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Background: The upper airways present a barrier to inhaled
allergens and microbes, which alter immune responses and
subsequent risk for diseases, such as allergic rhinitis (AR).
Objective: We tested the hypothesis that early-life microbial
exposures leave a lasting signature in DNA methylation that
ultimately influences the development of AR in children.
Methods: We studied upper airway microbiota at 1 week, 1
month, and 3 months of life, and measured DNA methylation
and gene expression profiles in upper airway mucosal cells and
assessed AR at age 6 years in children in the Copenhagen
Prospective Studies on Asthma in Childhood birth cohort.
Results: We identified 956 AR-associated differentially
methylated CpGs in upper airway mucosal cells at age 6 years,
792 of which formed 3 modules of correlated differentially
methylated CpGs. The eigenvector of 1 module was correlated
with the expression of genes enriched for lysosome and bacterial
invasion of epithelial cell pathways. Early-life microbial
diversity was lower at 1 week (richness P 5 .0079) in children
with AR at age 6 years, and reduced diversity at 1 week was also
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correlated with the same module’s eigenvector (r 5 20.25; P 5
3.3 3 1025). We show that the effect of microbiota richness at 1
week on risk for AR at age 6 years was mediated in part by the
epigenetic signature of this module.
Conclusions: Our results suggest that upper airway microbial
composition in infancy contributes to the development of AR
during childhood, and this trajectory is mediated, at least in
part, through altered DNA methylation patterns in upper airway
mucosal cells. (J Allergy Clin Immunol 2020;nnn:nnn-nnn.)

Key words: Allergic rhinitis, microbiota, DNA methylation, gene
expression, early life, upper airways

Allergic rhinitis (AR) is an inflammatory disease of the nasal
mucosa that affects more than 400 million people worldwide.1 In
contrast to other forms of rhinitis, AR is also associated with
allergic sensitization (AS),mainly to inhaled allergens. The disease
itself is complex, with important contributions from both genetic
and environmental factors. For example, a recent genome-wide as-
sociation study ofAR inmore than 200,000 individuals reported 24
independent loci contributing to risk,2 whereas many nongenetic
factors, such as geography, season of birth, presence of siblings,
early-life aeroallergen exposure, immune response patterns, and
exposures to infections, have also been associated with risk of or
protection from AR.1,3,4 The epigenome bridges these 2 features
by mediating the effects of the host response to environmental ex-
posures on gene expression, thereby modifying disease risk pro-
files. DNA methylation (DNAm) is a widely studied epigenetic
modification, and methylation patterns in airway cells have been
associated with asthma and asthma-related phenotypes,5-8 but
only 1 previous study has explored the relationship between airway
cell DNAmand asthma-related phenotypes using themost compre-
hensive array currently available.5

Early-life microbiota can shape host immune trajectories and
influence subsequent development of disease.9 During the first
year of life, the microbiota is highly dynamic, ultimately ‘‘seed-
ing’’ the microbial communities that become established at
different body sites.10,11 We previously demonstrated that the mi-
crobial composition of the upper airways at age 1monthwas asso-
ciated with subsequent development of asthma, using both
culturing12 and sequencing13 techniques. Similar associations
with early-life microbiota have been reported by others for respi-
ratory tract infections14,15 and rhinitis.16

Because the upper airways are the first site exposed to inhaled
particles and provide signals that ultimately modulate disease
susceptibility, we hypothesized that early-life exposures,
1
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reflected in upper airway microbiota composition during the first
months of life, leave lasting signatures in airway DNAm patterns
that ultimately influence the development of AR in childhood.
Our results revealed that upper airway microbiota diversity at age
1 week was associated with both DNAm patterns and AR at age 6
years. Although the effect of microbial richness at 1 week on AR
risk at age 6 years was statistically significant, the conditional
effect (controlling for the epigenetic signature) was 61% smaller
and not statistically significant, suggesting that a DNAm signa-
ture mediates the effect of microbial richness on the development
of AR.
METHODS

Study population
The Copenhagen Prospective Studies on Asthma in Childhood (COP-

SAC)2010 is an ongoing prospective population-based cohort of 700 Danish

mother-child pairs recruited at 2 sites near Copenhagen. The inclusion and

exclusion criteria and baseline characteristics are detailed elsewhere.17-19 At

the children’s sixth-year visit, rhinitis symptomswere assessed in 657 children

and sensitization to 10 aeroallergens was measured in 538 of these children.

Among the latter, children who presented with rhinitis symptoms and sensiti-

zation to at least 1 aeroallergenwere classified as havingAR (n5 40); children

with neither AR nor sensitization were classified as controls (n 5 428) (see

Table E1 in this article’s Online Repository at www.jacionline.org). Of the

468 included children, 236 were males and 232 were females. Children who

were sensitized but without concomitant AR symptoms (n 5 70) were

included in the RNA and DNAm normalization steps, but excluded from all

primary analyses.

