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a b s t r a c t

For a closed, spin, odd dimensional Riemannian manifold (Y , g), we define the rho invari-
ant ρspin(Y , E,H, [g]) for the twisted Dirac operator ̸∂E

H on Y , acting on sections of a flat
Hermitian vector bundle E over Y , where H =


ij+1H2j+1 is an odd-degree closed differ-

ential form on Y and H2j+1 is a real-valued differential form of degree 2j+1.We prove that
it only depends on the conformal class [g] of the metric g . In the special case when H is a
closed 3-form, we use a Lichnerowicz–Weitzenböck formula for the square of the twisted
Dirac operator,which in this case has no first order terms, to show thatρspin(Y , E,H, [g]) =

ρspin(Y , E, [g]) for all |H| small enough, whenever g is conformally equivalent to a Rieman-
nian metric of positive scalar curvature. When H is a top-degree form on an oriented three
dimensional manifold, we also compute ρspin(Y , E,H).

© 2013 Elsevier B.V. All rights reserved.

0. Introduction

In an earlier paper [1], we extended some of the results of Atiyah, Patodi and Singer [2–4] on the signature operator on an
oriented, compact manifold with boundary, to the twisted case. Atiyah, Patodi and Singer also studied the Dirac operator ̸∂E

on an odd dimensional, closed, spin manifold, which is self-adjoint and elliptic, having a spectrum in the real numbers. For
this (and other elliptic self-adjoint operators), they introduced the eta invariant which measures the spectral asymmetry of
the operator and is a spectral invariant. Coupling with flat bundles, they introduced the closely related rho invariant, which
has the striking property that it is independent of the choice of a Riemannian metric needed in its definition, when it is
reduced modulo Z. In this paper we generalize the construction of Atiyah–Patodi–Singer to the twisted Dirac operator ̸∂E

H
with a closed, odd-degree differential form as flux and with coefficients in a flat vector bundle.

More precisely, let X be a 2m-dimensional compact, spin Riemannian manifold without boundary, E a flat Hermitian
vector bundle over X andH a closed, odd degree differential form on Y . Consider the twisted Dirac operator ̸∂E

H = c◦∇
E,H

=

̸∂E
+c(H)where c denotes Cliffordmultiplication,∇E,H denotes the flat superconnection∇

E
X +c(H), and∇

E is the canonical
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flat Hermitian connection on E . Then ̸∂E
H anticommutes with the usual grading involution and it is self-adjoint if and only if

H =


ij+1H2j+1 (1)

where H2j+1 are real-valued differential forms of degree 2j + 1. It is only in this case that one gets a generalization of the
usual Dirac operator on X , in contrast to the case of the twisted de Rham complex; cf. [5–10].

When the compact spinmanifold X has non-empty boundary and assuming that the Riemannianmetric is of product type
near the boundary and that H satisfies the absolute boundary condition, we explicitly identify the twisted Dirac operator
near the boundary to be ̸∂ Ẽ

H̃
= σ


∂
∂r + ̸∂E

H


, where r is the coordinate in the normal direction,σ is a bundle isomorphismand

finally, the self-adjoint elliptic operator given on Ω2h(∂X, E) by ̸∂E
H is the Dirac operator on the boundary. ̸∂E

H is an elliptic
self-adjoint operator, and by [2], the non-local boundary condition given by P+(s|∂X ) = 0, where P+ denotes the orthogonal
projection onto the eigenspaces with positive eigenvalues, makes the pair (̸∂E

H; P+) into an elliptic boundary value problem.
Applying the Atiyah–Patodi–Singer index theorem, and computing the local contribution when H is closed, we get

Index(̸∂ Ẽ

H̃
; P+) = Rank(E)


Y
α0(H) −

1
2


dim(ker(̸∂E

H )) + η(̸∂E
H )

,

where η(̸∂E
H) denotes the eta invariant of the self-adjoint operator ̸∂E

H and α0(H) is a differential form which does not de-
pend on the flat Hermitian bundle E . This is the main tool used to prove our results about the twisted Dirac rho invariant,
defined below.

