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Abbreviations used

ADMA: Asymmetric dimethylarginine

AIPI: Antigen-induced pulmonary inflammation

AMI-1: Arginine N-methyltransferase inhibitor-1

AR: Allergic rhinitis

COPD: Chronic obstructive pulmonary disease

COX2: Cyclooxygenase-2

HDM: House dust mite

MAPK: Mitogen-activated protein kinase

NAL: Nasal lavage

NF-kB: Nuclear factor kappa B

PRMT: Protein arginine methyltransferase

PRMT11/2: PRMT1-haploinsufficient

TSLP: Thymic stromal lymphopoietin

WT: Wild-type
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Background: Arginine methylation is a posttranslational
modification mediated by protein arginine methyltransferases
(PRMTs). Although previous studies have shown that PRMT1
contributes to the severity of allergic airway inflammation or
asthma, the underlying mechanism is poorly understood.
Objective: This study aimed to explore the role of PRMT1 and its
relevant mechanism in the development of allergic rhinitis (AR).
Methods: The expression levels of PRMTs and cytokines were
determined by RT-PCR, and the localization of PRMT1 was
determined by immunohistochemistry and confocal microscopy.
The levels of house dust mite (HDM)-specific immunoglobulins
in serum and of cytokines in nasal lavage fluids were determined
by ELISA. PRMT1 inhibition was achieved by siRNA
and treatment with the pan PRMT inhibitor arginine
N-methyltransferase inhibitor-1.
Results: PRMT1 expression was significantly increased in the
nasal mucosa of patients and mice with AR. The degree of
eosinophilic infiltration in the nasal mucosa was reduced in
PRMT11/2 AR mice compared with wild-type mice. PRMT1
haploinsufficiency reduced the levels of HDM-specific
immunoglobulins in serum and those of TH2 (IL-4, IL-5, and IL-
13) and epithelial (thymic stromal lymphopoietin [TSLP], IL-25,
and IL-33) cytokines in the nasal lavage fluids ofARmice. In nasal
epithelial cells, HDM and IL-4 cooperate to enhance PRMT1
expression through a mitogen-activated protein kinase–
dependent pathway. In addition, PRMT1 was essential for the
productionofTSLP, IL-25, and IL-33 in response toHDMand IL-
4. Arginine N-methyltransferase inhibitor-1 treatment alleviated
AR in the mouse model.
Conclusions: PRMT1 plays an important role in AR
development by regulating epithelial-derived cytokine
production and might be a new therapeutic target for AR. (J
Allergy Clin Immunol 2021;147:1720-31.)

Key words: PRMT1, allergic rhinitis (AR), epithelial cytokines,
MAPKs, house dust mite (HDM)

Allergic rhinitis (AR) is an upper airway disease caused by the
IgE-mediated immune response of the nasal mucosa to environ-
mental allergen exposure.1 This disease affects 10% to 40% of the
population worldwide, and its prevalence has increased rapidly
over the last few decades.2 AR can lead to nasal symptoms,
such as sneezing, itching, runny nose, rhinorrhea, nasal conges-
tion, and watery eyes, which can have significantly negative ef-
fects on quality of life and daily function and cause sleep
disturbances and emotional problems.3 Despite this high inci-
dence and risk, the current therapies for AR are inadequate for
some patients: (1) who have an eosinophil-dominant allergic
nasal polyp or rhinitis,4 (2) who have a high level of serum IgE
or blood eosinophils,5 or (3) who are inevitably exposed to high
amounts of causal allergens during a season or at a working place,
and no appropriate remedy or medicine is available.

Protein arginine methyltransferases (PRMTs) mediate the
arginine methylation of proteins, which is a novel posttransla-
tional modification.6,7 This process contributes to multiple
cellular events, including transcriptional regulation, signal trans-
duction, chromatin structure, and DNA damage repair.8,9 Based
on the end products, PRMTs are classified into several families.
Type I PRMTs include PRMT1, 2, 3, 4, 6, and 8, which are
involved in the production of asymmetric dimethylarginine
(ADMA). In contrast, type II PRMTs, such as PRMT5 and 9,
generate symmetric dimethylarginine.10 Among these, PRMT1
produces 90% of the generated ADMA.11 DNA methylation and
histone alterations play critical roles in cancer development, and
PRMT1 is overexpressed in various human cancers.12 In addition,
arginine methylation by PRMT1 plays an important role in lung
diseases, such as pulmonary fibrosis and chronic obstructive pul-
monary disease (COPD), as well as lung cancer.13 However, the
role of PRMTs in the development of allergic diseases is limited.

