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Abstract

Let X → B be an elliptic surface andM(a, b) the moduli space of torsion-free sheaves onX
which are stable of relative degree zero with respect to a polarization of typeaH+ bµ, H being
the section andµ the elliptic fibre(b � 0). We characterize the open subscheme ofM(a, b)

which is isomorphic, via the relative Fourier–Mukai transform, with the relative compactified
Simpson–Jacobian of the family of those curvesD ↪→ X which are flat overB. This general-
izes and completes earlier constructions due to Friedman, Morgan and Witten. We also study the
relative moduli scheme of torsion-free and semistable sheaves of rankn and degree zero on the
fibres. The relative Fourier–Mukai transform induces an isomorphic between this relative moduli
space and the relativenth symmetric product of the fibration. These results are relevant in the study
of the conjectural duality between F-theory and the heterotic string.
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1. Elliptic fibrations and relative Fourier–Mukai transform

1.1. Introduction

Recently there has been a growing interest in the moduli spaces of stable vector bundles on
elliptic fibrations. Aside from their mathematical importance, these moduli spaces provide
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a geometric background to the study of some recent developments in string theory, notably
in connection with the conjectural duality between F-theory and heterotic string theory
[4,10,13,14].

In this paper we study such moduli spaces, dealing both with the case of relatively and
absolutely stable sheaves. We only consider elliptic fibrationsp : X → B with a section
H and geometrically integral fibres.

In the first part, we consider the “dual” elliptic fibration̂p : X̂ → B [5] defined as the
compactified relative Jacobian ofX → B (actually,X̂ turns out to be isomorphic with
X) and we introduce the relative Fourier–Mukai transform and its properties. This allows
for a nice description of the spectral cover construction. Given a sheafF onX → B flat
overB and fibrewise, torsion-free and semistable of rankn and degree 0, we define its
spectral coverC(F) ↪→ X̂ as the closed subscheme defined by the 0th Fitting ideal of
the first Fourier–Mukai transform̂F . It is finite overB and generically of degreen. When
B is a smooth curve, the spectral cover is actually flat of degreen andF̂ is torsion-free
and rank one overC(F). Atiyah [2], Tu [23] and Friedman et al.[13] structure theorems
for semistable sheaves of degree zero on an elliptic curve play a fundamental role in this
section. By the invertibility of the Fourier–Mukai transform, this gives a one-to-one corre-
spondence between fibrewise, torsion-free and semistable sheaves of rankn and degree 0
and torsion-free, rank one sheaves on spectral covers.

The second part is devoted to the study of the relative moduli schemeM̄(n,0) of
torsion-free and semistable sheaves of rankn and degree 0 on the fibres ofX → B.
(One should notice that the case of non-zero relative degree is somehow simpler, cf.[6,14].)
Using the results of the first section, we prove that the relative Fourier–Mukai induces
an isomorphism ofB-schemesM̄(n,0)

∼→SymnB X̂ (Theorem 2.1). This isomorphism is
probably known to people familiar with the topic, but it cannot be explicitly found and
proved elsewhere in the literature. Friedman–Morgan–Witten’s theorem on the structure of
the moduliM(n,OX) of vector bundles inM(n,0) whose determinant is fibrewise trivial
is easily derived from our results. As a corollary, we determine the Picard group and the
canonical series of the relative moduli schemeM̄(n,0).

The third part is devoted to absolute stability of torsion-free sheaves on an elliptic surface
with respect to a polarization of the formaH+ bµ, whereH is the section ofp : X→ B

andµ the fibre. The main result is that forb big enough (in a way precised in the paper),
the stability of a torsion-free sheafF onX (fibrewise semistable of rankn and degree 0)
is equivalent to the stability of the Fourier–Mukai transform̂F as a sheaf on the spectral
coverC(F). Since non-integral (even non-reduced) spectral covers may occur, we have to
consider stability onC(F) with respect a polarization (the one given by the fibre) in the
sense of Simpson[22].

We finish the paper with the moduli implications of our results. LetH be the scheme of all
possible spectral covers which are flat of degreenoverB. It can be identified with the Hilbert
scheme of sections of the projection̄M(n,0)

∼→SymnB X̂ → B. Let C → B × H be the
“universal spectral cover”. If we denote byM(a, b) the moduli space of absolutely stable
torsion-free sheaves onX, we prove (Theorem 3.16) that the Fourier–Mukai transform gives
rise to an isomorphism between the compactified JacobianJ (C/H) of the universal spectral
cover and the open subschemeM′(a, b) of the moduli spaceM(a, b) of absolutely stable
sheaves onX defined by those sheaves that are semistable on fibres as well. In particular, we
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obtain that there is a fibrationπ :M′(a, b)→ Hwhose fibres are generalized compactified
Jacobians. The generic fibres, for instance, the fibresπ−1([C]) over a point [C] ∈ H
representing a smooth curve, are abelian varieties, but there are points ofH whose fibres
are not abelian varieties.

As before, due to the existence of non-integral spectral covers, the compactified Jacobian
of C → H has to be defined as the Simpson moduli scheme ofH-flat sheaves onC whose
restriction to every fibre is of pure dimension one, rank one and stable with respect to a
fixed polarization. For those sheaves whose spectral covers are integral, we recover the
results already proved in[14], but making no assumptions about the generic regularity of
the restrictions of the sheaves to the fibres.

The conjectural duality between the heterotic string and F-theory[1,7,18,19,24]could
be formulated from a geometrical point of view as the existence of an isomorphism be-
tween a moduli space of absolutely stable bundles (of groupE8 × E8 or Spin(32)/2Z in
most cases) over a surfaceX elliptically fibred overP1 and a moduli space of Calabi–Yau
threefold elliptically fibred over a Hirzebruch surface. The knowledge of the structure of
the moduli schemesM(a, b) is then a fundamental step in the understanding of the duality
F-theory/heterotic string. We hope that the results in this paper will be useful to the study
of such problem.

1.2. Preliminaries

All the schemes considered in this paper are of finite type over an algebraically closed
field and all the sheaves are coherent. Letp : X → B be an elliptic fibration. By this we
mean a proper flat morphism of schemes whose fibres are geometrically integral Gorenstein
curves of arithmetic genus 1. We also assume thatp has a sectione : B ↪→ X taking values
in the smooth locusX′ → B of p.

We writeH = e(B) and we denote byXt the fibre ofp overt ∈ B, and byit : Xt ↪→ X

the inclusion. We denote byU ↪→ B be the open subset supporting the smooth fibres of
p : X → B. Let us denote byωX/B the relative dualizing sheaf. Thenp∗ωX/B is a line

bundleOB(E) andωX/B
∼→p∗OB(E), i.e.KX/B = p−1E is a relative canonical divisor.

We denote, as is[9], ω = R1p∗OX
∼→(p∗ωX/B)∗ so thatω = OB(−E). Adjunction for-

mula forH ↪→ X givesOH = ωH/B = ωX/B|H ⊗ OH (H), i.e.H 2 = −H · p−1E as
cycles onX.

