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a b s t r a c t

We construct full exceptional collections in the derived categories of coherent sheaves
on the Lagrangian Grassmannians LG(4, 8) and LG(5, 10). The construction is radically
different from all the previously considered homogeneous spaces in that one has to
use homogeneous bundles associated with reducible representations of the parabolic
subgroup.
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0. Introduction

For a smooth projective variety X over a field k let us denote by Db(X) the bounded derived category of coherent sheaves
on X . Starting with the seminal works [1,2] on Db(Pn), the techniques involving derived categories of coherent sheaves have
been applied to a variety of problems in algebraic geometry (see e.g., [3,4]). However, there are still some open problems in
which not much progress has been made since the 80s. Among them is the problem of describing Db(X) in the case when
X is a homogeneous variety. The method of Beilinson in [1] was generalized by Kapranov to the case of quadrics and to
partial flag varieties for series An (see [5]). Furthermore, it was realized that the relevant structure is that of a full exceptional
collection, a notion that can be formulated for an arbitrary triangulated category (see [6] and Section 1). The interest in the
categories Db(X) and the question of the existence of full exceptional collections in these categories is also motivated by
their appearance in mirror symmetry via the notion of D-branes (see [7]). One of the related problems is the conjecture of
Dubrovin [8] stating that if X has semisimple quantum cohomology then Db(X) admits a full exceptional collection.

It has been conjectured long ago that for every projective homogeneous variety X of a semisimple algebraic group the
category Db(X) admits a full exceptional collection (of vector bundles). However, the only homogeneous varieties of simple
groups for which this is known (other than quadrics and partial flag varieties for series An) are as follows:

(i) the isotropic Grassmannian of 2-dimensional planes in a symplectic 2n-dimensional space (see [9]),
(ii) the isotropic Grassmannian of 2-dimensional planes in an orthogonal 2n + 1-dimensional space (see [9]),
(iii) the full flag variety for the symplectic and the orthogonal groups (see [10]),
(iv) the isotropic Grassmannians of a 6-dimensional symplectic space (see [10]),
(v) the isotropic Grassmannian of 5-dimensional planes in a 10-dimensional orthogonal space and a certain Grassmannian

for type G2 (see [11]).
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In the case of the Cayley plane, the minimal homogeneous variety for E6, an exceptional collection of 27 vector bundles,
that is conjectured to be full, was constructed in [12].

In the present paper we construct full exceptional collections of vector bundles in the derived categories of coherent
sheaves of the Lagrangian Grassmannians LG(4, 8) and LG(5, 10), see Theorems 4.1, 4.3 and 5.5. Although this is still only
a small step toward the general conjecture, this case is radically different from all the previously known cases of classical
type in that we have to consider homogeneous bundles corresponding to reducible representations of the isotropy group.
Namely, the new exceptional bundles are constructed as successive extensions of appropriate Schur functors of the universal
quotient bundle. This construction of exceptional objects was recently generalized by Alexander Kuznetsov and the first
author to a more general setup (in preparation), and we expect to obtain in this way full exceptional collections on all
isotropic Grassmannians (symplectic and orthogonal).

Checking that the collections we construct are full is done in both cases using induction and certain partial isotropic flag
varieties. However, the computations turn out to be quite involved. It would be very nice to find a more conceptual proof
(cf. Remark in Section 1).

The paper is organized as follows. After recalling basic definitions in Section 1 we compute in Section 2 some Ext-spaces
between equivariant vector bundles on LG(n, 2n) using Bott’s theorem. Section 3 contains a construction of exceptional
bundles on LG(n, 2n) as extensions between certain Schur functors of the universal quotient bundle. One of these bundles is
used in Section 4 to give a full exceptional collection on LG(4, 8). In Section 5 the case of LG(5, 10) is considered. In this case,
to get a full exceptional collection one has to construct one more exceptional bundle as a successive extension of certain
Schur functors.

1. Basic definitions

We always work over a fixed ground field k that we assume to be algebraically closed of characteristic zero.

Definition. An exceptional collection in a triangulated categoryD is a collection of objects E1, . . . , En satisfying the following
vanishing conditions:

Hom∗

D(Ej, Ei) = 0 for i < j, Hom≠0
D (Ei, Ei) = 0, Hom0

D(Ei, Ei) = k.

Definition. A full triangulated subcategory C ⊂ D is called admissible if the inclusion functor C → D admits left and right
adjoint functors D → C.

It is well known that the triangulated subcategory generated by an exceptional collection is admissible (see [13],
Thm. 3.2). For a subcategory C ⊂ D one defines the right orthogonal C⊥

⊂ D as the full subcategory given by

C⊥
= {A ∈ D | HomD(C, A) = 0}.

It is known that if C is admissible then C⊥ is also admissible and C⊥ is equivalent to the Verdier quotient D/C.

Definition. An exceptional collection (E1, . . . , En) in a triangulated category D is called full if the triangulated subcategory
generated by (E1, . . . , En) is the whole D .

An exceptional collection is full if and only if (E1, . . . , En)⊥ = 0.

Remark. It seems plausible that an exceptional collection (E1, . . . , En) in D = Db(X) such that classes of Ei generate
the Grothendieck group K0(X), is automatically full. Since the category (E1, . . . , En)⊥ is admissible, in the case when all
integer cohomology classes on X are algebraic, this would follow from the Nonvanishing conjecture of Kuznetsov (see [14],
Conjecture 9.1 and Corollary 9.3) that a nonzero admissible subcategory should have nonzero Hochschild homology.

Let us also recall the definition of the mutation operation. For an exceptional pair (A, B) in a triangulated category D , the
right mutation is a pair (B, RBA), where RBA is defined by the triangle

· · · −→ RBA[−1] −→ A −→ Hom•

D(A, B)∗ ⊗ B −→ RBA −→ · · · .

The pair (B, RBA) is again exceptional.

2. Applications of Bott’s theorem in the case of Lagrangian Grassmannians

Let V be a symplectic vector space of dimension 2n. Consider the Largangian Grassmannian LG(V ) of V (we also use the
notation LG(n, 2n)). We have the basic exact sequence of vector bundles on LG(V )

0 → U → V ⊗ O → Q → 0 (2.1)

where U = Q ∗ is the tautological subbundle, and Q is the tautological quotient-bundle. We set O(1) = ∧
n Q . This is an

ample generator of the Picard group of LG(V ). It is well known that the canonical line bundle on LG(V ) is isomorphic to
O(−n − 1).
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The variety LG(V ) is a homogeneous space for the symplectic group Sp(V ) = Sp(2n). Namely, it can be identified with
Sp(2n)/P , where P is the maximal parabolic associated with the simple root αn. Here we use the standard numbering of the
vertices in the Dynkin diagram Dn as in [15]. Recall that the semisimple part of P is naturally identified with GL(n). Thus, to
every representation of GL(n) one can associate a homogeneous vector bundle on LG(V ). This correspondence is compatible
with tensor products and the standard representation of GL(n) corresponds to Q . For our purposes it will be convenient to
identify themaximal torus of Sp(2n)with that of GL(n) ⊂ P . One can easily check that under this identification the half-sum
of all the positive roots of Sp(2n) is equal to

ρ = nϵ1 + (n − 1)ϵ2 + · · · + ϵn,

where (ϵi) is the standard basis of the weight lattice corresponding to GL(n). Note that with respect to this basis the roots
of Sp(2n) are ±ϵi and ±ϵi ± ϵj. Thus, a weight x1ϵ1 + · · · + xnϵn is singular for Sp(2n) if and only if either there exists i
such that xi = 0, or there exist i ≠ j such that xi = ±xj. The Weyl group W of Sp(2n) is the semidirect product of Sn and
Zn
2 acting by permutations and sign changes xi → −xi. A weight x1ϵ1 + · · · + xnϵn is dominant for Sp(2n) if and only if

x1 ≥ x2 ≥ · · · ≥ xn ≥ 0.
For a dominant weight λ = (a1, . . . , an) of GL(n) (where a1 ≥ a2 ≥ · · · ≥ an), let Sλ denote the corresponding Schur

functor (sometimes we omit the tail of zeros in λ). Note that by definition, S(a1+1,...,an+1)
= det⊗S(a1,...,an). Hence,

S(a1+1,...,an+1)Q ≃ S(a1,...,an)Q (1).
Our main computational tool is Bott’s theorem on cohomology of homogeneous vector bundles. In the case of the

Lagrangian Grassmannian LG(V ) it states the following.

Theorem 2.1 (Theorem IV′ of [16]).
1. If λ + ρ is singular then H∗(LG(V ), SλQ ) = 0;
2. if λ + ρ is non-singular and w ∈ W is an element of length ℓ such that µ = w(λ + ρ) − ρ is dominant for Sp(2n),

then H i(LG(V ), SλQ ) = 0 for i ≠ ℓ and Hℓ(LG(V ), SλQ ) is an irreducible representation of Sp(2n) with the highest
weight µ.

Below we will often abbreviate H∗(LG(V ), ?) to H∗(?).

Lemma 2.2. One has
(i) H∗(O(i)) = 0 for i ∈ [−n, −1];H>0(O) = 0 and H0(O) = k.
(ii) H∗(∧k Q (i)) = 0 for k ∈ [1, n − 1] and i ∈ [−n − 1, −1]. Also, for k ∈ [1, n − 1] one has H>0(∧k Q ) = 0 and H0(∧k Q )
is an irreducible representation of Sp(2n) with the highest weight ((1)k, (0)n−k) (k 1’s).

Proof. (i) We have in this case λ + ρ = (n + i, . . . , 1 + i) which is singular of i ∈ [−n, −1]. For i = 0 we have λ + ρ = ρ.
(ii) The bundle ∧

k Q corresponds to the weight ((1)k, (0)n−k). Thus, ∧
k Q (i) corresponds to λ = ((1 + i)k, (i)n−k), so

λ + ρ = (n+ 1+ i, . . . , n− k+ 2+ i, n− k+ i, . . . , 1+ i). In the case when i ∈ [−n− 1, −n− 2+ k] or i ∈ [−n+ k, −1]
one of the coordinates is zero. On the other hand, for i = −n − 1 + k the sum of the kth and (k + 1)st coordinates is zero.
Hence, λ + ρ is singular for i ∈ [−n − 1, −1]. �

When computing the Ext-groups on LG(V ) between the bundles of the form SλQ it is useful to observe that
(S(a1,...,an)Q )∗ ≃ S(a1−an,a1−an−1,...,0)(−a1).

To compute the tensor products of the Schur functors we use Littlewood–Richardson rule.

Lemma 2.3. Assume that n ≥ 3.
(i) One has Hom∗(∧k Q , ∧l Q (i)) = 0 for i ∈ [−n, −1] and k, l ∈ [0, n− 2]. Also, Hom∗(∧k Q , ∧l Q ) = 0 for k, l ∈ [0, n− 2]
and k > l. All the bundles ∧

k Q are exceptional.
(ii) For k < n one has Hom∗(∧k Q , ∧k+1 Q ) = V (concentrated in degree 0). Furthermore, the natural map

Q → Hom(∧k Q , ∧k+1 Q )

induces an isomorphism on H0.

Proof. (i) Recall that

∧
k Q ∗

= ∧
n−k Q (−1) = S((1)n−k,(0)k)Q (−1).

Therefore, for k > l, k + l ≠ n, the tensor product ∧
k Q ∗

⊗ ∧
l Q ≃ ∧

n−k Q ⊗ ∧
l Q (−1) decomposes into direct summands

of the form SλQ with λ = ((1)a, (0)b, (−1)c), where b > 0 and c > 0. It is easy to see that in this case λ + ((i)n) + ρ will
be singular for i ∈ [−n, 0]. Furthermore, even if k + l = n but l < k < n − 1, we claim that the weights λ + ((i)n) + ρ
will still be singular for i ∈ [−n, 0]. Indeed, this follows easily from the fact that λ = ((1)a, (0)b, (−1)c) with c > 0,
and either b > 0 or c > 1 or a > 1. Hence, Hom∗(∧k Q , ∧l Q (i)) = 0, where i ∈ [−n, 0], n > k > l ≥ 0 and
(k, l) ≠ (n − 1, 1). Using Serre duality we deduce the needed vanishing for the case k < l. In the case when k = l the
tensor product ∧

k Q ∗
⊗ ∧

k Q ≃ ∧
n−k Q ⊗ ∧

k Q (−1) will contain exactly one summand isomorphic to O, and the other
summands of the same form as above with c > 0. The same argument as before shows that Hom∗(∧k Q , ∧k Q (i)) = 0 for
i ∈ [−n, −1] and that Hom∗(∧k Q , ∧k Q ) = k (concentrated in degree 0).
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(ii) The tensor product ∧
k Q ∗

⊗ ∧
k+1 Q ≃ ∧

n−k Q ⊗ ∧
k+1 Q (−1) decomposes into the direct sum of Q and of summands of

the form SλQ with λ = ((1)a, (0)b, (−1)c), where c > 0. In the latter case the weight λ + ρ is singular, so these summands
do not contribute to cohomology. �

Next, for k ∈ [1, n − 3] consider the vector bundle Rk := S(2,(1)k)Q , so that we have a direct sum decomposition

Q ⊗ ∧
k+1 Q = ∧

k+2 Q ⊕ Rk.