Some studies have shown that PRMT1 contributes to antigen-
induced pulmonary inflammation and allergic asthma.14-16

PRMT1-3 expression in the lungs is upregulated in E3 rats with
antigen-induced pulmonary inflammation (AIPI), and IL-4 leads
to increased expression of PRMT1 in lung epithelial cells at an
early stage of inflammation.16 In contrast, at the chronic phase
of AIPI, PRMT1 expression is upregulated mainly in fibroblasts
and smooth muscle layers but not in airway epithelial cells.15

TGF-b is responsible for the upregulation of PRMT1 and
cyclooxygenase-2 in fibroblasts, and the blockage of PRMTs us-
ing arginine N-methyltransferase inhibitor-1 (AMI-1), a pan
PRMT inhibitor, reduces cyclooxygenase-2 expression and asth-
matic indexes in chronic APIP-induced rats.15 In addition,
PRMT1 is constitutively and highly expressed in asthmatic airway
smoothmuscle cells, and this upregulation contributes to tissue re-
modeling by regulating cell proliferation and extracellular matrix
production.14 These findings demonstrate an association between
argininemethylation and the development of allergic diseases, but
the expression of PRMTs in the nasal mucosa and the role of
PRMTs in AR development have not been studied. In the present
study,we found that PRMT1 expression is upregulated in the nasal
mucosa of patients with AR and a mouse model of AR. PRMT1
deficiency or inhibition alleviates allergic inflammation in the
nasal mucosa of mice. In addition, house dust mite (HDM) and
IL-4 synergistically induce PRMT1 expression in nasal epithelial
cells and thereby regulate the production of thymic stromal lym-
phopoietin (TSLP), IL-25, and IL-33, which are cytokines critical
for TH2-cell differentiation.
METHODS
Wild-type (WT) C57BL/6 mice and PRMT1-haploinsufficient

(PRMT11/–) mice had AR induced using HDM as depicted in Fig E1 in this

article’s Online Repository at www.jacionline.org. The gene expression of

PRMTs was analyzed by RT-PCR in human and mouse nasal tissue. The
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localization of PRMT1 was determined by immunohistochemistry and

confocal microscopy. The degree of mucus secretion was examined by Alcian

blue/periodic acid-Schiff staining, and the degree of eosinophil infiltrationwas

assessed by Sirius red staining as previously.17 The antigen-specific immuno-

globulin levels in serum and cytokine levels in nasal lavage fluids or cell cul-

ture supernatants were measured by ELISA. In RPMI 2650 cells, the level of

PRMT1 was determined by Western blotting and immunofluorescence.

PRMT1 inhibition was achieved by siRNA and treatment with the pan

PRMT inhibitor AMI-1. The complete and detailed methods are available in

this article’s Online Repository at www.jacionline.org.
RESULTS

Expression of PRMT1 is upregulated in the nasal

mucosa of patients with AR and AR mouse models
We first compared the gene expression of PRMTs in the nasal

mucosa of non-AR controls and patients with AR. Among type
I PRMTs, the PRMT1 and PRMT4 gene expression levels were
significantly upregulated in the nasal mucosa of patients with AR
compared with that of the control group (Fig 1, A and C), whereas
neither PRMT3 nor PRMT5 showed significant differences in
gene expression (Fig 1, B and D).

We further examined the expression of PRMTs in the nasal
mucosa of HDM-induced ARmice (Fig E1). The gene expression
of PRMT1 was significantly increased in the nasal mucosa of
HDM-induced AR mice compared with that of the control mice
(Fig 2, A). Consistent with the results obtained with the human
samples, PRMT3 and PRMT5 expression in the nasal mucosa
was comparable between the control and AR-induced mice (Fig
2, B and D). The mean expression level of PRMT4 was slightly
higher in the AR-induced mice, but no significant difference in
its expression level was found between the control and AR-
induced mice (Fig 2, C). An immunohistochemistry analysis
was also performed to demonstrate the presence and localization
of PRMT1 in nasal tissues of AR-induced mice (Fig 2, E). When
reacted with isotype IgG, no positive signal was found in the nasal
tissues of mice with AR (Fig 2, E). PRMT1 was moderately ex-
pressed in the nuclei of nasal epithelial and stromal cells in
PBS-treated or HDM-immunized mice (Fig 2, E and F), whereas
very weak expression of PRMT1 was found in the cytoplasm of
these cells (Fig 2, E). However, strong and moderate PRMT1
expression was observed in the nucleus and cytoplasm, respec-
tively, of nasal epithelial cells of HDM-challenged AR mice
(Fig 2, E and F). In Western blot analysis, PRMT1 protein was
strongly detected in nasal mucosa of AR mice, but not in control
mice (Fig 2,G andH). These results show that PRMT1 expression
is upregulated in nasal tissues with AR, which indicates that
PRMT1 might play a role in the development of AR.
PRMT1 deficiency suppresses the development of