Let now Y be a closed, oriented, (2m − 1)-dimensional Riemannian spin manifold and H =


ij+1H2j+1 an odd-degree,
closed differential form on Y where H2j+1 is a real-valued differential form of degree 2j + 1. Denote by E a Hermitian flat
vector bundle over Y with the canonical flat connection ∇

E . Consider the twisted Dirac operator ̸∂E
H = c ◦ ∇

E,H
= ̸∂E

+c(H). Then ̸∂E
H is a self-adjoint elliptic operator and let η(̸∂E

H) denote its eta invariant. The twisted Dirac rho invariant
ρspin(Y , E,H, [g]) is defined to be the difference

ρspin(Y , E,H, [g]) =
1
2


dim(ker(̸∂E

H )) + η(̸∂E
H )

− Rank(E)

1
2


dim(ker(̸∂H)) + η(̸∂H)


,

where ̸∂H is the same twisted Dirac operator corresponding to the trivial line bundle. Although the eta invariant η(̸∂E
H)

is a priori only a spectral invariant, we show that the twisted Dirac rho invariant, ρspin(Y , E,H, [g]), depends only on the
conformal class of the Riemannian metric [g]. We compute it for 3-dimensional manifolds with a degree three flux form,
Corollary 3.2. This is done via the important method of spectral flow as in [4,11]. In Section 4, we analyse the special case
when H is a closed 3-form, using a Lichnerowicz–Weitzenböck formula for the square of the twisted Dirac operator, which
in this case has no first order terms, to show that ρspin(Y , E,H, [g]) = ρspin(Y , E, [g]) for all |H| small enough, whenever g
is conformally equivalent to a Riemannian metric of positive scalar curvature.

The twisted analogue of analytic torsion was studied in [8,9,12] and is another source of inspiration for this paper. We
mention that twisted Dirac operators, known as cubic Dirac operators, have been studied in representation theory of Lie
groups on homogeneous spaces [13,14]. It also appears in the study of Dirac operators on loop groups and their represen-
tation theory [15].

1. Twisted Dirac operator and Lichnerowicz–Weitzenböck formulae

1.1. The twisted analogue of the Dirac operator

Assume that X is an oriented manifold of dimension n = 2m and that H is a given complex differential form of positive
degree on X . We denote by Ȟ and Ĥ the differential forms

Ȟ =


k>1

Hk/k and Ĥ =


k>1

kHk, if H =


k>1

Hk.

Weassume that X is endowedwith a spin structure and denote by S = S+
⊕S− theZ2-graded spin bundle.We fix a unitary-

flat Hermitian bundle E, ∇E and denote by γ the grading involution obtained on S ⊗ E . We are interested in the twisted
Dirac operator ̸∂E

H = c ◦ ∇
E,Ȟ where V is a vector field

∇
E,Ȟ
V = ∇

E
V + iV Ȟ·,

and ∇
E is the canonical flat Hermitian connection on E . So

̸∂E
H = ̸∂E

+c(H),

where c(H) is the action of the differential form H by Clifford multiplication on the Clifford module S ⊗ E . Then we have
the following proposition.
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Proposition 1.1. In the notation above,

• ̸∂E
H γ = −γ ̸∂E

H ⇐⇒ H ∈ Ωodd(X, C).
• The twisted Dirac operator ̸∂E

H is self-adjoint if and only if

H =


k>1

(A4k + iB4k−2) + (A4k−1 + iB4k−3),

where the differential forms Aj and Bj are real differential forms of degree j on X.

So, in the evendimensional case, it is only in the caseH ∈ Ω4•+3
+iΩ4•+1 that one gets a twisted version of the usual Dirac

operator. When the ambient manifold is odd dimensional, then we may also consider even forms. Compare with [5,7–9].
Notice that this condition coincides with (and explains) the one obtained for the twisted signature operator in [1].

Proof. We have ̸∂E
H = ̸∂E

+c(H), where ̸∂E is the usual Dirac operator acting on sections of S(X) ⊗ E . It is a classical re-
sult that ̸∂E γ = −γ ̸∂E and that ̸∂E is self-adjoint. Recall that Clifford multiplication by a differential form of degree j is
self-adjoint if and only if j is congruent to 0 or 3 modulo 4 and is skew adjoint otherwise. This proves the second item.

