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a b s t r a c t

This paper gives a simple proof of the main result of Ling [J. Ling, Lower bounds of
the eigenvalues of compact manifolds with positive Ricci curvature, Ann. Global Anal.
Geom. 31 (2007) 385–408] in an in-depth study of the sharp lower bound for the first
eigenvalue in the Laplacian operator on compact Riemannian manifolds with nonnegative
Ricci curvature. Althoughwe use Ling’smethods on thewhole, to some extentwe deal with
the singularity of test functions and greatly simplifymany of the calculations involved. This
may provide a new way for estimating eigenvalues.
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1. Introduction

Suppose (M, g) is an n-dimensional Riemannian manifold with Ricci curvature satisfying

Ric(M) > (n − 1)K (1.1)

for some nonnegative constant K .
Unlike upper bound estimates, lower bound estimates for an eigenvalue are difficult to obtain. Studies on the lower

bound of the first positive eigenvalue in the Laplacian operator on compact Riemannian manifolds have a long history with
many studies. Results reported by Li [1,2], Li and Yau [3,4], Zhong and Yang [5], Yang [6], Ling [7–10], Ling and Lu [11], Shi
and Zhang [12], Qian et al. [13], Andrews and Ni [14], and Andrews and Clutterbuck [15] are all well known. Here we outline
just some of the important work carried out.

We recall the following lower bound estimate of the first eigenvalue, first reported by Lichnerowicz [16] and then Obata
[17], for the case in which M is a compact manifold without a boundary. Under assumption (1.1), Escobar proved that if
a compact manifold has a weakly convex boundary, the first nonzero Neumann eigenvalue of M has lower bound (1.2) as
well [18].
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Theorem 1.1 ([6]). Assume that Ric(M) > (n − 1)K > 0. Let λ1 be the first positive eigenvalue on M (with either a Dirichlet
or Neumann boundary condition if ∂M ≠ ∅). If ∂M ≠ ∅, we also assume that ∂M is of nonnegative mean curvature trS > 0 if
λ1 is the first Dirichlet eigenvalue and ∂M is of nonnegative definite second fundamental form S > 0 if λ1 is the first Neumann
eigenvalue. Then

λ1 > nK . (1.2)

This estimate provides no information when the constant K vanishes. For such a case, Li and Yau [3] and Zhong and
Yang [5] provided another lower bound.

An interesting problem is identification of a unified lower bound for the first nonzero eigenvalue λ1 in terms of the lower
bound (n − 1)K of the Ricci curvature and the diameter d, the inscribed radius r and other geometric quantities, which do
not vanish as K vanishes, of the manifold with positive Ricci curvature.

Later on, the maximum principle method, which is rather different from the one above, was first used by Li in proving
eigenvalue estimates for compact manifolds [1]. Since then the method has been refined and used by many authors [3,5,6]
to obtain sharper eigenvalue estimates.

Using an improved maximum principle method, Li and Yau derived the following elegant result for K = 0 [3].

Theorem 1.2 ([3]). Let M be a compact Riemannian manifold, and let ∂M = φ and Ric(M) > 0. Then λ1 > π2

4d2
, where d is the

diameter of M.

The above result was improved by Li [2] to λ1 > π2

2d2
for K = 0. Li also conjectured that the first positive eigenvalue

should satisfy

λ1 >
π2

d2
+ (n − 1)K . (1.3)

This conjecture motivated many related studies. We recall some of the main results in the following.
First, we recall the well-known Bonnet–Myers theorem.

Theorem 1.3. Suppose that M is an n-dimensional complete Riemannian manifold with Ricci curvature bounded below by
(n − 1)K(K > 0). Then M is compact and its diameter d(M) satisfies the estimate

d(M) 6
π

√
K
. (1.4)

Combining (1.3) with (1.4), we can deduce (1.2). Thus, (1.3) is usually regarded as the sharp lower bound on λ1 in terms of
the diameter for manifolds with a Ricci curvature satisfying (1.1). Obviously, an optimal estimate of the lower bound for the
first eigenvalue would be perfect. It seems that any further progress requires a refined gradient estimate relevant to the first
eigenfunction.

By sharpening themethod of Li and Yau and giving amore delicate estimate, Zhong and Yang obtained the sharp estimate
λ1 > π2

d2
for K = 0 [5].