AR in HDM-challenged mice
PRMT11/2mice were used to determine the role of PRMT1 in

the development of AR in vivo because mice with a homozygous
allele of hypomorphic PRMT1 exhibit embryonic lethality.18

Lower PRMT1 gene expression was detected in the nasal tissue
of PRMT11/– mice compared with that of WT mice (see Fig E2
in this article’s Online Repository at www.jacionline.org). The
analysis of Alcian blue/periodic acid-Schiff–stained sections re-
vealed increased numbers of mucus-secreting cells in the nasal
mucosa of HDM-challenged WT mice, whereas lower numbers
were found inPRMT11/–mice (Fig 3,A andB). In addition, Sirius
red staining revealed that HDM challenge led to massive eosino-
phil infiltration in the nasal mucosa of WTmice, whereas a lower
eosinophilic infiltration score was given to PRMT11/– mice (Fig
3, A and C).

IgE is a critical factor for the development of allergic diseases
because it promotes the production of inflammatory mediators
such as histamine, prostaglandins, and cytokines in mast cells.19

Therefore, we examined the involvement of PRMT1 in the pro-
duction of HDM-specific antibodies, including IgE. The serum
level of HDM-specific IgE after HDM challengewas significantly
higher in WT mice than in PRMT11/–mice (Fig 3, D). Moreover,
the levels of the IgM, IgG, and IgG subclasses (IgG1, IgG2c, and
IgG2b) specific to HDM were also higher in WT mice than
in PRMT1/– mice (Fig 3, E-I). These findings indicate that
PRMT1 contributes to the development of AR by promoting an-
tigen-specific IgE production.
PRMT1 regulates TH2 cytokine production in nasal

lavage fluids of mice with AR
Because TH2 cytokines, such as IL-4, IL-5, and IL-13, are

responsible for IgE production by B cells, the activation and
recruitment of eosinophils, and mucus production,20 we further
investigated whether PRMT1 contributes to the production of cy-
tokines. HDM challenge increased the production of IL-4, IL-5,
and IL-13 in nasal lavage (NAL) fluids, and the levels in
PRMT11/–xmice were significantly lower than those in WT
mice (Fig 4, A-C). The levels of IFN-g and IL-17 in NAL fluids
were also increased by HDM challenge, but comparable levels
were detected in WT and PRMT11/– mice (see Fig E3 in this ar-
ticle’s Online Repository at www.jacionline.org). Because the
epithelial production of TSLP, IL-25, and IL-33 is essential for
TH2 or type 2 innate lymphoid cell differentiation,21 the cytokine
levels were also determined. Substantial levels of TSLP, IL-25,
and IL-33 were detected in NAL fluids of HDM-challenged WT
mice, and the levels in PRMT1/– mice were significantly lower
(Fig 4, D-F). It is likely that PRMT1 participates in the
allergen-mediated production of TH2 cytokines through upregula-
tion of the epithelial production of TSLP, IL-25, and IL-33.