Recall now that γ is given locally using an orthonormal basis by Cliffordmultiplication with the differential volume form

ω = ime1 · · · e2m.

A straightforward local computation then shows that for any complex differential form α of degree j, we have c(α) ◦ γ −

(−1)jγ ◦ c(α) = 0. �

1.2. Lichnerowicz–Weitzenböck formulae for odd degree twist

LetH ∈ Ωodd(X) be a closed differential form of odd degree and c(H) be the image ofH in the sections of the Clifford alge-
bra bundle Cliff(TX). Then∇

E
+H is a superconnection on the trivially graded, flat bundleE overX . Then (∇E

+H)2 = dH = 0
is the curvature of the superconnection which is flat.

Let ̸∂E denote the Dirac operator acting on E-valued spinors on X . If {e1, . . . , en} is a local orthonormal basis of TX , then
we have the expression

̸∂E
=

n
j=1

c(ej)∇E
ej .

Let Rg denotes the scalar curvature of the Riemannian metric. Then as shown in [16] the spinor Laplacian

∆E
H = −

n
j=1


∇

E
ej + c(ιejH)

2
is a positive operator that does not depend on the local orthonormal basis {e1, . . . , en} of TX . Here ιej denotes contraction
by the vector ej.

Then the following is a consequence of Theorem 1.1 in [16].

Theorem 1.2 (Lichnerowicz–Weitzenböck Formulae [16]). Let H be a closed, odd degree differential form on Y . Then the following
identities hold:

̸∂E
H

2
= ∆E

H +
Rg

4
+ c(H)2 +

n
j=1

c(ιejH)2,

where Rg denotes the scalar curvature of the Riemannian spin manifold X and the last 2 terms on the right hand side satisfy

c(H)2 +

n
j=1

c(ιejH)2 =


j1<j2···<jk, k>2

(−1)
k(k+1)

2 (1 − k)c((ιej1 ιej2 · · · ιejk
H)2).

As a corollary of Theorem 1.2, one has the following special Lichnerowicz–Weitzenböck formula.

Theorem 1.3 ([16,17]). Let H be a closed differential 3-form. Then
̸∂E

H

2
= ∆E

H +
Rg

4
− 2|H|

2

where Rg denotes the scalar curvature of the Riemannian spin manifold X and |H| the length of H.
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2. Eta invariants of twisted Dirac operators

In this section, we define rho invariant ρspin(X, E,H) and eta invariant η(̸∂E
H) of the twisted Dirac operators. But let us

review the boundary Dirac operator first.
Let X be an 2m dimensional compact spin manifold with boundary Y , E a flat Hermitian vector bundle over X and H is a

closed, odd degree differential form on X such that

H ∈ Ω4•+3(X, R) ⊕ iΩ4•+1(X, R).

Denote by S the spin bundle and consider as above the involution γX = imcX (e1 · · · e2m) ⊗ 1E on S ⊗ E-sections over X .
According to this involution we decompose as usual S ⊗ E into

S ⊗ E = S+
⊗ E ⊕ S−

⊗ E .

Wemay and shall assume that the local orthonormal basis (ek)16k62m is decomposed on the boundary into the local orthonor-
mal basis (ek)16k62m−1 and the inward unit vector e2m = ∂/∂r which is orthogonal to the boundary. Clifford multiplication
by e2m is denoted below by σ . We shall then also consider the self-adjoint involution γY = imc(e1 · · · e2m−1).

We denote by i∗H the restriction ofH to the boundary Y = ∂X . We shall say thatH is boundary-compatible if there exists
a collar neighbourhood pϵ : Xϵ

∼= (−ϵ, 0] × Y → Y such that

H|Xϵ = p∗

ϵ(i
∗H). (2)

As usual the spinor bundle SY on the boundary manifold Y for the induced spin structure from the fixed one on X is
naturally identified with S+ so that the Clifford representations are related by

cY (U) = −σ · cX (U), for U ∈ TY ⊂ TX .

