD, but the ultrastructur-
al patterns of granules during this event as it proceedsin
the airway mucosa remain largely unexplored.

Eosinophil cytolysis was recently suggested as a
potentially important eosinophil activation mechanism.10
In support of this, cytolysis of eosinophils and Cfegs
could be promptly induced in vivo by common topical
challenges.1112 Furthermore, studies involving cell types
other than eosinophils have shown that cytolysis can be a
highly organized process!314 that may be no less pro-
grammed than apoptotic cell death, which is now receiv-
ing much attention in eosinophil research.1517 Qutside
the tissue, eosinophils are susceptible to apoptotic cell
death as shown by demonstrations of apoptotic
eosinophilsin airway lumenal samples (bronchioalveolar
lavage fluids and sputum)18.19 and in cell cultures.20.21
However, the occurrence and frequency of eosinophil
apoptosis (particularly in relation to eosinophil cytolysis)
within airway tissues has remained unknown.

In acentury’s literature on eosinophilic diseases, one
can find numerous illustrations of eosinophil cytolysis
and Cfegs,10 and the occurrence of Cfegs in bronchial
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biopsy specimens of asthmatic subjects has already
been illustrated and quantified in electron microscopic
studies.22 Workers who currently report on lysed
eosinophils may frequently regard this event as a result
of intense PMD of eosinophils, inferring that high cyto-
plasmatic levels of toxic granule products have led to
the cytolysis.23-26 Another factor that may have pre-
vented recognition of cytolysis is the possibility that
mechanical artifacts (e.g., inflicted during the taking of
biopsy specimens) have contributed to findings of
Cfegsin various tissues.19 Furthermore, the lack of data
on the molecular regulation of this phenomenon may
have contributed to the fact that eosinophil cytolysis
and Cfegs have been almost completely ignored in cur-
rent discussions of eosinophil activation in inflamma-
tion and allergic conditions.10

In this study we have used nasal polyps to examine
morphologic characteristics of human airway
eosinophils. PMD has been described previously and
would appear to be a frequent phenomenon in the
polyps,27.28 whereas eosinophil cytolysis and Cfegs
have not been reported as yet. Our aim was to determine
the occurrence of eosinophil cytolysis and Cfegs in
relation to states of activation and apoptosis of
eosinophilsin this tissue and to shed light on the possi-
bility that eosinophil cytolysis is a primary mechanism
distinct from other forms of degranulation. It was fur-
ther considered that we should take account of potential
artifacts and avoid their contribution. To this end we
chose to use nasal polyps because they are eosinophil-
rich and readily available in large, intact pieces from
which whole-mount preparations could be made as a
complement to ultrastructural analysis.

METHODS
Subjects and tissue sampling

Eight patients with nasal polyposis were recruited. Nasal polyps
were excised by intranasal snare polypectomy with topical anaes-
thesia (2% tetracaine and 0.01% epinephrine), gently cut into
blocks, and immediately placed in fixative (1% glutaraldehyde and
3% formaldehyde in a phosphate-buffered saline [PBS] buffer)
overnight at 4° C. Polyps with tissue eosinophilia (five of the eight
patients) were selected for further detailed electron microscopic
analysis (Table 1). The atopic patients experienced symptoms (e.g.,
itching and sneezing) when exposed to the relevant allergen. How-
ever, none of these patients were exposed to their allergens and were
symptom free at the time of the polypectomies.

