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a b s t r a c t

Myers–Perry–AdS–dS black hole exhibits SO(2, 1) × U(n) symmetry in the near horizon
limit in the special case that all rotation parameters are equal. We consider a massive rela-
tivistic particle propagating on such a background and reduce it to superintegrable angular
mechanics with U(n) symmetry. A complete set of functionally independent u(n) genera-
tors realized in the model is given.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

In the last decade there has been a surge of interest in the Myers–Perry black hole in arbitrary dimension and especially
in its near horizon limit (see, e.g., a recent review [1] and references therein). The first reason to be concerned about the
near horizon geometries is the duality between the near horizon Kerr black hole and a conformal field theory suggested
in [2] (for a review see [3]). As was proved in [4], the duality holds true also in higher dimensions and in the presence of
a cosmological constant. The second reason is the possibility to build various conformal mechanics models starting from
a massive relativistic particle propagating on such backgrounds [5–22]. In this regard the Myers–Perry black hole with all
rotation parameters being equal to each other is of particular interest because its symmetry is enlarged to the unitary algebra
(in direct sumwith extra so(2, 1) algebra in the near horizon case) which is the largest finite-dimensional symmetry algebra
possible. In particular, this gives a clue to the construction of new maximally superintegrable models in [20–22].

Note that for a generic conformal mechanics one can always split the radial canonical pair from the angular sector by
applying a suitable canonical transformation [23,24]. The dynamics of the angular variables is governed by the Casimir
element in the conformal algebra so(2, 1). The latter can be viewed as the Hamiltonian of a reducedmechanicswhich retains
symmetries pertaining to the angular sector of the parent conformal mechanics.

A natural one-parameter extension of the Myers–Perry solution can be obtained by including a cosmological constant
into the consideration [25]. It is noteworthy that for the special case that all rotation parameters are equal to each other the
configuration retains the unitary symmetry and therefore hints at a possibility to construct new superintegrable models
associated with it. The goal of this work is to construct such superintegrable models which provide a one-parameter
deformation of those built recently in [21]. The similarities and differences between the two cases are discussed in detail.

The paper is organized as follows. In Section 2 a short overview of the extremal Myers–Perry–AdS–dS black hole in arbi-
trary dimension is given. In Section 3 we consider such a metric in D = 2n + 1 dimensions for the special case that all
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rotation parameters are equal. The near horizon limit is implemented and the associated conformal mechanics is con-
structed. Next we perform the reduction of the conformalmechanics to its angular sector. Section 4 contains a similar analy-
sis for D = 2n. In Section 5 we discuss the unitary symmetries of the Hamiltonians constructed earlier and show that in odd
dimensions the reduced Hamiltonian can be expressed in terms of the first and the second order Casimir invariants of the
unitary algebra. Finally, we give a complete set of functionally independent u(n) generators realized in the angular mechan-
ics and prove their superintegrability. In the concluding Section 6 we summarize our results and discuss possible further
developments.

2. Myers–Perry–AdS–dS metric in arbitrary dimension

The Myers–Perry–AdS–dS metric is a solution of Einstein equations in D dimensions with a cosmological constant λ

Rij + (D − 1)λ gij = 0, (1)

which describes a black hole rotating in (n − ϵD) spatial two-planes, where ϵD = 0 for odd dimensions (D = 2n + 1) and
ϵD = 1 for even dimensions (D = 2n). In Boyer–Lindquist coordinates it reads:

ds2 = W (1 − λr2)dt2 −
U
∆

dr2 −
2M
U


dt −

n−ϵD
i=1

aiµ2
i dϕi

1 + λa2i

2

−

n
i=1

r2 + a2i
1 + λa2i

dµ2
i

−

n−ϵD
i=1

r2 + a2i
1 + λa2i

µ2
i (dϕi − λaidt)2 −

λ

W (1 − λr2)


n

i=1

r2 + a2i
1 + λa2i

µidµi


, (2)

where

∆ = rϵD−2(1 − λr2)
n−ϵD
i=1

(r2 + a2i ), U = rϵD
n

i=1

µ2
i

r2 + a2i

n−ϵD
j=1

(r2 + a2j ),

W =

n
i=1

µ2
i

1 + λa2i
.