Lemma 2.1. Under the above assumptions, suppose further that the Riemannian metric on Y and the Hermitian metric on E are
of product type near the boundary and that the closed, odd degree differential form H is boundary-compatible. We identify as
usual the restriction of S+ to the boundary Y with the spin bundle SY . Then, in the collar neighbourhood Xϵ , we explicitly identify
the twisted Dirac operator ̸∂

X,E
H with the operator

σ


∂

∂r
+ ̸∂

Y ,E |Y
H|Y


,

where ̸∂
Y ,E |Y
H|Y

is the self-adjoint elliptic twisted Dirac operator on Y defined as before by ̸∂
Y ,E |Y
H|Y

= c ◦∇
E,Ȟ∂Y acting on S(∂Y )⊗E .

Proof. Choose an orthonormal basis (e1, . . . , e2m) as above near a point on the boundary Y such that e2m =
∂
∂r , σ anti

commutes with the grading involution γX and is itself a well defined involution of S|Xϵ . Given a spinor φ ∈ Γ (Y , SY ⊗ EY )
over the boundary manifold Y , the pull-back section π∗

ϵ φ is identified with a section of S+
⊗ E ∼= p∗

ϵ(SY ⊗ EY ). Therefore,
for any smooth function f on (−ϵ, 0], we compute

σ · ̸∂
X,E
H (fπ∗

ϵ φ) = f
2m−1
i=1

σ cX (ei)π∗

ϵ (∇Y
eiφ) +

∂ f
∂r

σ 2π∗

ϵ φ + f σ(H · π∗

ϵ φ)

= −f
2m−1
i=1

cY (ei)π∗

ϵ (∇Y
eiφ) −

∂ f
∂r

π∗

ϵ φ + f σ cX (H)(π∗

ϵ φ)

= −fπ∗

ϵ


2m−1
i=1

cY (ei)∇Y
eiφ


−

∂ f
∂r

π∗

ϵ φ − fπ∗

ϵ (cY (H)(φ))

= −fπ∗

ϵ (̸∂Y ,E |Y ,H|Y φ) −
∂ f
∂r

π∗

ϵ φ.

Composing again by σ and using σ 2
= −1, we conclude. �

Let us briefly recall the definition of the eta invariant. Given a self-adjoint elliptic differential operator A of order d on a
closed oriented manifold Y of dimension 2m − 1, the eta-function of A was defined in [3] as

η(s, A) := Tr′(A|A|
−s−1),

where Tr′ stands for the trace restricted to the subspace orthogonal to ker(A). By [2–4], η(s, A) is holomorphic whenℜ(s) >
2m − 1/d and can be extended meromorphically to the entire complex plane with possible simple poles only. It is related
to the heat kernel by a Mellin transform

η(s, A) =
1

Γ
 s+1

2

  ∞

0
t
s−1
2 Tr(Ae−tA2) dt.

The eta function is then known to be holomorphic at s = 0; more precisely by [4] one has the following theorem.
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Theorem 2.2 ([4]). Let A be a first order self-adjoint elliptic operator on the odd dimensional closed manifold X. Then the eta
function η(s, A) of A has a meromorphic continuation to the complex plane with no pole at s = 0. The eta invariant η(A) of A is
then defined as η(0, A).

The eta-invariant of A is thus defined as

η(A) = η(0, A).

Consider now our twisted Dirac operator ̸∂E
H defined in the previous subsection for general odd dimensional spin man-

ifold Y and flat bundle E → Y , and which is a self-adjoint elliptic differential operator and let η(̸∂
Y ,E
H ) then denote its well

defined eta invariant.
Following [3], we set

ξspin(Y , E,H) :=
1
2


dim(ker(̸∂E

H )) + η(̸∂E
H )

. (3)

Definition 2.3. The twisted Dirac rho invariant ρspin(Y , E,H) is defined to be

ρspin(Y , E,H) := ξspin(Y , E,H) − rank(E) ξspin(Y ,H),

where ξspin(Y ,H) is the invariant ξ corresponding to the case where the flat Hermitian bundle E is the trivial line bundle.

As for the untwisted case, we denote this reduction of ρspin(Y , E,H) mod Z by ρ̄spin(Y , E,H). Then, the reduced twisted
rho invariant ρ̄spin(Y , E,H) is independent of the choice of the Riemannian metric on X and the Hermitian metric on E . It
is also a cobordism invariant of the triple (Y , E,H). In the case of positive scalar curvature, we shall though be able to work
with the real invariant ρspin(Y , E,H). These results will be established in Section 2.2.