Transmission electron microscopy

From each patient, two blocks (=3 x 3 x 5 mm, representing two
separate regions) were rinsed in buffer, postfixed in 1% osmium
tetroxide for 1 hour, dehydrated in graded acetone solutions, and
embedded in Polybed 812 (Poly Science). Plastic sections (1 um
thick) were cut on an ultratome (Ultracut E, Leica, Germany),
stained with toluidine blue, and examined in a light microscope
(Axioscop, Zeiss, Germany). Areas with intact surface epithelium
were selected for further electron microscopic analysis. Ultrathin
sections (90 nm) were cut and placed on 200-mesh, thin-bar copper
grids and stained with uranyl acetate and lead citrate.2 The speci-
mens were examined by using a Hitachi transmission electron
microscope (H-7000; Hitachi, Japan).
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TABLE I. Patients from which polyps were selected for
detailed transmission electron microscopic analysis

Patient Atopy Steroid treatment*
1 — —
2 _ —
3 Timothy, mugwort —
4 Timothy, mugwort, cat —
5 _ —

*Defined as treatment with glucocorticosteroids within 4 weeks before
polypectomy.

Eosinophil peroxidase staining in whole-
mount preparations

To detect scattered subepithelial Cfegs in tissues subjected to
aminimum of mechanical stress, mucosa whole-mount prepara-
tions were stained for cyanide-resistant eosinophil peroxidase
(EPO).11 Immediately after surgical excision, polyps were gently
cut into blocks (~50 mm2 of the mucosal surface and 3 to 4 mm
deep), rinsed with saline, and placed in PBS supplemented with
4% formaldehyde overnight at 4° C. The surface of the airway
epithelium was visualized by histochemical staining for tissue-
nonspecific alkaline phosphatase.30 The samples were rinsed in
TRIS-buffer and one drop of incubation solution (TRIS-buffer
[pH 9.0] containing 0.1% Naphtol AS-BI phosphate [Sigma] and
azo-dye TR-salt [Sigma]) was placed on the mucosal surface for
7 minutes. The specimens were then rinsed in buffer and incubat-
ed for 10 minutes in PBS buffer containing 3.3 diaminobenzidine
tetrahydrochloride (75 mg/100 ml [Sigma]), H,O, (100 pl/100
ml), and NaCN (50 mg/100 ml). After rinsing in PBS, the sam-
ples were mounted in Kaisers medium and examined with a Zeiss
light microscope. An intact epithelial surface was identified by a
characteristic blue mosaic-like pattern. Subepithelial EPO-
stained eosinophil granules were examined by altering the focal
plane to focus down to a depth of 0 to 100 um below the epithe-
lial basement membrane.

Quantification

Inflammatory cells. Subepithelial inflammatory cells in ultrathin
sections (>150 per sample) were counted to a depth of 0 to 250 pm
below the epithelial basement membrane. Mast cells, eosinophils,
neutrophils, plasma cells, and macrophages were identified by their
characteristic ultrastrucural morphology.2® Cell counts were
expressed as total numbers per 0.1 mm2 subepithelial tissue. Areas of
tissue occupied by vessels and submucosal glands were excluded
from the evaluation. The subepithelial area assessed in each sample
was calculated from low-power electron microgaphs by using com-
puter-assisted image analysis (NIH Image 1.33; National Institutes of
Health, Bethesda, Md.) on a Macintosh computer (Cupertino, Calif.)

Ultrastructural morphology of eosinophils. Eosinophils (43 to
120 per patient, mean = 64) and Cfegs were recorded on electron
micrographs at 5000X magnification and divided into subgroups
defined in the following categories. Resting eosinophils was defined
as no ultrastructural signs of activation (i.e., al specific granules
had an electron-dense core surrounded by an intact matrix). Degran-
ulating eosinophils was defined as intact cells displaying character-
istic changes of specific granules® (i.e., presence of granulestype Il
to IV [see below]). Occurrence of partly empty intracellular gran-
ules with no signs of granule extrusion was here defined as PMD.
Eosinophil cytolysis was defined as the presence of chromatolysis
and loss of plasmamembrane integrity.® Apoptotic eosinophils were
defined as the presence of chromatin condensation with preserved
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FIG. 1. Transmission electron micrographs demonstrating eosinophil with mostly intact specific granules (A); degranulating (PMD)
eosinophil with structural changes in most specific granules (B); eosinophil cytolysis in which plasma membrane is ruptured (arrow) and
cell nucleus displays signs of chromatolysis (C); late-stage cytolysis in which eosinophil granules are released into extracellular matrix
(arrowhead), with parts of cell membrane remaining (arrows) but virtually all organelles (except for specific granules) absent (D); clus-
ters of free eosinophil granules and scattered cell debris (E); and high-power micrograph demonstrating extracellular eosinophil gran-
ules, some of which have retained their granule membrane (F).
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FIG. 2. Light micrographs demonstrating distribution of EPO-stained eosinophil-specific granules in whole-mount preparation of nasal
polyp. A, Area with only intact eosinophils. Space occupied by cell nuclei can be observed as nonstained islets in cells. B, EPO-positive
granules lying scattered in subepithelial tissue. Both micrographs represent regions 0 to 20 pm below epithelial basement membrane
and were taken from areas covered by intact surface epithelium. Scale bar =7 ym.

