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Abstract

Atopic dermatitis (AD) is the most common inflamimigt skin disease in the
industrialized world, and has multiple etiologi€ser the past decade, data from both
experimental models and patients have highlightedtimary pathogenic role of skin
barrier deficiency in AD. Increased access of emvinental agents into the skin results
in chronic inflammation and contributes to the syst “atopic (allergic) march”. In
addition, persistent skin inflammation further attates skin barrier function, resulting
in a positive feedback loop between the skin epitheand the immune system that
drives pathology. Understanding the mechanismgiaftsrrier maintenance is
essential for improving management of AD and lingtdownstream atopic
manifestations. In this article, we review the $atgevelopments in our understanding
of the pathomechanisms of skin barrier deficiemath a particular focus on the
formation of the stratum corneum, the outermostdayf the skin, that contributes
significantly to skin barrier function.
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The skin covers the entire body and protects us tiee external environment. When
this barrier is impaired, external toxins are ablpenetrate the skin and induce
inflammation. Over the last decade, numerous stutiee demonstrated that skin
barrier dysfunction is a critical component of atogermatitis (AD)* In particular,
inherited defects in epidermal barrier proteinglitate the interaction of external
antigens with skin-resident immune cells, drivingdl inflammation that can also lead
to systemic immune responses. This is the “outsitiBypothesis of AD pathogenesis,
and it helps to explain the increased risk AD sweife have of developing food allergies,
asthma and allergic rhinitis later in life, the gression to which is known as the “atopic
(allergic) march™ In addition, it is now evident that this secondanmunologic
activation results in further attenuation of thendkarrier, which further exacerbates
inflammation and allergic sensitization to envirental allergend These observations
suggest that maintaining the skin barrier functeoimportant for both the effective
management of AD and preventing the developmestib$equent allergic diseases.

In this article, we summarize how the physicatieaof the skin is organized and
review its link to AD pathogenesis. This articleedanot cover chemical and biological
skin barriers (such as the skin acid mantle, actimhial peptides and bacterial flora) or
the immune cell-mediated skin barrier function. iRexs covering these aspects can be
found elsewher&®

DEVELOPMENT OF THE STRATUM CORNEUM
The barrier function of the skin is largely depemiden the stratum corneum (SC), the
outermost layer of the epidermisig 1A and B). The SC is formed during the course of
a tightly regulated processes of keratinocyte défféiation called cornificatio.
Cornification is achieved by keratinocytes passimgugh four cell layers of the
epidermis: the stratum basale, the stratum spinptharstratum granulosum (SG), and
the SC Fig 1B). In the SG, keratinocytes start to produce twonim@ne-circumscribed
granules: keratohyalin granules and lamellar boddesatohyalin granules contain
intracellular components of the SC (such as filagtLG], loricrin, and keratin
filaments), whereas lamellar bodies contain exthalee components (such as lipids,
corneodesmosin and kallikreins). In the SC, keoatyjtes become flattened and
denucleated (which are then called corneocytes)etreir membranes are replaced by
a specific barrier structure known as the cornigegtelope (CE)Rig 1C and D). At
the transition from the SG to the SC, lamellar bedire secreted into the intercellular
space between the corneocytes and fill with lipidgese structures are often described
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as bricks (corneocytes) and mortar (intercellufgds), which together provide a highly
hydrophobic barrier against the environment.

Below, we describe the formation of the SC baingerms of the following five
categories, and review their link to AD pathogeses) FLG metabolism; 2) the
cornified envelope; 3) intercellular lipids; 4) tberneodesmosome; and 5) corneocyte
desquamation. The genes involved in each procedsstad inTable 1

FILAGGRIN METABOLISM
FLG and its metabolites are critical for normalnification (Fig 2).' **In the SG, FLG
is produced as a polymer (profilaggrin) of 10-Iké&d repeats of FLG monomer, stored
in keratohyalin granules. At the transition frone tBG to the SC, profilaggrin is cleaved
to generate FLG monomers by proteases such as €AfR38/and SASPase/ASPRY1.
13 FLG monomers bind to keratin filaments and thisaka-FLG bundle is a
fundamental structure within the corneocyte. Atdpeer layer of the SC, FLG
becomes dissociated from the keratin filamentshisprocess, the citrullination of
FLG and keratinl by peptidylarginine deiminasedesidered essentiél The released
FLG monomers are degraded to free amino acidsjdimay glutamine, arginine and
histidine, which are then converted into urocamicd §UCA) and pyrrolidine carboxylic
acid (PCA). This process is mediated by the preteaaspasel4, calpainl and
bleomycin hydrolas&> **UCA is an important ultraviolet-absorbing chromophin
the SC and contributes to maintaining the acidicopkhe skin*” In contrast, PCA is a
major constituent of natural moisturizing facta8Fs), which are responsible for
retaining water in the SC. Therefore, FLG and ietabolites assume a manifold role in
the barrier function of the SC.