One can check that Rk itself is not exceptional but in the next section we are going to construct a related exceptional bundle
on LG(V ).

Lemma 2.4. For 1 ≤ k ≤ n − 3, 0 ≤ l ≤ n − 2 and −n ≤ i ≤ −1 one has

Hom∗(∧l Q , Rk(i)) = Hom∗(Rk, ∧
l Q (i)) = 0.

Furthermore, for l > k + 1 one has Hom∗(∧l Q , Rk) = 0, while for l < k one has Hom∗(Rk, ∧
l Q ) = 0.

Proof. By Littlewood–Richardson rule, the tensor product∧l Q ∗
⊗Rk = ∧

n−l Q ⊗Rk(−1) decomposes into direct summands
of the form Sλ, where λ has one of the following types:
(i) λ = (1, (0)k+n−l, (−1)l−k−1), provided l ≥ k + 1 (note that k + n − l ≥ 3);
(ii) λ = ((1)a, (0)b, (−1)c), where 1 ≤ a ≤ k + 1, a + b ≥ k + 1, a + b + c = n, 2a + b = k + n − l + 2;
(iii) λ = (2, (1)a, (0)b, (−1)c), where a ≤ k, a + b ≥ k, a + b + c = n − 1, 2a + b = k + n − l − 1.

In case (i) the weight λ + ((i)n) + ρ will be singular for i ∈ [−n− 1, −1]. In the case l > k+ 1 it will also be singular for
i = 0. Next, let us consider case (ii). If b > 0 then the weight λ + ((i)n) + ρ will be singular for i ∈ [−n − 1, −1] and if in
addition c > 0 then it will be also singular for i = 0. Note that the case c = 0 occurs only when l ≤ k + 1. In the case b = 0
we should have a = k + 1, so 2 ≤ a ≤ n − 2, which implies that λ + ((i)n) + ρ is singular for i ∈ [−n − 1, 0]. Finally, let
us consider case (iii). If a > 0, b > 0 and c > 0 then the weight λ + ((i)n) + ρ will be singular for i ∈ [−n − 1, 0]. The case
c = 0 can occur only when l ≤ k. In the case b = 0 we should have a = k, so c = n − k − 1 ≥ 2 which implies that the
above weight is still singular for i ∈ [−n − 1, 0]. In the case a = 0 we have b = k + n − l − 1 ≥ 2, so we deduce that the
above weight will be singular for i ∈ [−n, 0]. Note that the case a = 0 can occur only for l ≥ k.

The above analysis shows the vanishing of Hom∗(∧l Q , Rk(i)) for i ∈ [−n, −1], as well as vanishing of Hom∗(∧l Q , Rk)
for l > k + 1 and of Hom∗(∧l Q , Rk(−n − 1)) for l < k. Applying Serre duality we deduce the remaining assertions. �

Note that in the above lemma we have skipped the calculation of Hom∗(Rk, ∧
l Q ) and Hom(∧l Q , Rk) for l = k and

l = k + 1. This will be done in the following lemma, where we also prove a number of other auxiliary statements. Let us
consider a natural map f : V ⊗ ∧

k+1 Q → Rk induced by the projection Q ⊗ ∧
k+1 Q → R and the map V ⊗ O → Q .

Lemma 2.5. Assume 1 ≤ k ≤ n − 3. Then one has
(i) Hom>0(∧k+1 Q , Rk) = 0 and Hom0(∧k+1 Q , Rk) = V . The map f induces an isomorphism on Hom∗(∧k+1 Q , ?).
(ii) One has Hom>0(∧k Q , Rk) = 0. Also, the natural map Q ⊗ Q → Hom(∧k Q , Rk) induces an isomorphism on H0, so that
Hom0(Q , Rk) ≃ V ⊗ V/k.
(iii) Hom1(Rk, ∧

k Q ) = k, Hom1(Rk, ∧
k+1 Q ) = V ,Hom≠1(Rk, ∧

k Q ) = Hom≠1(Rk, ∧
k+1 Q ) = 0. The natural map

S2Q ∗
→ Hom(Rk, ∧

k Q ) induces an isomorphism on H1.
(iv) Hom>1(Rk, Rk) = 0,Hom0(Rk, Rk) = k, Hom1(Rk, Rk) = V ⊗ V/k.
(v) H∗(Q ∗

⊗ S2Q ∗) = 0.
(vi) H i(Q ∗

⊗ Q ⊗ S2Q ∗) = 0 for i ≠ 1.

Proof. (i) By Littlewood–Richardson rule we have

∧
k+1 Q ∗

⊗ Rk ≃ ∧
n−k−1 Q (−1) ⊗ S(2,(1)k)Q ≃ Q ⊕ · · ·

where the remaining summands correspond to highest weights λ = (a1, . . . , an) such that an = −1. For such λ the
weight λ + ρ is singular, hence these summands do not contribute to cohomology. Thus, the unique embedding of Q into
Hom(∧k+1 Q , Rk) induces an isomorphism on cohomology. This immediately implies the result (recall that H∗(Q ) = V by
Lemma 2.2).
(ii) Applying Littlewood–Richardson rule again we find

∧
k Q ∗

⊗ Rk ≃ S2Q ⊕ ∧
2 Q ⊕ · · ·

where the remaining summands correspond to highest weights λ = (a1, . . . , an) with an = −1. The sum of the first two
terms is exactly the image of the natural embedding Q ⊗ Q → Hom(Q , R).
(iii) We have

R∗

k ⊗ ∧
k Q ≃ S2Q ∗

⊕ · · ·

where all the remaining summands correspond to highest weights λ = (a1, . . . , an) such that either an = −1 or (an−1, an)
= (−1, −2). In both cases λ + ρ is singular, hence these summands do not contribute to cohomology. for S2Q ∗

=
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S((0)n−1,−2)Q one has λ+ ρ = (n, . . . , 2, −1). Hence, applying a simple reflection we get exactly ρ. This means that only H1

is nonzero, and it is 1-dimensional.
Similarly,

R∗

k ⊗ ∧
k+1 Q ≃ S(1,(0)n−2,−2)Q ⊕ · · ·

where the remaining summands have singular λ + ρ. For λ = (1, (0)n−2, −2) we have λ + ρ = (n + 1, . . . , 2, −1). This
differs by a single reflection from ρ + (1, (0)n−1). Hence only H1 is nonzero and H1(R∗

k ⊗ ∧
k+1 Q ) ≃ V .

(iv) We have

R∗

k ⊗ Rk ≃ S((2)n−2,1,0)Q (−2) ⊗ S(2,1)Q ≃ S(2,(0)n−2,−2)Q ⊕ S(1,1,(0)n−3,−2)Q ⊕ O ⊕ · · · ,

where the remaining terms do not contribute to cohomology. The first two terms contribute only to H1. Namely, the
corresponding weights λ + ρ differ by a single reflection from ρ + (2, (0)n−1) and ρ + (1, 1, (0)n−2), respectively.
(v) We have

Q ∗
⊗ S2Q ∗

≃ S3Q ∗
⊕ S(2,1)Q ∗

≃ S((0)n−1,3)Q ⊕ S((0)n−2,−1,−2)Q .

In both cases λ + ρ is singular.
(vi) We have

Q ⊗ Q ∗
⊗ S2Q ∗

= Q ⊗ S3Q ∗
⊕ Q ⊗ S(2,1)Q ∗

≃ (S((0)n−1,−2)Q )⊕2
⊕ · · · ,

where the remaining summands do not contribute to cohomology. For the first summand we have λ + ρ = (n, . . . , 2, −1)
which is obtained by applying a simple reflection to a dominant weight. Hence, the cohomology is concentrated in
degree 1. �

3. A family of exceptional vector bundles on LG(V )

Let us fix k ∈ [1, n − 3]. The natural map f : V ⊗ ∧
k+1 Q → Q ⊗ ∧

k+1 Q is surjective, so we obtain an exact sequence
of vector bundles

0 → Sk → V ⊗ ∧
k+1 Q

f
→ Rk → 0. (3.1)

Using the composite nature of f we also get an exact sequence

0 → Q ∗
⊗ ∧

k+1 Q → Sk → ∧
k+2 Q → 0. (3.2)

We have a natural embedding of vector bundles

∧
k Q ↩→ Hom(Q , ∧k+1 Q ) = Q ∗

⊗ ∧
k+1 Q ↩→ Sk.

Now we define Ek to be the quotient Sk/ ∧
k Q , so that we have an exact sequence

0 → ∧
k Q → Sk → Ek → 0. (3.3)

Lemma 3.1. The exact sequence (3.3) splits canonically, so we have Sk ≃ ∧
k Q ⊕ Ek. Furthermore, the bundles ∧

k Q and Ek are
orthogonal to each other, i.e.,

Hom∗(∧k Q , Ek) = Hom∗(Ek, ∧k Q ) = 0.

Proof. First, we claim that Hom0(Sk, ∧k Q ) = k and Homi(Sk, ∧k Q ) = 0 for i ≠ 0. Indeed, this follows immediately from
the exact sequence (3.1) and from Lemma 2.5(iii) since Hom∗(∧k+1 Q , ∧k Q ) = 0 by Lemma 2.3. Next, using the vanishing of
Hom∗(∧k+2 Q , ∧k Q ) and the exact sequence (3.2) we see that the embedding Q ∗

⊗ ∧
k+1 Q ↩→ Sk induces an isomorphism

on Hom∗(?, ∧k Q ). Hence, the nonzero morphism Sk → ∧
k Q restricts to the nonzero morphism Q ∗

⊗ ∧
k+1 Q → ∧

k Q ,
unique up to scalar. The latter morphism is proportional to the natural contraction operation. Hence, its restriction to
∧

k Q ⊂ Q ∗
⊗ ∧

k+1 Q is nonzero. Therefore, we get a splitting of (3.3). The vanishing of Hom∗(Ek, ∧k Q ) also follows. On
the other hand, from the exact sequence (3.1), using Lemma 2.5(ii) we get Hom0(∧k Q , Sk) = k and Homi(∧k Q , Sk) = 0 for
i ≠ 0. This implies that Hom∗(∧k Q , Ek) = 0. �

By the above lemmawe have a unique morphism Sk → ∧
k Q extending the identity morphism from ∧

k Q ⊂ Sk. Pushing
forward the extension given by (3.1) under this morphism we get an extension

0 → ∧
k Q → Fk → Rk → 0. (3.4)

Furthermore, we also get an exact sequence

0 → Ek → V ⊗ ∧
k+1 Q → Fk → 0. (3.5)
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Theorem 3.2. Let k ∈ [1, n − 3]. The bundle Fk is the unique nontrivial extension of Rk by ∧
k Q . The bundles Ek and Fk are

exceptional, and Fk is the right mutation of Ek through ∧
k+1 Q . Also, one has F∗

k (1) ≃ En−2−k.

Proof. Step 1. Hom∗(∧k+1 Q , Ek) = Hom∗(Fk, ∧k Q ) = 0. Indeed, the first vanishing follows immediately from the
exact sequence (3.1). The second vanishing follows from the exact sequence (3.5) since Hom∗(∧k+1 Q , ∧k Q ) = 0 and
Hom∗(Ek, ∧k Q ) = 0 by Lemma 3.1.
Step 2. Fk is a nontrivial extension of Rk by ∧

k Q (recall that by Lemma 2.5(iii) there is a unique such extension). Indeed,
otherwise we would have a surjective map Fk → ∧

k Q which is impossible by Step 1.
Step 3. Ek is isomorphic to F∗

n−2−k(1). We have Q ∗
⊗ ∧

k+1 Q ≃ ∧
k Q ⊕ R∗

n−k−2(1). Therefore, from the exact sequence (3.2)
we get an exact sequence

0 → R∗

n−2−k(1) → Ek → ∧
k+2 Q → 0.