plasma membrane and nondilated organelles.3132 Cfegs was
defined as the occurrence of clusters (three or more) of identifiable
extracellular eosinophil-specific granules,10.22

The number of intracellular granules was expressed as total num-
bers per 50 pm? cell cytoplasmic area. To determine the cytoplasmic
area, each micrograph was digitized by using an Epson EU-10 scan-
ner (Seiko-Epson Corp, Japan). The total cell area and nuclei area
were calculated by tracing the perimeter of the plasma and nucleus
membranes with the NIH Image 1.33 image analysis system.

Evaluation of eosinophil degranulation. In each eosinophil the
specific granules were divided into four groups: type |, intact gran-
ules with no signs of degranulation (i.e., intact core and matrix);
type I, ragged loss of core material but intact matrix; type I11, intact
core or nearly intact core and the granule matrix partly or com-
pletely empty (early stages of matrix changes were identified by a
characteristic coarsening of the matrix); and type IV, nearly com-
plete or complete loss of both core and matrix material. To express
the degree of degranulation for each eosinophil, a degranulation
index was calculated as follows: DI = 100 x (numbers of activated
granules, 11 to IV/total granules).

Statistical analysis

Differences among groups were examined by Student’s t test.
Data on granule numbers were logarithmically transformed before
analysis. Correlations between degranulation indices and total gran-
ule numbers were assessed by Spearman’srank correlation test. Sta-
tistical differences between groups were assumed for P values less
than .05. All statistical tests were performed with Microsoft Excel
v5.0 and Astute v1.5.

RESULTS
Inflammatory cells

The numbers of inflammatory cells present in the polyp
tissues are presented in Table I1. All samples were charac-
terized by tissue eosinophilia together with infiltration of
plasma cells, macrophages, and lymphomononuclear
leukocytes (Table I1). The degree of tissue eosinophilia

varied among the patients, with a range of 4 to 137
eosinophils per 0.1 mm? subepithelial area (Table I1).

Eosinophil subtypes

The proportions of eosinophil subtypes in each polyp
are shown in Table Il1. Eosinophil cytolysis and Cfegs
comprised approximately 10% of the tissue eosinophils.
Both the eosinophil cytolysis and Cfegs were scattered
throughout the tissue and were frequently seen close to
intact cells (Fig. 1, C and D), including intact eosinophils.
The presence of Cfegs was confirmed by light micro-
scopic examination of EPO-stained whole-mount prepa-
rations (Fig. 2). In al patients the maority of the
eosinophilswereinvolved in either degranulation of intact
cells(Fig. 1, B) or eosinophil cytolysis (Tablell, Fig. 1, C
to E). All the degranulating but intact eosinophils dis-
played signs of PMD. No signs of granule extrusion (i.e.,
exocytosis) were observed. Extracellular eosinophil gran-
ules that had retained their granule membrane were fre-
quently observed amidst membrane-free or partly dis-
solved granules (Fig. 1, F). Eosinophils displaying the
characteristic features of apoptosis were absent. However,
apoptotic cells other than eosinophils were observed.

