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Abstract 37 

Atopic dermatitis (AD) is the most common inflammatory skin disease in the 38 

industrialized world, and has multiple etiologies. Over the past decade, data from both 39 

experimental models and patients have highlighted the primary pathogenic role of skin 40 

barrier deficiency in AD. Increased access of environmental agents into the skin results 41 

in chronic inflammation and contributes to the systemic “atopic (allergic) march”. In 42 

addition, persistent skin inflammation further attenuates skin barrier function, resulting 43 

in a positive feedback loop between the skin epithelium and the immune system that 44 

drives pathology. Understanding the mechanisms of skin barrier maintenance is 45 

essential for improving management of AD and limiting downstream atopic 46 

manifestations. In this article, we review the latest developments in our understanding 47 

of the pathomechanisms of skin barrier deficiency, with a particular focus on the 48 

formation of the stratum corneum, the outermost layer of the skin, that contributes 49 

significantly to skin barrier function. 50 

  51 
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The skin covers the entire body and protects us from the external environment. When 52 

this barrier is impaired, external toxins are able to penetrate the skin and induce 53 

inflammation. Over the last decade, numerous studies have demonstrated that skin 54 

barrier dysfunction is a critical component of atopic dermatitis (AD).1-3 In particular, 55 

inherited defects in epidermal barrier proteins facilitate the interaction of external 56 

antigens with skin-resident immune cells, driving local inflammation that can also lead 57 

to systemic immune responses. This is the “outside-in” hypothesis of AD pathogenesis, 58 

and it helps to explain the increased risk AD sufferers have of developing food allergies, 59 

asthma and allergic rhinitis later in life, the progression to which is known as the “atopic 60 

(allergic) march”.4 In addition, it is now evident that this secondary immunologic 61 

activation results in further attenuation of the skin barrier, which further exacerbates 62 

inflammation and allergic sensitization to environmental allergens.5 These observations 63 

suggest that maintaining the skin barrier function is important for both the effective 64 

management of AD and preventing the development of subsequent allergic diseases. 65 

  In this article, we summarize how the physical barrier of the skin is organized and 66 

review its link to AD pathogenesis. This article does not cover chemical and biological 67 

skin barriers (such as the skin acid mantle, antimicrobial peptides and bacterial flora) or 68 

the immune cell-mediated skin barrier function. Reviews covering these aspects can be 69 

found elsewhere.6-8
  70 

 71 

 72 

DEVELOPMENT OF THE STRATUM CORNEUM  73 

The barrier function of the skin is largely dependent on the stratum corneum (SC), the 74 

outermost layer of the epidermis (Fig 1A and B). The SC is formed during the course of 75 

a tightly regulated processes of keratinocyte differentiation called cornification.9 76 

Cornification is achieved by keratinocytes passing through four cell layers of the 77 

epidermis: the stratum basale, the stratum spinosum, the stratum granulosum (SG), and 78 

the SC (Fig 1B). In the SG, keratinocytes start to produce two membrane-circumscribed 79 

granules: keratohyalin granules and lamellar bodies. Keratohyalin granules contain 80 

intracellular components of the SC (such as filaggrin [FLG], loricrin, and keratin 81 

filaments), whereas lamellar bodies contain extracellular components (such as lipids, 82 

corneodesmosin and kallikreins). In the SC, keratinocytes become flattened and 83 

denucleated (which are then called corneocytes), while their membranes are replaced by 84 

a specific barrier structure known as the cornified envelope (CE) (Fig 1C and D). At 85 

the transition from the SG to the SC, lamellar bodies are secreted into the intercellular 86 

space between the corneocytes and fill with lipids. These structures are often described 87 
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as bricks (corneocytes) and mortar (intercellular lipids), which together provide a highly 88 

hydrophobic barrier against the environment. 89 

Below, we describe the formation of the SC barrier in terms of the following five 90 

categories, and review their link to AD pathogenesis: 1) FLG metabolism; 2) the 91 

cornified envelope; 3) intercellular lipids; 4) the corneodesmosome; and 5) corneocyte 92 

desquamation. The genes involved in each process are listed in Table 1. 93 

 94 

 95 

FILAGGRIN METABOLISM 96 

FLG and its metabolites are critical for normal cornification (Fig 2).10, 11 In the SG, FLG 97 

is produced as a polymer (profilaggrin) of 10-12 linked repeats of FLG monomer, stored 98 

in keratohyalin granules. At the transition from the SG to the SC, profilaggrin is cleaved 99 

to generate FLG monomers by proteases such as CAP1/Prss8 and SASPase/ASPRV1.12, 
100 