Theorem 1.4 ([5]). Let M be a compact Riemannian manifold without a boundary and with nonnegative Ricci curvature and let
d be the diameter of M. Then

λ1 >
π2

d2
. (1.5)

Note that attempts to prove the so-called Li conjecture should unify the estimates of Yang and Zhong with that of
Lichnerowicz. There have been several efforts to prove (1.3), particularly to improve inequalities of the form

λ1 >
π2

d2
+ C(n − 1)K (1.6)

for some constant C [6–15,19,20]. We recall some of these results in brief.
Using the methods noted above, but constructing a more complicated test function, Yang made some progress for Li’s

conjecture [6], as shown by the following results.

Theorem 1.5 ([6]). Let Mn be a closed Riemannianmanifold with Ric(Mn) > (n−1)K > 0 and diameter d. Then the first positive
eigenvalue λ1 on M satisfies the lower bound

λ1 >
π2

d2
+
(n − 1)K

4
.

Theorem 1.6 ([6]). Let Mn be a compact manifold with nonempty boundary and with Ric(Mn) > (n − 1)K > 0.
(a) Assume that the boundary ∂M is weakly convex, that is, the second fundamental form with respect to the outward normal

is nonnegative. Then the first positive Neumann eigenvalue λ1 on Mn satisfies the same lower bound in Theorem 1.5.
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(b) Assume that the mean curvature with respect to the outward normal of the boundary ∂M is nonnegative. Then the first
positive Dirichlet eigenvalue λ1 on Mn satisfies the lower bound estimate

λ1 >
1
4


π2

r2
+ (n − 1)K


,

where r is the inscribed radius of Mn.

To improve previous results via the maximum principle method, we need to construct suitable test functions requiring
detailed technical work. Ling provided new estimates that improve the lower bound in part [7,9]. The main results are the
following three theorems.

Theorem 1.7 ([7]). Let (M, g) be an n-dimensional compact Riemannian manifold with a boundary. Suppose that the Ricci
curvature of M is bounded below by (n − 1)K for some constant K > 0,

Ric(M) > (n − 1)K ,

and that the mean curvature of the boundary ∂M with respect to the outward normal is nonnegative. Then the first Dirichlet
eigenvalue λ1 of the Laplacian∆ of M has the lower bound

λ1 >
π2

d̃2
+

1
2
(n − 1)K ,

where d̃ is the diameter of the largest interior ball in M, that is, d = 2 supx∈M{dist(x, ∂M)}.

Theorem 1.8 ([9]). Let M be an n-dimensional compact Riemannian manifold that has an empty or nonempty boundary whose
second fundamental form is nonnegative with respect to the outward normal (i.e., weakly convex). Suppose that its Ricci curvature
has a lower bound (n − 1)K for some constant K > 0, that is,

Ric(M) > (n − 1)K > 0.

Then the first nonzero (closed or Neumann) eigenvalue λ1 of the Laplacian on M has the lower bound

λ1 >
π2

d2
+

3
8
(n − 1)K for n = 2

and

λ1 >
π2

d2
+

31
100

(n − 1)K for n > 3,

where d is the diameter of M.

Theorem 1.9 ([9]). Let a ∈ (0, 1) and α be defined by (2.2) and (4.2), respectively. We assume that µαπ2/8 6 1, that is,

λ1 >
π2µ(n − 1)K

8a
(1.7)

for a constant µ ∈ (0, 1]. The other assumptions are as in Theorem 1.8. Then the first nonzero (closed or Neumann) eigenvalue
λ1 of the Laplacian on M has the following lower bound:

λ1 >
π2

d2
+
µ(n − 1)K

2
. (1.8)

However, these findings have been updated by more recent results reported by Shi and Zhang [12], Qian et al. [13], and
Andrews and Clutterbuck [15]. More precisely, Shi and Zhang [12] soon got the following result.

Theorem 1.10 ([12]). Let M be a compact n-dimensional Riemannianmanifold without a boundary (or with a convex boundary)
and let Ric(M) > (n − 1)K . Then its first nonzero (Neumann) eigenvalue λ1(M) satisfies

λ1(M) > 4s(1 − s)
π2

d2
+ s(n − 1)K for all s ∈ (0, 1), (1.9)

where d is the diameter of M.

Following the argument of Shi and Zhang [12], Qian et al. extended this result to the case in which M is an Alexandrov
space [13].

Theorem 1.11 ([13]). Let M be a compact n (>2)-dimensional Alexandrov space without a boundary and let Ric(M) > (n−1)K.
Then its first nonzero eigenvalue λ1(M) satisfies (1.9), where d is the diameter of M.
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Qian et al. provided the following remarks [13].