(3)

Above M is the black hole mass, ai are the rotation parameters, ϕi are azimuthal angles. It is assumed that the latitudinal
angular variables µi parameterize the unit sphere

n
i=1

µ2
i = 1. (4)

In even-dimensional case the n-th rotation parameter is set to zero

an = 0. (5)

In what follows we shall be mainly concerned with the special case for which all the rotation parameters are equal

ai = a, (6)

where i = 1, . . . , n − ϵD. In particular, this greatly simplifies the metric (2). Below we shall treat the even-, and
odd-dimensional cases separately.

The black hole solution with equal rotation parameters has a larger symmetry group as one can rotate various spatial
two-planes one into another. In odd dimensions, where the metric takes the form

ds2 = W (1 − λr2)dt2 −
U
∆

dr2 −
2M
U


dt −

a
1 + λa2

n
i=1

µ2
i dϕi

2

−
r2 + a2

1 + λa2

n
i=1

µ2
i (λadt − dϕi)

2
−

r2 + a2

1 + λa2

n
i=1

dµ2
i , (7)

the vector fields generating these rotations can be written as [26]

ρij = xi∂yj − yj∂xi + xj∂yi − yi∂xj , ξij = xi∂xj − xj∂xi + yi∂yj − yj∂yi. (8)

Here we introduced coordinates

xi = µi cosϕi, yi = µi sinϕi; ϕi = arccos
xi

x2i + y2i
, µi =


x2i + y2i , (9)
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which lead also to an equivalent realization:

ρij = sinϕij(µj∂µi − µi∂µj) + cosϕij


µj

µi
∂ϕi +

µi

µj
∂ϕj


,

ξij = − cosϕij(µj∂µi − µi∂µj) + sinϕij


µj

µi
∂ϕi +

µi

µj
∂ϕj


,

(10)

where we denoted ϕij = ϕi − ϕj. n(n+1)
2 generators ρij and n(n−1)

2 generators ξij all together form the unitary algebra u(n).
Note that the existence of the unitary symmetry can be revealed by introducing the complex coordinates

zk = µkeiϕk = xk + iyk. (11)

In even dimensions the metric is

ds2 = W (1 − λr2)dt2 −
U
∆

dr2 −
2M
U


dt −

a
1 + λa2

n−1
i=1

µ2
i dϕi

2

−
r2 + a2

1 + λa2

n−1
i=1

µ2
i (dϕi − λadt)2 −

r2 + a2

1 + λa2

n−1
i=1

dµ2
i − r2dµ2

n −
λ

W (1 − λr2)


a2(1 − λr2)
1 + λa2

µndµn

2

, (12)

and the angular sector splits into (µi, ϕi), i = 1, . . . , n − 1 part and µn part. After passing to n − 1 latitudinal angles νi (see
Section 4) the unitary symmetry of (νi, ϕi) sector can be described in exactly the same way as in the odd dimensional case.
Therefore in even dimensions metric is invariant under the unitary group u(n − 1).

We will also need the expression for the inverse metric which was obtained in [26]:

gµν
=


Q +

(2M)2

U∆

1
(1 − λr2)2


∂2
t −

∆

U
∂2
r

+

n−ϵD
i=1


λaQ +

(2M)2

U∆

1 + λa2

(1 − λr2)2(r2 + a2)
+

2M
U

a
(1 − λr2)(r2 + a2)


∂t∂ϕi

−

n−ϵD
i,j=1


1 + λa2

r2 + a2
δij

µ2
i

− λ2a2Q +
(2M)2

U∆

a2(1 + λa2)2

(1 − λr2)2(r2 + a2)2
− R


∂ϕi∂ϕj + · · · (13)

where the dots denote terms in the µi-sector which has to be calculated separately for the even-, and odd-dimensional
cases. Q and R in (13) are defined as follows:

Q =
1

W (1 − λr2)
+

2M
U

1
(1 − λr2)2

,

R =
(2M)2

U∆

2λa2(1 + λa2)
(1 − λr2)2(r2 + a2)

+
2M
U

a
(r2 + a2)2

+
2M
U

2λa2

(1 − λr2)(r2 + a2)
+

(2M)2

U∆

2a2(1 + λa2)
(1 − λr2)(r2 + a2)2

.

(14)

The inverse metric allows one to construct the Hamiltonian of a massive relativistic particle moving on the My-
ers–Perry–AdS–dS background as a solution p0 of the mass-shell equation gµνpµpν = m2.