13 FLG monomers bind to keratin filaments and this keratin-FLG bundle is a 101 

fundamental structure within the corneocyte. At the upper layer of the SC, FLG 102 

becomes dissociated from the keratin filaments. In this process, the citrullination of 103 

FLG and keratin1 by peptidylarginine deiminase is considered essential.14 The released 104 

FLG monomers are degraded to free amino acids, including glutamine, arginine and 105 

histidine, which are then converted into urocanic acid (UCA) and pyrrolidine carboxylic 106 

acid (PCA). This process is mediated by the proteases caspase14, calpain1 and 107 

bleomycin hydrolase.15, 16 UCA is an important ultraviolet-absorbing chromophore in 108 

the SC and contributes to maintaining the acidic pH of the skin.17 In contrast, PCA is a 109 

major constituent of natural moisturizing factors (NMFs), which are responsible for 110 

retaining water in the SC. Therefore, FLG and its metabolites assume a manifold role in 111 

the barrier function of the SC.  112 

Gene targeting studies have revealed that FLG-deficient mice exhibit reduced SC 113 

barrier function with enhanced susceptibility to environmental sensitization.18 Further, 114 

on a proallergic BALB/c background, FLG-deficient mice develop spontaneous 115 

dermatitis.19 Likewise, the mice that have defect in profilaggrin processing 116 

(CAP1-deficient mice12/ SASPase-deficient mice13) or filaggrin processing 117 

(CASP14-deficient mice15) exhibit impaired skin barrier and/or dehydration of the SC, 118 

suggesting that the FLG metabolic process is also important for the development of 119 

intact SC barrier. 120 

  In humans, loss-of-function mutations in the FLG gene are associated with the 121 

development of AD as well as with ichthyosis vulgaris, a skin disorder with similarly 122 

dry and scaly skin.1, 20 The prevalence of FLG mutations in AD patients ranges from 123 
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25-50% in Northern European and Asian populations.21, 22 In addition, genome-wide 124 

association studies (GWAS) of individuals with European, African, Japanese and Latino 125 

ancestry have identified more than 30 risk loci for AD to date (Supplementary Table 1), 126 

and among them, the mutation in FLG has proven to be the consistent risk factor.23 127 

These observations indicate a major contribution of FLG-deficiency in AD pathogenesis. 128 

Manifestations of AD might also be influenced by FLG metabolic processes, since the 129 

mutations in ASPRV1, encoding SASPase, have been linked to the development of 130 

human AD.13 131 

Although mutations in FLG are common in Northern European and Asian subjects, 132 

FLG mutations are less common in Southern Europe24 and are even absent in some 133 

African countries.25, 26 A recent study showed that the expression of another skin barrier 134 

protein, FLG2, is reduced in the epidermis of AD patients.27 Further, a nonsense 135 

mutation in the FLG2 gene was shown to be associated with persistent AD in patients of 136 

African ancestry.28 The biological function of FLG2 remains to be elucidated, but its 137 

structure, pattern of expression, and biological properties are very similar to FLG. 138 

Therefore, FLG2 likely also plays an important role in skin barrier integrity. We must 139 

also note the possibility that FLG deficiency might be compensable under a tropical 140 

climate.29 141 

 142 

FORMATION OF CORNIFIED ENVELOPE 143 

The cornified envelope (CE) is a specific barrier structure formed beneath the cell 144 

membrane of corneocytes (Fig 1D).30 The CE consists of highly crosslinked insoluble 145 

proteins anchored by extracellular lipids. This structure acts as a vital physical barrier to 146 

the SC. 147 

  The assembly of the CE starts in the upper layer of the stratum spinosum. In response 148 

to elevated intracellular Ca2+, keratinocytes produce envoplakin, periplakin and 149 

involucrin. Envoplakin and periplakin form heterodimers that, together with involucrin, 150 

accumulate beneath the plasma membrane.31 These three proteins become crosslinked to 151 

each other by transglutaminase (TG) 1 and TG5.32 Involucrin acts as a scaffold of the 152 