HDM and rIL-4 synergistically enhance PRMT1

expression in human nasal epithelial cells through

mitogen-activated protein kinase–dependent

pathways
HDM extract can activate nasal epithelial cells and enhance the

expression of various genes.22-24 In addition, IL-4 produced by
TH2 cells upregulates PRMT1 gene expression in respiratory
epithelial cells via a positive feedback loop.16 To determine a mo-
lecular mechanism underlying the enhancement of PRMT1
expression in a human nasal epithelial cell line, RPMI 2650 cells
were treated with HDM and/or rIL-4. Treatment with HDM or
rIL-4 alone slightly increased the gene and protein expression
of PRMT1 in RPMI 2650 cells, and their combination markedly
enhanced its expression compared with that in cells treated with
HDM or rIL-4 alone (Fig 5, A-C). We further determined the
localization of PRMT1 in HDM/rIL-4–treated cells because its
localization differs depending on the disease and cell type.25-28

Confocal microscopy showed that the nuclear expression of
PRMT1 in the cells was enhanced by HDM/rIL-4 treatment
(Fig 5, D and E). In addition, HDM/rIL-4 treatment enhanced
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ADMA formation in nasal epithelial cells (Fig 5, F). Because
mitogen-activated protein kinases (MAPKs) are known to be
involved in the regulation of PRMT1 expression,14,29,30 we as-
sessed whether HDM/rIL-4 treatment influences MAPK activa-
tion in RPMI 2650 cells. HDM and rIL-4 cotreatment slightly
enhanced the phosphorylation of ERK and p38 starting at 30 mi-
nutes and more strongly promoted JNK phosphorylation starting
at 15 minutes (Fig 5, G). PD98059 (an ERK inhibitor) and
SB203580 (a p38 inhibitor) suppressed the HDM-and-rIL-4–
mediated increase in PRMT1 expression (Fig 5, H and I). The
JNK inhibitor SP600125 also downregulated the expression of
PRMT1 to the level found in untreated cells (Fig 5, H and I).
The HDM/rIL-4–induced nuclear expression of PRMT1 was
also reduced byMAPK inhibitors (Fig 5, J and K). These findings
indicate that HDM and rIL-4 might cooperate to increase PRMT1
expression and promote its nuclear localization through the
MAPK pathway, particularly JNK-dominant signaling, in nasal
epithelial cells.
PRMT1 mediates the expression of TSLP, IL-25, and

IL-33 in nasal epithelial cells in response to HDM

and rIL-4
PRMT1 regulates gene transcription and protein activity by

catalyzing the methylation of histones and cellular proteins.10 To
determine whether PRMT1 regulates the expression of TSLP, IL-
25, and IL-33 in nasal epithelial cells, PRMT1 expression in
RPMI 2650 cells was inhibited by siRNA, and the cells were sub-
sequently treated with HDM and rIL-4. siRNA successfully
reduced the gene and protein expression of PRMT1 in the cells
(see Fig E4, A and B, in this article’s Online Repository
at www.jacionline.org). Cotreatment with HDM and rIL-4
enhanced the gene expression of TSLP, IL-25, IL-33, and
eotaxin-1 in RPMI 2650 cells, and this enhancement was not de-
tected in the cells in which PRMT1 was inhibited by siRNA (Fig
6, A, and Fig E4, C). In contrast, PRMT1 inhibition by siRNA did
not influence gene expression of MUC5AC, MUC5B, CXCL1,
and CCL2 upregulated by cotreatment with HDM and rIL-4
(Fig E4,D-G). To confirm the occurrence of this phenomenon un-
der more physiological conditions, human primary nasal epithe-
lial cells were prepared under air-liquid interface culture
conditions. Consistently, the PRMT1 expression was upregulated
in human primary nasal epithelial cells after treatment with HDM
and rIL-4 (Fig 6, B). AMI-1 treatment reduced the HDM-and-rIL-
4–induced enhancement of TSLP, IL-25, IL-33, and eotaxin-1
gene expression in human primary nasal epithelial cells (Fig 6,
C, and Fig E4, D). During culture for 3 days, the production of
TLSP in the culture supernatant was increased by HDM and
rIL-4 treatment, and this increase was partially inhibited by
AMI-1 (Fig 6, D). IL-25 and IL-33 protein expression was unde-
tectable in this system (data not shown). These findings indicate
that PRMT1 might contribute to the development of AR by regu-
lating the production of TLSP, IL-25, and IL-33 in nasal epithelial
cells in response to allergen and IL-4.
AMI-1 treatment alleviates HDM-induced AR in