We claim that it does not split. Indeed, otherwise we would get an inclusion ∧
k+2 Q ↩→ Ek which is impossible since

Hom(∧k+1 Q , ∧k+2 Q ) ≠ 0 but Hom(∧k+1 Q , Ek) = 0. Comparing this with the extension (3.4) for n− 2− k instead of kwe
get the result.
Step 4. The natural map

H0(Q ⊗ Q ) ⊗ H1(S2Q ∗) → H1(Q ⊗ Q ⊗ S2Q ∗)

is an isomorphism. Indeed, it is easy to check using Bott’s theorem that both sides are isomorphic to V⊗2/k, so it is enough
to check surjectivity. Therefore, it suffices to check surjectivity of the maps

H0(Q ) ⊗ H1(S2Q ∗) → H1(Q ⊗ S2Q ∗) and
H0(Q ) ⊗ H1(Q ⊗ S2Q ∗) → H1(Q ⊗ Q ⊗ S2Q ∗).

Using the exact sequence (2.1) we deduce this from the vanishing of H2(Q ∗
⊗ S2Q ∗) and H2(Q ∗

⊗ Q ⊗ S2Q ∗)
(see Lemma 2.5(v), (vi)).
Step 5. The composition map

Hom0(∧k Q , Rk) ⊗ Hom1(Rk, ∧
k Q ) → Hom1(Rk, Rk)

is an isomorphism. Note that by Lemma 2.5(ii)–(iv), both sides are isomorphic to V⊗2/k = S2V ⊕ ∧
2 V/k, so it is enough to

check surjectivity. Let us define the natural morphisms

α : S2Q ∗
→ R∗

k ⊗ ∧
k Q ,

β : Q ⊗ Q → ∧
k Q ∗

⊗ Rk,

as follows. Consider the Koszul complex for the symmetric algebra S∗Q

0 → ∧
k+2 Q

d1
→ Q ⊗ ∧

k+1 Q
d2
→ S2Q ⊗ ∧

k Q → · · · .

Then Rk can be identified with the image of d2 (or cokernel of d1). In particular, we have a natural embedding Rk →

S2Q ⊗ ∧
k Q which induces α by duality. On the other hand, the natural projection Q ⊗ ∧

k+1 Q → Rk gives rise to the
composed map

Q ⊗ Q ⊗ ∧
k Q

idQ ⊗µk
→ Q ⊗ ∧

k+1 Q → Rk

where µk : Q ⊗ ∧
k Q → ∧

k+1 Q is given by the exterior product. The map β is obtained from the above map by duality.
The morphisms α and β can be combined into a map

γ : S2Q ∗
⊗ Q ⊗ Q

α⊗β
→ R∗

k ⊗ ∧
k Q ⊗ ∧

k Q ∗
⊗ Rk → R∗

k ⊗ Rk,

where the last arrow is induced by the trace map on ∧
k Q . By Step 4, it remains to check that the maps α, β and γ induce

isomorphisms on cohomology. In fact, we are going to prove that all these maps are embeddings of a direct summand by
constructing themaps pα, pβ and pγ in the opposite direction such that pα ◦α, pβ ◦β and pγ ◦γ are proportional to identity.
To this end we use the Koszul complex for the exterior algebra ∧

∗ Q

· · · → S2Q ⊗ ∧
k Q

δ2
→ Q ⊗ ∧

k+1 Q
δ1
→ ∧

k+2 Q → 0.

We can identify Rk with the kernel of δ1 (or image of δ2). Hence, we have natural map S2Q ⊗ ∧
k Q → Rk. By duality this

corresponds to a map

pα : R∗

k ⊗ ∧
k Q → S2Q ∗.
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On the other hand, we have a natural embedding

Rk → Q ⊗ ∧
k+1 Q → Q ⊗ Q ⊗ ∧

k Q

that gives rise to a map pβ : ∧
k Q ∗

⊗ Rk → Q ⊗ Q . Combining pα and pβ we obtain a map

pγ : R∗

k ⊗ Rk → R∗

k ⊗ ∧
k Q ⊗ ∧

k Q ∗
⊗ Rk → S2Q ∗

⊗ Q ⊗ Q .

A routine calculation proves our claim about the compositions pα ◦ α, pβ ◦ β and pγ ◦ γ .
Step 6. Nowwe can prove that Fk is exceptional (and hence, Ek is also exceptional by Step 3). Applying the functorHom∗(Fk, ?)
to the exact sequence (3.4) and using Step 1 we get isomorphisms Homi(Fk, Fk) ≃ Homi(Fk, Rk). Next, applying the functor
Hom∗(?.Rk) to the same sequence we get a long exact sequence

· · · → Homi−1(Rk, ∧
k Q ) → Homi(Rk, Rk) → Homi(Fk, Rk) → Homi(Rk, ∧

k Q ) → · · · .

It remains to apply Lemma 2.5(iii) and Step 5 to conclude that Homi(Fk, Rk) = 0 for i > 0 and Hom0(Fk, Rk) = k.
Step 7. To check that Fk is the right mutation of Ek through ∧

k+1 Q it remains to prove that Homi(Ek, ∧k+1 Q ) = 0 for
i ≠ 0 and Hom0(Ek, ∧k+1 Q ). Applying the functor Hom∗(?, ∧k+1 Q ) to the sequence (3.1) we get by Lemma 2.5(iii) an exact
sequence

0 → V → Hom0(Sk, ∧k+1 Q ) → V → 0

along with the vanishing of Hom>0(Sk, ∧k+1 Q ). Since Sk = ∧
k Q ⊕ Ek, the assertion follows. �

We are going to compute some Hom-spaces involving the bundles Ek that we will need later.

Lemma 3.3. Assume that l ∈ [0, n − 2] and k ∈ [1, n − 3]. Then for i ∈ [−n, −1] one has

Hom∗(∧l Q , Ek(i)) = Hom∗(Ek, ∧l Q (i)) = 0.

For l > k one has Hom∗(∧l Q , Ek) = 0, while for l < k one has Hom(Ek, ∧l Q ) = 0 (recall that for l = k both these spaces
vanish by Lemma 3.1).

Proof. It is enough to check similar assertions with Sk instead of Ek. Using the exact sequence (3.1) we reduce the required
vanishing for i ∈ [−1, −n] to Lemmas 2.3(i) and 2.4. To prove the remaining vanishings we use in addition the fact that
Hom∗(∧k+1 Q , Sk) = 0 that follows from Lemma 2.5(i). �

4. The case of LG(4, 8)

Now let us assume that V is 8-dimensional. Let E = E1.

Theorem 4.1. The following collection on LG(4, 8) is exceptional:

(O, E,Q , ∧2 Q , O(1),Q (1), ∧2 Q (1), . . . , O(4),Q (4), ∧2 Q (4)).

Proof. We already know that all these bundles are exceptional. The required orthogonality conditions follow from
Lemmas 2.3, 3.1 and 3.3. �

Lemma 4.2. Let C ⊂ Db(LG(4, 8)) be the triangulated subcategory generated by the exceptional collection in Theorem 4.1. Then
the following bundles belong to C:

(i) Q ∗(j), j = 0, . . . , 4;
(ii) S2Q (j), j = 0, . . . , 4;
(iii) Q ⊗ ∧

2 Q (j), j = 0, . . . , 3;
(iv) Q ⊗ Q ∗(j), j = 1, . . . , 4.

Proof. Step 1. Q ∗(j), S2Q ∗(j) ∈ C for j = 0, . . . , 4. Indeed, the fact that Q ∗(j) ∈ C follows immediately from (2.1). Similarly,
the assertion for S2Q ∗(j) follows from the exact sequence

0 → S2Q ∗
→ S2V ⊗ O → V ⊗ Q → ∧

2 Q → 0 (4.1)

obtained from (2.1).
Step 2. Q ⊗ Q (j) ∈ C for j = 1, 2, 3, 4. This follows from the exact sequence

0 → ∧
2 Q ∗

→ V ⊗ Q ∗
→ S2V ⊗ O → S2Q → 0, (4.2)

dual to (4.1), since ∧
2 Q ∗

= ∧
2 Q (−1) and Q ∗(j) ∈ C by Step 1.
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Step 3. ∧2 Q ⊗ ∧
2 Q (2) ∈ C. It follows from the basic sequence (2.1) that ∧

4 V ⊗ O(3) has a filtration with the consecutive
quotients O(4),Q ∗

⊗ Q ∗(4), ∧2 Q ⊗ ∧
2 Q (2),Q ⊗ Q (2) and O(2). All of them except for ∧

2 Q ⊗ ∧
2 Q (2) belong to C, by

Steps 1 and 2. This implies the assertion.
Step 4. Q ∗

⊗ Q (j) ∈ C for j = 1, 2, 3, 4. Indeed, tensoring (2.1) with Q we get an exact sequence

0 → Q ∗
⊗ Q → V ⊗ Q → Q ⊗ Q → 0,

so the assertion follows from Step 2.
Step 5. Q ⊗ ∧

2 Q ∈ C. First, observe that S1 = Q ⊕ E ∈ C. Now the exact sequence (3.1) shows that R1 ∈ C. But
Q ⊗ ∧

2 Q = ∧
3 Q ⊕ S(2,1)Q = Q ∗(1) ⊕ R1, so it is in C (recall that Q ∗(1) ∈ C by Step 1).

Step 6. Q ⊗ ∧
2 Q (j − 1),Q ⊗ S2Q (j) ∈ C for j = 1, 2, 3, 4. Consider the exact sequence

0 → Q ⊗ ∧
2 Q → V ⊗ Q ∗

⊗ Q (1) → S2V ⊗ Q (1) → Q ⊗ S2Q (1) → 0

obtained by tensoring (4.2) with Q (1). Using Steps 4 and 5 we deduce that Q ⊗ S2Q (1) ∈ C. Note that the subcategory C
is admissible, so it is closed under passing to direct summands. Since Q ⊗ S2Q (1) = S3Q (1) ⊕ S(2,1)Q (1), we derive that
S(2,1)Q (1) ∈ C. This implies that Q ⊗ ∧

2 Q (1) = Q ∗(2) ⊕ S(2,1)Q (1) ∈ C (where Q ∗(2) ∈ C by Step 1). Now we tensor the
above exact sequence by O(1) and iterate the above argument.
Step 7. Q ⊗ S3Q (2) ∈ C. Consider the exact sequence

0 → Q (−1) → V ⊗ ∧
2 Q (−1) → S2V ⊗ Q ∗

→ S3V ⊗ O → S3Q → 0 (4.3)

obtained from (2.1). Tensoring it with Q (2) and using Steps 2, 4 and 6 we deduce the assertion.
Step 8. S2Q ⊗ S2Q (2) ∈ C. We have S2Q ⊗ S2Q (2) = Q ⊗ S3Q (2) ⊕ S(2,2)Q (2). Hence, by Step 7, it is enough to check that
S(2,2)Q (2) ∈ C. But S(2,2)Q (2) is a direct summand in ∧

2 Q ⊗ ∧
2 Q (2), so the assertion follows from Step 3.

Step 9. S4Q (1) ∈ C. This follows immediately from the exact sequence

0 → O → V ⊗ Q → S2V ⊗ ∧
2 Q → S3V ⊗ Q ∗(1) → S4V ⊗ O(1) → S4Q (1) → 0

deduced from (2.1).
Step 10. ∧2 Q ⊗ S2Q (1) ∈ C. Consider the exact sequence

0 → ∧
2 Q ∗

→ ∧
2 V ⊗ O → V ⊗ Q → S2Q → 0

deduced from (2.1). Tensoring it with S2Q (2) we get the exact sequence

0 → ∧
2 Q ⊗ S2Q (1) → ∧

2 V ⊗ S2Q (2) → V ⊗ Q ⊗ S2Q (2) → S2Q ⊗ S2Q (2) → 0.

Here all the nonzero terms except for the first one belong to C by Steps 2, 6 and 8, so the assertion follows.
Step 11. Finally, we are going to deduce that Q ⊗ Q ∈ C. Tensoring (4.3) by Q (1) we get an exact sequence

0 → Q ⊗ Q → V ⊗ Q ⊗ ∧
2 Q → S2V ⊗ Q ∗

⊗ Q (1) → S3V ⊗ Q (1) → Q ⊗ S3Q (1) → 0.