CE, while the plakin dimers are binding sites for keratin filaments, enabling them to be 153 

combined with desmosomal proteins. Importantly, since plakin proteins are tightly 154 

crosslinked to the involucrin scaffold, desmosomes and keratin filaments are rigidly 155 

linked in the CE, thereby conferring mechanical stability to the corneocyte. 156 

In the SG, loricrin and small proline-rich (SPR) proteins are produced. These proteins 157 

are crosslinked by TG3 and translocate to the cell periphery, where they are crosslinked 158 

to the involucrin scaffold by TG1 and TG5.33 This process is repeated many times over, 159 
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resulting in a heavily reinforced CE in which up to 80% of the protein consists of 160 

loricrin. TG1 also combines extracellular ceramide lipids onto the involucrin scaffold 161 

until, eventually, ceramides replace the lipid bilayer of the plasma membrane.34 This 162 

process is described in greater detail below. 163 

  Despite the ubiquitous presence of involucrin, envoplakin and periplakin in the CE 164 

(Fig 1D), single knockout mice of these genes do not show any obvious skin 165 

abnormalities.35-37 Mice that lack all three of these proteins exhibit abnormal CE 166 

formation with reduced lipid content and decreased mechanical integrity, but skin 167 

barrier function remains intact, possibly compensated for by reduced desquamation of 168 

corneocytes.38 Similarly, loricrin-deficient mice exhibit only a subtle phenotype, with 169 

shiny skin at birth and reduced CE stability.39 These studies suggest that CE proteins are 170 

redundant, and indicate the existence of strong compensatory mechanisms. In 171 

accordance with this notion, no mutations in the genes of CE components have been 172 

linked to AD pathogenesis thus far. In contrast, the CE is abnormal or even absent with 173 

TG1-deficiency, in which severe ichthyosiform erythroderma (autosomal recessive 174 

congenital ichthyosis [ARCI]-1) develops.40 In addition, TG5 deficiency causes peeling 175 

skin syndrome 2, which presents as superficial acral skin peeling, occurring at the 176 

junction between the SG and the SC.41 These phenotypes indicate the non-redundant 177 

role of TGs in the formation of CE; however, there does not appear to be any 178 

association between genetic mutations in TGs and AD susceptibility.42  179 

 180 

 181 

FORMATION OF INTERCELLULAR LIPID LAMELLAE 182 

The intercellular lipids (the “mortar”) are an integral component of the SC barrier. They 183 

consist of a heterogeneous mixture of ceramides, free fatty acids and cholesterol in a 184 

roughly 1:1:1 molar ratio. These lipids are produced in the SG and stored in lamellar 185 

bodies, which are subsequently secreted into the extracellular space during the transition 186 

to the SC. 187 

In the ceramide fraction alone, over 300 distinct species have been identified in 188 

human SC.43 Among them, omega-hydroxyceramide is indispensable, as it is conjugated 189 

to the involucrin scaffold by TG1 and covers the surface of each corneocyte (Fig 1D). 190 

Using this ceramide as a template, multiple sheets of lipid lamellae are formed in the 191 

intercellular space between corneocytes.44 192 

Several defects in ceramide-processing enzymes have been linked to the etiology of 193 

barrier-deficient skin diseases. 12R-lipoxygenase (encoded by the ALOX12B gene) and 194 

epidermal lipoxygenase-3 (encoded by the ALOXE3 gene) are both essential for the 195 
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generation of omega-hydroxyceramide.45 Defects in these enzymes causes congenital 196 

ichthyosis (ARCI-2, and ARCI-3, respectively).46 The skin manifestations of ARCI-2 197 

and ARCI-3 are less severe than those of ARCI-1, probably because the protein layer of 198 

the CE is still formed in these diseases. 199 

The transmembranal transport of lamellar bodies is conducted by a lipid transporter 200 

called ATP-binding cassette subfamily A member 12 (ABCA12).47 Mutations of this 201 

gene result in moderate (ARCI-4A) to severe (ARCI-4B, also known as harlequin 202 

ichthyosis) congenital ichthyosis, suggesting that the contents of lamellar bodies play an 203 

essential role in cornification. Recently, transmembrane protein 79/mattrin 204 

(Tmem79/Matt) was identified to be involved in the secretion of lamellar body 205 

contents.48, 49 Tmem79 is a five-transmembrane protein that is localized to lamellar 206 

bodies, and Tmem79-deficient mice exhibit spontaneous dermatitis with elevated serum 207 

IgE, which resembles human AD. Further, a meta-analysis of AD patients revealed that 208 

a missense mutation of the TMEM79 gene has a small, but significant, association with 209 

AD.49 This suggests that abnormalities in lamellar body function, and/or intercellular 210 

lipid layer dysformation, contributes to barrier deficiency in some AD patients. 211 