By [17, Lemma II.4.3], p : X→ B has a Weierstrass form: the divisor 3H is relatively
very ample and ifV = p∗OX(3H) ∼→OB ⊕ ω⊗2⊕ ω⊗3 andP = Proj(S•(V )) (projective
spectrum of the symmetric algebra), then there is a closed immersion ofB-schemesj :
X ↪→ P such thatj∗OP (1) = OX(3H). Moreoverj is locally a complete intersection
whose normal sheaf is

N (X/P )
∼→p∗ω−⊗6⊗OX(9H). (1.1)

This follows by relative duality sinceωP/B = ∧ΩP/B ∼→p̄∗ω⊗5(−3), p̄ : P → B being
the projection, due to the exact sequence 0→ ΩP/B → p̄∗V (−1) → OP → 0. The
morphismp : X→ B is then an l.c.i. morphism in the sense of[15, (6.6)]and has a virtual
relative tangent bundleTX/B = [j∗TP/B ] − [NX/P ] in theK-groupK•(X).
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Proposition 1.1. The Todd class of the virtual tangent bundleTX/B is

td(TX/B) = 1− 1
2p
−1E +H · p−1E + 13

12p
−1E2+ terms of higher degree.

Proof. We compute the Todd class from

j∗TP/B = OX(3H)⊕OX(3H + 2p∗E)⊕OX(3H + 3p∗E),

andEq. (1.1)usingH 2 = −H · p−1E. �

Let Pic−X/B be the functor which to any morphismf : S → B of schemes associates the
space ofS-flat sheaves onpS : X ×B S → S, whose restrictions to the fibres ofpS are
torsion-free, of rank one and degree zero. Two such sheavesF,F ′, are considered to be
equivalent ifF ′ � F ⊗p∗SN for a line bundleN onS (cf. [3]). Due to the existence of the
sectione, Pic−X/B is a sheaf functor.

By [3], Pic−X/B is represented by an algebraic varietyp̂ : X̂→ B (the Altman–Kleiman
compactification of the relative Jacobian). Moreover, the natural morphism ofB-schemes
 : X → X̂, x �→ m∗x ⊗ OXs (−e(s)) is an isomorphism. Heremx is the ideal sheaf of
the pointx in Xs . The relative JacobianJ 0 → B of X as aB-scheme is the smooth locus
X̂′ of p̂ : X̂ → B and if U ⊆ B is the open subset supporting the smooth fibres ofp,
one hasJ 0

U � X̂U . As in [5], we denote bŷe : B ↪→ X̂ the section ◦ e and byΘ the

divisor ê(B) =  (H). We writeι : X̂ → X̂ for the isomorphism mapping any rank one,
torsion-free and zero-degree sheafF on a fibreXs to its dualF∗.

Most of the results in[5] are also true in our more general setting, in some cases just with
straightforward modifications.

1.3. Relative Fourier–Mukai transforms

Here we consider an elliptic fibrationp : X → B as above and the associated “dual”
fibrationp̂ : X̂→ B. We shall define a relative Fourier–Mukai in this setting by means of
the relative universal Poincaré sheafP on the fibred productX ×B X̂ normalized so that
P|H×BX̂ � OX̂ as in[5]. P is also flat overX, andP∗ enables us to identifyp : X → B

with a compactification of the relative JacobianĴ 0 → B of p̂ : X̂→ B.
For every morphismS → B, we denote all objects obtained by base change toS by a

subscriptS. There is a diagram:

The relative Fourier–Mukai transform is the functor between the derived categories of
quasi-coherent sheaves given by

SS : D(XS)→ D(X̂S), F �→ SS(F ) = Rπ̂S∗(π∗SF ⊗ PS).
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We then defineSiS(F ) = Hi (SS(F )), i = 0,1 so thatSiS(F) = Riπ̂S∗(π∗SF ⊗ PS) for
every sheafF onXS .

There is then a natural notion of WITi and ITi sheaves: we say that a sheafF onXS is
WITi if SjS(F) = 0 for j �= i and we say thatF is ITi if it is WIT i andSiS(F) is locally
free. One easily proves the following proposition.

Proposition 1.2. Let F be an object inD−(X̂S). For every morphismg : S′ → S there is
an isomorphism

Lg∗
X̂
(SS(F )) � SS′(Lg∗XF)

in the derived categoryD−(X̂S′), wheregX : XS′ → XS, gX̂ : X̂S′ → X̂S are the
morphisms induced by g.

Due to this property, we shall very often drop the subscriptS and refer only toX→ B.
Base-change theory gives the following corollary.

Corollary 1.3. LetF be a sheaf on X, flat over B.

1. The formation ofS1(F) is compatible with base change, i.e. one hasS1(F)s � S1
s (Fs),

for every points ∈ B.
2. Assume thatF is WIT1 and letF̂ = S1(F) be its Fourier–Mukai transform. Then for

everys ∈ B there is an isomorphism

TorOS1 (F̂, κ(s)) � S0
s (Fs)

of sheaves over̂Xs . In particular F̂ is flat over B if and only if the restrictionFs to the
fibreXs is WIT1 for every points ∈ B.

Corollary 1.4. LetF be a sheaf on X, flat over B. There exists an open subschemeV ⊆ B
which is the largest subscheme V fulfilling one of the following equivalent conditions hold:

1. FV is WIT1 onXV and the Fourier–Mukai transform̂FV is flat over V.
2. The sheavesFs areWIT1 for every points ∈ V .

There are similar properties for sheaves onX × T → B × T that are only flat overT .

Corollary 1.5. Let T be a scheme, andF a sheaf onX × T , flat over T. Assume thatF
is WIT1 and letF̂ = S1

B×T (F) be its Fourier–Mukai transform. Then for every morphism
T ′ → T there is an isomorphism

TorOT1 (F̂,OT ′) � S0
B×T ′(FB×T ′)

of sheaves over̂X × T ′. In particular F̂ is flat over T if and only if, FB×{t} is WIT1 on

XB×{t}
∼→X for everyt ∈ T .
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1.4. Fourier–Mukai transform of relatively torsion-free, rank one and degree zero sheaves

LetL be a sheaf onXS , flat overS, whose restrictions to the fibres ofpS are torsion-free
and have rank one and degree zero. The universal property gives a morphismφ : S → X̂

so that(1× φ)∗P � L⊗ p∗SN for a certain line bundleN onS. LetΓ : S ↪→ X̂S be the

graph of the morphismι ◦ φ : S → X̂. Lemma 2.11 and Corollary 2.12 of[5] now take the
following form.

Proposition 1.6. In the above situationS0
S(L) = 0 and S1

S(L) ⊗ p̂∗SN � Γ∗(ωS). In
particular:

1. S0
X̂
(P) = 0 and S1

X̂
(P) � ζ∗p̂∗ω, whereζ : X̂ ↪→ X̂ ×B X̂ is the graph of the

morphismι.

2. S0
X̂
(P∗) = 0andS1

X̂
(P∗) � δ∗p̂∗ω, whereδ : X̂ ↪→ X̂×B X̂ is the diagonal immersion.