Gene targeting studies have revealed that FLGA4detimice exhibit reduced SC
barrier function with enhanced susceptibility tvieonmental sensitizatiotf Further,
on a proallergic BALB/c background, FLG-deficienicendevelop spontaneous
dermatitis*® Likewise, the mice that have defect in profilaggrocessing
(CAP1-deficient mic¥/ SASPase-deficient mit® or filaggrin processing
(CASP14-deficient mic®) exhibit impaired skin barrier and/or dehydratifrthe SC,
suggesting that the FLG metabolic process is atgmitant for the development of
intact SC barrier.

In humans, loss-of-function mutations in #eG gene are associated with the
development of AD as well as with ichthyosis vulgaa skin disorder with similarly
dry and scaly skift.*° The prevalence dfLG mutations in AD patients ranges from
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25-50% in Northern European and Asian populatforféin addition, genome-wide
association studies (GWAS) of individuals with Eoean, African, Japanese and Latino
ancestry have identified more than 30 risk lociA@r to date Supplementary Table 1,
and among them, the mutationfhG has proven to be the consistent risk fattor.
These observations indicate a major contributioRlds-deficiency in AD pathogenesis.
Manifestations of AD might also be influenced byG-metabolic processes, since the
mutations inPASPRV1, encoding SASPase, have been linked to the dewelopof
human AD*®

Although mutations ifrLG are common in Northern European and Asian subjects
FLG mutations are less common in Southern Eufbped are even absent in some
African countrie$™ *°A recent study showed that the expression of @natkin barrier
protein, FLG2, is reduced in the epidermis of ADigrets®’ Further, a nonsense
mutation in the=LG2 gene was shown to be associated with persistenhARtients of
African ancestry® The biological function of FLG2 remains to be édlated, but its
structure, pattern of expression, and biologicapprties are very similar to FLG.
Therefore, FLG2 likely also plays an important rileskin barrier integrity. We must
also note the possibility that FLG deficiency migletcompensable under a tropical
climate?

FORMATION OF CORNIFIED ENVELOPE

The cornified envelope (CE) is a specific barrieucture formed beneath the cell
membrane of corneocyteBig 1D).%° The CE consists of highly crosslinked insoluble
proteins anchored by extracellular lipids. Thisisture acts as a vital physical barrier to
the SC.

The assembly of the CE starts in the upper lafére stratum spinosum. In response
to elevated intracellular 5 keratinocytes produce envoplakin, periplakin and
involucrin. Envoplakin and periplakin form heterouirs that, together with involucrin,
accumulate beneath the plasma membtamaese three proteins become crosslinked to
each other by transglutaminase (TG) 1 and ¥@8volucrin acts as a scaffold of the
CE, while the plakin dimers are binding sites ferain filaments, enabling them to be
combined with desmosomal proteins. Importantlycaiplakin proteins are tightly
crosslinked to the involucrin scaffold, desmosomed keratin filaments are rigidly
linked in the CE, thereby conferring mechanicab#its to the corneocyte.

In the SG, loricrin and small proline-rich (SPRdt&ins are produced. These proteins
are crosslinketdly TG3 and translocate to the cell periphery, wlileeg are crosslinked
to the involucrin scaffold by TG1 and TG5This process is repeated many times over,
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resulting in a heavily reinforced CE in which up8@°6 of the protein consists of
loricrin. TG1 also combines extracellular ceranlig&ls onto the involucrin scaffold
until, eventually, ceramides replace the lipid ys#aof the plasma membrafi&This
process is described in greater detail below.