 212 

 213 

STRUCTURE OF CORNEODESMOSOME 214 

The adhesion of corneocytes to one another is dependent on the desmosome apparatus, 215 

called the corneodesmosome (Fig 1C and D). The desmosome is composed of three 216 

protein families: desmosomal cadherin, armadillo proteins, and plakins. In the 217 

corneodesmosome, desmoglein 1 and desmocollin 1 (members of the cadherin family) 218 

interact with plakoglobin and plakophilins (armadillo proteins), which attach to 219 

envoplakin and periplakin (Fig 1D). As described above, envoplakin and periplakin 220 

heterodimers are crosslinked to the involucrin scaffold to bind keratin filaments. The 221 

corneodesmosin is another important modulator of corneodesmosomal adhesion.50 It is 222 

stored in the lamellar bodies and secreted into the intracellular space of the SC to 223 

interact with cadherin proteins and support their adhesion. 224 

  Abnormalities of the corneodesmosome make the skin prone to hyper-desquamation 225 

(peeling) of the corneocytes, which may lead to skin barrier defects and inflammation. A 226 

recent study revealed that the homozygous mutation of desmoglein 1 results in severe 227 

dermatitis (erythroderma) accompanied by palmoplantar keratoderma, hypotrichosis, 228 

and increased serum IgE (EPKHE, also known as severe dermatitis, multiple allergies, 229 

and metabolic wasting [SAM] syndrome).51 Importantly, EPKHE patients often have 230 

multiple food allergies. In contrast, deficiency in corneodesmosin causes peeling skin 231 
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syndrome 1, which is characterized by dermatitis, severe pruritus, food allergies, 232 

repeated episodes of angioedema and urticaria, asthma, and increased serum IgE.52 233 

Since these corneodesmosome-deficiency-oriented diseases share several clinical 234 

features of AD, this deficiency may also contribute to AD pathogenesis; however, this 235 

remains to be demonstrated. 236 

 237 

 238 

CONREOCYTE DESQUAMATION 239 

At the surface layer of the SC, corneocytes are constantly shed. This phenomenon is 240 

called desquamation and it is an important aspect of SC homeostasis. Corneocyte 241 

desquamation is mainly regulated by a proteolytic cascade of kallikrein (KLK)-related 242 

peptidases, such as KLK5, KLK7 and KLK14.53 The activity of these proteases is 243 

pH-dependent and is enhanced when the pH in the SC is elevated. Their activity is also 244 

strictly regulated by a cocktail of protease inhibitors, including lymphoepithelial 245 

Kazal-type 5 serine protease inhibitor (LEKTI) encoded by serine protease inhibitor 246 

Kazal-type 5 (SPINK5).54 KLKs and LEKTI are stored in lamellar bodies and secreted 247 

into the intercellular space at the SG-SC interface. 248 

In AD patients, the skin surface pH is increased, at least in part due to the decreased 249 

production of UCA derived from FLG (Fig. 2).55 As such, KLK activity is often 250 

enhanced in the AD skin. This condition is thought to induce an adverse effect on the 251 

SC barrier through multiple mechanisms (Fig 3). Firstly, KLKs cleave 252 

corneodesmosomal cadherins to promote corneocyte desquamation. Secondly, KLKs 253 

activate protease-activated receptor (PAR)-2, a G-protein-coupled receptor on 254 

keratinocytes. Upon activation, PAR-2 signals lead to suppression of lamellar body 255 

secretion via the downregulation of lipid-processing enzymes.56 Finally, activated KLKs 256 

increase the generation of interleukin (IL)-1α and IL-1β, whose preforms are 257 

abundantly stored in the cytosol of corneocytes. Indeed, IL-1 cytokines are increased in 258 

the SC of AD patients and their enhanced production is associated with FLG 259 

deficiency.57 260 

Two genetic polymorphisms that result in increased KLK activity have been linked to 261 

AD pathogenesis: gain-of-function mutations in KLK7, and loss-of-function mutations 262 

in SPINK5. A 4bp insertion polymorphism of KLK7 was first reported to be associated 263 

with AD in the UK,58 however this was not replicated in a French study.59 SPINK5 is 264 

known as the gene responsible for Netherton syndrome, in which patients display a 265 

broad range of allergic manifestations, such as AD-like dermatitis, food allergies, 266 

asthma, hay fever and markedly elevated serum IgE levels.60 A significant association 267 
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between polymorphisms in SPINK5 and AD has been found in the UK and Asian 268 

populations,61-63 but not in the French population.59 Further, a single nucleotide 269 

polymorphism in the gene encoding PAR-2 (F2RL1) has been associated with AD in the 270 