mice
We subsequently sought to determine whether the pharmaco-

logical inhibition of PRMT1 alleviates AR development in vivo.
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The pan PRMT inhibitor AMI-1 was intraperitoneally given to the
mice before and after HDM challenge in accordance to the exper-
imental schedule depicted in Fig 7, A. As shown in Fig 7, B to D,
AMI-1 treatment reduced the infiltration of mucus-secreting cells
and eosinophils in the nasal mucosa of AR-induced mice. AMI-1
treatment also decreased the production of immunoglobulins
tested, except IgG2c, in serum (Fig 7, E; see Fig E5 in this article’s
Online Repository at www.jacionline.org). In NALfluids, the pro-
duction of IL-4 was also decreased byAMI-1 treatment (Fig 7,F).
The mean levels of IL-5 and IL-13 in NAL fluids were also
decreased by treatment with AMI-1, but this decreasewas not sig-
nificant (Fig 7, F). The levels of TSLP, IL-25, and IL-33 in NAL
fluids were also lower in the AMI-treated mice (Fig 7, G).
DISCUSSION
Although PRMT1 is involved in the pathophysiology of

various diseases, including chronic pulmonary inflammation,
the role of PRMT1 in the development of AR has not been
studied. In the present study, we revealed that PRMT1 expression
was upregulated in the nasal mucosa of patients andmicewith AR
and that PRMT1 deficiency or inhibition reduced eosinophil
infiltration in the nasal mucosa and the production of antigen-
specific immunoglobulins, including IgE, and TH2 cytokines,
such as IL-4, IL-5, and IL-13, in serum. PRMT1was also essential
for TSLP, IL-25, and IL-33 production in nasal epithelial cells in
response to HDM and IL-4.

Aberrant expression of PRMTs, mainly their overexpression,
appears to be associated with the development of several diseases.
PRMT1 overexpression has been detected in various cancers,
such as lung, breast, prostate, colon, and bladder cancers.8 During
osteoclastogenesis, RANKL upregulates PRMT1 expression in
bone marrow cells, which is critical for nuclear factor kappa B
(NF-kB) activation and osteoclastogenesis-related gene expres-
sion.29 Moreover, an association between increased PRMT1
expression and allergic airway inflammation has been found. E3
rats with AIPI exhibited increased PRMT1, 2, and 3 expression
and lower PRMT4 expression in the lungs compared with control

http://www.jacionline.org
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mice.16 The expression of PRMT5 and PRMT6 appears to be un-
affected.16 In the present study, PRMT1 and PRMT4 expression
was upregulated in the nasal mucosa of patients with AR. In addi-
tion, PRMT1 was significantly increased in the nasal mucosa of
HDM-induced AR mice compared with that of the control
mice. Although no significant difference in PRMT4 expression
was found between the 2 groups, its mean level was slightly
higher in the nasal mucosa of AR mice. This finding is inconsis-
tent with the results of a previous study conducted by Sun et al,16

which found lower expression of PRMT4 in the lung tissue of E3
rats with AIPI. Whether this discrepancy is due to differences in
tissue origin remains unclear. In the present study, we investigated
the role of PRMT1 in AR development because PRMT1 is over-
expressed in the nasal mucosa of both humans and mice with AR
and is responsible for more than 90% of ADMA formation.11

Whether PRMT4 contributes to AR development should thus be
clarified.

A previous study showed that PRMT1 is mostly expressed in
epithelial cells at the acute phase of AIPI, whereas its expression
is strongly detected in fibroblasts or smooth muscle cells, but not
epithelial cells, at the chronic phase.15 In addition, PRMT1 is
more highly expressed in airway smooth muscle cells from
patients with asthma compared with healthy controls,14 which
suggests that PRMT1 can be expressed in various cell types in
the respiratory tract. In this study, strong expression of
PRMT1 was mostly observed in the nucleus of nasal epithelial
cells in both humans and mice with AR, although its nuclear
expression was also observed in inflammatory and stromal cells.
Moreover, the experimental schedule of the HDM-induced AR
mouse model is similar to that of the acute AIPI model.15 These
findings suggest that PRMT1 might play an important role in
nasal epithelial cells during AR development, at least at the acute
phase.
In our data, 4 of 10 patients in the AR group had a low level of
PRMT1, but therewas no significant difference in eosinophil count
or total IgE level among patients with AR. Interestingly, we
realized that the 3 of themwere nonsmoker and another patient was
a short-term (<10 pack-years) smoker, whereas most patients with
AR with a high level of PRMT1 were more than 10 pack-years of
ex-smoker or current long-term smokers. In airway epithelial cells,
only a small overlap in DNA methylation is observed with whole
blood and magnitude of changes is about 10 times larger than what
was seen in the peripheral blood,31-33 suggesting specific targets in
airway epithelial cells. In addition, COPD is usually related to to-
bacco smoking and develops in mid to later life, and arginine
methylation by PRMT1 was suggested to play an essential role
in COPD.13 Therefore, our data suggest that smoking history
seems to be a factor influencing PRMT1 levels.