AS was determined from IgE measurements to 10 aeroallergens (Derma-

tophagoides pteronyssinus [d1], cat [e1], horse [e3], dog [e5], grass [g6], birch

[t3], mugwort [w6], Cladosporium herbarum [m2], Aspergillus fumigatus

[m3], and Alternaria tenuis [m6]) and/or skin prick test to 10 common aero-

allergens (Alternaria spp, birch, cat, Cladosporium spp, Dermatophagoides

farinae, D pteronyssinus, dog, grass, horse, and mugwort) in 538 children, as-

sessed during the samevisit at which the nasal brush sampleswere obtained, as

described.20 Children were considered sensitized if they were positive for at

least 1 specific IgE (>_0.35 kUA/L) or 1 skin prick test (wheal >_3 mm larger

than that with negative control, n5 109). Rhinitis cases were defined as reoc-

curring sneezing and blocked or runny nose that severely affected the well-

being of the child in the previous 12 months during periods without an accom-

panying common cold or flu, alone for nonallergic rhinitis (n 5 34) or with

congruence between symptoms, relevant allergen exposure, and sensitization

for AR (n 5 40). Atopic dermatitis (n 5 60) was defined according to the

criteria of Hanifin and Rajka and more details can be found in Thorsteinsdottir

et al.21 Food sensitization (n 5 71) was defined the same way as AS, but for

egg whites (f1), cow milk (f2), wheat (f4), and peanut (f13). None of the cases

was treated with nasal steroids at the time of sampling.

The following 17 variables were also assessed in the children: clinical

diagnosis of maternal or paternal rhinitis, mode of delivery, season of birth,

duration of breast-feeding, older siblings, and exposure or treatment during

pregnancy or in the first few years of life with fishoil and/or vitamin D
supplementation, antibiotics, pets (cat or dog), smoking in household, and

lower respiratory tract infection. Details on their measurements and defini-

tions can be found in Table E2 in this article’s Online Repository at www.

jacionline.org.

At the sixth-year visit, DNA and RNA were collected from inferior

turbinate epithelial cell scrapings from 562 children. Samples were obtained

using a Rhino-probe nasal curette, stored in RNAprotect Cell Reagent

(Qiagen, Germantown, Md), and then cryopreserved at 2808C until

nucleotide extractions. After removing samples that did not pass quality

control (QC) or that did not have genotyping data available (n5 60), 454 and

381 samples were retained for DNAm and gene expression studies,

respectively (see Fig E1 in this article’s Online Repository at www.

jacionline.org), of which 348 and 288 were evaluated for AR (Table E1).

The 60 samples without genotypes were excluded so that we could perform

QC for sample swaps and correct for ancestry principal components (PCs)

in the analyses. The overlapping samples between time points and measure-

ments are described in Fig E2 in this article’s Online Repository at www.

jacionline.org. The microbiota was studied in hypopharyngeal samples

collected from children at age 1 week, 1 month, and 3 months in 549, 647,

and 657 children, respectively. Details on sampling, processing, and inclusion

criteria for the microbiota studies were previously described.22 Of these chil-

dren, 361 (1 week), 441 (1 month), and 445 (3 months) were evaluated for AR

at age 6 years (Table E1).

The study was conducted in accordance with the guiding principles of the

Declaration of Helsinki and was approved by the Local Ethics Committee (H-

B-2008-093) and the Danish Data Protection Agency (2015-41-3696). Both

parents gave written informed consent before enrollment.
DNAm studies
Methylation profiles were assessed in DNA from upper airway mucosal

cells, using the Illumina 850k EPIC array (Illumina, SanDiego, Calif). QC and

filtering were performed using the R package minfi (version 1.30).23

Of 866,836 probes on the array, we removed 19,040with detectionP value of

more than .01 in 90% of the samples, 19,479 located on sex chromosome,

87,148 that overlapped a known common single nucleotide polymorphism (mi-

nor allele frequency > 0.05), and 34,057 that mapped to multiple locations on

the bisulfite-converted genome (cross-hybridizing).24 The remaining 707,112

CpGs that passed QC were used in further analyses. Normalization was per-

formed using the SWAN algorithm25 from the R package minfi and quantile

normalization from the R package lumi (version 2.36).26 We used M-values

in analyses. Principal-component analysis was used to identify the effect of con-

founding variables on DNAm: DNA concentration, array, and site of sampling

significantly correlated with at least 1 of the first 10 components.