Despite the ubiquitous presence of involucrirvogriakin and periplakin in the CE
(Fig 1D), single knockout mice of these genes do not stsmywobvious skin
abnormalities>™" Mice that lack all three of these proteins exhittihormal CE
formation with reduced lipid content and decreasedhanical integrity, but skin
barrier function remains intact, possibly compeaddbr by reduced desquamation of
corneocytes? Similarly, loricrin-deficient mice exhibit only subtle phenotype, with
shiny skin at birth and reduced CE stabiftfhese studies suggest that CE proteins are
redundant, and indicate the existence of strongoemsatory mechanisms. In
accordance with this notion, no mutations in theegeof CE components have been
linked to AD pathogenesis thus far. In contrast, @t is abnormal or even absent with
TG1-deficiency, in which severe ichthyosiform ergitherma (autosomal recessive
congenital ichthyosis [ARCI]-1) develof$In addition, TG5 deficiency causes peeling
skin syndrome 2, which presents as superficiallakia peeling, occurring at the
junction between the SG and the T hese phenotypes indicate the non-redundant
role of TGs in the formation of CE; however, thdoes not appear to be any
association between genetic mutations in TGs andugeptibility*?

FORMATION OF INTERCELLULAR LIPID LAMELLAE

The intercellular lipids (the “mortar”) are an igtal component of the SC barrier. They
consist of a heterogeneous mixture of ceramides,fatty acids and cholesterol in a
roughly 1:1:1 molar ratio. These lipids are prodlcethe SG and stored in lamellar
bodies, which are subsequently secreted into ttraastlular space during the transition
to the SC.

In the ceramide fraction alone, over 300 distipetctes have been identified in
human SC? Among them, omega-hydroxyceramide is indispensaislé is conjugated
to the involucrin scaffold by TG1 and covers th&ate of each corneocytEig 1D).
Using this ceramide as a template, multiple shefeipid lamellae are formed in the
intercellular space between corneocyfes.

Several defects in ceramide-processing enzymesheerelinked to the etiology of
barrier-deficient skin diseases. 12R-lipoxygenasedded by thALOX12B gene) and
epidermal lipoxygenase-3 (encoded by Ah©XE3 gene) are both essential for the
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generation of omega-hydroxyceramfd®efects in these enzymes causes congenital
ichthyosis (ARCI-2, and ARCI-3, respectiveff)The skin manifestations of ARCI-2
and ARCI-3 are less severe than those of ARCI-dhaibly because the protein layer of
the CE is still formed in these diseases.

The transmembranal transport of lamellar bodiesmlucted by a lipid transporter
called ATP-binding cassette subfamily A memberABGA12).*” Mutations of this
gene result in moderate (ARCI-4A) to severe (AR8]|-dlso known as harlequin
ichthyosis) congenital ichthyosis, suggesting thatcontents of lamellar bodies play an
essential role in cornification. Recently, transrbeame protein 79/mattrin
(Tmem79/Matt) was identified to be involved in gerretion of lamellar body
contents’® **Tmem?79 is a five-transmembrane protein that iallped to lamellar
bodies, and Tmem79-deficient mice exhibit spontasatermatitis with elevated serum
IgE, which resembles human AD. Further, a metayaigabf AD patients revealed that
a missense mutation of tAiMEM79 gene has a small, but significant, association with
AD.* This suggests that abnormalities in lamellar bioghgtion, and/or intercellular
lipid layer dysformation, contributes to barriefideency in some AD patients.

STRUCTURE OF CORNEODESMOSOME

The adhesion of corneocytes to one another is digpé¢on the desmosome apparatus,
called the corneodesmosontégy 1C and D). The desmosome is composed of three
protein families: desmosomal cadherin, armadillotgins, and plakins. In the
corneodesmosome, desmoglein 1 and desmocollin hipers of the cadherin family)
interact with plakoglobin and plakophilins (armaalibroteins), which attach to
envoplakin and periplakir{g 1D). As described above, envoplakin and periplakin
heterodimers are crosslinked to the involucrinfetafto bind keratin filaments. The
corneodesmosin is another important modulator ofemdesmosomal adhesight is
stored in the lamellar bodies and secreted intarttnacellular space of the SC to
interact with cadherin proteins and support thdhresion.

Abnormalities of the corneodesmosome make thekine to hyper-desquamation
(peeling) of the corneocytes, which may lead to $ldrrier defects and inflammation. A
recent study revealed that the homozygous mutaficlesmoglein 1 results in severe
dermatitis (erythroderma) accompanied by palmoplakeratoderma, hypotrichosis,
and increased serum IgE (EPKHE, also known as saamatitis, multiple allergies,
and metabolic wasting [SAM] syndrom&)importantly, EPKHE patients often have
multiple food allergies. In contrast, deficiencycarneodesmaosin causes peeling skin



232 syndrome 1, which is characterized by dermatiégese pruritus, food allergies,

233  repeated episodes of angioedema and urticarianastéind increased serum ITfE.