PRMT1 can be localized in both the nucleus and cytoplasm and
shows high mobility between both regions depending on the
methylation status of the substrate proteins in several cells.34 This
shuttling controls the processes of signal transduction, subcellular
protein trafficking, and gene expression.34,35 In normal and
cancerous tissues of the breast and colon, PRMT1 staining is
mostly detected in the cytoplasm and is rarely detected in the nu-
cleus.26,27 The researchers of these previous studies claim that the
enzyme is likely localized in the cytoplasm because methylation
might occur during or just after translation.26,27 In contrast,
PRMT1 expression is mostly found in the nucleus of gastric can-
cer tissues, which is associated with poor diagnosis.25 In lung fi-
broblasts isolated from patients with idiopathic pulmonary
fibrosis, PRMT1 is predominantly localized in the nucleus and
moderately expressed in the cytoplasm.28 In the present study,
we found strong PRMT1 expression in the nuclei of nasal epithe-
lial cells of patients and mice with AR, although weak to moder-
ate PRMT1 expression was still observed in the cytoplasm.
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Moreover, confocal microscopy observations showed that the nu-
clear expression of PRMT1 in RPMI 2650 cells was enhanced in
response to HDM and rIL-4 and thus supported this hypothesis.
The identities of the genes or proteins that enhance PRMT1 regu-
lation in the nucleus of nasal epithelial cells remain to be
elucidated.

Previous studies have shown that IL-4 promotes PRMT1
expression in lung fibroblasts and airway epithelial cells.16,28 In
the present study, IL-4 also upregulated the gene and protein
expression of PRMT1 in nasal epithelial cells. Interestingly,
HDM synergized with IL-4 to enhance PRMT1 expression and
its nuclear localization in the cells, which suggests that allergens
might cooperatewith IL-4 to regulate PRMT1 expression. MAPK
family members, such as ERK, JNK, and p38, play a central role
in mediating multiple signaling pathways involved in inflamma-
tion, immunity, and cell survival. MAPKs have been shown to
regulate PRMT1 expression under various experimental condi-
tions. Lim et al30 showed that hypoxia-induced PRMT1 expres-
sion is downregulated by inhibitors of p38 and JNK, but not
ERK, in human lung epithelial cells. Platelet-derived growth fac-
tor induces ERK phosphorylation in airway smooth muscle cells
and thereby regulates PRMT1 expression.14 In addition, RANKL
treatment promotes PRMT1 expression in bone marrow cells
through a JNK-dependent pathway, which is essential for osteo-
clastogenesis.29 In this study, we showed that cotreatment with
HDM and rIL-4 induces the phosphorylation of all MAPKs
(p38, ERK, and JNK) with different kinetics and to different
degrees in RPMI 2650 cells. Each inhibitor can reduce HDM/
rIL-4–induced PRMT1 expression, and in the presence of a
JNK inhibitor, the expression level reached almost basal levels,
which suggests that the MAPK pathway with JNK dominancy
might be essential for regulating PRMT1 expression in nasal
epithelial cells.

Protein arginine methylation might play unique roles in
humoral immune responses, including B-cell proliferation,
differentiation, and survival. Hata and Mizuguchi36 detected
reduced proliferation of B cells and decreased differentiation
of these cells into IgG1-secreting cells in the presence of argi-
nine methyltransferase inhibitor after stimulation with LPS/IL-
4/CD40-L.36 Mouse models with PRMT1-null B cells obtained
with the Cre-LoxP system showed impaired B-cell develop-
ment and function in a T-cell–independent but not T-cell–
dependent manner.37 Furthermore, immunization with protein
plus adjuvant or influenza virus infection resulted in impaired
germinal center–related humoral immune responses, including
the generation of antibody-secreting cells, in these mouse
models.38 A defect in PRMT1 activity is reportedly associated
with the regulation of FOXO1 or PI3K,39 which is essential for
isotype switching and differentiation into antibody-secreting
cells and subsequent germinal center formation.40 In the pre-
sent study, the serum levels of all antigen-specific immuno-
globulins, including IgM, IgG and its subtypes, and IgE,
were significantly higher in the WT mice than in the
PRMT11/2mice. Whether this impaired antigen-specific
immunoglobulin production is due to defects in PRMT1-
mediated B-cell differentiation and isotype switching and
whether impaired PRMT1 function in B cells influences
HDM-induced AR development and severity in mice remain
unclear, and these topics should be further investigated using
a mouse model with tissue-specific depletion of PRMT1.