Remark 1.1. (1) If let s =
1
2 , the estimate (1.9) becomes

λ1(M) >
π2

d2
+

1
2
(n − 1)K . (1.10)

This improves the results of Chen and Wang for both K > 0 and K < 0 [21,22]. It also improves Ling’s results [9].
(2) If K > 0, Theorem 1.11 implies that

λ1(M) >
3
4


π2

d2
+ (n − 1)K


.

(3) For n 6 5 and K > 0, by choosing some suitable constant s, Qian et al. obtained the following estimate [13]:

λ1(M) >
π2

d2
+

1
2
(n − 1)K +

(n − 1)2k2d2

16π2
.

Andrews and Clutterbuck recently showed that the first nonzero Neumann eigenvalue λ1 satisfies (1.10) when M is a
compact n-dimensional Riemannian manifold with a weakly convex boundary [15]. Their contribution is a rather simple
proof that uses the long-term behavior of the heat equation, which is probably much easier than previous arguments. In
particular, their argument avoids any problems arising from possible asymmetry of the first eigenfunction. Andrews and
Ni had already used a similar argument to prove the sharp lower bound for λ1 on a Bakry–Emery manifold [14]. Andrews
and Clutterbuck also showed that the inequality with C =

1
2 is the best possible constant for this type of estimate, in other

words, the Li conjecture is false [15].
Note that for manifolds with a small diameter, Theorems 1.5–1.9 are better than the estimate (1.2). Therefore, these re-

sults generalize Theorem 1.4. For more information, we refer to excellent surveys in the literature [11,13,15,19] for further
results on eigenvalue estimates. With the rapid development of spectral geometry, eigenvalue estimates are increasingly
important.

In the present study we only give a simple proof of Theorem 1.9 using the original approach of Zhong and Yang [5], but
constructing a suitable test function that is ourmain contribution. Our argument is based on several early studies [2,3,5,7,9].
One interesting feature of our argument is that it avoids various problems arising from the singularity of |∇u|2 /(1−u2) en-
countered previously. Although in many ways analogous to the strategy used by Ling [7,9], our approach can readily handle
this singularity and reduces the computational complexity to somedegree. Thismay be a newway of estimating eigenvalues.

The remainder of the paper is organized as follows. Section 2 introduces the terminology and notation, which are
consistent with Schoen and Yau [23], who defined the corresponding terms in a more general setting. In Section 3, for
∂M ≠ ∅ we establish a lemma that is a version of Yangs Lemma 2.2 [6]. Using this lemma and the maximum principle, we
establish a rough estimate of F(θ), defined in (2.8). A more precise estimate of F(θ) is provided at the end of Section 4 via
the barrier function method. This improved estimate is essential for the proof of Theorem 1.9. Finally, as an application of
this estimate, a proof of Theorem 1.9 is presented in Section 5.

2. Notation and preliminaries

Let {e1, e2, . . . , en} be a local orthonormal frame field on M . We adopt the convention that subscripts i, j, and k, with
1 6 i, j, k 6 n, denote covariant differentiations in the ei, ej, and ek directions, respectively.

The Laplacian operator on M in term of local coordinates associated with the above orthonormal frame is defined by
differentiating once more in the direction of ei and summing over i = 1, 2, . . . , n, that is,

∆u =


i

uii.

We denote by u the normalized eigenfunction with respect to the first eigenvalue −λ1 of∆, that is,
∆u = −λ1u,
max u = 1,
min u = −k, 0 < k 6 1.

(2.1)

Let
ũ =


u −

1 − k
2


1 + k
2

a =
1 − k
1 + k

, 0 6 a < 1.
(2.2)

Therefore, (2.1) can be rewritten as
∆ũ = −λ1(ũ + a),
max ũ = 1, min ũ = −1. (2.3)
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Throughout this paper,

θ(x) = arcsin[ũ(x)], ∀ x ∈ M

and we define a subset ofM as follows:

Σ∗ =


x ∈ M : θ(x) =

π

2
or θ(x) = −

π

2


.

Thus,

ũ(x) = sin[θ(x)], ∀ x ∈ M

and

−
π

2
6 θ(x) 6

π

2
, ∀ x ∈ M.