2.1. The twisted Dirac index for manifolds with boundary

The goal of this section is to review the Atiyah–Patodi–Singer index theorem for the twisted Dirac operator ̸∂
X,E
H with

non-local boundary conditions. Here and as before, E is a unitary flat Hermitian bundle on X and H is a closed, odd degree
differential form on X which is boundary compatible and belongs to Ω4•+3(X, R) ⊕ iΩ4•+1(X, R). The notation H|Y stands
for the restriction i∗H of H to the boundary manifold ∂X = Y . Proposition 2.4 can be deduced from [2].

̸∂ Ẽ
H is an elliptic self-adjoint operator, and by [2], the non-local boundary condition given by P+(s|∂X ) = 0, where P+ de-

notes the orthogonal projection onto the eigenspaces with positive eigenvalues, yields an elliptic boundary value problem
(̸∂ Ẽ

H; P+). Recall that dim(X) = 2m. By the Atiyah–Patodi–Singer index theorem [2,4] and its extension in [18], we have the
following proposition.

Proposition 2.4. In the notation above,

Index(̸∂X,E
H ; P+) = Rank(E)


X
α0(H) − ξspin(Y , E |Y ,H|Y )

where ξspin(Y , E |Y ,H|Y ) is as defined in Eq. (3) and α0(H) is the local contribution given by the APS theorem.

Remark 2.5. The precise form of α0(x) is unknown for generalH . However in the case whenH = 0, the local index theorem
cf. [19] establishes that the Atiyah–SingerA-polynomial applied to the curvature of the Levi-Civita connection, wedged by
the Chern character of the flat bundle E , is equal to α0(x) times the rank of E . In the case when degree of H is equal to
3, it follows from a result of Bismut [16] that the Atiyah–SingerA-polynomial applied to the curvature of a Riemannian
connection defined in terms of the Levi-Civita connection together with a torsion tensor determined by H , wedged by the
Chern character of the flat bundle E , is equal to α0(x) times the rank of E . The proof that in general, one also gets α0(x) times
the rank of E is exactly as argued in the Appendix to [1].

2.2. Conformal invariance of the twisted spin eta and rho invariant

Here we prove that the twisted spin rho invariant ρspin(X, E,H, [g]) depends only on the conformal class [g] of the
Riemannian metric g on X and the Hermitian metric on E needed in its definition. The proof relies on the index theorem for
twisted Dirac operator for spin manifolds with boundary, established in Proposition 2.4. We also state and prove the basic
functorial properties of the twisted spin rho invariant.
Conformal variation of the Riemannian metrics. We assume that X is a compact spin manifold of dimension (2m − 1). Let g
be a Riemannian metric on X and gE , a Hermitian metric on E . Suppose that g is deformed smoothly and conformally along
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Fig. 1. Manifold with boundary.

a one-parameter family t ∈ R. The Dirac operator ̸∂X,E
g acting on the bundle of spinors over (X, g) is conformally covariant

according to [20], where ĝ = ef g , for f a smooth function on X ,

̸∂
X,E
ĝ = emf

◦ ̸∂X,E
g ◦e−(m−1)f . (4)

It follows that the twisted Dirac operator, ̸∂X,E
H , is also conformally covariant with the same weights. Then we have the

following theorem.

Theorem 2.6 (Conformal Invariance of the Spin Rho Invariant). Let Y be a compact, spin manifold of dimension 2m − 1, E a
flat Hermitian vector bundle over Y , and H =


ij+1H2j+1 an odd-degree closed differential form on Y and H2j+1 is a real-valued

differential form homogeneous of degree 2j + 1. Then the spin rho invariant ρspin(Y , E,H, [g]) of the twisted Dirac operator
depends only on the conformal class of the Riemannian metric on Y .

Proof. Consider themanifold with boundary X = Y ×[0, 1], where the boundary ∂X = Y ×{0}−Y ×{1}. Choose a smooth
function a(t), t ∈ [0, 1] such that a(t) ≡ 0 near t = 0 and a(t) ≡ 1 near t = 1. Consider the metric h = e2a(t)f (g + dt2) on
X , which is also of product type near the boundary, and let π : X → Y denote projection onto the first factor (see Fig. 1).