3. Odd-dimensional case

3.1. D = 2n + 1 extremal Myers–Perry–AdS–dS black hole near the horizon

For D = 2n + 1 and equal rotation parameters the metric (2) can be brought to the form

ds2 =
∆

U


dt −

a
1 + λa2

n
i=1

µidϕi

2

−
U
∆

dr2 −
r2 + a2

1 + λa2

n
i=1

dµ2
i

−
1
r2

n
i=1

µ2
i


adt −

r2 + a2

1 + λa2
dϕi

2

+
a2(1 − λr2)(r2 + a2)

r2(1 + λa2)2

n
i<j

µ2
i µ

2
j (dϕi − dϕj)

2, (15)

where

U = (r2 + a2)n−1, ∆ =
1
r2

(1 − λr2)(r2 + a2)n − 2M. (16)
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In the extremal case ∆ has double zero at the horizon radius r0, i.e.:

∆(r0) = ∆′(r0) = 0. (17)

Solving this equations one can relate the mass and the rotation parameter to the horizon radius r0 and a cosmological
constant

a2 = (n(1 − ~) − 1)r20 , 2M =
(nr20 )

n(1 − ~)n+1

r20
; ~ := λr20 . (18)

If one approaches the horizon, i.e. r → r0 + εr0r followed by ε → 0, the relations

∆ → ε2r20 r
2V , V :=

2(nr20 )
n−1(1 − ~)n−1(n(1 − 2~) − 1)

r20
(19)

hold.
In order to describe the near horizon geometry, we follow the procedure in [4]. First one makes the coordinate transfor-

mation:

r → r0 + εr0r, t →
αt
ε

, ϕi → ϕi +
βit
ε

, (20)

and then takes the limit ε → 0. The number coefficients α and βi above are fixed from the condition that the first two terms
in (15) produce the AdS2 metric up to a factor, while the rest is nonsingular

α =
r20 + a2

2r0(n(1 − 2~) − 1)
, βi =

a(1 + λa2)
2r0(n(1 − 2~) − 1)

. (21)

The near horizon extremal metric reads

ds2 =
r20

2(n(1 − 2~) − 1)


r2dt2 −

dr2

r2


−

a2

(n(1 − 2~) − 1)2

n
i=1

µ2
i (rdt + dϕi)

2

−
r20 + a2

1 + λa2

n
i=1

dµ2
i +

a4

nr20 (n(1 − 2~) − 1)2

n
i<j

µ2
i µ

2
j (dϕi − dϕj)

2, (22)

where we rescaled the azimuthal angular variables as follows:

ϕi →
ar0(1 + λa2)

(r20 + a2)(n(1 − 2~) − 1)
ϕi. (23)

It is readily verified that (22) is a vacuumsolution of the Einstein equationswith a cosmological constant (1). It is an extension
of the metric constructed in [20] which now includes a cosmological constant λ.

A salient feature of the near horizon metric (22) is that it exhibits extra symmetries generated by the Killing vectors

D = t ∂t − r ∂r , K =


t2 +

1
r2


∂t − 2tr ∂r −

2
r

n
i=1

∂ϕi , (24)

which along with the time translation H = ∂t form the conformal algebra so(2, 1).

3.2. Conformal mechanics near the horizon of the extremal Myers–Perry–AdS–dS black hole in D = 2n + 1

In order to construct the Hamiltonian of a massive relativistic particle moving on the curved background (22), we first
invert the metric1

gµν∂µ∂ν =
∂2
t

r2
− r2∂2

r +
r20 (1 + λa2)

2(r20 + a2)(n(1 − 2~) − 1)

n−1
i,j=1

(µiµj − δij)∂µi∂µj

+

n
i,j=1


(1 − ~)(n(1 − 2~) − 1)

2(1 + λa2)
+ 1 −

(r20 + a2)(n(1 − 2~) − 1)
2a2(1 + λa2)

δij

µ2
i


∂ϕi∂ϕj −

2
r

n
i=1

∂t∂ϕi , (25)

1 The constant factor of 2(n(1−2~)−1)
r20

has been removedby redefiningm2 . Since theµi sector in (22) does notmixwith other coordinates, the corresponding

piece in the metric can be inverted separately.
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and then solve the mass-shell condition gµνpµpν = m2 for the energy

H = r


√

Ω −

n
i=1

pϕi


,

Ω = m2
+ (rpr)2 + η

n−1
i,j=1

(δij − µiµj)pµipµj +

n
i,j=1


τ

δij

µ2
i

− σ


pϕipϕj ,

η =
r20 (1 + λa2)

2(r20 + a2)(n(1 − 2~) − 1)
, σ =

(1 − ~)(n(1 − 2~) − 1)
2(1 + λa2)

,

τ =
(r20 + a2)(n(1 − 2~) − 1)

2a2(1 + λa2)
.