To adjust for potential batch effects, sampling site and methylation array

were regressed out of the DNAm data using ComBat (R package sva version

3.32.1).27 Latent factors were defined after protecting the AR phenotype using

the CorrConf method28 and included as covariates to correct for hidden un-

wanted variation. Sex and the first 2 ancestry PCs were also included as cova-

riates in DNAm and gene expression analyses.

To assess methylation differences between children with and without AR,

we used the M-values in a linear model (limma29, version 3.40.6), with sex,

DNA concentration, ancestry PCs, and latent factors included as covariates.

Differentially methylated CpGs (DMCs) were assessed using the

Benjamini-Hochberg procedure (false-discovery rate [FDR] < 5%).
Gene expression studies
RNA extraction was performed using SMART-seq V4 Ultra Low input

RNA kit, and cDNA libraries were prepared with the Illumina Nextera XT kit,

according to the manufacturer’s instructions. Concentration and quality were

assessed using Agilent 2100 Bioanalyzer (Agilent Technologies, Santa Clara,

Calif). Sequencing was performed on the Illumina HiSeq 2500 platform using

6 pools of 91 to 95 samples in 5 flow cells each. Read quality was assessed

using FastQC30 and MultiQC,31 for which all samples passed QC. FastQ files

were then combined and RNA-seq reads were mapped to the genome (hg19)

using STAR32 (v2.5.1). All QC filtering of samples can be found in Fig E1.
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Samples with no genotype available (n 5 60) or less than 8M exon mapped

reads were removed (n5 98).We used VerifyBamID33 to detect sample swaps

or sample contamination, and subsequently removed another 23 samples.

Outlier samples that had more than 3-fold absolute deviation from the median

count per millionwere removed (n5 17). A total of 381 samples were used for

the normalization steps. Genes with less than 1 count per million in more than

85% of the samples (n 5 43,983) or located on X and Y chromosomes were

removed (n5 906). Median number of mapped reads was 10,936,189 (range,

8,044,014-86,750,179). Normalization of the 15,363 remaining genes using

log-transformed count per million was performed using the trimmed mean

of M-value34 method and variance modeling (voom).35 Batch effect and cova-

riates were identified using principal-component analysis: RNA concentra-

tion, RNA integrity number, site as well as sex for the same reason

mentioned above.
Assessing cell-type–specific gene expression

profiles
To estimate the cell-type composition of the upper airway mucosal

samples, we used gene expression profiles in these samples and cell-type–

specific signatures described in a previous single-cell RNA sequencing study.

Those signatures were derived from nonsurgical nasal scrapings from 3

healthy subjects and 6 subjects with inflamed airways (see Supplementary

Table 3 extended Fig 6, D, in Ordovas-Montanes et al36).

Using the lists of predictor genes for basal cells, ciliated cells, secretory

cells, eosinophils, macrophages, mast cells, neutrophils, and T cells,36 we

evaluated both whether the latent factors accounted for cell-type composi-

tion across samples and differences in cell composition between the AR

cases and controls. For these analyses, we extracted expression data for

the gene predictors of each cell type from normalized gene expression after

the covariates sex, RNA concentration, RNA integrity number, and clinic site

were regressed out. We used the first principal component of the cell-type

signature genes for each cell type and first correlated their PC1 eigenvectors

with the latent factors from the gene expression and DNAm data using

Spearman correlation, and then tested for association between each cell-

type signature and AR.
Co-DNAm networks using weighted gene

coexpression network analysis
MethylationM-valuesofDMCsbetweenARcases andcontrolswereused to

create comethylationmodules using theRpackageweighted genecoexpression

network analysis (weighted gene coexpression network analysis [WGCNA];

version 1.68).37Weused a soft thresholding power of 4 and requiredmodules to

include at least 30DMCs. Correlations between the eigenvectors for eachmod-

ule with microbial diversity, relative abundance (RA) measures, and normal-

ized gene expression were performed using Spearman correlation.
Pathway and functional features enrichment

analyses
Gene-related pathways were assessed using iPathwayGuide (Advaita

Corporation 2019) (pathways >1 genes and FDR 10%).
Enrichment permutation
To determine whether CpGs were enriched in specific analyses, we

performed 10,000 random resampling of the number of CpGs observed.

Empiric P values were determined on the basis of the number of time the

permuted number was equal to or greater than the observed. If the observed

value was never observed, P was considered as less than 1 3 1024.
Collection and analysis of microbiota samples
Fluid was aspirated with a soft catheter passed through the nose to the

hypopharyngeal region. Catheters were immediately flushed with 1 mL of
sterile 0.9% NaCl solution and stored at 2808C. Sampling happened at the

COPSAC clinic during visits.