Applying the index theorem for the twisted Dirac operator, Proposition 2.4, we get

Index

̸∂

X,π∗(E)

π∗(H) , P+

E


= Rank(E)


X
αH
0 + ξspin(̸∂

E
H , g) − ξspin(̸∂

E
H , ĝ). (5)

On the other hand, applying the same theorem to the trivial bundle Rank(E) of rank equal to Rank(E), we get

Index

̸∂

X,Rank(E)

π∗(H) , P+


= Rank(E)


X
αH
0 + Rank(E)


ξspin(̸∂H , g) − ξspin(̸∂H , ĝ)


. (6)

Subtracting the equalities in (5) and (6) above, we get

ρspin(Y , E,H, g) − ρspin(Y , E,H, ĝ) = Index

̸∂

X,π∗(E)

π∗(H) , P+

E


− Index


̸∂

X,Rank(E)

π∗(H) , P+


. (7)

Each of the index terms on the right hand side of (7) has been shown in [2] to be equal to the L2-index of X̂ , which is X
together with infinitely long metric cylinders glued onto it at ∂X , plus a correction term (the dimension of the space of,
limiting values of right handed spinors). The L2-index is a conformal invariant by (4), and similarly, the correction term is
also a conformal invariant. It follows by (7) that

ρspin(Y , E,H, g) = ρspin(Y , E,H, ĝ). �

3. Spectral flow and calculations of the twisted Dirac eta invariant

3.1. Spectral flow and the twisted Dirac eta invariant

We employ the method of spectral flow for a path of self-adjoint elliptic operators, which is generically the net number
of eigenvalues that cross zero, which was first defined by [4], to get another formula for the difference η(̸∂E

H) − η(̸∂E ).
Extensions of spectral flow to families using entire cyclic cohomology have recently appeared in [21].

Let (Y , g) be an odd-dimensional Riemannian spin manifold. Define S−H
∈ Ω1(Y , SO(TY )), which is a degree one form

with values in the skew-symmetric endomorphisms of TY , as follows. For α, β, γ ∈ TY , set

g(S−H(α)β, γ ) = −2H(α, β, γ ).

Let ∇
L denote the Levi-Civita connection of (Y , g) and ∇

−H
= ∇

L
+ S−H be the Riemannian connection whose curvature is

denoted by Ω−H
Y .
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Proposition 3.1. Let Y be as before a (2ℓ− 1)-dimensional closed, spin, Riemannian manifold and E a flat vector bundle associ-
ated with an orthogonal or unitary representation of π1(Y ). Let H ∈ Ω3(Y , R) be a closed 3-form such that the Dirac operators
̸∂E and ̸∂E

H are both invertible, then

sf(̸∂E , ̸∂E
H) =

Rank(E)

(−2π i)ℓ+1


Y
H ∧A(Ω−H

Y ) +
1
2
(η(̸∂E

H) − η(̸∂E )),

whereA(·) denotes the A-hat genus polynomial, Ω−H
Y denotes the curvature of the Riemannian connection ∇

−H and sf(̸∂E , ̸∂E
H)

denotes the spectral flow of the smooth path of self-adjoint elliptic operators {̸∂E
uH , : u ∈ [0, 1]}.

Proof. By Theorem 2.6 [11],

sf(̸∂E
, ̸∂E

H) =

 ϵ

π

1/2  1

0
Tr

c(H) ◦ e−ϵ∂̸E

uH
2

du +
1
2
(η(̸∂E

H) − η(̸∂E ))

where ̸∂E

H denotes the operator ̸∂E
H +PE,H where PE,H denotes the orthogonal projection onto the nullspace of ̸∂E

H . Following
the idea of the proof of Theorem 2.8 in [11] the technique of [19], and the Local Index Theorem 1.7 of Bismut [16] (here the
fact that H is a closed 3-form on Y is used), we may make the following replacements:

ϵ1/2c(H) by H ∧

e−(ϵ1/2 ∂̸E
uH )2 byA(Ω−H

Y ) ∧ e(d+uH)2

Tr(·) by
−iπ1/2

(−2π i)ℓ+1


Y
tr(·).