(26)

Associated with the Killing vectors (24) are the integrals of motion

H = r


√

Ω −

n
i=1

pϕi


, D = tH + rpr , K = t2H + 2trpr +

1
r


√

Ω +

n
i=1

pϕi


, (27)

which form so(2, 1) algebra under the Poisson bracket:

{H,D} = H, {H, K} = 2D, {D, K} = K . (28)

Computing the Casimir invariant of the so(2, 1) algebra

C = HK − D2
+ P2

= m2
+ η

n−1
i,j=1

(δij − µiµj)pµipµj +

n
i,j=1


τ

δij

µ2
i

− σ


pϕipϕj , (29)

wherewe added integral ofmotion P2
=
n

i=1(pϕi)
2 for convenience, one finds a function on the phase spacewhich depends

only on the angular variables and is quadratic in the momenta. Following the ideology in [23,24], it can be considered to be
the Hamiltonian of a reduced angular mechanics. By construction, it inherits the U(n)-symmetry of the background, while
the decoupling of the radial coordinate is achieved at the expanse of missing SO(2, 1). The system (29) is a one-parameter
deformation of themodel studied in [20,21]. The detailed discussion of its unitary symmetry and integrability is given below
in Section 5.

Note that since the Hamiltonian (26) does not depend on the azimuthal angular variables ϕi, the momenta pϕi are
conserved in time. Setting them to be coupling constants yields a further reductionwhich, up to a redefinition of the coupling
constants, coincides with the maximally superintegrable model analyzed in [21].

4. Even-dimensional case

4.1. D = 2n extremal Myers–Perry–AdS–dS black hole near the horizon

For D = 2n and equal rotation parameters the metric (2) can be brought to the form

ds2 =
∆

U


dt −

a
1 + λa2

n−1
i=1

µ2
i dϕi

2

−
U
∆

dr2 −
r2 + a2

1 + λa2
sin2 θ

n−1
i=1

dν2
i −

ρ2

∆θ

dθ2

−
∆θ

ρ2

n−1
i=1

µ2
i


adt −

r2 + a2

1 + λa2
dϕi

2

+
a2(r2 + a2)(1 − λr2)

(1 + λa2)2∆θ

n−1
i<j

µ2
i µ

2
j (dϕi − dϕj)

2, (30)

where we introduced one spherical angle θ

µi = νi sin θ µn = cos θ,

n−1
i=1

ν2
i = 1 (31)

and denoted

U =
1
r
(r2 + a2µ2

n)(r
2
+ a2)n−2, ∆ =

1 − λr2

r
(r2 + a2)n−1

− 2M,

ρ = r2 + a2 cos2 θ, ∆θ = 1 + λa2 cos2 θ.

(32)

Imposing the extremality condition

∆(r0) = ∆′(r0) = 0, (33)
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one can link the black hole mass and a cosmological constant to the horizon radius and the rotation parameter

λ =
(2n − 3)r20 − a2

r20 (a2 + (2n − 1)r20 )
, M =

(r20 + a2)n

r0(a2 + (2n − 1)r20 )
. (34)

In order to construct the near-horizon limit, it suffices to change the coordinates

r → r0 + εr0r, t →
αt
ε

, ϕi → ϕi +
βit
ε

, (35)

take α and βi in the form

α =
r20 + a2

r0V
, βi =

a(1 + λa2)
r0V

, V =
Ṽ

(r20 + a2)n−2
, (36)

and finally send ε to zero. This yields

ds2 =
ρ2
0

V


r2dt2 −

dr2

r2


−

r20 + a2

1 + λa2
sin2 θ


dν2

i −
ρ2
0

∆θ

dθ2

−
∆θ

ρ2
0

4a2r20
V 2


µ2

i (rdt + dϕi)
2
+

4a4r20 (1 − λr20 )
ρ2
0 (r

2
0 + a2)V 2


i<j

µ2
i µ

2
j (dϕi − dϕj)