234  Since these corneodesmosome-deficiency-orientedsks share several clinical

235 features of AD, this deficiency may also contribtd\D pathogenesis; however, this
236  remainsto be demonstrated.

237

238

239 CONREOCYTE DESQUAMATION

240 At the surface layer of the SC, corneocytes arstemtly shed. This phenomenon is
241  called desquamation and it is an important asgesCohomeostasis. Corneocyte

242  desquamation is mainly regulated by a proteolydcade of kallikrein (KLK)-related
243  peptidases, such as KLK5, KLK7 and KLKi4The activity of these proteases is

244  pH-dependent and is enhanced when the pH in this Blevated. Their activity is also
245  strictly regulated by a cocktail of protease intobs, including lymphoepithelial

246  Kazal-type 5 serine protease inhibitor (LEKTI) eded by serine protease inhibitor
247  Kazal-type 5 8PINK5).>*KLKs and LEKTI are stored in lamellar bodies andrseed
248 into the intercellular space at the SG-SC interface

249 In AD patients, the skin surface pH is increasedgast in part due to the decreased
250  production of UCA derived from FLGFg. 2).>° As such, KLK activity is often

251  enhanced in the AD skin. This condition is thouighinduce an adverse effect on the
252 SC barrier through multiple mechanisnisy(3). Firstly, KLKs cleave

253  corneodesmosomal cadherins to promote corneocgtpidmation. Secondly, KLKs
254  activate protease-activated receptor (PAR)-2, adkem-coupled receptor on

255  keratinocytes. Upon activation, PAR-2 signals leaduppression of lamellar body
256  secretion via the downregulation of lipid-procegsimzymes?® Finally, activated KLKs
257 increase the generation of interleukin (ILg-and IL-13, whose preforms are

258  abundantly stored in the cytosol of corneocytedeé, IL-1 cytokines are increased in
259  the SC of AD patients and their enhanced produdti@ssociated with FLG

260  deficiency?’

261 Two genetic polymorphisms that result in increase# activity have been linked to
262  AD pathogenesis: gain-of-function mutationsibK7, andloss-of-function mutations
263  in SPINKS5. A 4bp insertion polymorphism &fLK7 was first reported to be associated
264  with AD in the UK>® however this was not replicated in a French st8&PINK5 is

265 known as the gene responsible for Netherton syndramwhich patients display a
266  broad range of allergic manifestations, such adik®dermatitis, food allergies,

267  asthma, hay fever and markedly elevated serumdgé&ld®® A significant association
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between polymorphisms BPINK5 and AD has been found in the UK and Asian
population€®but not in the French populatiGhFurther, a single nucleotide
polymorphism in the gene encoding PARF2RL1) has been associated with AD in the
Korean populatiofi* This mutation is thought to increase the stabditfF2RL1 mRNA
transcripts. These studies suggest that the calafjemitations in protease activity in

SC are linked to AD pathogenesis in specified pafahs.

TIGHT JUNCTION IN AD PATHOGENESIS
In addition to the SC, tight junctions (TJs) amistures that are essential to the
integrity of the skin barrier. In the skin, TJsIsedjacent keratinocytes in the SBd
1B) and act as a barrier for water and solftdsls are composed of transmembrane
proteins, particularly the claudin and occludin figes, and several cytosolic scaffold
proteins, including zonulae occludens (ZOs). Thiksipensable role of TJs in skin
homeostasis was first demonstrated using claudafitidnt mice, which die within 24
hours of birth from severe dehydratirimportantly, these mice had no abnormalities
in the production of SC components. A recent suglgg an AD model in mice showed
that the expression of TJ proteins was suppresseagdskin inflammation but was not
affected by FLG deficiend}/.

In humansCLDN1 (encoding Claudin 1) expression is reduced in lesienal skin
of AD patients, and an association betw€aDN1 polymorphisms and AD
susceptibility has been report&drhese observations suggest that an impairmenisn T
contributes to the barrier dysfunction observednpatients. Since most of the skin is
covered with the SC, TJs appear to act as a sdcendf defense against external
pathogens; however, TJs are likely to act as timegoy barrier structure in skin
appendages lacking SC, such as hair follicles amésglandsKig 1A). Indeed, it is
well known that hair follicles are important “shuoutes” into the skin for drugs and
chemical€® In accordance with this notion, widespread erwpiifections withther pes
simplex virus or molluscum contagiosum virus, which enter the body through hair
follicles, often occur as a complication of B/ These observations suggest that such
skin appendages are the “security holes” of the, garticularly in AD patients with TJ
deficiency.