All the nonzero terms except for the first and the last belong to C by Steps 4 and 5. Thus, it is enough to check that
Q ⊗ S3Q (1) ∈ C. We have Q ⊗ S3Q (1) = S4Q (1) ⊕ S(3,1)Q (1). It remains to observe that S4Q (1) ∈ C by Step 9, while
S(3,1)Q (1) ∈ C as a direct summand of ∧2 Q ⊗ S2Q (1) which is in C by Step 10. �

Theorem 4.3. The exceptional collection on LG(4, 8) considered in Theorem 4.1 is full.

Proof. Recall that Q is dual to the universal subbundle U = U4 ⊂ V ⊗ O. Taking the dual of the collection in question we
obtain the collection

(∧2 U4(−4), U4(−4), O(−4), . . . ,∧2 U4(−1), U4(−1), O(−1), ∧2 U4, U, E∗, O) (4.4)

that generates the admissible triangulated subcategory C∗
⊂ Db(LG(4, 8)). It is enough to check that C∗

= Db(LG(4, 8)).
Consider the diagram where p and π are natural projections:

F1,4,8

P7
✛

π

LG(4, 8)

p

✲

Here F1,4,8 is the partial flag variety consisting of pairs (l ⊂ U), where l is a line in a Lagrangian subspace U ⊂ V . The variety
F1,4,8 is naturally embedded into the productP7

×LG(4, 8). Let us denote by i : F1,4,8 ↩→ P7
×LG(4, 8) the natural embedding.

Consider the fiber π−1(x) over a point x in P7. The variety π−1(x) is isomorphic to the Lagrangian Grassmannian LG(3, 6).
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There is a rank three vector bundle U3 on F1,4,8 such that its restriction to any fiber π−1(x) is isomorphic to the universal
bundle over this fiber. Recall that the derived category of coherent sheaves on π−1(x) has a full exceptional collection:

(U3|π−1(x) ⊗ Oπ (−3), Oπ−1(x)(−3), U3|π−1(x) ⊗ Oπ (−2), Oπ−1(x)(−2), . . . , U3|π−1(x), O). (4.5)

Here Oπ (−1) is a line bundle that is isomorphic to det U3. Therefore, by Theorem 3.1 of [10], the category Db(F1,4,8) has a
semiorthogonal decomposition:

Db(F1,4,8) = ⟨π∗Db(P7) ⊗ U3 ⊗ Oπ (−3), π∗Db(P7) ⊗ Oπ (−3), . . . , π∗Db(P7) ⊗ U3, π
∗Db(P7)⟩. (4.6)

There is a short exact sequence of vector bundles on F1,4,8:

0 → π∗O(−1) → p∗U4 → U3 → 0. (4.7)

Taking determinants we get an isomorphism of line bundles p∗O(−1) = π∗O(−1) ⊗ Oπ (−1). Therefore, we can replace
Oπ (i) by p∗O(i) in the above semiorthogonal decomposition. Thus, to prove the statement it is sufficient to show that all
the subcategories

p∗(π
∗Db(P7) ⊗ U3) ⊗ O(j), p∗(π

∗Db(P7)) ⊗ O(j), for j = 0, . . . ,−3

belong to C∗.
The functor p∗π

∗
: Db(P7) → Db(LG(4, 8)) can be computed using the Koszul resolution of the sheaf i∗OF1,4,8 on

P7
× LG(4, 8):

0 → π∗O(−4) ⊗ p∗O(−1) → · · · → π∗O(−2) ⊗ ∧
2 p∗U4 → π∗O(−1) ⊗ p∗U4 → O → i∗OF1,4,8 → 0. (4.8)

Using this resolution we immediately check the inclusion

p∗(π
∗Db(P7)) ⊗ O(j) ⊂ ⟨O(j − 1), ∧3 U4(j) = U∗

4(j − 1), ∧2 U4(j), U4(j), O(j)⟩.

By Lemma 4.2(i), for j = −3, . . . , 0 the right-hand side belongs to C∗.
Next, using the sequence (4.7) we see that to prove the inclusion p∗(π

∗Db(P7) ⊗ U3) ⊗ O(j) ⊂ C∗ it is enough to check
that

⟨U4(j − 1), U4 ⊗ U∗

4(j − 1), U4 ⊗ ∧
2 U4(j), U4 ⊗ U4(j), U4(j)⟩ ⊂ C∗

for j = −3, . . . , 0. It remains to apply Lemma 4.2 (and dualize). �

Another version of the proof. We can simplify computations in the above argument by using a different semiorthogonal
decomposition of Db(F1,4,8):

Db(F1,4,8) = ⟨π∗Db(P7) ⊗ U3 ⊗ p∗O(−3), π∗Db(P7) ⊗ p∗O(−3), . . . , π∗Db(P7), π∗Db(P7) ⊗ U∗

3⟩.

The restriction of this decomposition to the fiber π−1(x) ≃ LG(3, 6) is the exceptional collection obtained from collection
(4.5) by the right mutation of U3|π−1(x) through O. In the same way as above we check that

p∗(π
∗Db(P7)) ⊗ O(j) ⊂ C∗ for j = −3, . . . , 0,

p∗(π
∗Db(P7) ⊗ U3) ⊗ O(j) ⊂ C∗ for j = −1, −2, −3, and

p∗(π
∗O(i) ⊗ U∗

3) ∈ C∗ for i = −6, . . . , 0.

The point is that this will only require using (easy) Steps 1, 2, 4–6 of Lemma 4.2. Thus, if we consider the semiorthogonal
decomposition

Db(F1,4,8) = ⟨A, ⟨π∗O(1) ⊗ U∗

3⟩⟩,

where A = ⟨π∗O(1) ⊗ U∗

3⟩
⊥, then p∗A ∈ C∗. By adjointness, it follows that for an object E ∈ Db(LG(4, 8)) such that

Hom(E, C∗) = 0, one has p∗E ∈ ⟨π∗O(1) ⊗ U∗

3⟩, i.e., p
∗E ≃ V •

⊗ π∗O(1) ⊗ U∗

3 for a graded vector space V •. Hence,
E ≃ V •

⊗ p∗(π
∗O(1) ⊗ U∗

3). Finally, using resolution (4.8) and the dual of sequence (4.7) one can compute that

p∗(π
∗O(1) ⊗ U∗

3) ≃ ∧
2 U∗

4 ≃ ∧
2 U4(1).

Thus, E ≃ V •
⊗ ∧

2 U4(1). But Hom∗(∧2 U4(1), ∧2 U4(−4)) ≠ 0 by Serre duality, so the condition Hom∗(E, C∗) = 0
implies that V •

= 0. �
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5. The case of LG(5, 10)

In this section we assume that n = 5 (so V is 10-dimensional). It turns out that in this case the exceptional bundles
constructed so far do not generate the entire derived category Db(LG(5, 10)). We are going to construct another exceptional
bundle on LG(5, 10) starting from the bundle T = S(3,1,1)Q . Let us denote by ωi the ith fundamental weight of the root
system C5. For a dominantweight λwe denote by V (λ) the corresponding irreducible representation of Sp(10) (for example,
V (ω1) = V , V (ω2) = ∧

2 V/k, V (2ω1) = S2V ).

Lemma 5.1. Assume that n = 5.
(i) Hom∗(∧i Q , T (j)) = 0 for i ∈ [0, 3], j ∈ [−5, −1]. Also, Hom∗(T , O) = 0.
(ii) Hom∗(R1, T (j)) = 0 for j ∈ [−5, −1].
(iii) Hom∗(T , T (−3)) = 0.
(iv) Homi(T , T ) = 0 for i > 2,Hom2(T , T ) = V (2ω1 + ω2) ⊕ V (ω1 + ω3),Hom1(T , T ) = V⊗2/k⊕ S2V ,Hom0(T , T ) = k.
(v) Homi(∧3 Q , T ) = 0 for i > 0 and Hom0(∧3 Q , T ) = S2V . Also, Homi(T , ∧3 Q ) = 0 for i ≠ 1, 2,Hom1(T , ∧3 Q ) = k

and Hom2(T , ∧3 Q ) = ∧
2 V/k.

(vi) Homi(∧2 Q , T ) = 0 for i > 0 and Hom0(∧2 Q , T ) = V (3ω1) ⊕ V (ω1 + ω2). Also, Homi(T , ∧2 Q ) = 0 for i ≠ 2 and
Hom2(T , ∧2 Q ) = V .

(vii) Homi(Q , T ) = 0 for i > 0 and Hom0(Q , T ) = V (2ω1 + ω2) ⊕ V (ω1 + ω3). Also, Homi(T ,Q ) = 0 for i ≠ 2 and
Hom2(T ,Q ) = k.

(viii) Homi(R1, T ) = 0 for i > 1,Hom1(R1, T ) = V (2ω1 + ω2) ⊕ V (ω1 + ω3) and Hom0(R1, T ) = V⊗2/k. Also,
Homi(T , R1) = 0 for i ≠ 1, 2,Hom1(T , R1) = k and Hom2(T , R1) = V⊗2/k.

(ix) Hom∗(T , S2Q ∗) = 0.
(x) Homi(T , S3Q ∗) = 0 for i ≠ 4.
(xi) Homi(T , R3) = 0 for i ≠ 1.
(xii) Homi(T , ∧3 Q ⊗ Q ∗) = 0 for i ≠ 2.
(xiii) Hom4(T , ∧3 Q ⊗ ∧

2 Q ∗) = 0.

The proof is a straightforward application of Bott’s theorem. By part (viii) of the above lemma, we have a canonical
nonsplit extension of vector bundles

0 → R1 → P → T → 0. (5.1)

Lemma 5.2. (i) The map Hom1(R1,Q ) → Hom2(T ,Q ) induced by (5.1) is an isomorphism.
(ii) The map Hom1(R1, ∧

2 Q ) → Hom2(T , ∧2 Q ) induced by (5.1) is an isomorphism.
(iii) The map Hom1(R1, R1) → Hom2(T , R1) induced by (5.1) is an isomorphism.
(iv) The map Hom1(R1, T ) → Hom2(T , T ) induced by (5.1) is an isomorphism, while the map Hom0(R1, T ) → Hom1(T , T ) is

injective.
(v) One hasHom∗(P,Q ) = Hom∗(P, ∧2 Q ) = Hom∗(P, R1) = Hom>1(P, P) = 0 andHom1(P, P) = S2V ,Hom0(P, P) = k.

Also, Homi(P, ∧3 Q ) = 0 for i ≠ 1 and Hom1(P, ∧3 Q ) = k.

Proof. (i) We have to check that the natural map

Hom1(R1,Q ) ⊗ Hom1(T , R1) → Hom2(T ,Q )

is an isomorphism. Note that both sides are 1-dimensional (see Lemmas 2.5(iii) and 5.1(vii), (viii)), so it is enough to check
that this map is nonzero. We have natural embeddings S2Q ∗

→ R∗

1 ⊗ Q and S2Q ∗
→ T ∗

⊗ R1 inducing isomorphisms on
H1. Let us consider the induced map

α : S2Q ∗
⊗ S2Q ∗

→ T ∗
⊗ Q .

Note that

S2Q ∗
⊗ S2Q ∗

= S4Q ∗
⊕ S(2,2)Q ∗

⊕ S(3,1)Q ∗,

where the first two terms have zero cohomology while the last term has 1-dimensional H2. Thus, it is enough to check that
the restriction of α to S(3,1)Q ∗ is nonzero and that the natural map

H1(S2Q ∗) ⊗ H1(S2Q ∗) → H2(S2Q ∗
⊗ S2Q ∗)

between 1-dimensional spaces is nonzero. Let us start by splitting the exact sequence (4.1) into two short exact sequences

0 → S2Q ∗
→ S2V ⊗ O → K → 0 (5.2)

0 → K → V ⊗ Q → ∧
2 Q → 0. (5.3)

Then (5.2) induces the surjections H0(K) → H1(S2Q ∗) and H1(K ⊗ S2Q ∗) → H2(S2Q ∗
⊗ S2Q ∗) (by the vanishing of H1(O)

and H2(S2Q ∗)). Hence, it is enough to check that the natural map

H0(K) ⊗ H1(S2Q ∗) → H1(K ⊗ S2Q ∗)
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is an isomorphism (note that both sides are isomorphic to S2V ⊕ k). Now the sequence (5.3) induces embeddings H0(K) →

V ⊗ H0(Q ) and H1(K ⊗ S2Q ∗) → V ⊗ H1(Q ⊗ S2Q ∗) (by the vanishing of H0(∧2 Q ⊗ S2Q ∗)). Hence, we are reduce to
proving that the map

H0(Q ) ⊗ H1(S2Q ∗) → H1(Q ⊗ S2Q ∗)

is an isomorphism. But this follows from the exact sequence (2.1) and the vanishing of H∗(Q ∗
⊗ S2Q ∗).