DNAwas extracted from the cells using the Mobio Powersoil kit (Qiagen,

Germany) on the epMotion 5075 robotic platform (Eppendorf, Germany), and

amplified using a 2-step PCR reaction with the primers 515F38 and 806R39 tar-

geting the hypervariable region V4 of the 16S ribosomal RNA gene.

Sequencing was performed on the Miseq platform (Illumina) using the v2

kit (paired-end 250bp reads). A full description of the laboratory workflow

has been described previously.40 Sequencing adapters were removed using

Cutadapt v1.15.41 Reads were analyzed using QIIME 2 v2018.2.042 and deno-

ized using DADA2.43 Resulting amplicon sequence variants were compared

with the 99% identity clustered SILVA database v13244 using a naive Bayes

classifier45 trained on the amplified region. Diversity was quantified as rich-

ness (number of amplicon sequence variants per sample) and by the Shannon

diversity index. To assess RA, amplicon sequence variants were filtered at the

genus level, keeping those present in more than 10% of the children within

each of the 3 time points and with a median RA greater than 0.01% (42

taxa). We used the analysis of composition of microbiome algorithm to assess

the differences in RA between AR cases and controls.46 Rarefaction of the

richness value was performed using the vegan R package.47 For more robust

data, samples with more than 12,000 reads were considered.
Mediation analyses
To assess whether the association between early-life airways microbiota

diversity and AR at age 6 years was mediated through DNAm patterns, we

used logistic regression using the equations shown below, which first exclude

(1) and then include (2) the eigenvectors from the WGCNA module of DMCs

in the model. The eigenvector11 was used to compensate for values less than

0, and the diversity measures were log-transformed to use in logistic

regression.

YAR 5 b01brichness11Sex1Read counts ð1Þ

YAR 5 b01brichness21bblue module21Sex1Read counts ð2Þ

We calculated the proportion of risk mediated by DNAm using Equation 3.

% explained 5
ðbblue module23bblue module4Þ

ððbblue module2 3 bblue module4Þ1brichness2Þ
ð3Þ

Yrichness 5 b01bblue module4 ð4Þ

Equation 4 is a linear regression of richness at 1 week and the eigenvectors

from the WGCNA blue module, for which the estimate is used in Equation 3.

We also used mediation analyses to assess whether the association between

early-life airways microbiota diversity and AR at age 6 years could be

explained by other measured exposures (see Table E3 in this article’s Online

Repository at www.jacionline.org).
RESULTS

DNAm profiles in nasal mucosal cells differ between

children with and without AR
We first examinedDNAmprofiles in nasal mucosal cells at age 6

years to identify patterns that differed between AR cases and
controls using 707,112 CpGs on the array that passed QC. We
identified 956 AR DMCs (FDR < 5%), of which 741 (78%) were
less methylated in cells from children with AR (see Fig E3 and
Table E4 in this article’s Online Repository at www.jacionline.
org). To assess the specificity of the DMCs for AR, we repeated
the analysis considering AS, atopic dermatitis, sensitization to
food allergens, and rhinitis alone at age 6 years. We detected 228
DMCs associated with AS at an FDR of 5%, of which 183 (80%)
overlappedwith ARDMCs.Only 1DMC remained after excluding
AR fromAS cases (45 cases and 331 controls). We observed only 4

http://www.jacionline.org
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FIG 1. Latent factors capture cell-type composition in upper airway mucosal cells at age 6 years. Spearman

correlations between cell-type signatures and (A) DNAm latent factors (n 5 266) and (B) gene expression

latent factors (n 5 288). Cells outlined by red boxes are the Spearman correlation P values that remain sig-

nificant after applying Benjamini-Hochberg procedure (P < .05). C, No differences between AR cases and

controls were observed for any of cell-type signatures (Wilcoxon rank-sum test). Latent factors were not re-

gressed out for this analysis. sIgE, Specific IgE.

TABLE I. Descriptions of WGCNA comethylation modules

Modules Blue Brown Turquoise

N DMCs 260 161 371

More methylated in AR,

n (%)

121 (46.5) 34 (21.1) 10 (2.7)

N-associated DMCs in

a previous study of

upper airway

mucosal cells (5)

233 (P < 1 3 1024) 128 (P 5 .11) 314 (P < 1 3 1024)

Asthma (n 5 84; 8.7%) 22 (P 5 .628) 4 (P 5 4 3 1024)* 56 (P < 1 3 1024)

FENO (n 5 717; 74.3%) 232 (P < 1 3 1024) 128 (P 5 .086) 312 (P < 1 3 1024)

Allergic asthma (n 5
277; 28.7%)

107 (P < 1 3 1024) 25 (P < 1 3 1024)* 134 (P 5 2 3 1024)

N-correlated genes (r >

j0.15j)�
228 248 126

Top enriched KEGG

pathway

Lysosome Ribosome Inflammatory mediator

regulation of transient

receptor potential

channels

FENO, Fractional exhaled nitric oxide; KEGG, Kyoto Encyclopedia of Genes and Genomes

Uncorrelated DMCs (gray module) are not shown.