IMMUNOLOGICAL MODULATION OF SKIN INTEGRITY
Accumulating evidence suggests that immune ceflisence skin integrity through the
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production of cytokine&” " Although the complex inflammatory cascade thatei
AD skin lesions remains incompletely understooditiple lines of evidence strongly
suggest that AD immunopathogenesis is driven bliacell-skewed immune
responsé? This is further supported by recent clinical tdakta demonstrating that
blocking the signalling from the IL-4 and IL-13gtlbwo major ‘type 2’ cytokines,
ameliorates AD° Previous studies have shown that IL-4 and IL-18mtegulate the
production of: 1) FLG and keratins; 2) the CE comgras (loricrin and involucrin); 3)
cell adhesion molecules (desmogleins, ZO-1); antedgmide lipids. IL-31, another
Th2 cell-derived cytokine, also downregulates Fix@ression'® Interestingly, a recent
study has shown that IL-33, an alarmin that is dlantly produced in the epidermis of
AD patients, has the potency to downregulate FL@ession as well’

The physiological role for this adverse skin msge to type 2 cytokines remains
unclear, but may have evolved to facilitate antiagde responses and/or wound healing.
However, in the context of AD, this ‘type 2’ immuresponse creates an exacerbation
loop between the inherited barrier deficiency anchune dysregulation, resulting in the
chronic, persistent skin inflammation that can dodyalleviated by
immunosuppression.

BARRIER DEFICIENCY AND THE DEVELOPMENT OF ALLERGIC

DISEASES

It is now evident that epicutaneous antigens aomgtsensitizer of allergic disorders.
Mouse studies have demonstrated that food allargyaathma can be induced via
epicutaneous sensitization and are enhanced uistaptéd skin barrie?%In human,
sequential acquisition of allergic diseases (atapacch) are frequently observed in both
AD and some genodermatoses, such as Nethertonosgadmutation irSPINK5),2*
peeling skin syndrome T6rneodesmosin)®* and SAM syndromelesmogleinl)>

(Table 1, asterisks), which strongly suggests that skimiéadeficiency contributes to
the development of atopic march. Eosinophilic esgis is another chronic immune
disorder that is associated with hypersensitivatfobd, and has recently been linked to
the mutations irfCalpain 14 (CAPN14), a protease specifically expressed in the
esophagu&® An in-vitro expriment showed that overactivatidnGAPN14 results in

loss of Desmoglein®* These studies demonstrate that barrier deficienayucosal
epithelium may also contribute to the inductioraldéérgic disorders. Importantly, recent
clinical trials have shown that epicutaneus antiggposure induces sensitization while
oral antigen consumption induces immune toler&néé.
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In the presence of barrier defects in the SC, foraintigens readily penetrate into the
epidermis and activate innate immune receptorspartiegrn recognition receptors. This
results in the production of Th2-promoting cytoldnsuch as IL-33, IL-25 and thymic
stromal lymphoproteins (TSLP), which are producedskin resident cells. Animal
studies have demonstrated an essential role folPTiBlthe epicutaneous induction of
food allergy with AD-like skin lesions. IncreasedbOP in the epidermis elicits the
accumulation of basophils into the skin that preendh2-cytokine responsé&d.in
addition, TSLP signaling on epidermal Langerhans amay be important for IgE
production during the epicutaneous sensitizaticiood allergens’

CONCLUSION —-TOWARD THE BETTER MANAGEMENT OF AD

Skin barrier deficiency and excessive immune respsmre two sides of the same coin
in AD pathogenesis, and the inflammatory resposdmih precipitated by and
maintained by barrier dysfunction. Thus, while #pautic intervention in AD typically
targets the inflammation though the use of immuppsessive drugs, it is the
maintenance of skin barrier function that is thg teeeffective management of AD.
Recently, two groups investigated whether protectine skin barrier with a moisturizer
during the neonatal period prevents the developmiehb.?® 8 They reported that
moisturizer treatment at an early stage of lifaiitesl in 32 to 50% less AD prevalence.
These results suggest that reinforcing the skindydunction in the neonatal period is a
promising strategy for the prevention of AD andcepdneous sensitization to
environmental allergens.