The above terms apply unless stated otherwise.
By (2.3), a straightforward calculation shows that θ satisfies

cos θ ·∆θ − sin θ · |∇θ |2 = −λ1(sin θ + a). (2.4)

In particular,

∆θ =
sin θ
cos θ

· |∇θ |2 −
λ1(sin θ + a)

cos θ
(2.5)

whenever x ∈ M \Σ∗. From (2.4), it is evident that

|∇θ |2 = λ1(1 − a) as θ = −
π

2
(2.6)

and

|∇θ |2 = λ1(1 + a) as θ =
π

2
. (2.7)

We also define the function F :

−
π
2 ,

π
2


→ R as follows:

F(θ0) = max
x∈M, θ(x)=θ0

|∇θ(x)|2 , ∀ θ0 ∈


−
π

2
,
π

2


. (2.8)

Obviously F is well defined. In fact, F(θ0) is nothing but an extreme value of f with the condition θ(x) = θ0. It is very easy
to verify that F(θ) is continuous in


−
π
2 ,

π
2


. Moreover, by (2.6) and (2.7), if we define

F

−
π

2


= F


−
π

2
+ 0


= λ1(1 − a)

and

F
π
2


= F

π
2

− 0


= λ1(1 + a),

then F(θ) can be extended to a continuous function on

−
π
2 ,

π
2


.

3. Rough estimate of |∇θ|2

In a similarway to previous studies [6,7,9,23–25]we obtain the following lemma,which can be viewed as another version
of Yangs Lemma 2.2 [6].

Lemma 3.1. Suppose that ∂M ≠ ∅. Let G(x) be a function defined as

G(x) =
1
2

|∇θ(x)|2 + g[θ(x)], ∀ x ∈ M,

where g(θ) is a smooth function defined on

−
π
2 ,

π
2


. Assume that the second fundamental form of ∂M is nonnegative with

respect to the outward normal (i.e., weakly convex) and u satisfies the Neumann boundary condition. If G(x) attains its maximum
at x0 ∈ ∂M \Σ∗, then ∇θ(x0) = 0. Furthermore, ∇G(x0) = 0.
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Proof. Choose a local orthonormal frame {e1, e2, . . . , en} around x0 such that e1 is the unit normal ∂M pointing outwards
toM . We also denote by ∂

∂x1
the restriction on ∂M of the directional derivative corresponding to e1.

Clearly, the maximality of G(x0) implies that

Gi(x0) = 0 for 2 6 i 6 n (3.1)

and

0 6
∂G
∂x1

(x0) =

n
i=1

θi(x0) · θi1(x0)+ g ′
[θ(x0)] · θ1(x0). (3.2)

In addition, since u satisfies the Neumann boundary condition,

θ1 =
1

√
1 − ũ2

· ũ1 =
1

√
1 − ũ2

·
∂ ũ
∂x1

=
1 1+k

2

2
−

u −

1−k
2

2 ·
∂u
∂x1

= 0 on ∂M.

Therefore,

θ1(x0) = 0. (3.3)

Substituting (3.3) into (3.2), we obtain

0 6
∂G
∂x1

(x0) =

n
i=2

θi(x0) · θi1(x0). (3.4)

Note that θ1(x0) = 0 and recall the definition of the second fundamental form with respect to the outward normal. We
can then derive that, for 2 6 i 6 n,

θi1 = eie1θ − (∇eie1)θ = ei(θ1)− (∇eie1, ej)θj

= −(∇eie1, ej)θj = −

n
j=2

hijθj at x0,

that is, for 2 6 i 6 n,

θi1 = −

n
j=2

hijθj at x0, (3.5)

where (hij)26i,j6n is the second fundamental form of ∂M relative to e1. Substituting (3.5) into (3.4), we obtain

0 6
∂G
∂x1

(x0) = −

n
i,j=2

θi(x0)hij(x0)θj(x0) 6 0 (3.6)

since (hij)26i,j6n is nonnegative (i.e., ∂M is weakly convex). Hence, θi(x0) = 0 for 2 6 i 6 n. By (3.3), we have ∇θ(x0) = 0.
Finally, ∇G(x0) = 0 follows from (3.1) and (3.6). This completes the proof. �

As previously pointed out [5], the estimate of the upper bound of |∇θ |2 plays an important role in the estimate of the
lower bound for λ1. In the following we establish a rough estimate for |∇θ |2.