2,

ρ2
0 = r20 + a2 cos2 θ,

(37)

which is a vacuum solution of the Einstein equations in the presence of a cosmological constant. Note that, when deriving
the last formula, we rescaled the azimuthal angular variables

ϕi →
2ar0
V

1 + λa2

r20 + a2
ϕi (38)

and have taken into account the following relations:

∆ → ε2r20 r
2Ṽ , Ṽ :=

(r20 + a2)n−2(a4 + 2a2(2n − 1)r20 − (3 − 8n + 4n2)r40 )
r20 (a2 + (2n − 1)r20 )

(39)

which hold true in the near horizon limit.

4.2. Conformal mechanics near the horizon of the extremal Myers–Perry–AdS–dS black hole in D = 2n

Like in the preceding section, we shall construct the Hamiltonian of a conformal mechanics associated with the near
horizon geometry of the extremal Myers–Perry–AdS–dS black hole in D = 2n by first inverting the metric

gµν∂µ∂ν =
V
ρ2
0


∂2
t

r2
− r2∂2

r


−

1 + λa2

(r20 + a2) sin2 θ

n−2
i,j=1

(δij − νiνj)∂νi∂νj −
∆θ

ρ2
0

∂2
θ

−

n−1
i,j=1


V 2(r20 + a2)

4a2r20 (1 + λa2)
δij

µ2
i

−
V 2(r20 + a2)

2∆θ r20 (a2 + (2n − 1)r20 )(1 + λa2)
−

V
ρ2
0


∂ϕi∂ϕj − 2

V
ρ2
0 r

n−1
i=1

∂t∂ϕi (40)

and then solving the mass-shell condition for the energy

H = r


√

Ω −

n−1
i=1

pϕi


,

Ω =
m2ρ2

0

V
+ (rpr)2 +

n−1
i=1

(pϕi)
2
+

1 + λa2

V (r20 + a2)
ρ2
0

sin2 θ

n−2
i,j=1

(δij − νiνj)pνipνj +
∆θ

V
p2θ

+

n−1
i,j=1


V (r20 + a2)ρ2

0

4a2r20 (1 + λa2)
δij

µ2
i

−
V (r20 + a2)

2r20 (a2 + (2n − 1)r20 )(1 + λa2)
ρ2
0

∆θ

− 1

pϕipϕj .

(41)

This Hamiltonian possesses conformal symmetry generated by the Killing vectors (24) which gives rise to the integrals of
motion realized as in (27) with Ω now taken from the previous line.
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Computing the Casimir element in the conformal algebra, one gets the Hamiltonian of the angular mechanics related to
the near horizon geometry of the extremal Myers–Perry–AdS–dS black hole in D = 2n

C = HK − D2
+ P2

=
m2ρ2

0

V
+ η

ρ2
0

sin2 θ

n−2
i,j=1

(δij − νiνj)pνipνj +
∆θ

V
p2θ + ρ2

0

n−1
i,j=1


τ

δij

µ2
i

−
σ

∆θ


pϕipϕj ,

τ =
V (r20 + a2)

4a2r20 (1 + λa2)
, σ =

V (r20 + a2)
2r20 (a2 + (2n − 1)r20 )(1 + λa2)

, η =
1 + λa2

V (r20 + a2)
,

(42)

where integral of motion P2
=
n−1

i=1 (pϕi)
2 was added for convenience. As compared to the model constructed in [20,21],

the Hamiltonian (42) is deformed by the terms which depend on a cosmological constant and, as thus, it provides a one-
parameter continuous deformation of the former. The detailed discussion of its unitary symmetry and integrability is given
in the next section.