FLG replacement therapies have also been propdsede include: 1) Use of
“read-through” drugs, which may enable keratinosyteskip the nonsense mutation of
theFLG gene; 2) drugs that enhance FLG production; artd@gal application of FLG
metabolites, such as UCA and P&MRead-through drugs, such as gentamicin and
PTC124 (Ataluren), are currently being trialed dthner genetic diseas&s?>A number
of drugs have been proposed to enhance FLG praduaotvitro, or in animal models,
including agonists of peroxisome proliferator-aatad receptors (PPARY)a
serine-rich diet? apigenin® JTC801%° JTE-052°" and ured® However, the efficacy of
these strategies in AD remains to be tested, arydomlg apply to patients with
heterozygous, but not homozygok&G mutations. Intensive research efforts to
identify promising candidates that enhance skimiéafunction is ongoing and is
expected to lead to better management of AD im#as future.
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733 FIGURE LEGENDS:

734  FIG 1: Barrier structures of the skiA, The skin consists of three layers: the epidermis,
735  the dermis, and subcutaneous adipose tissue. Regharads identify the pores of hair
736  follicles and sweat glandB, The structure of the epidermis. The red line@sents

737  tight junctions.C, The “bricks and mortar” structure of the S%;.The structures of the
738  CE and corneodesmosome.

739

740  FIG 2: Schema of the FLG metabolic process. In the 3&ilgggrins are stored in

741  keratohyalin granules and then cleaved into FLG onmgrs. FLG monomers bind to
742  keratin filaments in corneocytes. At the upper tayfehe SC, FLG monomers are

743  released from keratins and cleaved into free amaids, followed by conversion into
744  PCA and UCA. Asterisks denote the genes whose mnshave been linked to the AD
745  pathogenesis.

746

747  FIG 3: Kallikrein (KLK) function in the SC. 1) KLKs clee corneodesmosomal

748  cadherins to promote desquamation. 2) KLKs acti?#&2 to regulate lipid synthesis
749  and immune responses. 3) KLK cleavage of IL-1 prafo IL-1 preforms are stored in
750  the cytosol of corneocytes and escape into thecellalar space upon damage.

751  Asterisks denote the genes whose mutations havelinged to the AD pathogenesis.
752

753  TABLE 1: A list of genes involved in the CE formation pess. The genes that their
754  mutations have been linked to AD pathogenesistares in bold. Asterisks denote the
755  diseases that may represent AD-like dermatitishéncolumn of human associated

756  disease, the modes of inheritances (AD; autosoorairthnt, AR; autosomal recessive)
757  are shown.

758

759  Supplementary TABLE 1: A list of “AD-associated” loci that are identitidoy GWAS.
760  This table is modified from the data shown in &3. We should note that some of these
761 loci are still unwarranted (see ref. 23 for detail)