Permutations P values are described in the Methods section.

*Significant depletion of overlapping CpGs.

�Correlated genes have a r > j0.15j using all children first (n 5 266), but remain correlated when testing only in control children (n 5 250). All pathways are listed in Table E8.
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DMCs associated with rhinitis, 3 of which overlapped with AR
DMCs. None remained after excluding AR from rhinitis cases
(23 cases and 387 controls). No DMCs were identified for atopic
dermatitis or sensitization to food allergen. These results highlight
the specificity of these associations with the AR phenotype.

To assess the robustness of our findings, we compared the DMCs
identified in our study with those reported in Cardenas et al,5 who
explored the relationships between methylation and asthma-
related traits in DNA from nasal swab cells from 547 multiethnic
teenage children, using the sameDNAmarray as in our study. Over-
all, 722 of the DMCs in our study (76%) were associated with at
least 1 phenotype in their study5 (Table E4). Of the 8777 DMCs re-
ported in the Cardenas et al study for any phenotype, 4501 (51%)
were associated with AR in our study at P < .05 (see Table E5 in
this article’s Online Repository at www.jacionline.org). This indi-
cates that DNAm results are both consistent and stable prepuberty
and postpuberty and across ethnicities, and that many DMCs are
shared across allergy- and asthma-associated phenotypes.

Because mucosal cells are a mix of cell types, we used upper
airway cell–specific gene signatures to explore the possibility that
DNAm differences between AR cases and controls were due to
cell-type heterogeneity between AR cases and controls36 (Fig 1).
We first tested for correlation between each cell-type–specific
gene expression signatures and each latent factor28 for DNAm
and for gene expression (see Methods). There were strong corre-
lations between cell-type signatures and latent factors 1, 3, 6, and

http://www.jacionline.org
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FIG 2. Early-life microbiota composition and the development of AR at age 6 years. Differences between

children with AR compared with children without AR for (A) richness and (B) Shannon index at 1 week (n5
361), 1 month (n 5 441), and 3 months (n 5 445) of life. sIgE, Specific IgE. Significant differences (P < .05;

Wilcoxon rank sum test) are indicated by asterisk. Richness at 1 week P 5 .0079, median AR 517 and

controls 5 21; 1 month P 5 .34, median AR 5 25 and controls 5 27; 3 months P 5 .40, median AR 5 36.5

and controls 5 32. Shannon diversity index at 1 week P 5 .30, median AR 5 1 and controls 5 1.11; 1 month

P 5 .045, median AR 5 1.05 and controls 5 1.38; 3 months P 5 .76, median AR 5 1.59 and controls 5 1.53.
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7 for DNAm (Fig 1, A) and latent factors 1 through 4 for gene
expression (Fig 1, B). Importantly, none of the cell-type signa-
tures differed betweenAR cases and controls (Fig 1,C). These ob-
servations indicated that the latent factors effectively accounted
for variation in cell composition and that differences in cell
composition do not underlie the observedmethylation differences
between the AR cases and controls.
Comethylation networks of DMCs reveal gene

expression signatures and pathway enrichments
We used the R package WGCNA to further characterize the

DMCs in nasal mucosa cells and assess their correlation
structure.37 Of the 965 DMCs, 792 (82%) formed 3 modules of
correlated (comethylated) DMCs (Table I). Unsurprisingly, all 3
modules were correlated with AR (Wilcoxon rank-sum test–
adjustedP < 1028; see Table E6 in this article’s Online Repository
at www.jacionline.org). Of all the exposure variables measured in
these children, only a diagnosis of rhinitis in the mother was
modestly associated with the blue module (adjusted P 5 .041;
Table E6).