Lemma 3.2 ([5]). Assume that Ric(M) > 0. The other assumption is as in Theorem 1.8. In any case the following estimate is valid:

|∇θ(x)|2 6 λ1(1 + a), ∀ x ∈ M. (3.7)

Moreover,

F(θ) 6 λ1(1 + a). (3.8)

Proof. Suppose that |∇θ |2 attains its local maximum at x0. Clearly, (2.6) and (2.7) imply that (3.7) holds in the case x0 ∈ Σ∗.
Without loss of generality, we can assume that x0 ∈ M \Σ∗ in the rest of the proof, and thus θ0 = θ(x0) ∈


−
π
2 ,

π
2


. When

∂M ≠ ∅, we know from Lemma 3.1 that ∇G(x0) = 0 if x0 ∈ ∂M \Σ∗. According to the maximum principle, the maximality
of G(x0) implies that at x0,

∇(|∇θ |2) = 0 and ∆(|∇θ |2) 6 0, (3.9)
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regardless of x0 ∈ ∂M \Σ∗ or x0 ∈ M \ (∂M ∪Σ∗). Applying the Bochner formula to θ , we have

1
2
∆(|∇θ |2) =

∇2θ
2 + ∇θ · ∇(∆θ)+ Ric(∇θ,∇θ), (3.10)

where Ric(∇θ,∇θ) is the Ricci curvature along ∇θ . Substituting (2.5) into (3.10), we have

1
2
∆(|∇θ |2) =

∇2θ
2 + ∇θ · ∇


sin θ
cos θ

· |∇θ |2 −
λ1(sin θ + a)

cos θ


+ Ric(∇θ,∇θ)

=
∇2θ

2 + ∇θ · ∇


sin θ
cos θ


· |∇θ |2 + ∇θ ·

sin θ
cos θ

· ∇(|∇θ |2)

− λ1 · ∇θ ·


∇


sin θ
cos θ


+ a · ∇


1

cos θ


+ Ric(∇θ,∇θ). (3.11)

A direct calculation leads to

∇


sin θ
cos θ


=

∇(sin θ) · cos θ − sin θ · ∇(cos θ)
cos2 θ

=
1

cos2 θ
· ∇θ (3.12)

and

∇


1

cos θ


=

−1
cos2 θ

· (− sin θ) · ∇θ =
sin θ
cos2 θ

· ∇θ. (3.13)

Substituting (3.12) and (3.13) into (3.11), we obtain

1
2
∆(|∇θ |2) =

∇2θ
2 +

|∇θ |4

cos2 θ
+ ∇θ ·

sin θ
cos θ

· ∇(|∇θ |2)−
λ1(1 + a sin θ)

cos2 θ
· |∇θ |2 + Ric(∇θ,∇θ). (3.14)

Under the assumption that Ric(M) > 0, by virtue of (3.9) and noting that
∇2θ

2 > 0, we deduce from (3.14) that at x0,

0 >
|∇θ |4

cos2 θ
−
λ1(1 + a sin θ)

cos2 θ
· |∇θ |2 .

Dividing by |∇θ |2 and multiplying by cos2 θ successively, it follows that at x0,

0 > |∇θ |2 − λ1(1 + a sin θ).

Hence, we have

|∇θ(x0)|2 6 λ1(1 + a sin θ0) 6 λ1(1 + a),

which implies the desired conclusion. �

4. Estimate of F(θ)

In the following, we assume 0 < a < 1. We want to obtain a more precise estimate of F(θ) than in Lemma 3.2. For this
purpose, we introduce the function φ(θ) : M → R such that

F(θ) = λ1[1 + aφ(θ)]. (4.1)

By Lemma 3.2, it is easy to see that φ(θ) 6 1. Conversely,

1 + aφ >
|∇θ |2

λ1
> 0.

From now on we denote

α =
(n − 1)K
λ1a

. (4.2)

It follows from (1.2) that

0 < α 6
n − 1
na

<
1
a
.
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We also need the following lemma to accurately estimate φ(θ).

Lemma 4.1. Assume that Ric(M) > (n−1)K and the other conditions in Theorem 1.8 hold. If h :

−
π
2 ,−

π
2


→ R is a function

that satisfies the properties
(1) h is nondecreasing, that is, h′(θ) > 0 for all θ ∈


−
π
2 ,−

π
2


;

(2) h(θ) > φ(θ); and
(3) There exists some θ0 ∈ (−π

2 ,−
π
2 ), such that h(θ0) = φ(θ0) > −1, then the following estimate holds:

φ(θ0) 6 sin θ0 − sin θ0 · cos θ0 · h′(θ0)+
cos2 θ0

2
· h′′(θ0)− α cos2 θ0. (4.3)

Proof. Let

f (x) =
1
2


|∇θ(x)|2 − λ1 [1 + ah (θ(x))]


.