Eosinophil granule subtypes

Several morphologies of eosinophil-specific granules
were noted in eosinophils undergoing PMD. Four dis-
tinct granule types were discerned (Fig. 3). The pattern of
granule subtypes varied among the patients but was gen-
eraly consistent within each polyp (Fig. 4). The excep-
tion was patient 3, in whom the granule pattern differed
among different regions of the polyp (Fig. 4). Large dif-
ferences in the mean degranulation index were observed
among the polyps (Fig. 5) and in patient 3 also between
different regions within the same polyp (Fig. 5). A weak-
ly negative but statistically significant correlation was
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TABLE Il. Inflammatory cells
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Patient Eosinophils Neutrophils Mast cells Macrophages Plasma cells Total cells
la 9.3 7.2 10.2 6.3 275 108.0
1b 41 53 43 4.3 36.1 89.5
2a 25.8 0.0 43 171 36.7 137.9
2b 217 0.0 29 19.6 37.0 135.3
3a 141 0.0 54 124 54.1 1233
3b 135 0.0 0.5 7.6 14.6 55.6
4a 60.3 13 38 11.2 42.3 157.6
4b 51.7 0.0 7.1 8.7 31.2 1274
5a 137.0 22 0.9 4.8 46.3 239.7
5b 101.2 0.6 18 55 69.4 217.8
X £ SEM 437+ 14 1.7+£08 41+0.9 98+ 17 395+47 139.0+ 17
Cells are expressed as total numbers per 0.1 mm? subepithelial tissue.

TABLE lll. Proportions of eosinophil subtypes

Patient Intact Degranulating and intact Apoptotic Cytolytic Cfegs
la 0.0 100.0 0.0 0.0 0.0
1b 0.0 100.0 0.0 0.0 0.0
2a 19.2 42.3 0.0 26.9 11.2
2b 14.3 57.1 0.0 17.9 10.7
3a 0.0 96.1 0.0 3.8 0.0
3b 0.0 96.7 0.0 0.0 32
4a 10.3 89.6 0.0 0.0 0.0
4b 214 78.6 0.0 0.0 0.0
5a 1.6 82.6 0.0 8.2 6.6
5b 0.0 89.6 0.0 6.0 45

X £ SEM 6.7+28 834+6.1 0.0+ 0.0 6.3+29 36x14

The data are presented as percent of total eosinophil counts.

observed between the degranulation index and the cell
content of specific granules (Fig. 6).

Granule changes in cytolytic eosinophils

The eosinophilsin Fig. 5, A and B, representing sam-
ples containing both eosinophil cytolysisand PMD (Figs.
4 and 5, Table I11), were selected for a detailed analysis
of degranulation indices. It was found that the cytolytic
eosinophils had a markedly lower degranulation index (P
<.0001) than neighboring intact eosinophils (Fig. 7, A).
The number of intact granules was significantly higher
(P <.003) in the cytolytic than in the intact eosinophils
(Fig. 7, B).

DISCUSSION

This study provides evidence that eosinophil cytolysis,
and the ensuing release of free granules, is a significant
fate of human airway eosinophils, which is distinct from
other forms of degranulation events such as PMD. In
support of this mechanism, we demonstrated that cytoly-
siswas induced in eosinophils exhibiting no or few signs
of PMD. This observation, together with demonstrations
of Cfegs in nonsectioned whole-mount preparations,
ruled out mechanical artifacts as a cause of eosinophil
cytolysis. Almost all the intact eosinophils in the polyps
displayed granules with signs of PMD. These features
allowed classification of granule subtypes and the deter-
mination of anovel index of PMD. In contrast to the fre-

guent occurrence of cytolysis and PMD, apoptotic
eosinophils were lacking.