It remains to check that the restriction of α to S3,1Q ∗
⊂ S2Q ∗

⊗ S2Q ∗ is nonzero (where we can just think of Q
as a vector space). Let us view T (resp., R1) as the image of the Koszul differential S2Q ⊗ ∧

3 Q → S3Q ⊗ ∧
2 Q (resp.,

Q ⊗ ∧
2 Q → S2Q ⊗ Q ). Then the embedding S2Q ∗ ↩→ T ∗

⊗ R1 corresponds to the composed map

S2Q ∗
⊗ T → S2Q ∗

⊗ S3Q ⊗ ∧
2 Q → Q ⊗ ∧

2 Q → R1, (5.4)

where the second arrow is induced by the naturalmap S2Q ∗
⊗S3Q → Q . On the other hand, the embedding S2Q ∗ ↩→ R∗

1⊗Q
corresponds to the natural map S2Q ∗

⊗ R1 → Q induced by the embedding R1 → S2Q ⊗ Q . Thus, α corresponds to the
composed map

α′
: S2Q ∗

⊗ S2Q ∗
⊗ T → S2Q ∗

⊗ S2Q ∗
⊗ S3Q ⊗ ∧

2 Q → S2Q ∗
⊗ Q ⊗ ∧

2 Q → S2Q ∗
⊗ S2Q ⊗ Q → Q ,

where the third arrow is induced by the Koszul differential. Let us choose a basis e1, . . . , en for Q and define an element
t ∈ T by

t = e24e1 ⊗ (e2 ∧ e3) + e24e2 ⊗ (e3 ∧ e1) + e24e3 ⊗ (e1 ∧ e2),

where we view T as a subbundle in S3Q ⊗ ∧
2 Q . Then one can compute the induced functional on S2Q ∗

⊗ S2Q ∗

x → ⟨α′(x ⊗ t), e3⟩ = 2⟨x, (e0e2) ∧ (e0e1)⟩,

where x ∈ S2Q ∗
⊗ S2Q ∗. Now we observe that S(3,1)Q can be identified with the image of ∧2(S2Q ) under the natural map

β : S2Q ⊗ S2Q → S3Q ⊗ Q given by

β(f ⊗ (v1v2)) = (f v1) ⊗ v2 + (f v2) ⊗ v1.

Finally we compute that

β((e0e2) ∧ (e0e1)) = (e24e2) ⊗ e1 − (e24e1) ⊗ e2 ≠ 0,

which finishes the proof.
(ii) Since both the source and the target are isomorphic to V , it is enough to check surjectivity. Furthermore, it suffices to
prove that the composition map

Hom1(T , R1) ⊗ Hom1(R1,Q ) ⊗ Hom0(Q , ∧2 Q ) → Hom2(T , ∧2 Q )

is surjective. By part (i), this reduces to surjectivity of the composition map

Hom2(T ,Q ) ⊗ Hom0(Q , ∧2 Q ) → Hom2(T , ∧2 Q ).

Looking at the exact sequence (5.3), we see that this would follow from the vanishing of Hom3(T , K). But this vanishing
follows from the exact sequence (5.2) since Hom∗(T , O) = Hom∗(T , S2Q ∗) = 0 (see Lemma 5.1(i), (ix)).
(iii) Both the source and the target are isomorphic to V⊗2/k (see Lemmas 2.5(iv) and 5.1(viii)), so it suffices to check
surjectivity. By part (ii), it is enough to prove that the map

Hom2(T , ∧2 Q ) ⊗ V → Hom2(T , R1) (5.5)

is surjective. Let us first check that S2V ⊂ Hom2(T , R1) is in the image. The exact sequence (2.1) induces a long exact
sequence

· · · → Hom2(T , ∧2 Q ⊗ Q ∗) → Hom2(T , ∧2 Q ) ⊗ V
f

→ Hom2(T , ∧2 Q ⊗ Q ) → · · ·

Using Bott’s theorem one can check that Hom2(T , ∧2 Q ⊗ Q ∗) does not contain any factors isomorphic to S2V , so the
restriction of f to S2V is an embedding. On the other hand,

Hom2(T , ∧2 Q ⊗ Q ) = Hom2(T , R1) ⊕ Hom2(T , ∧3 Q ),

where the second factor is ∧
2 V/k, hence, S2V projects nontrivially to Hom2(T , R1). It remains to check that ∧

2 V/k ⊂

Hom2(T , R1) is in the image of the map (5.5). It suffices to prove that it is in the image of the map

Hom2(T ,Q ⊗ Q ) ⊗ V → Hom2(T , R1),

or even

Hom2(T ,Q ) ⊗ H0(∧2 Q ) → Hom2(T , R1).
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We have a natural map

γ : S2Q ∗
⊗ ∧

2 Q ∗
→ T ∗

⊗ Q ,

such that its composition with the embedding T ∗
⊗ Q ↩→ S2Q ∗

⊗ ∧
3 Q ∗

⊗ Q (induced by the surjection S2Q ⊗ ∧
3 Q → T )

is the identity map on S2Q ∗ tensored with the natural embedding ∧
2 Q ∗

→ ∧
3 Q ∗

⊗ Q . Note that this implies that γ itself
is an embedding. Hence, γ induces an isomorphism on H2. Next, we claim that the composition map

H2(S2Q ∗
⊗ ∧

2 Q ∗) ⊗ H0(∧2 Q ) → H2(S2Q ∗
⊗ ∧

2 Q ∗
⊗ ∧

2 Q )

is surjective. Indeed, it is enough to check this with H0(∧2 Q ) replaced by ∧
2 V . Then the exact sequence

0 → S2Q ∗
→ V ⊗ Q ∗

→ ∧
2 V ⊗ O → ∧

2 Q → 0

shows that this follows from the vanishing of H3(S2Q ∗
⊗ ∧

2 Q ∗
⊗ Q ∗) and H4(S2Q ∗

⊗ ∧
2 Q ∗

⊗ S2Q ∗), both of which are
easily checked using Bott’s theorem. Now it remains to prove that the composed map

S2Q ∗
⊗ ∧

2 Q ∗
⊗ ∧

2 Q
γ⊗id
→ T ∗

⊗ Q ⊗ ∧
2 Q → T ∗

⊗ R1

induces an embedding on H2. It is enough to prove that the kernel of this map is S2Q ∗. Using the embedding of T ∗ into
S2Q ∗

⊗ ∧
3 Q ∗ this reduces to checking that the composition of the natural maps

∧
2 Q ∗

⊗ ∧
2 Q → ∧

3 Q ∗
⊗ Q ⊗ ∧

2 Q → ∧
3 Q ∗

⊗ R1

has O as a kernel. Replacing this map by its composition with the embedding ∧
3 Q ∗

⊗ R1 ↩→ ∧
3 Q ∗

⊗ S2Q ⊗ Q we see that
it is enough to prove the following fact from linear algebra. Suppose we have a linear map A : ∧

2 Q → ∧
2 Q such that the

induced map

∧
3 Q → Q ⊗ ∧

2 Q
id⊗A
→ Q ⊗ ∧

2 Q
d

→ S2Q ⊗ Q

is zero, where d is Koszul differential. Then A is proportional to identity. To prove this statement we recall that the kernel of
d is exactly ∧

3 Q ⊂ Q ⊗ ∧
2 Q . Thus, the condition on A is that idQ ⊗ A preserves ∧

3 Q ⊂ Q ⊗ ∧
2 Q . Let us fix some basis

(ei) of Q and let ∂i : ∧
3 Q → ∧

2 Q be the odd partial derivatives corresponding to the dual basis of Q ∗. Consider

e1 ⊗ A(e2 ∧ e3) + e2 ⊗ A(e3 ∧ e1) + e3 ⊗ A(e1 ∧ e2) = η ∈ ∧
3 Q ⊂ Q ⊗ ∧

2 Q .

Contractingwith e∗

3 in the first factor of the tensor productQ⊗∧
2 weobtainA(e1∧e2) = ∂3η. Hence, ∂3A(e1∧e2) = ∂2

3η = 0.
In a similar way ∂iA(e1 ∧e2) = 0 for i > 2. It follows that A(e1 ∧e2) is proportional to e1 ∧e2. Thus, for every pair of elements
x, y ∈ Q , A(x ∧ y) is proportional to x ∧ y. This implies that A is proportional to identity.
(iv) We have Hom1(R1, T ) ≃ Hom2(T , T ) (see Lemma 5.1(iv), (viii)), so for the first assertion it is enough to check the
surjectivity. By part (ii), it suffices to check that the map

Hom2(T , ∧2 Q ) ⊗ Hom0(∧2 Q , T ) → Hom2(T , T )

is surjective. Furthermore, it is enough to prove that the map

Hom2(T , ∧2 Q ) ⊗ Hom0(∧2 Q , ∧3 Q ) ⊗ Hom0(∧3 Q , T ) → Hom2(T , T )

is surjective. We are going to do this in two steps: first, we will check that the map

Hom2(T , ∧2 Q ) ⊗ V → Hom2(T , ∧3 Q ) (5.6)

is surjective, and then we will show the surjectivity of

Hom2(T , ∧3 Q ) ⊗ Hom0(∧3 Q , T ) → Hom2(T , T ). (5.7)

From the exact sequence (2.1) we get the following long exact sequence

0 → S3Q ∗
→ S3V ⊗ O → S2V ⊗ Q → V ⊗ ∧

2 Q → ∧
3 Q → 0.

Thus, the surjectivity of (5.6) follows from the vanishing of Hom3(T ,Q ),Hom4(T , O) andHom5(T , S3Q ∗) (see Lemma 5.1(i),
(vii), (x)). To deal with (5.7) we use the natural embedding S2Q → ∧

3 Q ∗
⊗T inducing an isomorphism onH0. Note also that

since∧
3 Q ⊗ S2Q ≃ T ⊕R3, Lemma 5.1(xi) implies that the projection T ∗

⊗∧
3 Q ⊗ S2Q → T ∗

⊗ T induces an isomorphism
on H2. Thus, we are reduced to showing the surjectivity of

Hom2(T , ∧3 Q ) ⊗ H0(S2Q ) → Hom2(T , ∧3 Q ⊗ S2Q ).

It suffices to prove the surjectivity of the maps

Hom2(T , ∧3 Q ) ⊗ V → Hom2(T , ∧3 Q ⊗ Q ),

Hom2(T , ∧3 Q ⊗ Q ) ⊗ V → Hom2(T , ∧3 Q ⊗ S2Q ).
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The exact sequence (2.1) shows that the surjectivity of the first map follows from the vanishing of Hom3(T , ∧3 Q ⊗ Q ∗)
(see Lemma 5.1(xii)). Similarly, for the second map we use the exact sequence

0 → ∧
2 Q ∗

→ ∧
2 V ⊗ O → V ⊗ Q → S2Q → 0

along with the vanishing of Hom3(T , ∧3 Q ) and Hom4(T , ∧3 Q ⊗ ∧
2 Q ∗) (see Lemma 5.1(v), (xiii)).