Obviously, f (x) 6 0 for all x ∈ M . By (2.8), we know that there exists some x0 ∈ M \ Σ∗ such that θ(x0) = θ0 and
F(θ0) = |∇θ(x0)|2. Thus, f achieves its maximum 0 at x0. More precisely,

|∇θ(x0)|2 = λ1[1 + aφ(θ0)] = λ1[1 + ah(θ0)]. (4.4)

By the same argument as in the proof of Lemma 3.2, we easily obtain that at x0,

∇f = 0 and ∆f 6 0, (4.5)

regardless of x0 ∈ ∂M \Σ∗ or x0 ∈ M \ (∂M ∪Σ∗). Direct computation shows that

fj =


i

θi · θij −
λ1a
2

h′(θ) · θj,

namely,

∇f =
1
2

[∇(|∇θ |2)− λ1ah′(θ) · ∇θ ] = ∇θ · ∇
2θ −

λ1a
2

h′(θ) · ∇θ.

Since ∇f = 0 at x0,

∇(|∇θ |2) = 2∇θ · ∇
2θ = λ1ah′(θ0) · ∇θ at x0. (4.6)

By directly calculating and applying (2.5), we obtain

1
2
∆ [λ1(1 + ah)] =

1
2


j

[λ1(1 + ah)]jj =
λ1a
2


j


h′

· θj

j

=
λ1a
2


j

(h′′
· θ2j + h′

· θjj) =
λ1a
2
(h′′

· |∇θ |2 + h′
·∆θ)

=
λ1a
2


h′′

· |∇θ |2 + h′
·


sin θ
cos θ

· |∇θ |2 −
λ1(sin θ + a)

cos θ


. (4.7)

Combining (3.14) with (4.7), we obtain

∆f =
∇2θ

2 +
|∇θ |4

cos2 θ
+ ∇θ ·

sin θ
cos θ

· ∇(|∇θ |2)

−
λ1(1 + a sin θ)

cos2 θ
· |∇θ |2 + Ric(∇θ,∇θ)

−
λ1a
2


h′′

· |∇θ |2 + h′
·


sin θ
cos θ

· |∇θ |2 −
λ1(sin θ + a)

cos θ


.

Recall that Ric(∇θ,∇θ) > (n − 1)K |∇θ |2, so we can obtain

∆f =
∇2θ

2 +
|∇θ |4

cos2 θ
+ ∇θ ·

sin θ
cos θ

· ∇(|∇θ |2)

−
λ1(1 + a sin θ)

cos2 θ
· |∇θ |2 + (n − 1)K |∇θ |2

−
λ1a
2


h′′

· |∇θ |2 + h′
·


sin θ
cos θ

· |∇θ |2 −
λ1(sin θ + a)

cos θ


. (4.8)
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Substituting (4.6) into (4.8), it is easy to deduce that

∆f =
∇2θ

2 +
|∇θ |4

cos2 θ
+ λ1ah′

·
sin θ
cos θ

· |∇θ |2

−
λ1(1 + a sin θ)

cos2 θ
· |∇θ |2 + (n − 1)K |∇θ |2

−
λ1a
2


h′′

· |∇θ |2 + h′
·


sin θ
cos θ

· |∇θ |2 −
λ1(sin θ + a)

cos θ


. (4.9)

By virtue of (4.4) and (4.5), we derive from (4.9) that at x0,

0 >
∇2θ

2 +
λ21(1 + ah)2

cos2 θ
+ λ21ah

′(1 + ah)
sin θ
cos θ

− λ21(1 + ah)
1 + a sin θ

cos2 θ
+ λ1(1 + ah)(n − 1)K

−
λ1a
2


h′′

· λ1(1 + ah)+ h′
·


sin θ
cos θ

· λ1(1 + ah)−
λ1(sin θ + a)

cos θ


=
∇2θ

2 +
λ21(1 + ah)2

cos2 θ
− λ21(1 + ah)

1 + a sin θ
cos2 θ

+ λ1(1 + ah)(n − 1)K

+
λ21a
2


−h′′(1 + ah)+ h′

·


sin θ
cos θ

(1 + ah)+
(sin θ + a)

cos θ


. (4.10)