3. S0
S(OXS ) = 0 andS1

S(OXS ) = OΘ ⊗ p̂∗ω.

Corollary 1.7. LetL be a rank one, zero-degree, torsion-free sheaf on a fibreXs . Then

S0
s (L) = 0, S1

s (L) = κ([L∗]),

where[L∗] is the point ofX̂s defined byL∗.

The first application is the invertibility of the Fourier–Mukai transform; if we consider
the functor

ŜS : D(X̂S)→ D(XS), G �→ ŜS(G) = RπS∗(π̂∗SG⊗QS),
whereQ = P∗ ⊗ π∗p∗ω−1, then proceeding as in Theorem 3.2 of[5] and taking into
accountProposition 1.6, we obtain the following invertibility result (see also[8]).

Proposition 1.8. For everyG ∈ D(X̂)S, F ∈ D(XS) there are functorial isomorphisms

SS(ŜS(G)) � G[−1], ŜS(SS(F )) � F [−1]

in the derived categoriesD(X̂S) andD(XS), respectively.

The second application is the characterization of relative semistability as the WIT1 con-
dition. This is a consequence of the properties of semistable torsion-free of degree zero
sheaves on a fibreXs . The structure theorems for those sheaves are essentially due to
Atiyah [2] and Tu[23] in the smooth case and to Friedman et al.[14] for Weierstrass curves
and locally free sheaves. What we need is the following proposition.

Proposition 1.9. Every torsion-free semistable sheaf of rank n and degree0 on Xs is
S-equivalent to a direct sum of torsion-free, rank1 and degree0 sheaves:

F ∼ ⊕ri=0

(
Li ⊕ ni· · · ⊕ Li

)
.
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If Xs is smooth all the sheavesLi are line bundles. IfXs is singular, at most one of them,
sayL0, is non-locally free; the numbern0 of factors isomorphic toL0 can be zero. Now we
have the following proposition.

Proposition 1.10. LetF be a zero-degree sheaf of rankn ≥ 1 on a fibreXs . ThenF is
torsion-free and semistable onXs if and only if it isWIT1.

Proof. Assume first thatF is torsion-free and semistable. The casen = 1 is Corollary
1.7. Forn > 1, we can assume thatF is indecomposable; byProposition 1.9, there is an
exact sequence of torsion-free, degree 0 sheaves 0→ L → F → F ′ → 0, whereL has
rank 1 andF ′ is semistable. The claim follows by induction onn from the associated exact
sequence of Fourier–Mukai transforms. For the converse, ifF is WIT1, all its subsheaves
are WIT1 as well, and thenF has neither subsheaves supported on dimension zero, nor
torsion-free subsheaves of positive degree. �

We go back to our elliptic fibrationp : X→ B. By Corollary 1.4andProposition 1.10,
we have obtain the following proposition.

Proposition 1.11. LetF be a sheaf on X, flat over B and of fibrewise degree zero. There
exists an open subschemeS(F) ⊆ B which is the largest subscheme of B fulfilling one of
the following equivalent conditions:

1. FS(F) is WIT1 andF̂S(F) is flat overS(F).
2. The sheavesFs areWIT1 for every points ∈ S(F).
3. The sheavesFs are torsion-free and semistable for every points ∈ S(F).

We shall callS(F) therelative semistability locusof F .

Corollary 1.12. LetF be a sheaf on X flat over B and fibrewise of degree zero. IfS(F) is
dense, thenF is WIT1.

Proof. By the previous proposition,FS(F) is WIT1 and thenS0
S(F)S(F) = 0 because

S(F) → S is a flat base change. Thus,S0
S(F) = 0 since it is flat overS so thatF

is WIT1. �

1.5. The spectral cover

In this section, we give a construction of the spectral cover similar to the one described
in [12,14](Sections 4.3 and 5.1) and[4].

We have seen that the Fourier–Mukai transform of a torsion-free, rank one sheafL on a
fibre determines a sheaf̂L = κ(ξ∗) concentrated at the pointξ∗ ∈ X̂s determined byL∗.
If we take a higher rank semistable sheafFs of degree zero onXs , we will see thatF̂s is
concentrated on a finite set of points ofX̂s . WhenFs moves in a flat familyF onX→ B,
the support ofF̂s moves as well giving a finite coveringC → B. One notices, however, that
the fibre overs of the support ofF̂ may fail to be equal to the support ofF̂s . To circumvent
this problem, we consider the closed subscheme defined by the 0th Fitting ideal ofF̂ (see,
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for instance,[21] for a summary of properties of the Fitting ideals). The precise definition
is given as follows.

Definition 1.13. LetF be a sheaf onX. The spectral cover ofF is the closed subscheme
C(F) of X̂ defined by the 0th Fitting idealF0(S1(F)) of S1(F).

The support ofS1(F) is contained in the spectral coverC(F) and differs very little from
it, in that some embedded components may have been removed. Corollaries 1.3 and 5.1 of
[21] give the desired base-change property.

Proposition 1.14. The spectral cover is compatible with base change, i.e. ifF is a sheaf
on X flat over B, thenC(Fs) = C(F)s as closed subschemes ofX̂s for every points ∈ B.

The fibred structure of the spectral cover is a consequence of the following lemma.

Lemma 1.15. LetF be a zero-degree torsion-free semistable sheaf of rankn ≥ 1 on a fibre
Xs .

1. The0th Fitting idealF0(F̂) of F̂ = S1
s (F) only depends on the S-equivalence class of

F .
2. One hasF0(F̂) =

∏r
i=0m

ni
i , whereF ∼ ⊕ri=0(Li ⊕ · · ·ni ⊕ Li ) is the S-equivalence

given byProposition 1.9andmi the ideal of the pointξ∗i ∈ X̂s defined byL∗i . Then,

length(O
X̂t
/F0(F̂)) ≥ nwith equality if eithern0 = 0or n0 = 1, i.e. if the only possible

non-locally free rank1 torsion-free sheaf of degree0 occurs at most once.

Proof.

1. Since the formation of the 0th Fitting ideal is multiplicative over direct sums of arbi-
trary sheaves[21, (5.1)], we can assume thatF is indecomposable; as in the proof of
Proposition 1.10there is an exact sequence of torsion-free, degree 0 sheaves 0→ L→
F → F ′ → 0, whereL has rank 1 andF ′ is semistable. The sequence of Fourier–Mukai
transforms is 0→ κ[L∗] → F̂ → F̂ ′ → 0 so that it splits and again by (5.1) of[21]
we haveF0(F̂) = F0(κ[L∗]) · F0(F̂ ′). Induction onn gives the result.

2. The description of the Fitting ideal follows from (1) sinceF0(κ[L∗i ]) = mi . Then length

(O
X̂s
/F0(F̂)) ≥ n with equality if and only if either all pointsξ∗i are smooth or the

exponentn0 of the maximal ideal of the singular pointξ∗0 is equal to 1. �

Proposition 1.16. If F is relatively torsion-free and semistable of rank n and degree zero on
X→ B, then the spectral coverC(F)→ B is a finite morphism with fibres of degree≥ n.