Korean population.64 This mutation is thought to increase the stability of F2RL1 mRNA 271 

transcripts. These studies suggest that the congenital mutations in protease activity in 272 

SC are linked to AD pathogenesis in specified populations. 273 

 274 

 275 

TIGHT JUNCTION IN AD PATHOGENESIS 276 

In addition to the SC, tight junctions (TJs) are structures that are essential to the 277 

integrity of the skin barrier. In the skin, TJs seal adjacent keratinocytes in the SG (Fig 278 

1B) and act as a barrier for water and solutes.65 TJs are composed of transmembrane 279 

proteins, particularly the claudin and occludin families, and several cytosolic scaffold 280 

proteins, including zonulae occludens (ZOs). The indispensable role of TJs in skin 281 

homeostasis was first demonstrated using claudin1-deficient mice, which die within 24 282 

hours of birth from severe dehydration.66 Importantly, these mice had no abnormalities 283 

in the production of SC components. A recent study using an AD model in mice showed 284 

that the expression of TJ proteins was suppressed during skin inflammation but was not 285 

affected by FLG deficiency.67 286 

In humans, CLDN1 (encoding Claudin 1) expression is reduced in non-lesional skin 287 

of AD patients, and an association between CLDN1 polymorphisms and AD 288 

susceptibility has been reported.68 These observations suggest that an impairment in TJs 289 

contributes to the barrier dysfunction observed in AD patients. Since most of the skin is 290 

covered with the SC, TJs appear to act as a second line of defense against external 291 

pathogens; however, TJs are likely to act as the primary barrier structure in skin 292 

appendages lacking SC, such as hair follicles and sweat glands (Fig 1A). Indeed, it is 293 

well known that hair follicles are important “shunt routes” into the skin for drugs and 294 

chemicals.69 In accordance with this notion, widespread eruptive infections with herpes 295 

simplex virus or molluscum contagiosum virus, which enter the body through hair 296 

follicles, often occur as a complication of AD.70, 71 These observations suggest that such 297 

skin appendages are the “security holes” of the skin, particularly in AD patients with TJ 298 

deficiency. 299 

 300 

 301 

IMMUNOLOGICAL MODULATION OF SKIN INTEGRITY  302 

Accumulating evidence suggests that immune cells influence skin integrity through the 303 
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production of cytokines.72, 73 Although the complex inflammatory cascade that drives 304 

AD skin lesions remains incompletely understood, multiple lines of evidence strongly 305 

suggest that AD immunopathogenesis is driven by a Th2 cell-skewed immune 306 

response.74 This is further supported by recent clinical trial data demonstrating that 307 

blocking the signalling from the IL-4 and IL-13, the two major ‘type 2’ cytokines, 308 

ameliorates AD.75 Previous studies have shown that IL-4 and IL-13 downregulate the 309 

production of: 1) FLG and keratins; 2) the CE components (loricrin and involucrin); 3) 310 

cell adhesion molecules (desmogleins, ZO-1); and 4) ceramide lipids. IL-31, another 311 

Th2 cell-derived cytokine, also downregulates FLG expression.76 Interestingly, a recent 312 

study has shown that IL-33, an alarmin that is abundantly produced in the epidermis of 313 

AD patients, has the potency to downregulate FLG expression as well.77 314 

  The physiological role for this adverse skin response to type 2 cytokines remains 315 

unclear, but may have evolved to facilitate anti-parasite responses and/or wound healing. 316 

However, in the context of AD, this ‘type 2’ immune response creates an exacerbation 317 

loop between the inherited barrier deficiency and immune dysregulation, resulting in the 318 

chronic, persistent skin inflammation that can only be alleviated by 319 

immunosuppression. 320 

 321 

 322 

BARRIER DEFICIENCY AND THE DEVELOPMENT OF ALLERGIC 323 

DISEASES 324 

It is now evident that epicutaneous antigens are strong sensitizer of allergic disorders. 325 

Mouse studies have demonstrated that food allergy and asthma can be induced via 326 

epicutaneous sensitization and are enhanced under disrupted skin barrier.78-80 In human, 327 

sequential acquisition of allergic diseases (atopic march) are frequently observed in both 328 