This then enables us to replace


ϵ
π

1/2  1
0 Tr


c(H) ◦ e−ϵ∂̸E

uH
2

du by

Rank(E)

(−2π i)ℓ+1


Y
H ∧A(Ω−H

Y ),

and the proposition follows. �

As a special case of Proposition 3.1, one obtains the following calculation.

Corollary 3.2. Let Y be a compact spin Riemannianmanifold of dimension 3 and E a flat vector bundle associatedwith an orthog-
onal or unitary representation of π1(Y ). Let H be a closed 3-form on Y . Consider the smooth path of self-adjoint elliptic operators
{̸∂E

uH , : u ∈ [0, 1]} and assume that the Dirac operators ̸∂E and ̸∂E
H are both invertible. Then

η(̸∂E
H) − η(̸∂E ) = 2 sf(̸∂E , ̸∂E

H) +
h

2π2

where h = [H] ∈ R ∼= H3(Y , R).

4. Positive scalar curvature

Here we give applications of our results to closed spin manifolds that admit a Riemannian metric of positive scalar cur-
vature. Foundational works on metrics of positive scalar curvature are due to for instance [22–25]. Viewing the eta and
rho invariants of the Dirac operator as an obstruction to the existence of Riemannian metrics of positive scalar curvature
on compact spin manifolds was done in [26]; obstructions arising from covering spaces using the von Neumann trace in
[27,28] and on foliations in [28,29], are some amongst many papers on the subject. As a corollary to Theorem 1.3 one has

Corollary 4.1. In the notation of Proposition 3.1, if the scalar curvature Rg of the odd-dimensional, compact Riemannian spin
manifold Y is positive, then there exists u0 > 0 such that for all u ∈ [0, u0], the twisted Dirac operator ̸∂E

uH has trivial nullspace,
where H is a closed degree 3 form on Y . In particular, the spectral flow sf(̸∂E , ̸∂E

u0H) of the family of twisted Dirac operators
{̸∂E

uH | u ∈ [0, u0]} is trivial and we deduce that

η(̸∂E
uH) − η(̸∂E ) = −u

Rank(E)

(−4π i)ℓ+1


Y
H ∧A(Ω−uH

Y )

Therefore for all u ∈ [0, u0], one has

ρspin(Y , E, uH, [g]) = ρspin(Y , E, [g]).



46 M.T. Benameur, V. Mathai / Journal of Geometry and Physics 70 (2013) 39–47

Corollary 4.1 above establishes conformal obstructions to the existence of metrics of positive scalar curvature. By
Proposition 2.4 and Theorem 1.3, we have the following corollary.

Corollary 4.2. Let X be an even dimensional Riemannian spin manifold with spin boundary ∂X = Y . Let H be a closed degree
3 form on X which restricts to the closed degree 3-form H on the boundary Y . Let Ω−uH

X denote the curvature of the Riemannian
connection on X with torsion tensor determined by H and suppose that the scalar curvature Rg > 0. Suppose also that the flat
bundleE on X restricts to the flat bundle E on Y . Then there exists u0 > 0 such that for all u ∈ [0, u0],

Rank(E)


X

A(Ω−uH
X ) = η(̸∂E

uH),

so that

η(̸∂E
uH) − η(̸∂E ) = Rank(E)


X

A(Ω−uH
X ) −A(ΩX )


.

Therefore for all u ∈ [0, u0], one has

ρspin(Y , E, uH, [g]) = ρspin(Y , E, [g]).

The proof of the following uses the Gromov–Lawson–Rosenberg conjecture [22,23] and Corollary 4.1.

Corollary 4.3. Let Y be a closed odd dimensional Riemannian spin manifold with positive scalar curvature. Suppose that the
Gromov–Lawson–Rosenberg conjecture [22,23] holds for the fundamental group Γ of Y and that H is a closed 3-form on Y such
that [H] = f ∗(c)where c ∈ H3(BΓ ) and f : Y → BΓ is a continuous map. Then there exists u0 > 0 such that for all u ∈ [0, u0],

η(̸∂E
uH) = η(̸∂E ).
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