Proof. Since the spectral cover commutes with base changes,C(F) → S is quasi-finite
with fibres of degree≥ n by Lemma 1.15; then it is finite. �

The most interesting case is when the baseB is asmooth curveand the generic fibre is
smooth. LetF be a sheaf onX flat overB and fibrewise of degree zero. Assume that the
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restriction ofF to the generic fibre is semistable so that it isF is WIT1 by Corollary 1.12.
We then have the following proposition.

Proposition 1.17. LetV ⊆ B be the relative semistability locus ofF .

1. The spectral coverC(F)→ B is flat of degree n over V; thenC(FV ) is a Cartier divisor
of X̂V .

2. If s /∈ V is a point such thatFs is unstable, thenC(F) contains the whole fibrêXs .

ThusC(F)→ B is finite(and automatically flat of degree n) if and only ifFs is semistable
for everys ∈ B.

Proof.

1. C(FV ) → V is finite byProposition 1.16andV is a smooth curve so thatC(F)V =
C(FV )→ V is dominant and then it is flat.

2. Let

0→ G → Fs → K → 0

be a destabilizing sequence, whereK is a sheaf onXs of negative degree. ThenK is
WIT1 andK̂ is torsion-free (see[6]). SinceS1

s (Fs) → S1
s (K) is surjective,C(F)s =

C(Fs) = X̂s . �

Remark 1.18. By Proposition 1.17, if B is a curve a semistable sheafFs on a singular
fibreXs S-equivalent to⊕ri=0(Li ⊕ · · ·ni ⊕ Li ) with n0 > 1 cannot be extended to a flat
parameterizationF of semistable sheaves onX→ B.

2. Moduli of relatively semistable degree zero sheaves on elliptic fibrations

2.1. Moduli of relatively semistable sheaves

In this section, we describe the structure of relatively semistable sheaves on an elliptic
fibrationp : X → B. If we start with a single fibreXs , thenProposition 1.9means that
S-equivalence classes of semistable sheaves of rankn and degree 0 onXs are equivalent to
families ofn torsion-free, rank one sheaves of degree zero,F ∼ ⊕ri=0(Li ⊕ · · ·ni ⊕ Li ).
This gives a one-to-one correspondence

M̄(Xs, n,0)↔ Symn X̂s, F �→ n0ξ
∗
0 + · · · + nrξ∗r , ξ∗i = [L∗i ] (2.1)

between the moduli space of torsion-free and semistable sheaves of rankn and degree 0
on Xs and thenth symmetric product of the compactified JacobianX̂s . The reason for
taking duals comes fromCorollary 1.7and Lemma 1.15: the skyscraper sheafκ([ξ∗i ])
is the Fourier–Mukai transform ofLi , and if n0 = 0 (i.e. if F is S-equivalent to a
direct sum of line bundles), thenn1ξ

∗
1 + · · · + nrξ

∗
r is the spectral cover

C(F).
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We are now going to extend(2.1) to the whole elliptic fibrationX → B under the
assumption that the base schemeB is normal of dimension bigger than zeroand the generic
fibre issmooth.

Let Hilbn(X̂/B) → B be the Hilbert scheme ofB-flat subschemes of̂X of fibrewise
dimension 0 and lengthn and let SymnB X̂ be the relative symmetricn-product of the
fibrationX̂→ B. The Chow morphism Hilbn(X̂/B)→ SymnB X̂ induces an isomorphism
Hilbn(X̂′/B) � SymnB X̂

′, whereX̂′ → B is the smooth locus of̂p : X̂→ B.
Let us denote byM̄(n,0) the (coarse) moduli scheme of torsion-free and semistable

sheaves of rankn and degree 0 on the fibres ofX→ B and byM̄(n,0) the corresponding
moduli functor (see[22]). M(n,0) will be the open subscheme of̄M(n,0) defined by
those sheaves on fibres which areS-equivalent to a direct sum of line bundles, andM(n,0)
the corresponding moduli functor.

If F is a sheaf onX → B defining aB-valued point ofM(n,0), the spectral cover
C(F) is flat of degreen overB by Proposition 1.17, and then defines aB-valued point
of Hilbn(X̂′/B) which depends only on theS-equivalence class ofF . This is still true
whenF is defined onXS → S for an arbitrary base-changeS → B so that we can define a
morphism of functorsM(n,0)→ Hilbn(X̂′/B). By definition of the coarse moduli scheme,
this results in a morphism ofB-schemes

C′ :M(n,0)→ Hilbn(X̂′/B) � SymnB X̂
′

defined over geometric points byC′([F ]) = C(F) where [F ] is the point ofM̄(n,0)
defined byF .

Theorem 2.1.

1. C′ :M(n,0)→ Hilbn(X̂′/B) � SymnB X̂
′ is an isomorphism.

2. C′ extends to an isomorphism of B-schemesC : M̄(n,0)
∼→SymnB X̂.For every geometric

pointF ∼ ⊕i (Li ⊕ · · ·ni ⊕ Li ) the imageC([F ]) is the point ofSymnB X̂ defined by
n1ξ

∗
1 + · · · + nrξ∗r .

Proof.

1. To see thatC′ is an isomorphism we define a morphismG : SymnB X̂ → M̄(n,0)
inducing the inverse isomorphismG′ : SymnB X̂

′ → M(n,0). Such a morphism is
uniquely determined by anSn-equivariant functor morphismG :

∏n
B X̂

• → M̄(n,0),
whereSn denotes the symmetric group. LetS → B be aB-scheme and letσ : S →∏n
B X̂ be a morphism ofB-schemes, i.e. a family of pointsσi : S → X̂. We then define
G(σ ) = [⊕iP∗i ], wherePi (1× σi)∗P is the sheaf onXS defined byσi . SinceC′ ◦ G′
andG′ ◦ C′ are the identity on closed points (by(2.1)), C′ is an isomorphism.

2. We know(2.1) thatG is bijective on closed points. If we prove that̄M(n,0) is normal,
then Zariski’s main theorem implies thatG is an isomorphism, andC = G−1 extends
C′. We first notice that SymnB X̂ is a normal becauseB is normal of dimension greater
than one. Since the codimension of̄M(n,0) −M(n,0) equals to the codimension of
SymnB X̂ − SymnB X̂

′ which is greater than 1,M̄(n,0) is regular in codimension one.
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By part (1) and the normality of SymnB X̂, we have only to prove that̄M(n,0) has depth
≥2 at every pointξ of M̄(n,0)−M(n,0) of codimension bigger than one. The image
s of ξ in B is not the generic point because the fibre over the generic point is contained
inM(n,0). Then we are reduced to see thatM̄(Xs, n,0) has depth≥1 at ξ . Sinceξ
lies in the image of the closed immersion̄M(Xs, n − 1,0) ↪→ M̄(Xs, n,0) given by
F �→ F ⊕ L0, we finish by induction onn. �

We denote byJ n→ B the relative Jacobian of line bundles onp : X→ B fibrewise of
degreen. Similarly,Ĵ n→ B is the relative degreen Jacobian of̂p : X̂→ B. Let us consider
the following isomorphisms:τ : Ĵ n

∼→Ĵ 0 is the translationτ(L) = L⊗O
X̂
(−nΘ),  ∗ :

Ĵ 0 ∼→J 0 is the isomorphism induced by : X
∼→X̂ andι : J 0 ∼→J 0 is the natural involution.