AD and some genodermatoses, such as Netherton syndrome (mutation in SPINK5),81 329 

peeling skin syndrome 1 (Corneodesmosin)82 and SAM syndrome (Desmoglein1)51 330 

(Table 1, asterisks), which strongly suggests that skin barrier deficiency contributes to 331 

the development of atopic march. Eosinophilic esophagitis is another chronic immune 332 

disorder that is associated with hypersensitivity to food, and has recently been linked to 333 

the mutations in Calpain 14 (CAPN14), a protease specifically expressed in the 334 

esophagus.83 An in-vitro expriment showed that overactivation of CAPN14 results in 335 

loss of Desmoglein1. 84 These studies demonstrate that barrier deficiency in mucosal 336 

epithelium may also contribute to the induction of allergic disorders. Importantly, recent 337 

clinical trials have shown that epicutaneus antigen exposure induces sensitization while 338 

oral antigen consumption induces immune tolerance.85, 86 339 
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In the presence of barrier defects in the SC, foreign antigens readily penetrate into the 340 

epidermis and activate innate immune receptors and pattern recognition receptors. This 341 

results in the production of Th2-promoting cytokines, such as IL-33, IL-25 and thymic 342 

stromal lymphoproteins (TSLP), which are produced by skin resident cells. Animal 343 

studies have demonstrated an essential role for TSLP in the epicutaneous induction of 344 

food allergy with AD-like skin lesions. Increased TSLP in the epidermis elicits the 345 

accumulation of basophils into the skin that promote Th2-cytokine responses.80 In 346 

addition, TSLP signaling on epidermal Langerhans cells may be important for IgE 347 

production during the epicutaneous sensitization to food allergens.87 348 

 349 

 350 

CONCLUSION –TOWARD THE BETTER MANAGEMENT OF AD 351 

Skin barrier deficiency and excessive immune responses are two sides of the same coin 352 

in AD pathogenesis, and the inflammatory response is both precipitated by and 353 

maintained by barrier dysfunction. Thus, while therapeutic intervention in AD typically 354 

targets the inflammation though the use of immunosuppressive drugs, it is the 355 

maintenance of skin barrier function that is the key to effective management of AD. 356 

Recently, two groups investigated whether protecting the skin barrier with a moisturizer 357 

during the neonatal period prevents the development of AD.88, 89 They reported that 358 

moisturizer treatment at an early stage of life resulted in 32 to 50% less AD prevalence. 359 

These results suggest that reinforcing the skin barrier function in the neonatal period is a 360 

promising strategy for the prevention of AD and epicutaneous sensitization to 361 

environmental allergens. 362 

FLG replacement therapies have also been proposed. These include: 1) Use of 363 

“read-through” drugs, which may enable keratinocytes to skip the nonsense mutation of 364 

the FLG gene; 2) drugs that enhance FLG production; and 3) topical application of FLG 365 

metabolites, such as UCA and PCA.90 Read-through drugs, such as gentamicin and 366 

PTC124 (Ataluren), are currently being trialed for other genetic diseases.91, 92 A number 367 

of drugs have been proposed to enhance FLG production in vitro, or in animal models, 368 

including agonists of peroxisome proliferator-activated receptors (PPARs),93 a 369 

serine-rich diet,94 apigenin,95 JTC801,96 JTE-052,97 and urea.98 However, the efficacy of 370 

these strategies in AD remains to be tested, and may only apply to patients with 371 

heterozygous, but not homozygous, FLG mutations. Intensive research efforts to 372 

identify promising candidates that enhance skin barrier function is ongoing and is 373 

expected to lead to better management of AD in the near future.  374 

  375 
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FIGURE LEGENDS: 733 

FIG 1: Barrier structures of the skin. A, The skin consists of three layers: the epidermis, 734 

the dermis, and subcutaneous adipose tissue. Red arrowheads identify the pores of hair 735 

follicles and sweat glands. B, The structure of the epidermis. The red line represents 736 

tight junctions. C, The “bricks and mortar” structure of the SC. D, The structures of the 737 

CE and corneodesmosome. 738 

 739 

FIG 2: Schema of the FLG metabolic process. In the SG, profilaggrins are stored in 740 

keratohyalin granules and then cleaved into FLG monomers. FLG monomers bind to 741 

keratin filaments in corneocytes. At the upper layer of the SC, FLG monomers are 742 

released from keratins and cleaved into free amino acids, followed by conversion into 743 