Now let us prove the injectivity of the map Hom0(R1, T ) → Hom1(T , T ). We have a natural embedding S2Q → R∗

1 ⊗ T
inducing isomorphism onH0 and an embedding S2Q ∗

→ T ∗
⊗R1 inducing isomorphism onH1. We claim that the composed

map

S2Q ⊗ S2Q ∗
→ T ∗

⊗ T (5.8)

induces an embedding on S(2,0,0,0,−2)Q ⊂ S2Q ⊗ S2Q ∗. To prove this we can replace Q by a vector space with a basis
e1, . . . , e5. Let e∗

1, . . . , e
∗

5 be the dual basis of Q ∗. It is enough to check that the lowest weight vector e21 ⊗ (e∗

5)
2 maps to a

nonzero element of T ∗
⊗ T under (5.8). By definition, this endomorphism of T is the composition of the map

T → S3Q ⊗ ∧
2 Q

∂25⊗id
→ Q ⊗ ∧

2 Q → R1

with the map

R1 → Q ⊗ ∧
2 Q

e21
→ S2Q ⊗ Q ⊗ ∧

2 Q → S3Q ⊗ ∧
2 Q → T .

Viewing T as a direct summand of S2Q ⊗ ∧
3 Q we obtain from the first (resp., second) map a map f : S2Q ⊗ ∧

3 Q → R1
(resp., g : R1 → S2Q ⊗ ∧

3 Q ). Identifying R1 with Q ⊗ ∧
2 Q/ ∧

3 Q we can write

f (t ⊗ (x ∧ y ∧ z)) = ∂2
5 (tx) ⊗ (y ∧ z) + ∂2

5 (ty) ⊗ (z ∧ x) + ∂2
5 (tz) ⊗ (x ∧ y) mod ∧

3 Q ,

g(x ⊗ (y ∧ z) mod ∧
3 Q ) = 2(e1x) ⊗ (e1 ∧ y ∧ z) + (e1y) ⊗ (e1 ∧ x ∧ z) + (e1z) ⊗ (e1 ∧ y ∧ x),

where t ∈ S2Q and x, y, z ∈ Q (for appropriate rescaling of g). Hence,

gf ((e4e5) ⊗ (e1 ∧ e2 ∧ e5)) = 2g(e4 ⊗ (e1 ∧ e2) mod ∧
3 Q ) = 2e21 ⊗ (e1 ∧ e4 ∧ e2) ≠ 0.

Thus, the map (5.8) induces an embedding on H1. So we are reduced to checking that the natural map

H0(S2Q ) ⊗ H1(S2Q ∗) → H1(S2Q ⊗ S2Q ∗)

is an isomorphism. Since both sides are isomorphic to S2V , it is enough to prove surjectivity. The exact sequence (4.2) shows
that this follows from the vanishing of H2(Q ∗

⊗ S2Q ∗) and H3(∧2 Q ∗
⊗ S2Q ∗), which can be checked using Bott’s theorem.

(v) The vanishing of Hom∗(P,Q ),Hom∗(P, ∧2 Q ),Hom∗(P, R1) follow from directly from parts (i)-(iv) along with the
computation of the relevant spaces in Lemmas 2.5 and 5.1. Similarly, we derive that Hom0(P, T ) = k,Hom1(P, T ) = S2V
and Homi(P, T ) = 0 for i > 1. Now one computes Hom∗(P, P) by applying the functor Hom(P, ?) to the exact sequence
(5.1) and using the vanishing of Hom∗(P, R1). To compute Hom∗(P, ∧3 Q ) it remains to check that the map

Hom1(R1, ∧
3 Q ) → Hom2(T , ∧3 Q )

induced by (5.1) is an isomorphism. Since both sides are isomorphic to ∧
2 V/k, it is enough to prove surjectivity. But this

follows immediately from part (ii) along with the surjectivity of the map (5.6) proved in part (iv). �

By part (v) of the above lemma, we have a canonical nonsplit extension of vector bundles

0 → ∧
3 Q → G → P → 0. (5.9)

Theorem 5.3. The vector bundle G is exceptional and Hom∗(G, ∧3 Q ) = 0.

Proof. First, applying the functor Hom(?, ∧3 Q ) to the sequence (5.9) and using Lemma 5.2(v) we find that
Hom∗(G, ∧3 Q ) = 0. Next, applying the functor Hom(G, ?) to this sequence we derive isomorphisms Homi(G,G) ≃

Homi(G, P). Recall that Hom∗(∧3 Q , R1) = 0 by Lemma 2.4. Hence, applying the functor Hom(∧3 Q , ?) to the sequence
(5.1) and using Lemma 5.1(v) we obtain that Homi(∧3 Q , P) = 0 for i > 0 and Hom0(∧3 Q , P) = S2V . Thus, using the
sequence (5.9) again along with the computation of Hom∗(P, P) (see Lemma 5.2(v)) we see that it is enough to check that
the natural map

Hom0(∧3 Q , P) ⊗ Hom1(P, ∧3 Q ) → Hom1(P, P)

is an isomorphism. Since Hom∗(P, R1) = Hom∗(∧3 Q , R1) = 0 (see Lemma 5.2(v)), the exact sequence (5.1) gives an
isomorphism of the above map with

Hom0(∧3 Q , T ) → Hom1(P, T )
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induced by a nonzero element in Hom1(P, ∧3 Q ). Since the natural map Hom1(T , ∧3 Q ) → Hom1(P, ∧3 Q ) is an
isomorphism (as we have seen in the proof of Lemma 5.2(v)), the above map factors as the composition of the map

Hom0(∧3 Q , T )
f

→ Hom1(T , T )

induced by a nonzero element in Hom1(T , ∧3 Q ) followed by the map h in the exact sequence

0 → Hom0(R1, T )
g

→ Hom1(T , T )
h

→ Hom1(P, T ) → 0.

Thus, it is enough to check that the images of the maps f and g are complementary in Hom1(T , T ). Since Hom0(R1, T ) =

V⊗2/k, Hom0(∧3 Q , T ) = S2V , while Hom1(T , T ) = V⊗2/k ⊕ S2V (see Lemma 5.1(iv), (v), (viii)), it suffices to prove that
the images of S2V under f and g have trivial intersection. Note that we have a natural embedding S2Q → R∗

1 ⊗ T (resp.,
S2Q → ∧

3 Q ∗
⊗ T ) inducing an embedding of S2V into Hom0(R1, T ) (resp., into Hom0(∧3 Q , T )). On the other hand, a

nonzero element inHom1(T , ∧3 Q ) is the image of the nonzero element inH1(S2Q ∗)with respect to the embedding S2Q ∗
→

T ∗
⊗∧

3 Q . Furthermore, we have seen in the end of the proof of Lemma 5.2(iv) that the naturalmapH0(S2Q )⊗H1(S2Q ∗) →

H1(S2Q ⊗ S2Q ∗) is an isomorphism. Thus, it is enough to prove that the natural maps

α : S2Q ∗
⊗ S2Q → (T ∗

⊗ ∧
3 Q ) ⊗ (∧3 Q ∗

⊗ T ) → T ∗
⊗ T and

β : S2Q ∗
⊗ S2Q → (T ∗

⊗ R1) ⊗ (R∗

1 ⊗ T ) → T ∗
⊗ T

induce linearly independent maps on H1. In fact, since H1(S2Q ∗
⊗ S2Q ) comes from the summand S(2,0,0,0,−2)Q ⊂

S2Q ∗
⊗ S2Q , generated by the lowest weight vector v = (e∗

5)
2

⊗ e21 (where (ei) is the basis of Q ), it suffices to check
that α(v) and β(v) are not proportional in T ∗

⊗ T . Recall that in the proof of Lemma 5.1(iv) we have constructed the maps
f : S2Q ⊗ ∧

3 Q → R1 and g : R1 → S2Q ⊗ ∧
3 Q such that gf is a multiple of the composition

S2Q ⊗ ∧
3 Q → T

β(v)
→ T → S2Q ⊗ ∧

3 Q .

On the other hand, α(v) is given by the following composition

T → S2Q ⊗ ∧
3 Q

∂25
→ ∧

3 Q
e21
→ S2Q ⊗ ∧

3 Q → T .

Let us denote by π : S2Q ⊗ ∧
3 Q → S2Q ⊗ ∧

3 Q the projection with the image T , given by

π(ab ⊗ (x ∧ y ∧ z)) =
3
5
ab ⊗ (x ∧ y ∧ z) + (ax ⊗ (b ∧ y ∧ z) + bx ⊗ (a ∧ y ∧ z) + c.p.(x, y, z)) ,

where a, b, x, y, z, ∈ Q , the omitted terms c.p.(x, y, z) are obtained by cyclically permuting x, y, z. Then we are reduced to
checking that gf is not proportional to the composition

h : S2Q ⊗ ∧
3 Q

π
→ S2Q ⊗ ∧

3 Q
∂25
→ ∧

3 Q
e21
→ S2Q ⊗ ∧

3 Q
π
→ S2Q ⊗ ∧

3 Q .

To this end we compute

1
2
gf (e4e5 ⊗ (e2 ∧ e3 ∧ e5)) = f (e4 ⊗ (e2 ∧ e3))

= 2e1e4 ⊗ (e1 ∧ e2 ∧ e3) − e1e2 ⊗ (e1 ∧ e3 ∧ e4) + e1e3 ⊗ (e1 ∧ e2 ∧ e4),
25
2

h(e4e5 ⊗ (e2 ∧ e3 ∧ e5)) = 3e21 ⊗ (e2 ∧ e3 ∧ e4) + 2e1e4 ⊗ (e1 ∧ e2 ∧ e3)

+ 2e1e2 ⊗ (e1 ∧ e3 ∧ e4) − 2e1e3 ⊗ (e1 ∧ e2 ∧ e4),

which are clearly not proportional. �

Lemma 5.4. On LG(5, 10) one has Hom∗(R1, R1(i)) = 0 for i ∈ [−5, −1].

Proof. The proof is similar to that of Lemma 2.5(iv) and is left to the reader. �

Theorem 5.5. Let us consider the following two blocks:

A = (O,Q , ∧2 Q , F1, ∧3 Q ,G) and B = (O,Q , ∧2 Q , F1, ∧3 Q ).

Then (A, B(1), B(2), A(3), B(4), B(5)) is a full exceptional collection in Db(LG(5, 10)).

Proof. The required semiorthogonality conditions not involving G follow from the fact that F1 is the right mutation of E1
through ∧

2 Q and from Lemmas 2.3, 3.1, 3.3 and 5.4. Using Serre duality and sequences (5.1) and (5.9) we can reduce all
the remaining semiorthogonality conditions to Lemmas 5.1 and 5.2 and Theorem 5.3 (for Hom∗(G(3),G) = 0 we need in
addition the vanishing of Hom∗(∧3 Q (3), ∧3 Q ) and Hom∗(R1(3), R1) that follows from Lemmas 2.3 and 5.4).

Now let us prove that our exceptional collection is full. Following the method of proof of Theorem 4.3 (involving the
partial isotropic flag manifold F1,5,10 and the relative analog of our collection for LG(4, 8)) one can reduce this to checking
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that the subcategory C generated by our exceptional collection contains the subcategories

P ⊗ O(j), P ⊗ Q (j), P ⊗ ∧
2 Q (j), P ⊗ Q ⊗ Q , P ⊗ Q ⊗ ∧

2 Q ,

where j = 0, . . . , 4 and P = ⟨O,Q , ∧2 Q , ∧3 Q ,Q ∗(1), O(1)⟩. This gives the following list of objects that have to be in C:

(i) O(j),Q (j), ∧2 Q (j) for j = 0, . . . , 5;
(ii) Q ⊗ Q (j), ∧3 Q (j),Q ⊗ ∧

2 Q (j),Q ⊗ ∧
3 Q (j), ∧2 Q ⊗ ∧

2 Q (j), ∧2 Q ⊗ ∧
3 Q (j) for j = 0, . . . , 4;

(iii) Q ∗(j),Q ∗
⊗ Q (j),Q ∗

⊗ ∧
2 Q (j) for j = 1, . . . , 5;

(iv) Q ⊗ Q ⊗ Q ,Q ⊗ Q ⊗ ∧
2 Q ,Q ⊗ Q ⊗ ∧

3 Q ,Q ∗
⊗ Q ⊗ Q (1),Q ⊗ ∧

2 Q ⊗ ∧
2 Q ,Q ⊗ ∧

2 Q ⊗ ∧
3 Q ,Q ∗

⊗ Q ⊗ ∧
2 Q (1).

The fact that all these objects belong to C follows from Lemmas 5.6–5.9, 5.9 and 5.13. �

In the following lemmas we often use the fact that C is closed under direct summands (since it is an admissible
subcategory). Also, by a resolution of SnQ we mean the exact sequence

· · · → ∧
2 Q ∗

⊗ Sn−2V ⊗ O → Q ∗
⊗ Sn−1V ⊗ O → SnV ⊗ O → SnQ → 0.