Thelack of apoptotic eosinophilsisin agreement with
the infrequent reports of apoptotic eosinophils within
human airway tissuesin vivo. It isonly after maintaining
polyp tissue in culture for several days (and with
proapoptotic cytokine-blocking drugs present) that tissue
eosinophils undergoing apoptosis may become evident.33

Several findings suggest that Cfegs are important
effectorsin eosinophilic diseases. First, the recent obser-
vations on subepithelial Cfegs deep within whole-mount
preparations of guinea-pig airways,11.12 well away from
sectioning sites, are confirmed herein. The present obser-
vation of cytolytic eosinophils lying scattered amidst
intact eosinophils and other intact cells indicates further
that cytolysis is not confined to any particular area of
necrosis that might develop through disease processes or
mechanically. Indeed, the distinct pattern of degranula-
tion indices for cytolytic eosinophils suggests that
eosinophil cytolysis is a physiologic phenomenon in
eosinophilic airway conditions. Cfegs have been repeat-
edly depicted in histologic illustrations of airway tissue
and surface material, particularly in asthma.10.22.29 These
data further suggest that after cytolytic death, the cyto-
plasm is lost by rupture of the plasma membrane, which
creates ghost cells (Fig. 1, D). Even at this stage, the spe-
cific granules, spilt into the surrounding milieu as Cfegs,
remain surprisingly intact, indicating that the release of
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FIG. 3. Transmission electron micrographs demonstrating ultrastructural changes in specific granules during PMD. Different types of
granular changes are depicted: A, Type |, intact matrix and intact electron-dense cores; B, type Il, ragged loss of material in core; C, type
11, loss of granular material but cores largely intact; D, type IV, extensive loss of both core and matrix material.

granule proteins at eosinophil cytolysis would take place
late in the cytolytic process. Eosinophil granules rarely
occurred in phagosomes of macrophages in this study.
Hence free but intact granules appear not to be doomed to
phagocytosis and would be expected to release gradualy
all their content into the extracellular matrix, thus con-
tributing to widespread tissue distribution of eosinophil
granule proteins. This notion is supported by Filley et a.5
who examined airways from patients who died from status
asthmaticus and reported extensive tissue immunoreactivi-
ty for mgjor basic protein in association with areasrich in
eosinophilic granular debris. Taken together, the potential
leakiness of Cfegs®.25 and reportsindicating that eosinophil
cytolysisis common in nasal polyposis (this study), aler-
gic rhinitis;34 and asthmad10.22.29 suggest that cytolysis of
eosinophils should be regarded as a biologically important
mechanism by which airway eosinophils may have wide-
spread effects. In support of this, it was recently reported
that alergen challenge of sensitized guinea pigs induced
eosinophil cytolysis, and the release of Cfegs was signifi-
cantly associated with sites of epithelia damage.12

Eosinophil cytolysis, which is induced promptly in
vivo by allergen exposurel? or in vitro by incubation of
eosinophils with immunoglobulin-coated dextran parti-
cles?4 or calcium ionophores,3> may differ from the cell
necrosis that is commonly viewed as a process of passive
degeneration.36 It is an attractive possibility that
eosinophil cytolysis may be regulated by well-controlled
intracellular mechanisms and that cytolysis is subject to
physiologic and pharmacologic control.10 Indeed, the
existence of procytolytic intracellular pathways have
recently been described in cell types other than
ms noph| | S. 13,14,37,38

Consistent with previous reports,3940 the present
eosinophil-rich inflammation in nasal polyps proceedsin
association with the tissue recruitment of plasma cells,
macrophages, and lymphocytes. Our data on PMD agree
with the work by Takasaka et al.2” who reported that the
majority of nasal polyp eosinophils exhibit altered gran-
ules. In addition, this study has provided new informa
tion on the occurrence of morphologic subtypes of the
specific granulesin diseased human airways. The present
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FIG. 4. Proportion of granule subtypes in individual tissue samples. For each granule, subtype data are presented as mean numbers of
granules per 50 um2 cytoplasm. Grouped bars represent data from two regions (a and b) within same patient. Patients 1 to 5 are shown
from left to right. Approximately 900 granules per sample were analyzed.