Let γ : Ĵ n
∼→J 0 be the compositionγ = ι ◦ ∗ ◦ τ . If ξ1+ · · · + ξn is a positive divisor in

X̂′s , thenγ [O
X̂t
(ξ1 + · · · + ξn)] = [L∗1 ⊗ · · · ⊗ L∗n], whereξi = [Li ]. We have obtain the

following theorem.

Theorem 2.2. There is a commutative diagram of B-schemes

wheredet is the “determinant” morphism andφn the Abel morphism of degree n.

The previous theorem generalizes Theorem 3.14 of[11] and can be considered as a
global version of the results obtained in Section 4 of[14] about the relative moduli space
of locally free sheaves onX → B whose restrictions to the fibres have rankn and trivial
determinant.Theorem 2.2leads to these results by using the standard structure theorems for
the Abel morphism. The section̂e : B ↪→ X̂ induces a section̂en : Symn−1

B X̂ ↪→ SymnB X̂
andΘ̃n = ên(Symn−1

B X̂) is the natural relative polarization for SymnB X̂. Then,Θn,0 =
C−1(Θ̂n) is a natural polarization for the moduli spacēM(n,0) as aB-scheme. LetLn be a
universal line bundle overq : X̂×B Ĵ n→ Ĵ n. The Picard sheafPn = R1q∗(L−1

n ⊗ω
X̂/B
)

is a locally free sheaf of rankn and then defines a projective bundleP(P∗n) = ProjS•(Pn).
The following result is well known (see, for instance, Ref.[3]).

Lemma 2.3. There is a natural immersion of̂J n-schemesSymnB X̂
′ ↪→ P(P∗n) such that

Θ̃n ∩ SymnB X̂
′ is a hyperplane section. Moreover, SymnB X̂

′ is dense inP(P∗n) and the

above immersion induces an isomorphismSymnU X̂U
∼→P(P∗n|U ).

If P̃n = (γ−1)∗Pn, by Theorem 2.2andLemma 2.3one has obtained the following
proposition.

Proposition 2.4. There is a natural immersion ofJ 0-schemesM(n,0) ↪→ P(P̃∗n) such that
Θn,0 is a hyperplane section. Moreover, ifMU (n,0) is the pre-image ofU byM(n,0)→ B,

the above immersion induces an isomorphismMU (n,0)
∼→P(P̃∗n|U ).
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Corollary 2.5.

P̃n
∼→(det)∗OM(n,0)(Θn,0).

We now obtain the structure theorem proved in[14]: let M(n,OX) = (det)−1(ê(B))

be the subscheme of those locally free sheaves inM(n,0) with trivial determinant and
MU (n,OX) =M(n,OX) ∩MU (n,0).

Corollary 2.6. There is a dense immersion ofB-schemesM(n,OX) ↪→ P(Vn), where
Vn = p∗(OX(nH)). Moreover, this morphism induces an isomorphism ofU-schemes
MU (n,OX)

∼→P(Vn|U ).

Proof. It follows from ê∗(P̃n)
∼→(p∗OX(nH))∗. �

2.2. The Picard group and the dualizing sheaf of the moduli scheme

Theorem 2.1andProposition 2.4enable us to compute the Picard group and the canonical
series of the moduli schemēM(n,0). We are assuming as in the former section thatB is
normaland the generic fibre issmooth.

Proposition 2.7. There is a group immersionη : Pic(X) ↪→ Pic(M̄(n,0)) defined by
associating to a divisor D in X the closure in̄M(n,0) of the divisor(det)−1( (D)|J 0).
Moreover, there is an isomorphism

Pic(M̄(n,0)) � η(Pic(X))⊕Θn,0 · Z.

Proof. By Theorem 2.2, the complement ofM(n,0)has codimension at least 2 in̄M(n,0).
By Proposition 2.4,M(n,0) is a subscheme ofP(P̃∗n)whose complement has codimension
greater than 1 so that Pic(M(n,0)) � Pic(P(P̃∗n)). Moreover,Corollary 2.5implies that
the class of the relative polarizationΘn,0 in Pic(M̄(n,0)) goes to the class ofO

P(P̃∗n ) (1)

in Pic(P(P∗n)). Finally, Pic(X̂)
∼→Pic(J 0), and the result is now straightforward. �

WhenB is smooth,X (andX̂) are Gorenstein. LetKX be a canonical divisor inX in this
case.

Proposition 2.8. The Cartier divisorK = η(KX) − nΘn,0 is a canonical divisor of
M(n,0).

Proof. We have two open immersionsj : M(n,0) ↪→ M̄(n,0) andh : M(n,0) ↪→
P(P̃∗n) (Proposition 2.4), and then, a natural isomorphism between the restrictions of the
dualizing sheavesj∗(ωM̄(n,0)) � h∗(ωP(P̃∗n )). Relative duality for the projective bundle

Φn : P(P̃∗n)→ J 0 givesω
P(P̃∗n ) � OP(P̃∗n )(−n)⊗Φ

∗
n(ωJ 0), and then

h∗(ω
P(P̃∗n )) � OM(n,0)(Θn,0|M(n,0))⊗ (det)−1(ω

X̂|J 0).
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Moreover, sinceM(n,0) is the smooth locus ofM̄(n,0)
∼→SymnB(X̂) and this scheme is

normal, we haveωM̄(n,0) � j∗j∗(ωM(n,0)), thus finishing the proof. �

3. Absolutely semistable sheaves on an elliptic surface

In this section, we apply the theory so far developed to the study of the moduli space of
absolutely stable sheaves on an elliptic surface. The first step is the computation of the Chern
character of the Fourier–Mukai transforms. This enables to the study of the preservation of
stability. We shall see that stable sheaves on spectral covers transform to absolutely stable
sheaves on the surface and prove that in this way one obtains an open subset of the moduli
space of absolutely stable sheaves on the surface.

In the whole section, the baseB is a projective smooth curveand the generic fibre is
smooth.

3.1. Topological invariants of the Fourier–Mukai transforms

Let us denote bye the degree of the divisorE onB; we haveH · p∗E = e = −H 2 and
KX/B = p∗E ≡ eµ whereµ is the class of a fibre ofp. There are similar formulas for
π̂ : X̂→ B, namelyΘ · p̂∗E = e = −Θ2 andK

X̂/B
= p̂∗E ≡ eµ̂.