By the standard filtration of∧k(V ⊗O)wemean the filtration associatedwith exact sequence (2.1). This filtration has vector
bundles ∧

i Q ∗
⊗ ∧

k−i Q as consecutive quotients. Recall also that ∧
5 Q = O(1), so we have isomorphisms ∧

i Q ∗(1) ≃

∧
5−i Q .

Lemma 5.6. (i) For j = 0, . . . , 5 the following objects are in C: O(j),Q (j), ∧2 Q (j), ∧3 Q (j),Q ⊗ ∧
2 Q (j),Q ∗(j),Q ∗

⊗

∧
2 Q (j), S2Q ∗(j).

(ii) For j = 1, . . . , 5 the following objects are in C: Q ∗
⊗ Q ∗(j),Q ∗

⊗ Q (j),Q ⊗ Q (j), SnQ (j) for n ≥ 2.
(iii) For j = 0, . . . , 4 one has Q ⊗ ∧

3 Q (j) ∈ C and Q ∗
⊗ ∧

3 Q (j) ∈ C.
(iv) For j = 1, . . . , 4 one has ∧

3 Q ⊗ ∧
2 Q (j − 1) = ∧

2 Q ∗
⊗ ∧

2 Q (j) ∈ C and S2Q ⊗ ∧
2 Q (j) ∈ C.

(v) For j = 1, . . . , 5 and for n ≥ 2 one has Q ⊗ SnQ (j) ∈ C and Q ∗
⊗ SnQ (j) ∈ C.

(vi) For j = 1, . . . , 5 the following objects are in C: Q ⊗ Q ⊗ Q (j),Q ∗
⊗ Q ⊗ Q (j),Q ∗

⊗ Q ∗
⊗ Q (j) and Q ∗

⊗ Q ∗
⊗ Q ∗(j).

Proof. (i) To check the assertion for Q ⊗ ∧
2 Q (j) we observe that R1 = S2,1Q is contained in ⟨Q , F1⟩ as follows from exact

sequence (3.4). This implies that Q ⊗ ∧
2 Q (j) = ∧

3 Q (j) ⊕ S2,1Q (j) belongs to C for j = 0, . . . , 5.
The assertions forQ ∗(j) andQ ∗

⊗∧
2 Q (j) follow from the sequence (2.1). The assertion for S2Q ∗(j) follows by considering

the dual sequence to the resolution of S2Q .
(ii) Use the decomposition Q ∗

⊗ Q ∗(j) = S2Q ∗(j) ⊕ ∧
2 Q ∗(j) = S2Q ∗(j) ⊕ ∧

3 Q (j− 1) and (i). Then use sequence (2.1). For
SnQ (j) the assertion is checked using part (i) and the resolution of SnQ .
(iii) To prove the assertion for Q ⊗∧

3 Q (j) use the isomorphism Q ⊗∧
3 Q (j) ≡ Q ⊗∧

2 Q ∗(j+1) and consider the standard
filtration of ∧3(V ⊗ O) tensored with O(j + 1) (and then use part (i)). For the second assertion use sequence (2.1).
(iv) To check that ∧

2 Q ∗
⊗ ∧

2 Q (j) ∈ C use the standard filtration of ∧
4(V ⊗ O) tensored with O(j). Next, to derive that

S2Q ⊗ ∧
2 Q (j) ∈ C use resolution of S2Q .

(v) For Q ⊗ SnQ (j) use the resolution for SnQ tensored with Q (j) and parts (i), (ii) and (iii). For Q ∗
⊗ SnQ (j) use sequence

(2.1) and part (ii).
(vi) The assertion for Q ⊗ Q ⊗ Q (j) follows from the decomposition Q ⊗ Q ⊗ Q (j) = Q ⊗ ∧

2 Q (j) ⊕ Q ⊗ S2Q (j) and parts
(i) and (v). The rest follows using sequence (2.1) and part (ii). �

Lemma 5.7. (i) One has S3,1,1Q ∈ C and S3,1,1Q (3) ∈ C.
(ii) One has S2Q ⊗ ∧

3 Q ∈ C and S2Q ⊗ ∧
3 Q (3) ∈ C.

(iii) One has ∧
2 Q ∗

⊗ ∧
3 Q ∈ C and ∧

2 Q ∗
⊗ ∧

3 Q (3) ∈ C.

Proof. (i) First, exact sequence (5.9) shows that P, P(3) ∈ C. Next, exact sequence (5.1) shows that T , T (3) ∈ C, where
T = S3,1,1Q .
(ii) Since we have the decomposition

S2Q ⊗ ∧
3 Q = S3,1,1Q ⊕ S2,1,1,1Q ,

part (i) shows that it is enough to check the similar assertion for S2,1,1,1Q . But S2,1,1,1Q is a direct summand in Q ⊗ ∧
4 Q =

Q ⊗ Q ∗(1), so the statement follows from Lemma 5.6(ii).
(iii) This follows from (ii) using resolution for S2Q and Lemma 5.6(iii). �

Lemma 5.8. (i) For j = 1, 2, 3, ∧3 Q ⊗ ∧
3 Q (j) ∈ C if and only if ∧

2 Q ⊗ ∧
2 Q (j) ∈ C.

(ii) For j = 1, . . . , 4, ∧2 Q ⊗ ∧
2 Q (j) ∈ C if and only if S2Q ⊗ S2Q (j) ∈ C.

(iii) For j = 1, . . . , 4, the following conditions are equivalent:
(1) ∧

2 Q ∗
⊗ ∧

3 Q (j − 1) ∈ C;
(2) ∧

2 Q ∗
⊗ S2Q (j) ∈ C;

(3) Q ⊗ Q ⊗ ∧
2 Q (j) ∈ C.
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Proof. (i) Use the standard filtration of ∧5(V ⊗ O) tensored with O(j + 1) and Lemma 5.6(ii).
(ii) Use the decompositions

S2Q ⊗ S2Q = Q ⊗ S3Q ⊕ S2,2Q , ∧
2 Q ⊗ ∧

2 Q = Q ⊗ ∧
3 Q ⊕ S2,2Q

and Lemma 5.6(iii), (v).
(iii) First, the equivalence of (1) and (2) follows by considering the resolution of S2Q and using Lemma 5.6(iii). Next, we
observe that

∧
2 Q ∗

⊗ Q ⊗ Q (j) = ∧
2 Q ∗

⊗ ∧
2 Q (j) ⊕ ∧

2 Q ∗
⊗ S2Q (j)

and that ∧
2 Q ∗

⊗ ∧
2 Q (j) ∈ C for j = 1, . . . , 4 by Lemma 5.6(iv). Therefore, (2) is equivalent to ∧

2 Q ∗
⊗ Q ⊗ Q (j) ∈ C.

On the other hand, sequence (2.1) and Lemma 5.6(i) imply that in condition (3) we can replace Q ⊗ Q ⊗ ∧
2 Q (j) with

Q ∗
⊗ Q ⊗ ∧

2 Q (j). Now the equivalence of (2) and (3) follows by considering the standard filtration of ∧3(V ⊗ O) tensored
with Q (j) and using Lemma 5.6(i), (iii). �

Lemma 5.9. (i) For j = 0, 1, 2, 3 one has ∧
3 Q ⊗ ∧

3 Q (j − 1) ∈ C, S2Q ⊗ ∧
3 Q (j) ∈ C and S2Q ⊗ S2Q (j + 1) ∈ C.

(ii) For j = 1, 2, 3, 4 one has ∧
2 Q ⊗ Q ⊗ Q (j) ∈ C and ∧

2 Q ⊗ Q ∗
⊗ Q (j) ∈ C.

(iii) One has ∧
2 Q ⊗ ∧

2 Q (j) ∈ C, ∧3 Q ⊗ ∧
3 Q (j − 1) ∈ C for j = 1, . . . , 4, and S2Q ⊗ ∧

3 Q (j) ∈ C for j = 0, . . . , 4.
(iv) One has ∧

3 Q ⊗ Q ⊗ Q (j) ∈ C and ∧
3 Q ⊗ Q ∗

⊗ Q (j) ∈ C for j = 0, 1, 2, 3.
(v) One has ∧

3 Q ⊗ ∧
2 Q ⊗ Q (j) ∈ C for j = 1, 2.

Proof. (i) For j = 0 and j = 3 the first assertion follows from Lemma 5.7(iii). By Lemma 5.8(iii) this implies that
S2Q ⊗∧

3 Q ∈ C and S2Q ⊗∧
3 Q (3) ∈ C. Next, using the resolution for S2Q and Lemma 5.6(v) we obtain S2Q ⊗S2Q (1) ∈ C

and S2Q ⊗ S2Q (4) ∈ C. By Lemma 5.8(ii), this implies that ∧2 Q ⊗ ∧
2 Q (1) ∈ C and ∧

2 Q ⊗ ∧
2 Q (4) ∈ C. By Lemma 5.8(i),

it follows that ∧
3 Q ⊗ ∧

3 Q (1) ∈ C, which also leads to S2Q ⊗ ∧
3 Q (2) ∈ C and S2Q ⊗ S2Q (3) ∈ C as before.

On the other hand, combining Lemma 5.8(i) with Lemma 5.7(iii) we also get ∧
2 Q ⊗ ∧

2 Q (2) ∈ C. By Lemma 5.8(ii), this
implies that S2Q ⊗ S2Q (2) ∈ C. Considering the resolution for S2Q this leads to S2Q ⊗ ∧

3 Q (1) ∈ C and ∧
3 Q ⊗ ∧

3 Q ∈ C
as before.
(ii) The first assertion immediately follows from (i) and fromLemma5.8(iii). The second follows from the first using sequence
(2.1).
(iii) This follows from (i), (ii) and Lemma 5.8(i).
(iv) Using sequence (2.1) and Lemma 5.6(iii) we see that it is enough to show that ∧

3 Q ⊗Q ⊗Q (j) ∈ C. To this end we use
the decomposition

∧
3 Q ⊗ Q ⊗ Q (j) = ∧

3 Q ⊗ ∧
2 Q (j) ⊕ ∧

3 Q ⊗ S2Q (j),

part (iii) and Lemma 5.6(iv).
(v)We start with the isomorphism∧

3 Q ⊗∧
2 Q ⊗Q (j) ≃ ∧

2 Q ∗
⊗∧

2 Q ⊗Q (j+1). Now the assertion follows by considering
the standard filtration of ∧4(V ⊗ O) tensored with Q (j + 1) and using parts (ii), (iv) and Lemma 5.8(ii). �

Lemma 5.10. (i) For j = 1, 2, 3 one has ∧
2 Q ⊗ ∧

2 Q ⊗ Q (j) ∈ C.
(ii) One has ∧

2 Q ⊗ ∧
2 Q ⊗ ∧

2 Q (2) ∈ C.
(iii) One has ∧

2 Q ⊗ ∧
2 Q ⊗ S2Q (2) ∈ C.

(iv) One has ∧
3 Q ⊗ ∧

2 Q (4) ∈ C.

Proof. (i) Suppose first that j = 1. Then considering the filtration of ∧
5(V ⊗ O) ⊗ Q (2) and using Lemma 5.6(vi), as well

as the fact that Q ∗
⊗ Q ∗

⊗ ∧
2 Q (3) ∈ C (which is a consequence of Lemma 5.9(ii)), we reduce ourselves to showing that

∧
3 Q ⊗ ∧

3 Q ⊗ Q (1) ∈ C. Now the isomorphism ∧
3 Q ⊗ ∧

3 Q ⊗ Q (1) ≃ ∧
3 Q ⊗ ∧

2 Q ∗
⊗ Q (2) and the standard filtration

of ∧3 Q ⊗ ∧
3(V ⊗ O)(2) show that it is enough to check that the following objects are in C:

∧
3 Q ⊗ ∧

2 Q ⊗ Q ∗(2), ∧
3 Q ⊗ ∧

3 Q (2), ∧
3 Q ⊗ ∧

3 Q ∗(2).

For the second and the third this follows from Lemma 5.9(iii) and Lemma 5.6(iv), respectively. For the first object this follows
from Lemmas 5.6(iv) and 5.9(v) using (2.1).