Because the azimuthal angular variables are cyclic, one can consider a further reduction of (42) which is obtained by
setting the angular momenta pϕi to be coupling constants. This gives the Hamiltonian

H̃ =
m2ρ2

0

V
+

∆θ

V
p2θ − σ ′

ρ2
0

∆θ

+ η′
ρ2
0

sin2 θ


n−2
i,j=1

(δij − νiνj)pνipνj +

n−1
i,j=1

γ 2
i

ν2
i


, (43)

m2, σ ′, η′ ang γi are the coupling constants. This model is a one-parameter deformation of that in [21].
The proof of superintegrability of (43) is not affected by the presence of a cosmological constant and proceeds along the

same lines as in [21]. The expression in braces is the maximally superintegrable model studied in [21]. In this sector one can
realize 2(n − 2) − 1 functionally independent integrals of motion. The full system (43) involves one more canonical pair
and only one extra integral of motion (the Hamiltonian (43) itself). The model thus lacks for one integral of motion to be
maximally superintegrable.

5. Unitary symmetry and superintegrability

Let us discuss symmetries and superintegrability of the angular mechanics constructed above in more detail. Consider
first the odd-dimensional case for which the dynamics is governed by the Hamiltonian (29). By construction, it inherits from
the parent Hamiltonian (26) the U(n)-symmetry realized in the angular sector. The corresponding Killing vector fields are
given in (8). In particular, one can verify that the Hamiltonian can be expressed via the linear and the quadratic Casimir
invariants of u(n)

C1 =
1
2

n
i=1

ρii, C2 =
1
2

n
i,j=1

(ρ2
ij + ξ 2

ij ) (44)

as follows

Hsph
n = C2 − C2

1 =

n−1
i,j=1

(δij − µiµj)pµipµj +

n
i=1

p2ϕi

µ2
i
. (45)

For later convenience we invert the transformation (23) and drop the arising constant multiple and a constant term in (29)
casting the Hamiltonian into the form

C ≡ Hn = τHsph
n − σC2

1

= τC2 − (σ + τ)C2
1 . (46)

This formula shows that u(n) is the spectrum generating algebra of the system. This property is particularly useful in quan-
tum mechanics because a well developed group theoretical framework is available to construct its eigenstates and eigen-
values (see e.g. [27]).

Let us discuss integrability of the system governed by the Hamiltonian Hn which involves 2n− 1 configuration space de-
grees of freedom. There are n first order Casimir invariants C1(u(1)), . . . , C1(u(n)) which together with n− 1 second order
ones C2(u(2)), . . . , C2(u(n)) form a set of 2n− 1 functionally independent integrals of motion in involution. Therefore this
system is Liouville integrable. The issue of superintegrability is more involved because one needs to count the number of
functionally independent integrals of motion among n2 generators ρij, ξij of u(n).

Let us use the coordinates (xi, yi) (9), in which ρij and ξij read

ρij = xipyj − yjpxi + xjpyi − yipxj , ξij = xipxj − xjpxi + yipyj − yjpyi . (47)

These expressions provide a canonical realization of u(n).
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The number of functionally independent integrals of motion is equal to the rank of the matrix ∂ζa Ib, ζa denote all the
phase space coordinates and Ib designates the generators. The case n = 1 is trivial. There is one configuration space degree
of freedom and one integral of motion. For n = 2 there are eight coordinates ζa and four integrals of motion Ib. One can
verify that rank(∂ζa Ib) = 4meaning that all Ib are independent. For n = 3 there are twelve coordinates and nine integrals of
motion. However, in this case rank(∂ζa Ib) = 8 which implies that one integral is a function of the others. A relation between
them can be written explicitly

1
2


ρ11(ρ

2
23 + ξ 2

23) + ρ22(ρ
2
13 + ξ 2

13) + ρ33(ρ
2
12 + ξ 2

12)


= ρ23(ξ12ξ13 + ρ12ρ13) + ξ23(ρ12ξ13 − ξ12ρ13). (48)

Note that this relation is of the third order in generators and it does not occur in the completely reduced case because it
cannot be expressed in terms of Iij = ρ2

ij + ξ 2
ij , i < j, only (cf. [21]).