By Proposition 1.1, the Todd class of the virtual relative tangent bundle ofp is given by

td(TX/B) = 1− 1
2p
−1E + ew, (3.1)

wherew is the fundamental class ofX. A similar formula holds forp̂.
LetF be an object ofD(X). The topological invariants of the Fourier–Mukai transform

S(F) = Rπ̂∗(π∗F⊗P) are computed by using the singular Riemann–Roch theorem forπ̂ .
This is allowed becausêπ is an l.c.i. morphism since it is obtained fromp by base change.
By [15, Corollary 18.3.1], we have

chS(F) = π̂∗[π∗(chF) · ch(P) td(TX/B)].

The Todd class td(TX/B) is readily determined fromEq. (3.1). The Chern character ofP is
computed from

P = I ⊗ π∗OX(H)⊗ π̂∗OX̂(Θ)⊗ q∗ω−1,

whereI is the ideal of the graphγ : X ↪→ X×B X̂ of : X
∼→X̂ andq = p ◦π = p̂ ◦ π̂ .

Lemma 3.1. The Chern character ofI is

ch(I) = 1− γ∗(1)− 1
2γ∗(p

∗E)+ eγ∗(w).

Proof. I = (1×  −1)∗I∆ whereI∆ is the ideal of the diagonal immersionδ : X ↪→
X×B X. We are then reduced to prove that ch(I∆) = 1−∆− 1/2δ∗(p∗E)+ eδ∗(w). We
have ch(I∆) = 1−ch(δ∗OX). Sinceδ is a perfect morphism[15, Corollary 18.3.1], singular
Riemann–Roch gives ch(δ∗OX) · Td(X ×B X) = δ∗(Td(X)). MoreoverX ×B X is l.c.i.
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becauseB is smooth and the corresponding virtual tangent bundle isTX×BX = π∗2TX+Tπ2.
Then

Td(X) = td(TX) = 1− 1
2KX + ew,

Td(X ×B X) = td(TX×BX) = (1− 1
2π

∗
2KX + eπ∗2w) · (1− 1

2q
∗(E)+ eπ∗1w)

by the same reference. A standard computation gives the formula. �

Proposition 3.2. LetF be inD(X). The Chern character of the Fourier–Mukai transform
S(F) is

ch(S(F))= π̂∗[π∗(chF) · (1− γ∗(1)− 1
2γ∗(p

∗E)+ eγ∗(w))
·(1+ π∗H − 1

2ew) · (1− 1
2p
∗E + ew)] · (1+Θ − 1

2ŵ) · (1+ eµ̂).

Corollary 3.3. The first Chern characters ofS(F) are

ch0(S(F))= d, ch1(S(F)) = − (c1(F))+dp̂∗E+(d − n)Θ + (c − 1
2ed+ s)µ̂,

ch2(S(F))= (−c − de+ 1
2ne)ŵ,

wheren = ch0(F), d = c1(F) ·µ is the relative degree, c = c1(F) ·H andch2(F) = sw.

Similar calculations can be done for the inverse Fourier–Mukai transform.

Corollary 3.4. LetG be inD(X̂). The first Chern characters ofŜ(G) are

ch0(Ŝ(G))= d̂,
ch1(Ŝ(G))= −1(c1(G))− n̂p∗E − (d̂ + n̂)H + (ŝ + n̂e − ĉ − 1

2ed̂)µ,

ch2(Ŝ(G))=−(ĉ + d̂e + 1
2n̂e)w,

wheren̂ = ch0(G), d̂ = c1(G) · µ̂ is the relative degree, ĉ = c1(G) ·Θ andch2(G) = ŝŵ.

3.2. Pure dimension one sheaves on spectral covers

We know that ifS = B × T andF is anS-flat sheaf onXS → S, fibrewise, torsion-free
and semistable of rankn and degree 0, thenF is WIT1 and the spectral coverC(F)→ S is
finite of degreen and contains the support of the Fourier–Mukai transformF̂ (Proposition
1.17). We consider the spectral cover as a family of curvesC(F)t ↪→ X̂ (t ∈ T ) flat of de-
green overB. As the curvesC(F)t may fail to be integral we need to choose a polarization
in them to be able to define rank, degree and stability.

We first consider the case of a single Cartier divisorC in X̂ finite of degreen overB.
The fibres ofp̂ define a polarizationµC = µ̂ ∩ C onC.

Definition 3.5. The rank and the degree (with respect toµC) of a sheafG on C are the
rational numbersrC(G) anddC(G) determined by the Hilbert polynomial

P(G,m) = χ(C,G(mµC)) = rC(G)n ·m+ dC(G)+ rC(G)χ(C).
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With this definition, rank and degree coincide with the standard ones when the curve is
integral. Stability and semistability considered in terms of the slopedC(G)/rC(G)are clearly
equivalent with Simpson’s[22].

In the relative case, given a Cartier divisorC ↪→ X̂ × T such thatC → B × T is finite
and flat of degreen, the relative curveC → T admits a relative polarizationµC of relative
degreen given by the fibres of̂p. We define the relative rank and degree of aT -flat sheaf
G onC as above.

Proposition 3.6. Let g be the genus of B.

1. Let G be a rankn′ sheaf on X. Assume thatG is WIT1 and that the support of̂G is
contained in C. Thenc1(G) · µ = 0 andĜ has rankn′/n on C and degree

dC(Ĝ) = c′ − n′e + n′(1− g)− n
′

n
χ(C)

with respect toµD, wherec′ = c1(G) ·H .
2. LetF be a sheaf onX → B flat over B, fibrewise, torsion-free and semistable of rank

n and degree0. As a sheaf on the spectral coverC(F), the Fourier–Mukai transformF̂
has pure dimension one, rank one and degree

dC(F)(F̂) = c − ne+ n(1− g)− χ(C(F)).

Proof.

1. By Corollary 3.3, we have

ch(Ĝ(mµ̂)) = [ (c1(G)+ n′mµ̂+ n′Θ − (c′ + s′)µ̂] + (c′ − 1
2n
′e + n′m)ŵ,

where ch2(G) = s′w, and thenχ(Ĝ(mµ̂)) = n′ ·m+ c′ + n′(1− g)− n′e.
2. If there is a subsheafG of F̂ concentrated on a zero-dimensional subscheme ofC(F),

thenG is WIT0 as a sheaf on̂X andŜ0(G) is a subsheaf ofF concentrated topologically
on some fibres which is absurd. ThenF̂ is of pure dimension 1. By 1,̂F has rank one
onC(F) and degreec − ne+ n(1− g)− χ(C(F)). �

Let C ↪→ X̂ be a Cartier divisor flat of degreen overB. We writep = 1− χ(C) and
> = C ·Θ.

Lemma 3.7. LetL be a sheaf on C of pure dimension one, rank one and degree r. As a sheaf
on X̂, L is WIT0 and the inverse Fourier–Mukai transform̂L is a B-flat sheaf onX → B

fibrewise of rank n, torsion-free, of degree zero and semistable whose Chern character is
(n,∆(n, r, p, >), s), where∆(n, r, p, >) =  −1(C)− nH+ (r − p+ 1+ n(g− 1)− >)µ
ands = s(n, >) = −(ne+ >)w.