To draw additional biological inferences from these data, we
examined gene expression profiles from RNA-seq studies in the
same cells used for DNAm studies. First, we tested for
correlations between the eigenvectors of each comethylation
module and global gene expression, using all 15,363 genes
detected as expressed in nasal mucosa cells and a liberal threshold
for correlation of Spearman rho more than j0.15j and P less than
or equal to .015. We considered only those genes that were
correlated in the combined samples and in only the control sub-
jects to avoid spurious correlations. This analysis revealed 228
genes whose expression was correlated with the eigenvector for
the blue module, 248 with the eigenvector for the brown module,
and 126 with the eigenvector for the turquoise module (see Table
E7 in this article’s Online Repository at www.jacionline.org). The
genes correlated with the eigenvector for the blue module were
enriched in pathways associated with ‘‘lysosome’’ and ‘‘bacterial
invasion of epithelial cells’’; those with the eigenvector for the
brown module were enriched in pathways associated with ‘‘ribo-
some’’, ‘‘cytokine-cytokine receptor interaction’’ and ‘‘oxidative
phosphorylation’’; and those with the eigenvector for the tur-
quoise module were enriched in pathways associated with ‘‘in-
flammatory mediator regulation of transient receptor potential
channels’’ and ‘‘Influenza A susceptibility’’ (see Table E8 in
this article’s Online Repository at www.jacionline.org). These
combined data indicate that the DMCs in the different modules
reflect different biological processes and potentially distinct fac-
ets of the AR phenotype.
Children with AR at age 6 years had less diverse

airways microbiota in early life
The blue comethylation module was correlated with the

expression of genes enriched in ‘‘bacterial invasion of epithelial
cells’’, suggesting a connection to microbial exposures. There-
fore, we next explored relationships between upper airway
microbiota in early life and both AR and DNAm patterns at age
6 years. We first examined the bacterial composition in the
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FIG 3. Microbial diversity and RAs of microbial genera are correlated with the blue WGCNA comethylation

module. Spearman correlation between (A) microbial diversity measures at 1 week (n5 268), 1 month (n 5
326), and 3 months (n5 332) and (B) RA of genera with the RA of all taxa occurring more than 1% at 1 week

and WGCNA comethylation modules. sIgE, Specific IgE. Red outlines highlight Spearman correlation P
values reaching significance after applying Benjamini-Hochberg procedure.
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airways at age 1 week, 1 month, and 3 months and AR status at
age 6 years.22 This revealed significantly less richness at age 1
week in children with AR at age 6 years (median richness 5 17
and 21, respectively, Wilcoxon rank-sum test P 5 .0079; Fig 2,
A) and a lower Shannon diversity index at 1 month (median Shan-
non diversity index5 1.05 and 1.38, respectively;Wilcoxon rank-
sum test P 5 .045; Fig 2, B) compared with control children. No
differences were observed at 3 months (Fig 2). Read counts did
not differ between the AR cases and controls at any of the 3
time points (see Fig E4 in this article’s Online Repository at
www.jacionline.org). Richness and Shannon index were corre-
lated with each other at each time point, but neither was correlated
between time points (see Fig E5 in this article’s Online Reposi-
tory at www.jacionline.org), reflecting the dynamic changes
that occur in the first 3 months of life. To confirm the robustness
of these results, we performed a rarefied richness analysis, in
which similar results were observed (median rarefied
richness 5 17.2 and 20.4, respectively, Wilcoxon rank-sum test
P 5 .015; see Fig E6, A, in this article’s Online Repository at
www.jacionline.org), as well as repeated the analysis with 1
outlier removed in the controls at 1 week (median richness 5
17 and 21, respectively, Wilcoxon rank-sum test P 5 .0083; see
Fig E7 in this article’s Online Repository at www.jacionline.
org). Furthermore, richness and Shannon index were not corre-
lated with any of the 17 exposures measured in these children
(Table E2), and these exposures did not significantly impact the
association between richness at 1 week and AR, after adjusting
for multiple testing (see Tables E3 and E9 in this article’s Online
Repository at www.jacionline.org), although some exposures
reduced the effect of Shannon index at 1 month on AR (Table E3).

To assess the specificity of these findings, we tested for
associations between microbiota diversity and 3 other allergy-
related traits (AS to aeroallergens, AS to food allergens, and
atopic dermatitis) and 1 nonallergic trait (non-AR) at age 6 years
(see Table E10 in this article’s Online Repository at www.
jacionline.org). Only children with AS had significantly lower
richness at 1 week (P5 .0092, median 19 in cases and 21 in con-
trols). However, the difference was not significant after removing
children with AR from the analysis (P5 .14; see Table E11 in this
article’s Online Repository at www.jacionline.org), suggesting
that the difference was driven by AR and not AS.
Upper airway microbiota diversity is correlated

with the blue comethylation module
To determine whether microbiota diversity in the first few