spectrum of granule changes is in agreement with previ-
ous observations on PMD in cultured eosinophils,8.9.41.42
but the occurrence of different subtypes of granules in
diseased tissues has not been extensively examined in
previous work. Interestingly, the pattern of PMD, as
based on the present division into granule subtypes,
shows little variations within each polyp, suggesting
individual polyp homogeneity in this regard. This obser-
vation may also strengthen the validity of the degranula-
tion index that we have described in this study as a rep-
resentative measure of eosinophil activation through
PMD. However, to appreciate fully the utility of the
ultrastructural signs of PMD, we need to learn more
about the changes in the specific granules that reflect
aging of the mucosal eosinophils. Because currently
available molecular markers of degranulation (e.g., the
monoclonal antibody EG2) may fail to distinguish
degranulating eosinophils reliably,43 the present index,
together with the determinations of the occurrence of
eosinophil cytolysis and Cfegs, could find utility in
defining the nature of tissue eosinophilia and its conse-
guencesin disease and in models of eosinophilic disease.
For example, it has been noted that the ultrastructural
signs of eosinophil activation are lacking in the widely
used mouse immunomodels of asthma.44 Ultrastructural
indices of eosinophil activation in vivo are also needed
for validation and development of new molecular mark-
ers of different forms and degrees of eosinophil degranu-
lation, which are central to the interpretation of data,
showing similar degrees of eosinophilic infiltration in
asthma and exacerbations of chronic bronchitis,4> yet
with distinct pathologies.

This study has demonstrated that cytolysis occurs in
eosinophilsthat, although maintaining anormal number of
specific granules, differ from the general population of

eosinophils by having a low degranulation index. These
data support our notion that eosinophil cytolysisand PMD
are distinct mechanisms and that cytolysis of eosinophils
may be a primary mechanism of degranulation in the
human airway mucosa in vivo.10 Our observations do not
exclude the possibility23-25 that intracellular release of
cytotoxic mediator may also induce cytolysis. Eosinophil
cytolysis results in widespread release of eosinophil con-
tent, which would have an effect on the intact eosinophil
numbers per se. This may explain why there are reports of
heterogeneity in the numbers of intact eosinophils identi-
fied by conventional hematoxylin and eosin staining of air-
way tissuesin cases of fatal asthma.46:47

We speculate that PMD and cytolysis represent two
functionally different processes by which eosinophils
release their granule mediators. PMD provides the possi-
bility of along-lasting and selective?® release of granule
content. These features are in agreement with the sug-
gested role of eosinophil granular proteins in
immunoregulation.4%-51 On the other hand, eosinophil
cytolysis, which is expected to yield rapid and complete
release of mediators, may be an important host mecha-
nism in parasite defense52 and in the tissue disturbances
that characterize eosinophilic diseases.53 This latter
aspect makes it of interest to explore the biologic and
pharmacologic control of eosinophil cytolysis in an
attempt to find novel drugs for the treatment of
eosinophilic disorders.10

In conclusion, this study has examined nasal polyp tis-
sue and demonstrated the occurrence of eosinophil cytol-
ysis and Cfegs. Apoptosis of eosinophils was rarely
detected, and classical exocytosis of eosinophil granules
was not observed, which is in agreement with studies of
other airway eosinophilic conditions. Four readily identi-
fiable morphologic subtypes of the granules revealed dif-
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could not be traced) were excluded from analysis. Data are shown as means + SEM.

ferent patterns of PMD among the patients; the index of
PMD was high in intact but low in cytolytic eosinophils.
These findings suggest that eosinophil cytolysis and
PMD are distinct mechanisms for release of eosinophil
granule products in human airways. Nothing is known as
yet about the rate of eosinophil cytolysisor itsregulation.
However, our data suggest that eosinophil cytolysisis a
common and potentially important fate for human airway
eosinophils.

We thank Ann Dewar and Britt-Marie Nilsson for assistance and
technical expertise.
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