Proof. L is WIT0 as a sheaf on̂X since it is concentrated on points. MoreoverL is flat over
B sinceB is a smooth curve. ThuŝL = Ŝ0(L) is a sheaf onX flat overB. Since the Chern
characters ofL as a sheaf on̂X are ch0(L) = 0, ch1(L) = C, ch2(L) = r − 1

2C
2, the
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formula for ch(L̂) now follows fromCorollary 3.4andProposition 3.6. ThenL̂ has rankn
and its relative degree is zero. Semistability follows fromProposition 1.11. �

3.3. Preservation of absolute stability

LetC ↪→ X̂ be a Cartier divisor flat of degreen overB.

Proposition 3.8. Givena > 0, there existsb0 ≥ 0 depending only onp = 1− χ(C) and
> = C · Θ such that for everyb ≥ b0 and every sheafL on C of pure dimension one,
rank one, degree r and semistable with respect toµC , the Fourier–Mukai transformL̂ is
semistable on X with respect to the polarization aH+ bµ. Moreover, ifL is stable on C,
thenL̂ is stable as well on X.

Proof. If the statement is not true, givena andb there exists a destabilizing sequence with
respect toH ′ = aH+ bµ,

0→ G → L̂→ E → 0, (3.2)

whereG is torsion-free of rankn′ < n, E the torsion-free andH ′-semistable and [nc1(G)−
n′c1(L̂)] · H ′ > 0. Let us writec = c1(L̂) · H , c′ = c1(G) · H , c′′ = c1(E) · H and
d ′ = c1(G) · µ. We haved − d ′ ≥ 0 sinceL̂ is fibrewise semistable byLemma 3.7; then
d ′ ≤ 0.

Assume first thatd ′ < 0 and letρ be the maximum of the integersnc1(F) ·H − rk(F)c
for all non-zero subsheavesF of L̂. Then [nc1(G)− n′c1(L̂)] ·H ′ = nac′ − n′ac+ nbd′ ≤
aρ + nbd′ is strictly negative forb sufficiently large, which is absurd.

Thend ′ = 0 and the destabilizing condition isnc′ > n′c. We will get a contradiction by
applying the Fourier–Mukai transform toEq. (3.2). The sheafG is WIT1 since it is a subsheaf
of L̂; E is WIT1 as well byProposition 1.11becauseEs is torsion-free and semistable of
degree zero for every points ∈ B. We then have an exact sequence of Fourier–Mukai
transforms

0→ Ĝ → L→ Ê → 0.

By Proposition 3.6, Ĝ has rankn′/nand degreedC(G) = c′−n′e+n′(1−g)−χ(C)n′/nonC
and we haver = c−ne+n(1−g)−χ(C). The semistability ofL impliesdC(Ĝ)/(n′/n) ≤
r; we then obtainnc′ ≤ n′c which is absurd. The same argument proves the stability
statement. �

Corollary 3.9. In the situation of the previous proposition, if C is integral, then for every
sheafL on C of pure dimension one, rank one and degree r, the Fourier–Mukai transform
L̂ is stable on X with respect to the polarization aH+ bµ.

Proof. Every torsion-free, rank one sheaf on an integral curve is stable. �

Remark 3.10. In the case of non-integral spectral coversC → B, the stability condition for
the sheafL onC is essential because even line bundles may fail to be semistable. One may
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then haveline bundles on C whose Fourier–Mukai transform is unstable. Let us consider,
for instance, the exact sequence

0→ p̂∗ω ⊗OΘ → p̂∗ω2⊗OC → p̂∗ω2⊗OΘ → 0,

whereC = 2Θ. The Fourier–Mukai transform of this sequence is the exact sequence

0→ OX → F → p∗ω→ 0,

whereF is the rank 2 vector bundle onX obtained as the Fourier–Mukai transform of
the line bundleL = p̂∗ω2 ⊗ OC onC. One sees thatF is unstable with respect to every
polarization of the formaH+bµ unlesse = 0. But according toDefinition 3.5, one checks
that the slope ofL as a sheaf onC is−4e, whereas the slope of̂p∗ω ⊗ OΘ is−3e. This
proves thatL is unstableon C, again unlesse = 0, which agrees withProposition 3.8.
Actually, the structure sheafOC is unstable as well.

Friedman[11, Theorem 3.3], Friedman and Morgan[12] and O’Grady[20, Proposition
I.1.6] have proved that for vector bundles of positive relative degree there exists a polar-
ization on the surface such that absolute stability with respect to it is equivalent to the
stability of the restriction to the generic fibre. For degree 0, the result is no longer true, but
if we consider semistability instead of stability we can adapt O’Grady’s proof to show the
following.

Lemma 3.11. Let us fix a Mukai vector(n,∆, s) with∆ · µ = 0. For everya > 0, there
existsb0 such that for everyb ≥ b0 and every sheafF on X with Chern character(n,∆, s)
and semistable with respect to the polarization aH+ bµ, the restriction ofF to the generic
fibre Xν is semistable(ν is the generic point of B). In particular F is WIT1 (Corollary
1.12).

Proof. If the restrictionFν = F|Xν to the generic fibre is unstable, there exists a subsheaf
G of F of rankn′ ≤ n of fibrewise positive degree,d ′ > 0. Then there existsb0 such that if
b > b0,nc1(G)·(aH+bµ)−n′c1(F)·(aH+bµ) = a(nc1(G)−n′c1(F))·H+bnd′ is strictly
positive, andF is unstable as well. Moreover, we can choose the integerb0 independent of
F . Since we are considering sheaves with fixed Hilbert polynomial, there is only a finite
number of possibilities for the Hilbert polynomials of the subsheavesG of the sheavesF
with respect to a given polarization, and then there is also a finite number of possibilities
for c1(G) ·H andd ′ = c1(G) · µ. �

Let us write∆ = ∆(n, r, p, >) and letaH + bµ be a polarization ofX of the type
considered inLemma 3.11for (n,∆, s). Let F be a sheaf onX flat overB with Chern
character(n,∆, s) andsemistablewith respect toaH+ bµ. We assumen > 1. ThenF is
WIT1 by Corollary 1.12and the spectral coverC(F) is finite over the open subset of the
pointss ∈ B for whichFs is semistable (Proposition 1.17).

Proposition 3.12. If the spectral coverC(F) of F is finite over B, thenF̂ is of pure
dimension one, rank one, degree r and semistable onC(F). Moreover, ifF is stable on X,
F̂ is stable onC(F) as well.
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Proof. Let

0→ G → F̂ → K → 0 (3.3)

be a destabilizing exact sequence onC(F). We have an exact sequence of Fourier–Mukai
transforms 0→ Ĝ → F → K̂ → 0. If we write c = c1(F) · H , c′ = c1(Ĝ) · H and
n′ = rk(Ĝ), then by the semistability ofF with respect toaH+ bµ, we havec′n ≤ cn′. By
Proposition 3.6, F̂ has rank one onC(F) and degreec−ne+n(1−g)−χ(C(F)) = r and
G has rankn′/n onC(F) and degreec′ −n′e+n′(1−g)−χ(C(F))n′/n. The destabilizing
condition forEq. (3.3)now readsnc′ > n′c, which is absurd. The proof of the stability is
the same. �

Very recently, Jardim and Maciocia[16] and Yoshioka[25] have obtained stability results
related with those in this section.