months of life is correlated with DNAmpatterns at age 6 years, we
first confirmed that significant differences at 1 week were
observed when including only those children who also had
DNAm measured at age 6 years (Wilcoxon rank-sum test P 5
.0033; n 5 268; see Fig E8 in this article’s Online Repository
at www.jacionline.org), and then tested for correlation between
the 2 diversity measures at each age with each of the 3 DNAm
modules. Richness at age 1 week was associated only with the
blue modules eigenvector (Spearman r 5 20.25, P 5
3.27 3 1025; Padj 5 5.9 3 1024; n 5 268; Fig 3, A; see Fig E9
in this article’s Online Repository at www.jacionline.org), high-
lighting a potential signature of the early-life microbial composi-
tion on DNAm patterning that is specifically captured by this
module. Richness at other ages and Shannon index at any age
were not correlated with any of the module eigenvectors (Fig 3,
A). To exclude the possibility that the correlation between rich-
ness at 1 week and the blue module eigenvector was because
both the diversity index and the DMCs in the modules were asso-
ciated with AR, we tested for correlation only in the controls (n5
251). After removing the AR cases, the correlation between rich-
ness at 1 week and the blue module eigenvector remained signif-
icant (Spearman r 5 20.21, P 5 6.1 3 1024, Padj 5 .01),
indicating a robust correlation between these 2 metrics even in
the absence of AR.
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FIG 4. Early-life microbial environment contributes to the development of AR though modification of the

epigenetic landscape.
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We next assessed whether the association between microbiota
richness at 1 week and AR at age 6 years was mediated by the
DNAm variation captured by the blue module. We first used
logistic regression, including sex and read counts as covariates, to
confirm the relationship between richness at 1week andAR at age
6 years using a parametric model (P5 .041; b521.12; 95% CI,
22.28 to20.24). We then included the blue module eigenvector
as a covariate in the logistic regression. In the latter model, the es-
timate of the effect of richness at 1 week on AR at age 6 years was
reduced by 61% and the correlation was no longer significant
(P 5 .53; b 5 20.58; 95% CI, 21.70 to 0.77). This indicated
that the nasal mucosal cell DNAm patterns captured by the blue
module accounted for more than half of the effect of microbiota
composition in early life on the development of AR in childhood.
The association between richness at 1 week and AR at age 6 years
remained significant when using rarefied richness (P5 .023; b5
21.69; 95% CI, 23.11 to 20.31), and the estimate of rarefied
richness on AR was also reduced by 58% when the blue module
eigenvector was included in the model (P5 .49; b520.74; 95%
CI, 22.4 to 0.86).

Finally, we assessed correlations between the RA of bacteria at
1 week (genus level) with the modules. Although there were no
differences in the RAs of any of the genera between AR cases and
controls (see Fig E10 in this article’s Online Repository at www.
jacionline.org), the RAs of 2 genera were specifically correlated
with the blue module eigenvector (Streptococcus [r 5 20.20;
P 5 .0013; mean RA 5 17.1%]; Veillonella [r 5 20.19; P 5
.0013; mean RA 5 2.3%]; Padj 5 .026; n 5 268) (Fig 3, B).
AR was positively correlated with the blue module eigenvector,
whereas the abundances of these genera were negatively associ-
ated, suggesting that lower RA of Streptococcus and Veillonella
at 1 week were associated with risk for AR.
DISCUSSION
A cardinal feature of AR is inflammation of the upper airway

nasal mucosal tissue, which forms the first line of defense to
inhaled airborne particles and orchestrates the downstream host
responses. By focusing our studies on this tissue in children
participating in a prospective birth cohort, wewere able to explore
mechanistic links of upper airway microbiota at 1 week with
epigeneticmodifications andAR at age 6 years. This led to several
novel observations.

First, our results support the hypothesis that colonization of
bacteria in the upper airways in very early life plays an important
role in shaping epigenetics profiles in the nasal epithelium that
persist at least to later childhood, and contribute to the develop-
ment of AR. To our knowledge, this study is the first to show a
longitudinal connection between microbiota and DNAm profiles
in the upper airways, indicating lasting microbial effects on
epigenetic patterns in the development of AR. These results
suggest both that DNAm changes may be a persistent global
marker of early-life exposures and that effects of methylation
changes on gene expression are present in later childhood. Taken
together these observations may reflect coordinated effects of
DNAm patterns on gene expression that are associated with the
development of AR.

Second, combining our results with those from another study
demonstrated that the methylation findings in nasal mucosal
cells are overall reproducible. More than 70% of the DMCs
identified in our study were also differentially methylated in a
study of asthma-related phenotypes in children that also used
nasal brushings and the same DNAm array as in our study.5 We
further showed the specificity of our findings for AR within our
study cohort. Despite the larger sample sizes, remarkably few
DMCs were associated with rhinitis (sans sensitization) or
sensitization (sans rhinitis) and those few were nearly
completely overlapping with the AR DMCs. Most DMCs
were less methylated in children with AR compared with con-
trols, which is consistent with results observed in other studies
of related traits.5 Although we did not have direct estimates of
cell-type proportions, analyses of cell-specific gene expression
signatures confirmed that the latent factors we used to correct
for unwanted variation in the DNAm and gene expression data
captured differences due to cell heterogeneity. This allowed us
to conclude that the observed differences between AR cases
were not due to differences in cell composition between these
children.