Now consider the case j = 2 or j = 3. By sequence (2.1) and Lemma 5.9(iii), it is enough to prove that ∧
2 Q ⊗ ∧

2 Q ⊗

Q ∗(j) ∈ C. Now the standard filtration of ∧2 Q ⊗ ∧
3(V ⊗ O)(j) shows that it is enough to check that the following objects

are in C:

∧
2 Q ⊗ ∧

3 Q (j), ∧
2 Q ⊗ ∧

3 Q ∗(j), ∧
2 Q ⊗ ∧

2 Q ∗
⊗ Q (j).

But this follows from Lemmas 5.6(iv), 5.9(iii) and 5.9(v), respectively.
(ii) First, considering the standard filtration of ∧

5(V ⊗ O) ⊗ ∧
2 Q (3), we reduce ourselves to showing that the following

objects are in C:

∧
3 Q ⊗ ∧

3 Q ⊗ ∧
2 Q (2), Q ⊗ Q ⊗ ∧

2 Q (2), Q ∗
⊗ Q ∗

⊗ ∧
2 Q (4).
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For the second and the third this follows from Lemma 5.9(ii). Now using the isomorphism ∧
3 Q ⊗ ∧

3 Q ⊗ ∧
2 Q (2) ≃

∧
3 Q ⊗ ∧

2 Q ∗
⊗ ∧

2 Q (3) and the standard filtration of ∧
3 Q ⊗ ∧

4(V ⊗ O)(3) we are led to showing that the following
objects are in C:

∧
3 Q ⊗ ∧

3 Q ⊗ Q ∗(3), ∧
3 Q ⊗ ∧

2 Q ⊗ Q (2), ∧
3 Q ⊗ Q (2), ∧

3 Q ⊗ Q ∗(4).

For the second object this follows from Lemma 5.9(v), while for the last two it follows from Lemma 5.6(iii). Thus, it remains
to check that ∧

3 Q ⊗ ∧
3 Q ⊗ Q ∗(3) ∈ C. Using the standard filtration of ∧

5(V ⊗ O) ⊗ Q ∗(4) we see that it is enough to
verify that the following objects are in C:

∧
2 Q ⊗ ∧

2 Q ⊗ Q ∗(3), Q ⊗ Q ⊗ Q ∗(3), Q ∗(3), Q ∗(5), Q ∗
⊗ Q ∗

⊗ Q ∗(5).

For the second and the last object this follows from Lemma 5.6(vi). On the other hand, using (2.1), part (i) and Lemma 5.9(iii)
we see that ∧

2 Q ⊗ ∧
2 Q ⊗ Q ∗(3) ∈ C.

(iii) First, using the resolution for S2Q we reduce the problem to showing that ∧
2 Q ⊗ ∧

2 Q ⊗ ∧
2 Q ∗(2) ∈ C (here we also

use part (i), sequence (2.1) and Lemma 5.9(iii)). Next, the standard filtration of∧2 Q ⊗∧
4(V ⊗O)(2) shows that it is enough

to check that the following objects are in C:

∧
2 Q ⊗ ∧

3 Q ⊗ Q ∗(2), ∧
2 Q ⊗ ∧

2 Q ⊗ Q (1), ∧
2 Q ⊗ Q ∗(3), ∧

2 Q ⊗ Q (1).

For the last two objects this follows from Lemma 5.6(i). For the second object the assertion follows from part (i). Finally, to
check that ∧

2 Q ⊗ ∧
3 Q ⊗ Q ∗(2) ∈ C we use sequence (2.1), Lemma 5.9(v) and Lemma 5.6(iv).

(iv) Let us start with the decomposition

∧
3 Q ⊗ ∧

2 Q (4) = O(5) ⊕ S2,1,1,1Q (4) ⊕ S2,2,1Q (4).

Now observe that S2,1,1,1Q (4) is a direct summand in Q ⊗ ∧
4 Q (4) = Q ⊗ Q ∗(5) which is in C by Lemma 5.6(ii), while

S2,2,1Q (4) is a direct summand in S2Q ⊗ S2Q ⊗ Q (4). Using the resolution of S2Q we reduce ourselves to checking that the
following objects are in C:

S2Q ⊗ ∧
2 Q ∗

⊗ Q (4), S2Q ⊗ Q (4), S2Q ⊗ Q ∗
⊗ Q (4).

For the second object this follows from Lemma 5.6(v). Using (2.1) we can replace the third object by S2Q ⊗ Q ⊗ Q (4) =

S2Q ⊗ ∧
2 Q (4) ⊕ S2Q ⊗ S2Q (4) which is in C by Lemmas 5.6(iv) and 5.9(i). Next, we use the isomorphism S2Q ⊗ ∧

2 Q ∗
⊗

Q (4) ≃ S2Q ⊗∧
3 Q ⊗Q (3) and the resolution of S2Q to reduce the problem to showing that the following objects are in C:

∧
2 Q ∗

⊗ ∧
3 Q ⊗ Q (3), ∧

3 Q ⊗ Q (3), ∧
3 Q ⊗ Q ∗

⊗ Q (3).

The second and third objects are inC by Lemmas 5.6(iii) and 5.9(iv), respectively. For the first objectwe use the isomorphism
∧

2 Q ∗
⊗ ∧

3 Q ⊗ Q (3) ≃ ∧
3 Q ⊗ ∧

3 Q ⊗ Q (2) and the standard filtration of ∧
5(V ⊗ O) ⊗ Q (3) to reduce ourselves to

proving that the following objects are in C:

∧
2 Q ⊗ ∧

2 Q ⊗ Q (2), Q ⊗ Q ⊗ Q (2), Q ∗
⊗ Q ∗

⊗ Q (4).

For the first object this follows from (i), and for the second and the third—from Lemma 5.6(vi). �

Lemma 5.11. (i) One has S3Q ⊗ S3Q (2) ∈ C.
(ii) One has ∧

2 Q ⊗ ∧
2 Q ∈ C.

(iii) One has Q ⊗ Q ∈ C.

Proof. (i) Consider the decomposition

S3Q ⊗ S3Q (2) = S6Q (2) ⊕ S5,1Q (2) ⊕ S4,2Q (2) ⊕ S3,3Q (2).

By Lemma 5.6(ii), we have S6Q (2) ∈ C. Next, we observe that S5,1Q (2) is a direct summand in S4Q ⊗ ∧
2 Q (2) and

use the resolution of S4Q to deduce that this object is in C from the inclusions Q ⊗ ∧
2 Q (1) ∈ C,Q ∗

⊗ ∧
2 Q (2) ∈

C, ∧2 Q ∗
⊗ ∧

2 Q (2) ∈ C, ∧3 Q ∗
⊗ ∧

2 Q (2) ∈ C, that follow from Lemmas 5.6(i), 5.6(iv) and 5.9(iii). Finally, we note
that S4,2Q (2) ⊕ S3,3Q (2) is a direct summand in

∧
2 Q ⊗ ∧

2 Q ⊗ Q ⊗ Q (2) = ∧
2 Q ⊗ ∧

2 Q ⊗ ∧
2 Q (2) ⊕ ∧

2 Q ⊗ ∧
2 Q ⊗ S2Q (2)

which is in C by Lemma 5.10(ii), (iii).
(ii) We use the isomorphism ∧

2 Q ⊗ ∧
2 Q ≃ ∧

3 Q ∗
⊗ ∧

3 Q ∗(2) and then use the resolution of S3Q twice to relate this to
S3Q ⊗ S3Q (2) which is in C by part (i). It remains to check that the objects that appear in between, namely,

S3Q (2), S3Q ⊗ Q ∗(2), S3Q ⊗ ∧
2 Q ∗(2), ∧

3 Q ∗(2), Q ∗
⊗ ∧

3 Q ∗(2), ∧
2 Q ∗

⊗ ∧
3 Q ∗(2),

are all inC. For the last three objects this follows fromLemma5.6(i), (iv), while for the first three one has to use the resolution
of S3Q to reduce to the objects we have already dealt with.
(iii) The standard filtration of ∧5(V ⊗ O)(1) reduces the problem to showing that ∧

2 Q ⊗ ∧
2 Q and ∧

3 Q ⊗ ∧
3 Q are in C

(where we also use Lemma 5.6(ii)). It remains to apply part (ii) and Lemma 5.9(iii). �
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Lemma 5.12. (i) One has S3Q ⊗ S2Q (1) ∈ C.
(ii) One has ∧

2 Q ⊗ S2Q ∈ C.
(iii) One has ∧

2 Q ⊗ Q ⊗ Q ∈ C.
(iv) One has ∧

3 Q ⊗ ∧
2 Q ⊗ Q ∈ C.

Proof. (i) Consider the decomposition

S3Q ⊗ S2Q (1) = S5Q (1) ⊕ S4,1Q (1) ⊕ S3,2Q (1).

By Lemma 5.6(ii), we have S5Q (1) ∈ C. On the other hand, S4,1Q (1) is a direct summand in S3Q ⊗ ∧
2 Q (1). The resolution

of S3Q relates the latter object to Q ∗
⊗ ∧

2 Q (1), ∧2 Q ∗
⊗ ∧

2 Q (1) and ∧
3 Q ∗

⊗ ∧
2 Q (1) which are all in C (for the last one

use Lemma 5.11(ii)). Finally, S3,2Q (1) is a direct summand in ∧
2 Q ⊗ ∧

2 Q ⊗ Q (1) which is in C by Lemma 5.10(i).
(ii) Using the resolution for S3Q we can relate ∧

2 Q ⊗ S2Q = ∧
3 Q ∗

⊗ S2Q (1) with S3Q ⊗ S2Q (1), which is in C by part (i).
The objects appearing in between, namely, Q ∗

⊗ S2Q (1) and ∧
2 Q ∗

⊗ S2Q (1) are in C, by Lemmas 5.6(vi), 5.7(ii).
(iii) Since ∧

2 Q ⊗ Q ⊗ Q = ∧
2 Q ⊗ ∧

2 Q ⊕ ∧
2 Q ⊗ S2Q , this follows from part (ii) and Lemma 5.11(ii).

(iv) Considering the filtration of ∧4(V ⊗ O) ⊗ Q (1) we reduce ourselves to showing that the following objects are in C:

∧
2 Q ⊗ Q ⊗ Q , Q ⊗ Q , Q ∗

⊗ Q (2), Q ∗
⊗ Q ⊗ ∧

3 Q (1).

Now the assertion follows from part (iii) and Lemmas 5.11(iii), 5.6(ii) and 5.9(iv). �

Lemma 5.13. (i) One has S2Q ⊗ S4Q (1) ∈ C.
(ii) One has S2Q ⊗ Q ∈ C.
(iii) One has Q ⊗ Q ⊗ Q ∈ C.
(iv) One has ∧

2 Q ⊗ ∧
2 Q ⊗ Q ∈ C.

Proof. (i) Consider the decomposition

S2Q ⊗ S4Q (1) = S6Q (1) ⊕ S5,1Q (1).

By Lemma 5.6(ii), we have S6Q (1) ∈ C. On the other hand, S5,1Q (1) is a direct summand in ∧
2 Q ⊗ S4Q (1). Using the

resolution of S4Q we reduce the problem to checking that the following objects are in C:

Q ⊗ ∧
2 Q , ∧

2 Q ⊗ ∧
2 Q , ∧

2 Q ∗
⊗ ∧

2 Q (1), Q ∗
⊗ ∧

2 Q (1), ∧
2 Q (1),

which follows from our previous work (for the second object use Lemma 5.11(ii)).
(ii) Tensoring the resolution for S4Q with S2Q (1) we get an exact sequence

0 → S2Q ⊗ Q → V ⊗ S2Q ⊗ ∧
2 Q → S2V ⊗ S2Q ⊗ ∧

3 Q → S3V ⊗ S2Q ⊗ Q ∗(1)
→ S4V ⊗ S2Q (1) → S2Q ⊗ S4Q (1) → 0.

By part (i), one has S2Q ⊗ S4Q (1) ∈ C. Next, S2Q ⊗ Q ∗(1) and S2Q (1) are in C by Lemma 5.6(v), (ii). Finally, S2Q ⊗ ∧
2 Q

and S2Q ⊗ ∧
3 Q are in C by Lemmas 5.12(ii) and 5.9(iii). Hence, S2Q ⊗ Q ∈ C.

(iii) This follows from the decomposition

Q ⊗ Q ⊗ Q = S2Q ⊗ Q ⊕ ∧
2 Q ⊗ Q ,

part (ii) and Lemma 5.6(i).
(iv) This is proved by the same method as the case j = 1 of Lemma 5.10(i), using part (iii). �
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