PCA and UCA. Asterisks denote the genes whose mutations have been linked to the AD 744 

pathogenesis. 745 

 746 

FIG 3: Kallikrein (KLK) function in the SC. 1) KLKs cleave corneodesmosomal 747 

cadherins to promote desquamation. 2) KLKs activate PAR2 to regulate lipid synthesis 748 

and immune responses. 3) KLK cleavage of IL-1 preforms. IL-1 preforms are stored in 749 

the cytosol of corneocytes and escape into the intercellular space upon damage. 750 

Asterisks denote the genes whose mutations have been linked to the AD pathogenesis. 751 

 752 

TABLE 1 : A list of genes involved in the CE formation process. The genes that their 753 

mutations have been linked to AD pathogenesis are shown in bold. Asterisks denote the 754 

diseases that may represent AD-like dermatitis. In the column of human associated 755 

disease, the modes of inheritances (AD; autosomal dominant, AR; autosomal recessive) 756 

are shown. 757 

 758 

Supplementary TABLE 1: A list of “AD-associated” loci that are identified by GWAS. 759 

This table is modified from the data shown in ref. 23. We should note that some of these 760 

loci are still unwarranted (see ref. 23 for detail). 761 
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TABLE 1 

 

 
Gene Gene 

symbol Function Associated human 
disease Knockout mice phenotype Reference 

F
L

G
 m

et
ab

ol
is

m
 

Filaggrin FLG 
Keratin filaments 
aggregation 

Ichthyosis vulgaris [AD] 
Skin barrier deficiency 
Spontaneous dermatitis 

1, 18-20 

Filaggrin2 FLG2 Similar to FLG? 
  

28 
Cap1/Prss8 PRSS8 Cleave proFLG to FLG 

 
Skin barrier deficiency 12 

SASpase ASPRV1 Cleave proFLG to FLG 
 

SC dehydration 13 
Peptidylarginine 
deiminase 

PADI Citrullilation of FLG 
  

14 

Caspase14 CASP14 FLG metabolism 
 

Skin barrier deficiency 15 
Calpain1 CAPN1 FLG metabolism 

  
16 

Bleomycin 
hydrolase 

BLMH FLG metabolism 
 

Penetrant ring-tail 
dermatitis 

16 

F
or

m
at

io
n 

of
 

C
or

ni
fi

ed
 e

nv
el

op
e 

Involucrin IVL Scaffold of CE 
 

No skin phenotype 35 
Envoplakin EVPL Plakin family 

 
No skin phenotype 36 

Periplakin PPL Plakin family 
 

No skin phenotype 37 
Loricrin LOR Reinforce CE 

 
Shiny skin 39 

Small proline-rich 
protein 

SPRR Reinforce CE 
  

99 

Transglutaminase 1 TGM1 Crosslink CE proteins ARCI-1 [AR] Skin barrier deficiency 40, 100 
Transglutaminase 3 TGM3 Crosslink CE proteins 

 
Skin barrier deficiency 101 

Transglutaminase 5 TGM5 Crosslink CE proteins 
Peeling skin syndrome 2 
[AR] 

 41 

 I
nt

er
ce

llu
la

r 
lip

id
- 

la
m

el
la

e 
fo

rm
at

io
n 12R-lipoxygenase ALOX12B Ceramide processing ARCI-2 [AR] 

Skin barrier deficiency 
Neonatal death 

46, 102 

Epidermal 
lipoxygenase 3 

ALOX3E Ceramide processing ARCI-3 [AR] 
Skin barrier deficiency 
Neonatal death 

46, 103 

ATP-binding 
cassette subfamily 
A member 12 

ABCA12 
Transport of lamellar 
body 

ARCI -4A/-4B [AR] 
(Harlequin ichthyosis) 

Skin barrier deficiency 47, 104 

Tmem79/mattrin TMEM79 
Secretion of lamellar 
bodies  

Spontaneous dermatitis 48, 49 

C
or

ne
od

es
m

os
om

e 

Desmoglein1 DSG1 Cadherin family SAM syndrome* [AR] 
 

51 
Desmocollin1 DCN1 Cadherin family 

 
Skin barrier deficiency 105 

Plakoglobin JUP Armadillo family Naxos disease [AR] Embryonic lethal 106 

Plakophilin PKP Armadillo family 
Skin fragility syndrome 
[AR] 