Third, we showed that each of the 3 comethylation modules
were all associated with AR but correlated with genes enriched in

http://www.jacionline.org
http://www.jacionline.org


J ALLERGY CLIN IMMUNOL

nnn 2020

8 MORIN ET AL
different pathways, thus capturing different features of AR. The
blue module eigenvector was correlated with bacterial richness at
age 1 week, with the RA of Streptococcus and Veillonella, and
with genes enriched in bacterial invasion of epithelial cells and
lysosome function pathways. Because the studies of microbiota
were performed on samples collected during infancy, before the
onset of AR, these data raise the possibility that the DNAm
patterning in the blue module preceded and contributed to the
development of AR, a causal trajectory supported by a mediation
analysis (Fig 4). Remarkably, we observed a relationship between
DNAm andmicrobial diversity only at 1 week, but not at the other
time points or with other diversity metrics. We interpret this to
indicate a narrow developmental window during which reduced
microbiota richness can lead to the development of AR. Further-
more, the RAs of 2 genera at 1 week were correlated with the blue
module eigenvector. Even though the RAs of the 2 genera were
not significantly different between AR cases and controls at 1
week, each was significantly negatively correlated with the blue
module eigenvector. These 2 genera have been shown to co-
occur and act in a synergistic manner: Streptococcus catabolizes
carbohydrates to lactic acid (among others), and lactic acid can be
used byVeillonella as a source of carbon tometabolize lactate into
short-chain fatty acids (acetate and propionate). The latter has
been shown previously to modify host chromatin states, another
epigenetic mark.48 This could explain the link between the 2
genera and the epigenetic landscape reflected in the blue module.
Although we cannot rule out the possibility that DNAm at age 6
years was patterned by an unmeasured factor that also preceded
and led to the observed microbiota diversity at age 1 week, we
were able to exclude many exposures measured in these children
because neither microbial diversity (Table E9) nor the DNAm
module eigenvectors (Table E6) were correlated with the
measured exposures, ruling out at least some potentially relevant
exposures. The DNAm patterns in the brown and turquoise
models were correlated with AR, but not with any of the micro-
biota indices or measured exposures. These epigenetic patterns
may therefore be a result of the disease process itself or other ex-
posures not measured in this study.

The population-based ascertainment of infants enrolled in the
COPSAC, without regard to disease risk, is a strength of our study
because it reduces confounding due to inherent differences
between children at high risk for disease development and those
who are not, and makes our results generalizable. However, this is
also a limitation because relatively few children had AR at 6
years, which impacted the power to detect differences. Therefore,
wemay have underestimated the number of AR-associated DMCs
or missed associations between AR and microbial diversity or
abundance in early life. A second limitation is that we did not have
DNAmprofiles in upper airway cells before the age of 6 years, and
cannot observe the longitudinal effects of microbial diversity in
infancy on epigenetic modifications or of epigenetic modifica-
tions on the development of AR. As a result, we are unable to
determine whether the composition of early-life upper airway
microbiota influences the epigenetic patterns in upper airway
cells, as we propose here, or whether the DNAm patterns in upper
airway cells preceded and influenced microbial diversity in early
life, or that they were both influenced by an unmeasured
exposure. Furthermore, the DNAm profiles and microbiota
composition were measured in different upper airway niches
(inferior turbinate vs hypopharynx, respectively). Finally, this
study was conducted in children of European ancestry. However,
the Cardenas study,5 which included ethnically diverse children,
showed high concordance of methylation results with ours, sug-
gesting that the DNAm results are robust to ancestry, although
future studies in non-European populations are needed to affirm
this assumption and to discover ancestry-specific epigenetic
effects.
Conclusions
We provide data in support of the hypothesis that the early-life

microbial environment contributes to the risk of developing AR in
childhood by shaping the epigenetic landscape in upper airway
mucosal cells. These epigenetic patterns lead to perturbations of
genes in lysosome and bacterial invasion of epithelial cells
pathways in upper airway mucosal cells that persist into later
childhood. Taken together, our study supports the view that
interventions for modulating microbial composition, as early as
the first week of life, could have a significant impact on both the
quality of life for people and the economic burdens of nations
associated with allergic diseases throughout the world.49

We thank the children and families of the COPSAC2010 cohort for their

participation and commitment. We also thank Andres Cardenas for helpful

discussion and advice on data processing.

Key messages

d Early-life upper airway microbial diversity is lower in
children who develop AR by age 6 years.

d Epigenetic patterning in upper airway mucosal cells me-
diates the effects of early-life microbial diversity on the
development of AR in later childhood.
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