We see that for n = 2 and n = 3 the number of functionally independent integrals of motion is 4n − 4. This holds true
for all n ≥ 2 which can be proved by induction. Let us assume that for some N = n − 1 there are 4(n − 1) − 4 functionally
independent integrals of motion, which one can choose as follows:

ρ11, ρ12, ξ12, ρ22, ρ1i, ξ1i, ρ2i, ξ2i, (49)

where i = 3, . . . , n − 1. Then for N = n one adds 2n − 1 integrals ρin and ξin with i = 1, . . . , n − 1 as well as ρnn. For each
pair of the integrals ρin and ξin, where i = 3, . . . , n − 1, let us consider the following columns in the matrix ∂ζa Ib:

∂ζa{ρ11, ρ1i, ξ1i, ρii, ρ1n, ξ1n, ρin, ξin, ρnn}, ∂ζa{ρ2, ρ2i, ξ2i, ρii, ρ2n, ξ2n, ρin, ξin, ρnn}. (50)

These columns have exactly the same structure as for n = 3, provided onemakes the substitutions of indices (123) → (1in)
and (123) → (2in). Therefore they lead to the same relations between the generators as in (48)

ρkk(ρ
2
in + ξ 2

in) + ρii(ρ
2
kn + ξ 2

kn) + ρnn(ρ
2
ki + ξ 2

ki) = ρin(ξkiξkn + ρkiρkn) + ξin(ρkiξkn − ξkiρkn), (51)

where k = 1, 2. In order to determine ρnn as a function of other generators, we consider another set of columns

∂ζa{ρ11, ρ12, ξ12, ρ22, ρ1n, ξ1n, ρ2n, ξ2n, ρnn}, (52)

which leads to the same relation as in (51) with k = 1, i = 2. We thus conclude that the generators ρ1n, ξ1n, ρ2n, ξ2n are
functionally independent. Togetherwith (49) they forma complete set of 4n−4 functionally independent integrals ofmotion
which completes the induction. It follows from the previous discussion that the angular mechanics in odd dimensions lacks
for only one integral of motion to be maximally superintegrable.2

The analysis of the even dimensional case with the dynamics governed by the Hamiltonian (42) proceeds along the same
lines. First one inverts the transformation (38) which brings the Hamiltonian to the form

C ≡ H̃n =
m2ρ2

0

V
+

∆θ

V
p2θ + τρ2

0H
sph
n−1 −

σ

∆θ


n−1
i=1

pϕi

2

, (53)

where

τ =
1 + λa2

V (r20 + a2)
, σ =

2a2(1 + λa2)
V (r20 + a2)(a2 + (2n − 1)r20 )

, (54)

and Hsph
n−1 is defined in (45). This system has 2n − 2 configuration space degrees of freedom and its Liouville integrability is

ensured by the existence of 2n−2 commuting independent integrals ofmotionHsph
2 , . . . ,Hsph

n−1, pϕ1 , . . . , pϕn−1 , H̃n. It has the
same symmetry algebra as Hsph

n−1, i.e. u(n−1). The complete set of 4n−7 functionally independent integrals of motion reads

H̃n, ρ11, ρ12, ξ12, ρ22, ρ1i, ξ1i, ρ2i, ξ2i, (55)

where i = 3, . . . , n−1. Therefore the system lacks for two independent integrals ofmotion to bemaximally superintegrable.

6. Conclusion

To summarize, in this work we have constructed mechanical systems with the conformal and unitary symmetry which
result from the near horizon Myers–Perry–AdS–dS black hole geometry in arbitrary dimension. We presented both the
Hamiltonians and the integrals of motion as well as performed a reduction to an angular mechanics which is governed by
the Casimir invariant of the conformal group SO(2, 1). These models provide one-parameter deformations of the systems
constructed recently in [20–22]. A canonical realization of the unitary algebra (47) was studied and the functionally
independent generators were identified.

2 A word of reservation is needed. The group-theoretic method employed in this paper does not encompass the option that extra (hidden) charges occur
which are not directly related to symmetries of the parent background geometry. An analysis based on the use of the action–angle variables might help to
better understand the issue. We hope to present such an analysis elsewhere.
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A further reduction of these models was attained by setting momenta canonically conjugate to the azimuthal angular
variables to be coupling constants. It was shown that, up to a redefinition of constants, the resulting Hamiltonian in odd
dimensions is the same as in the case of a vanishing cosmological constant [21]. In even dimensions, however, there are
extra terms in the reduced Hamiltonian.

There are several possible developments of this work. The presence of possible hidden extra integrals of motion which
are not directly related to symmetries of the parent background geometry deserves a further investigation. A generalization
of the present consideration to the case of nonequal rotation parameters is of considerable interest, as well as the case of
a non-vanishing electromagnetic field. Worth studying are also models which can be obtained using contractions of u(n)
algebra a-lá Smorodinsky-Winternitz (see e.g. [28] and the references therein).
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