TABLE 1

Gene

Associated human

Gene Function ' Knockout mice phenotype | Reference
symbol disease
. . Keratin filaments . . Skin barrier deficiency 1,1820
Filaggrin FLG aggregation Ichthyosis vulgaris [AD] Spontaneous dermatitis
£ Filaggrin2 FLG2 Similar to FLG? &
2 | Capl/Prss8 PRSS8 Cleave proFLG to FLG Skin barrier deficiency 2
% SASpase ASPRV1 | Cleave proFLG to FLG SC dehydration 13
T ZeP“.dy'ar ginine PADI | Citrullilation of FLG u
lei minase
9 | Caspaseld CASP14 | FLG metabolism Skin barrier deficiency =
YL | calpaini CAPN1 | FLG metabolism =
Bleomycin . Penetrant ring-tail 16
hydrolase BLMH FLG metabolism dermatitis
Involucrin VL Scaffold of CE No skin phenotype ®
o | Envoplakin EVPL Plakin family No skin phenotype £S
. & | Periplakin PPL Plakin family No skin phenotype s
= % Loricrin LOR Reinforce CE Shiny skin 39
§ g | Smal prolinerich SPRR | Reinforce CE 99
£ © | protein
5 ‘E | Transglutaminase 1 TGM1 Crosslink CE proteins ARCI-1[AR Skin barrier deficiency i
8 Transglutaminase 3 TGM3 Crosslink CE proteins Skin barrier deficiency i
. . . Peeling skin syndrome 2 4
Transglutaminase 5 TGM5 Crosslink CE proteins [AR]
- - _ Skin barrier deficiency 46,102
55 12R-lipoxygenase ALOX12B | Ceramide processing ARCI-2[AR Neonatal death
SES . - - —
=& | Epidermal . . : Skin barrier deficiency 46,103
= E | lipoxygenase 3 ALOX3E | Ceramide processing ARCI-3[AR] Neonatal death
2 5 | ATP-binding Transport of lamellar | ARCI -4A/-4B [AR]
8 8| cassette subfamily ABCA12 | e =) Skin barrier deficiency CTBEE
& T | Amember 12 Y & Y
£5 . Secretion of lamellar - 48,49
Tmem79/mattrin TMEM79 bodies Spontaneous dermatitis
Desmogleinl DSG1 Cadherin family SAM syndrome* [AR st
o | Desmocollinl DCN1 Cadherin family Skin barrier deficiency 105
g Plakoglobin JUP Armadillo family Naxos disease [AR Embryonic lethal 106
) - " . Skin fragility syndrome PKP3-deficient mice 107
% Plakophilin PKP Armadillo family [AR] develop dermatitis
§ (Envoplakin) EVPL Plakin family No skin phenotype 3
c | (Periplakin) PPL Plakin family No skin phenotype &t
3 Support the ) ) ) ) .
O
Corneodesmosin CDSN corneodesmosome P:eR“ S ﬁlkm ba;lnsr dﬁfl(:lency £2
adhesion [AR] eonatal deat
c I ) Skin inflammation *(when | 108
_% Kallikreins KLK5 Serine protease overexpr )
- : Skin inflammation *(when | 109
§ Kallikrein7 KLK7 Serine protease overexpr. )
g Kallikrein14 KLK14 | Serine protease 10
o | Lympho-epithelial
% | Kazal-typerelated SPINK5 | Serine protease inhibitor l\)la\egwrton EEE Z‘;O”(?rtgig?h dueto R,
8 | inhibitor (LEKTI) el Y
5 | Protease-activated PAR? Receptor on Altered skin immune o
O receptor 2 keratinocytes response
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Supplementary TABLE 1:

Variant Nearest gene OR p-value
rs61813875 | FLG 161 | 5.6E-29
rs10791824 | OVOL1 112 | 2.1E-19
rs12188917 | RAD50/IL13 1.14| 4.0E-17
rs6419573 IL18RY/IL18RAP 111 | 15E-13
rs2212434 Cl1orf30/LRRC32 1.09| 4.6E-13
rs4809219 RTELL/TNFRS-6B 0.90| 7.0E-13
rs2918307 ADAMSILO/ACTL9 112 | 4.6E-12
rs2041733 CLEC16A 092 | 25E-11
rsl2730935 | IL6R 1.08| 6.1E-11
rs2038255 PPP2R3C 111 | 1.8E-10
rs7127307 ETSL 0.93 | 3.9E-10
rs7512552 ClorfST/MRPS21 0.93 | 9.1E-10
rs6473227 MIR5708/ZBTB10 0.93 | 1.4E-09
rs6602364 IL15RA/IL2RA 1.08 | 1.5E-09
4:123243592 | KIAA1109 (1L2) 1.08 | 4.2E-09
rs4713555 HLA-DRB1 0.91| 5.4E-09
rs10214237 | IL7TRICAPSL 0.93| 2.9E-08
rs10199605 | LINC00299 0.93| 3.4E-08
rs4643526 PUSI0 1.09| 3.5E-08
rsl2951971 | STAT3 113 | 4.1E-08
rs7625909 SMBTV/RFT1 1.07 | 4.9e-08
rs112111458 | CD207/VAX2 091 | 1.4E-07
rs2592555 PRR5L 0.93| 8.7E-07
rs2944542 ZNF365 094 | 1.2E-06
rs145809981 | MICB 0.91| 1.5E-06
rs16948048 | ZNF652 1.05| 1.7E-05
rs1249910 CCDCB80/CD200R1L 0.98| 1.4E-01
rs7701890 TMEM232 1.02 | 3.6E-01
rs6780220 GLB1 1.01| 4.0E-01
rs4312054 OR10A3/NLRP10 1.00| 7.4E-01
rs4733404 CARD11 1.00| 8.1E-01