Obviously the first term above can be dropped since it is nonnegative. Dividing by λ21a, multiplying by cos2 θ and
rearranging the terms successively, we obtain

0 >
(1 + ah)2

a
−
(1 + ah)(1 + a sin θ)

a
−

h′′(1 + ah) cos2 θ
2

+
h′ cos θ

2
[(1 + ah) sin θ + (sin θ + a)] + (1 + ah)α cos2 θ

= (1 + ah)(h − sin θ)−
h′′(1 + ah) cos2 θ

2

+
h′ cos θ

2
[(1 + ah) sin θ + (sin θ + a)] + (1 + ah)α cos2 θ. (4.11)

Since h(θ0) = φ(θ0) > −1 and φ(θ0) = φ (θ(x0)) 6 1, then |h(θ0)| 6 1.
From |h| = |h(θ)| 6 1 at x0 and 0 < a < 1, it follows that at x0,

a > ah sin θ and 1 + ah > 0.

Thus, at x0,

sin θ + a > sin θ + ah sin θ = (1 + ah) sin θ. (4.12)

Hence, under the assumption that h′(θ) > 0, using (4.12), we proceed by tackling with (4.11) at x0 as follows:

0 > (1 + ah)(h − sin θ)+ h′(1 + ah) cos θ sin θ −
h′′(1 + ah) cos2 θ

2
+ (1 + ah)α cos2 θ.

Dividing by 1 + ah, at x0 we have

0 > (h − sin θ)+ h′ cos θ sin θ −
h′′ cos2 θ

2
+ α cos2 θ, (4.13)

from which (4.3) follows easily. This completes the proof. �

The remainder of the paper follows the literature [5,7,9,23]. For completeness, we sketch a brief proof of Theorem 1.9
below that uses published methods [5,7,9]. Interested readers can consult the relevant references for more details.

Lemma 4.2 ([7,9]). Let

ξ(θ) =
cos2 θ + 2θ sin θ cos θ + θ2 −

π2

4

cos2 θ
in

−
π

2
,
π

2


(4.14)
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and ξ

±
π
2


= 0. Then the function ξ satisfies

Lξ ≡
cos2 θ

2
· ξ ′′

− cos θ sin θ · ξ ′
− ξ = 2 cos2 θ in


−
π

2
,
π

2


. (4.15)

Moreover, ξ also has the following properties:

ξ(−θ) = ξ(θ), ∀ θ ∈


−
π

2
,
π

2


; π

2

−
π
2

ξ(θ)dθ = 2
 π

2

0
ξ(θ)dθ = −π.

Lemma 4.3 ([5]).We define the function η asη(θ) =

4
π
(θ + cos θ sin θ)− 2 sin θ

cos2 θ
, θ ∈


−
π

2
,
π

2


,

η

−
π

2


= −1, η

π
2


= 1.

(4.16)

Then η ∈ C0

−
π
2 ,

π
2


∩ C2


−
π
2 ,

π
2


satisfies η′(θ) > 0 and

Lη ≡
cos2 θ

2
· η′′(θ)− cos θ sin θ · η′(θ)− η(θ) = − sin θ in


−
π

2
,
π

2


.

Moreover, η also has the following properties:

|η(θ)| 6 1;

η(−θ) = −η(θ), ∀ θ ∈


−
π

2
,
π

2


.

Lemma 4.4 ([9]). The function r(θ) = ξ ′(θ)/η′(θ) is increasing on

−
π
2 ,

π
2


, that is, r ′(θ) > 0, and |r(θ)| 6 π2

4 holds on
−
π
2 ,

π
2


.

Corollary 4.1. Let

ψ(θ) =
µα

2
· ξ(θ)+ η(θ), (4.17)

where µ ∈ (0, 1] is a constant. Then ψ satisfies

Lψ ≡
cos2 θ

2
· ψ ′′(θ)− cos θ sin θ · ψ ′(θ)− ψ(θ) = µα cos2 θ − sin θ in


−
π

2
,
π

2


. (4.18)

Moreover, assume that µαπ
2

8 6 1, that is, λ1 > π2µ(n−1)K
8a . Then

ψ ′(θ) > 0, ∀ θ ∈


−
π

2
,
π

2


(4.19)

and

− 1 = ψ

−
π

2


6 ψ(θ) 6 ψ

π
2


= 1, ∀ θ ∈


−
π

2
,
π

2


. (4.20)

Proof. Eq. (4.18) can be directly verified. In addition, by Lemmas 4.3–4.4, we easily obtain

ψ ′(θ) =
µα

2
· ξ ′(θ)+ η′(θ) = η′(θ)


µα

2
·
ξ ′(θ)

η′(θ)
+ 1


> η′(θ)


1 −

µαπ2

8


> 0.