The airway epithelium, which responds to external environ-
mental factors, links the innate and adaptive immune systems
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through the release of cytokines and chemokines.41 TSLP, IL-25,
and IL-33 are representative cytokines of epithelial-derived alar-
mins.41 A recent study showed that IL-25, IL-33, and TSLP are
mainly produced and secreted by epithelial cells in response to
cell damage, pathogen recognition, or allergen exposure.41,42

These epithelial-derived cytokines mediate various pathophysio-
logical responses of allergic reactions by initiating TH2 cell and
type 2 innate lymphoid cell responses, which results in the pro-
duction of cytokines such as IL-4, IL-5, and IL-13.41-45 Our re-
sults showed that HDM and IL-4 upregulated TSLP, IL-25, and
IL-33 expression in nasal epithelial cells in a PRMT1-
dependent manner. In fact, the cytokine levels in NAL fluids
were reduced in the PRMT11/2 or AMI-1–treated mice with
HDM-induced AR, and the levels of TH2 cytokines (IL-4, IL-5,
and IL-13) in NAL fluids and IgE in serum were also lower in
these mice. Accordingly, PRMT1 likely contributes to AR devel-
opment by initiating the epithelial production of TLSP, IL-25, and
IL-33 in response to allergen and IL-4 and subsequently inducing
TH2 immunity.

PRMT1 is an asymmetric arginine methyltransferase and the
H4R3me2as modification catalyzed by PRMT1 is a typical marker
of active chromatin. TSLP, IL-25, and IL-33 are epithelial-derived
cytokines, which are involved in allergic diseases by inducing type
2 responses. In this study, we demonstrated that PRMT1 mediates
the expression of TSLP, IL-25, and IL-33 genes in nasal epithelial
cells under HDM and rIL-4 treatment. Because the PRMT1-
mediated histone modification of H4R3me2as is associated with
transcriptional activation of various genes,46 it is of great interest to
understand the mechanism by which PRMT1 regulates the
epithelial-derived cytokine expressions. Musiani et al47 reported
that PRMT1 phosphorylated by DNA-PK is recruited to chromatin
and then methylates H4R3 at the promoter of the senescence-
associated secretory phenotype gene, whose expression is tran-
scriptionally regulated by NF-kB.47 In addition, PRMT1 can
directly methylate the RelA subunit of NF-kB to form a cellular
complex with it. This process leads to transcriptional regulation
of target genes by manipulating the affinity between NF-kB and
the target genes in response to TNF-a.48 It is also known that the
gene expression of TSLP, IL-25, and IL-33 is regulated by the acti-
vation of NF-kB.49-53 Further studies are needed to determine
whether PRMT1 regulates gene expression of the epithelial-
derived cytokines via direct modification of histone at the target
promoter regions or regulation of NF-kB activity.
Conclusions
PRMT1 is highly expressed in nasal epithelial cells, particu-

larly in the nucleus, of hosts with AR. Allergen and TH2 cyto-
kines, such as IL-4, appear to cooperate to upregulate PRMT1
expression. PRMT1 contributes to AR development by regulating
the production of epithelial cytokines, such as TSLP, IL-25, and
IL-33, in response to allergens and IL-4, which results in the pro-
motion of differentiation into TH2 cells, IgE production, and
eosinophil recruitment. The administration of the pan PRMT in-
hibitor AMI-1 alleviates the severity of HDM-induced AR in
mice, which suggests that PRMT1 might be a new therapeutic
target for AR. A new PRMT1-specific inhibitor that can be clin-
ically applicable for patients with AR thus needs to be developed.

We thank Professor Ji-Hwan Ryu in Yonsei University College of Medicine

for his kind advice.
Key messages

d PRMT1 expression is upregulated in the nasal mucosa of
patients and mice with AR.

d HDM and IL-4 cooperate to induce PRMT1 expression
via MAPKs’ signaling.

d PRMT1 inhibition alleviates the disease severity in AR
mice.
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