PKP3-deficient mice 
develop dermatitis 

107 

(Envoplakin) EVPL Plakin family 
 

No skin phenotype 36 
(Periplakin) PPL Plakin family 

 
No skin phenotype 37 

Corneodesmosin CDSN 
Support the 
corneodesmosome 
adhesion 

Peeling skin syndrome 1* 
[AR] 

Skin barrier deficiency 
Neonatal death 

82 

C
or

ne
oc

yt
e 

de
sq

ua
m

at
io

n Kallikrein5 KLK5 Serine protease 
 

Skin inflammation *(when 
overexpressed) 

108 

Kallikrein7 KLK7 Serine protease 
 

Skin inflammation *(when 
overexpressed) 

109 

Kallikrein14 KLK14 Serine protease 
  

110 
Lympho-epithelial 
Kazal-type-related 
inhibitor (LEKTI) 

SPINK5 Serine protease inhibitor 
Netherton syndrome* 
[AR] 

Neonatal death due to 
dehydration 

61-63, 111 

Protease-activated 
receptor 2 PAR2 

Receptor on 
keratinocytes  

Altered skin immune 
response 

64 
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Epidermis 

Dermis 

Subcutaneous adipose tissue 

Stratum 
corneum  

Stratum 
basale 

Stratum 
granulosum 

Stratum 
spinosum 

Stratum 
corneum 

FIG 1 

Corneocyte 

Intercellular 
lipids 

Corneo 
 -desmosome 

Tight junction A B 

C D 

Cornified envelope 

Intercellular 
lipid lamellae 

Cornified 
envelope 

Keratin 
filaments 

FLG 

Involucrin 

Loricrin 

SPRs 
Periplakin 
Envoplakin 

Desmoglein1 
Desmocolin1 

Plakoglobin 
Plakophilins 

Corneo 
-desmosin 
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Keratohyalin granules 

Profilaggrin* 

FLG monomers 

SASPase* 

Prss8 

Caspase14 

Calpain1 

Belomycin hydrolase 

FLG monomers 

Keratin-FLG bundles 

Amino acids 

UCA/PCA 

Peptidylarginine  

deiminase 

FIG 2 
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Corneo 
-desmosome 

Pro-IL1a 

Pro-IL1b IL-1a 

IL-1b 

PAR2* 

1)  

LEKTI* 

Desquamation Modulation of inflammation 

and lipid synthesis  

Inflammation 

2)  

3)  

KLKs* 
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Supplementary TABLE 1: 

 

Variant Nearest gene OR  p-value 

rs61813875 FLG 1.61 5.6E-29 

rs10791824 OVOL1 1.12 2.1E-19 

rs12188917 RAD50/IL13 1.14 4.0E-17 

rs6419573 IL18R1/IL18RAP 1.11 1.5E-13 

rs2212434 C11orf30/LRRC32 1.09 4.6E-13 

rs4809219 RTEL1/TNFRSF6B 0.90 7.0E-13 

rs2918307 ADAMS10/ACTL9 1.12 4.6E-12 

rs2041733 CLEC16A 0.92 2.5E-11 

rs12730935 IL6R 1.08 6.1E-11 

rs2038255 PPP2R3C 1.11 1.8E-10 

rs7127307 ETS1 0.93 3.9E-10 

rs7512552 C1orf51/MRPS21 0.93 9.1E-10 

rs6473227 MIR5708/ZBTB10 0.93 1.4E-09 

rs6602364 IL15RA/IL2RA 1.08 1.5E-09 

4:123243592 KIAA1109 (IL2) 1.08 4.2E-09 

rs4713555 HLA-DRB1 0.91 5.4E-09 

rs10214237 IL7R/CAPSL 0.93 2.9E-08 

rs10199605 LINC00299 0.93 3.4E-08 

rs4643526 PUS10 1.09 3.5E-08 

rs12951971 STAT3 1.13 4.1E-08 

rs7625909 SFMBT1/RFT1 1.07 4.9E-08 

rs112111458 CD207/VAX2 0.91 1.4E-07 

rs2592555 PRR5L 0.93 8.7E-07 

rs2944542 ZNF365 0.94 1.2E-06 

rs145809981 MICB 0.91 1.5E-06 

rs16948048 ZNF652 1.05 1.7E-05 

rs1249910 CCDC80/CD200R1L 0.98 1.4E-01 

rs7701890 TMEM232 1.02 3.6E-01 

rs6780220 GLB1 1.01 4.0E-01 

rs4312054 OR10A3/NLRP10 1.00 7.4E-01 

rs4733404 CARD11 1.00 8.1E-01 

 