Thus, ψ(θ) is an increasing function on

−
π
2 ,

π
2


and (4.20) follows easily from this result. This completes the proof. �

Using Lemma 4.1, Corollary 4.1 and the reduction to absurdity, we can easily prove the following conclusion. For the
reader’s convenience, we provide a proof below taken from the literature [5,7,9,25].

Lemma 4.5. Assume that φ(θ) and ψ(θ) are defined by (4.1) and (4.17), respectively. Then

φ(θ) 6 ψ(θ). (4.21)
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Proof. Assume that (4.21) is not true. Since φ

±
π
2


= ±1 = ψ


±
π
2


, then there exists some θ0 ∈


−
π
2 ,

π
2


such that

σ = φ(θ0)− ψ(θ0) = max
−
π
2 6θ6 π

2

{φ(θ)− ψ(θ)} > 0. (4.22)

Leth(θ) = ψ(θ)+ σ . Obviously,h′(θ) = ψ ′(θ) > 0,h(θ) = ψ(θ)+ σ > φ(θ)

and h(θ0) = φ(θ0) = ψ(θ0)+ σ > −1 + σ > −1.

Replacing h(θ) in Lemma 4.1 byh(θ), by Lemma 4.1 and Corollary 4.1 we obtain

φ(θ0) 6 sin θ0 − sin θ0 · cos θ0 ·h′(θ0)+
cos2 θ0

2
·h′′(θ0)− α cos2 θ0

= sin θ0 − sin θ0 · cos θ0 · ψ ′(θ0)+
cos2 θ0

2
· ψ ′′(θ0)− α cos2 θ0

6 sin θ0 − sin θ0 · cos θ0 · ψ ′(θ0)+
cos2 θ0

2
· ψ ′′(θ0)− µα cos2 θ0

= ψ(θ0).

However, this contradicts (4.22), which completes the proof. �

Corollary 4.2. The following estimate holds:

F(θ) 6 λ1[1 + aψ(θ)], (4.23)

where F(θ) and ψ(θ) are defined by (2.8) and (4.17), respectively.

Our argument above establishes the inequality (4.23), which is an improved estimate of the upper bound for F(θ) as
required.

5. Proof of Theorem 1.9

Following previous arguments [7,9], we now use the estimate of F(θ) to prove Theorem 1.9 as follows.

Proof. (4.23) implies that


λ1 >


|F(θ)|

1 + aψ(θ)
>

|∇θ |
√
1 + aψ(θ)

, (5.1)

where ψ(θ) is defined by (4.16).
Take x1, x2 ∈ M such that θ(x1) = −

π
2 and θ(x2) =

π
2 . Let d

′ denote the length of the shortest curve γ that connects x1
with x2 onM . Let d be the diameter ofM . Clearly, d′ 6 d. Using (4.3) and integrating (5.1) along the curve, we derive γ such
that 

λ1d >

λ1d′

=


γ


λ1ds >


γ

1
√
1 + aψ(θ)

|∇θ | ds

>


γ

1
√
1 + aψ(θ)

dθ =

 π
2

−
π
2

1
√
1 + aψ(θ)

dθ

>

 π
2

−
π
2

dθ

 3
2  π

2

−
π
2

[1 + aψ(θ)]dθ

 1
2

= π
3
2

 π
2

−
π
2

[1 + aψ(θ)]dθ

 1
2

.

Thus, we have

λ1 >
π3

d2

 π
2

−
π
2

[1 + aψ(θ)]dθ.
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However, π
2

−
π
2

[1 + aψ(θ)]dθ = π +
µaα
2

 π
2

−
π
2

ξ(θ)dθ + a
 π

2

−
π
2

η(θ)dθ

= π −
µaα
2
π.

Hence, we easily obtain

λ1 >
1

1 −
µaα
2

·
π2

d2
,

or, equivalently,

λ1


1 −

µaα
2


>
π2

d2
.

Therefore, we obtain

λ1 >
π2

d2
+ λ1

µaα
2

=
π2

d2
+
µ(n − 1)K

2
.

This is the required estimate, which completes the proof. �
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