3.4. Moduli of absolutely stable sheaves and compactified Jacobian of the universal
spectral cover

In this section, we shall prove that there exists a universal spectral cover over a Hilbert
scheme and that the Fourier–Mukai transform embeds the compactified Jacobian of the
universal spectral cover as an open subspace the moduli space of absolutely stable sheaves
on the elliptic surface. Most of what is needed has been proven in the preceding
section.

In this section, the baseB is always asmooth projective curve. We start by describing
the spectral cover of a relatively semistable sheaf in terms of the isomorphismM̄(n,0)

∼→
SymnB X̂ provided byTheorem 2.1. There is a “universal” subscheme

C ↪→ X̂ ×B SymnB X̂

defined as the image of the closed immersionX̂×B Symn−1
B X̂ ↪→ X̂×B SymnB X̂, (ξ, ξ1+

· · · + ξn−1) �→ (ξ, ξ + ξ1+ · · · + ξn−1). The natural morphismg : C → SymnB X̂ is finite
and generically of degreen. LetA : S → SymnB X̂ be a morphism ofB-schemes and let
C(A) = (1× A)−1(C) ↪→ X̂S be the closed subscheme ofX̂S obtained by pulling the
universal subscheme back by the graph 1× A : X̂S ↪→ X̂ ×B SymnB X̂ of A. There is a
finite morphismgA : C(A)→ S induced byg.

By Theorem 2.1, anS-flat sheafF onXS fibrewise, torsion-free and semistable of rank
n and degree 0 defines a morphismA : S → SymnS(X̂S); we easily see fromLemma 1.15
the following proposition.

Proposition 3.13. C(A) is the spectral cover associated toF, C(A) = C(F).

WhenS = B,A is merely a section of SymnB X̂ � M̄(n,0)→ B. In this case,C(A)→ B

is flat of degreen because it is finite andB is a smooth curve (see alsoProposition 1.17).
The same happens when the base scheme is of the formS = B×T , whereT is an arbitrary
scheme.
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Proposition 3.14. For every morphismA : B × T → SymnB X̂ of B-schemes, the spectral
cover projectiongA : C(A)→ B × T is flat of degree n.

If the sectionA takes values in SymnB X̂
′ � M(n,0) → B, thengA : C(A) → B

coincides with the spectral cover constructed in[14].
LetH be the Hilbert scheme of sections of the projectionπ̂n : SymnB X̂ → B. If T is

a k-scheme, aT -valued point ofH is a sectionB × T ↪→ SymnB X̂ × T of the projection
π̂n × 1 : SymnB X̂ × T → B × T , i.e. a morphismB × T → SymnB X̂ of B-schemes.
There is a universal sectionA : B ×H→ SymnB X̂. It gives rise to a“universal” spectral

coverC(A) ↪→ X̂ × H. By Proposition 3.14, the “universal” spectral cover projection
gA : C(A) → B × H is flat of degreen. It is endowed with a relative polarizationΞ =
g−1
A ({s} ×H) (s ∈ B).
Let J̄r → H be the functor of sheaves of pure dimension one, rank one, degreer (cf.

Definition 3.5), and semistable with respect toΞ on the fibres of the flat family of curves
ρ : C(A) → H. A T -valued point ofJ̄r is then a pair(A, |L|) whereA is a T -valued
point ofH (i.e. a morphismA : B × T ↪→ SymnB X̂ of B-schemes) and|L| is the class
of a sheafL on the spectral coverC(A), flat overT , and whose restrictions to the fibres
of ρT : C(A)→ T have pure dimension one, rank one, degreer and are semistable. Two
such sheavesL,L′ are equivalent ifL′ ∼→L⊗ ρ∗TN , whereN is a line bundle onT .

LetHp,> be the subscheme of those pointsh ∈ H such that the Euler characteristic of
ρ−1(h) is 1−p andρ−1(h) ·Θ = >. The subschemeHp,> is a disjoint union of connected
components ofH and then we can decomposeρ as a union of projectionsρp,> : C(A)p,>→
Hp,>. We decomposēJr accordingly into functors̄Jrp,>.

By Theorem 1.21 of[22] there exists a coarse moduli schemeJ̄ rp,> for J̄rp,> in the category
ofHp,>-schemes. It is projective overHp,> and can be considered as a “compactified” rel-
ative Jacobian of the universal spectral coverρp,> : C(A)p,>→ Hp,>. The open subfunctor
Jrp,> of J̄rp,> corresponding to stable sheaves has a fine moduli spaceJ rp,> and it is an open

subscheme of̄J rp,>.

On the other side, we can consider the coarse moduli schemeM̄(a, b) torsion-free sheaves
onX that are semistable with respect toaH+ bµ and have Chern character(n,∆, s) and
the corresponding moduli functor̄M(a, b) (see again[22]). LetM(a, b) ⊂ M̄(a, b) the
open subscheme defined by the stable sheaves. It is a fine moduli scheme for its moduli
functorM(a, b).

Given a > 0, let us fixb0 so thatProposition 3.8holds forp and> andLemma 3.11
holds for(n,∆ = ∆(n, r, p, >), s), and takeb > b0.

Lemma 3.15. The Fourier–Mukai transform induces morphisms of functors

Ŝ0 : J̄rp,> ↪→ M̄(a, b), Ŝ0 : Jrp,> ↪→ M(a, b)

that are representable by open immersions.

Proof. If T is ak-scheme and(A, [L]) is aT -valued point of̄Jrp,>, thenŜ0
S(L) (S = B×T )

is aT -valued point ofM̄p,>(a, b) by Proposition 3.8. Moreover, by the invertibility of the
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Fourier–Mukai transform (Proposition 1.8), Proposition 3.12andCorollary 1.5, Ŝ0
S is an

isomorphism ofJ̄rp,> with the subfunctorM̄′
p,>(a, b) of those points ofM̄(a, b) whose

spectral coverC is finite overS = B× T and verifiesχ(Ct ) = 1−p,Ct ·Θ = > for every
t ∈ T . By Corollary 1.12, M̄′

p,>(a, b) parameterizes precisely those semistable sheaves

whose restriction to every fibre if semistable;M̄′
p,>(a, b) is then an open subfunctor of

M̄(a, b) (Proposition 1.11). By Proposition 3.8, Ŝ0 preserves stability and the statement for
the stable case follows. �

Theorem 3.16. The Fourier–Mukai transform gives a morphismŜ0 : J̄ rp,>→ M̄(a, b) of
schemes that induces an isomorphism

Ŝ0 : J rp,>
∼→M′

p,>(a, b),

whereM′
p,>(a, b) is the open subscheme of those sheaves inM(a, b)whose spectral cover

is finite overS = B × T and verifiesχ(Ct ) = 1− p, Ct ·Θ = > for everyt ∈ T .
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