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Abstract

Let X — B be an elliptic surface and1(a, b) the moduli space of torsion-free sheaveson
which are stable of relative degree zero with respect to a polarization obtipebu, H being
the section andk the elliptic fibre (b > 0). We characterize the open subschemeVéfa, b)
which is isomorphic, via the relative Fourier—Mukai transform, with the relative compactified
Simpson-Jacobian of the family of those curnv@s— X which are flat overB. This general-
izes and completes earlier constructions due to Friedman, Morgan and Witten. We also study the
relative moduli scheme of torsion-free and semistable sheaves ofirank degree zero on the
fibres. The relative Fourier—Mukai transform induces an isomorphic between this relative moduli
space and the relativeéh symmetric product of the fibration. These results are relevant in the study
of the conjectural duality between F-theory and the heterotic string.
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1. Ellipticfibrationsand relative Fourier—-Mukai transform
1.1. Introduction

Recently there has been a growing interest in the moduli spaces of stable vector bundles on
elliptic fibrations. Aside from their mathematical importance, these moduli spaces provide
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a geometric background to the study of some recent developments in string theory, notably
in connection with the conjectural duality between F-theory and heterotic string theory
[4,10,13,14]

In this paper we study such moduli spaces, dealing both with the case of relatively and
absolutely stable sheaves. We only consider elliptic fibratpnsX — B with a section
H and geometrically integral fibres.

In the first part, we consider the “dual” elliptic fibratigh: X — B [5] defined as the
compactified relative Jacobian & — B (actually, X turns out to be isomorphic with
X) and we introduce the relative Fourier—Mukai transform and its properties. This allows
for a nice description of the spectral cover construction. Given a sheaf X — B flat
over B and fibrewise, torsion-free and semistable of ranknd degree 0, we define its
spectral coverC(F) — X as the closed subscheme defined by the Oth Fitting ideal of
the first Fourier—Mukai transforigt . It is finite over B and generically of degree When
B is a smooth curve, the spectral cover is actually flat of degraadﬁ is torsion-free
and rank one ovef (F). Atiyah [2], Tu [23] and Friedman et a[13] structure theorems
for semistable sheaves of degree zero on an elliptic curve play a fundamental role in this
section. By the invertibility of the Fourier—Mukai transform, this gives a one-to-one corre-
spondence between fibrewise, torsion-free and semistable sheaves ofaadklegree 0
and torsion-free, rank one sheaves on spectral covers.

The second part is devoted to the study of the relative moduli schetie, 0) of
torsion-free and semistable sheaves of ran&knd degree 0 on the fibres af — B.
(One should notice that the case of non-zero relative degree is somehow simfet4df)
Using the results of the first section, we prove that the relative Fourier—Mukai induces
an isomorphism oB-schemesM (n, 0)—N>Synf1§ X (Theorem 2.} This isomorphism is
probably known to people familiar with the topic, but it cannot be explicitly found and
proved elsewhere in the literature. Friedman—Morgan—Witten’s theorem on the structure of
the moduliM (n, Ox) of vector bundles inV (n, 0) whose determinant is fibrewise trivial
is easily derived from our results. As a corollary, we determine the Picard group and the
canonical series of the relative moduli schevign, 0).

The third part is devoted to absolute stability of torsion-free sheaves on an elliptic surface
with respect to a polarization of the foraid + bu, whereH is the sectionop : X — B
andu the fibre. The main result is that férbig enough (in a way precised in the paper),

the stability of a torsion-free shedf on X (fibrewise semistable of rankand degree 0)
is equivalent to the stability of the Fourier—Mukai transfaffras a sheaf on the spectral

coverC (F). Since non-integral (even non-reduced) spectral covers may occur, we have to
consider stability orC (F) with respect a polarization (the one given by the fibre) in the
sense of Simpsof22].

We finish the paper with the moduli implications of our results. K dde the scheme of all
possible spectral covers which are flat of degreeer B. It can be identified with the Hilbert
scheme of sections of the projectiav (n, 0):>Symj§ X — B.LetC — B x H be the
“universal spectral cover”. If we denote byt (a, b) the moduli space of absolutely stable
torsion-free sheaves df, we prove Theorem 3.1pthat the Fourier—Mukai transform gives
rise to an isomorphism between the compactified JacQbi@ni ) of the universal spectral
cover and the open subscherh€ (a, b) of the moduli space\(a, b) of absolutely stable
sheaves o defined by those sheaves that are semistable on fibres as well. In particular, we
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obtain that there is a fibration: M’(a, b) — H whose fibres are generalized compactified
Jacobians. The generic fibres, for instance, the fibre&[C]) over a point {] € X
representing a smooth curve, are abelian varieties, but there are pokitaodse fibres
are not abelian varieties.

As before, due to the existence of non-integral spectral covers, the compactified Jacobian
of C — H has to be defined as the Simpson moduli scheng-8at sheaves o whose
restriction to every fibre is of pure dimension one, rank one and stable with respect to a
fixed polarization. For those sheaves whose spectral covers are integral, we recover the
results already proved ii4], but making no assumptions about the generic regularity of
the restrictions of the sheaves to the fibres.

The conjectural duality between the heterotic string and F-thggidy18,19,24]could
be formulated from a geometrical point of view as the existence of an isomorphism be-
tween a moduli space of absolutely stable bundles (of gii Eg or Spin(32)/2Z in
most cases) over a surfa&eelliptically fibred overP! and a moduli space of Calabi—Yau
threefold elliptically fibred over a Hirzebruch surface. The knowledge of the structure of
the moduli schemes1(a, b) is then a fundamental step in the understanding of the duality
F-theory/heterotic string. We hope that the results in this paper will be useful to the study
of such problem.

1.2. Preliminaries

All the schemes considered in this paper are of finite type over an algebraically closed
field and all the sheaves are coherent. betX — B be an elliptic fibration. By this we
mean a proper flat morphism of schemes whose fibres are geometrically integral Gorenstein
curves of arithmetic genus 1. We also assumephas a section : B — X taking values
in the smooth locuX’ — B of p.

We write H = e¢(B) and we denote by, the fibre ofp overs € B, and byi; : X; — X
the inclusion. We denote iy < B be the open subset supporting the smooth fibres of
p . X — B. Letus denote bwy,p the relative dualizing sheaf. Thgn.wy,p is a line
bundleOg(E) andwx/B—Kp*OB(E), i.e.Kx/p = p~L1E is a relative canonical divisor.

We denote, as if9], v = Rlp*(’)X:)(p*a)X/B)* so thatw = Op(—E). Adjunction for-
mula for H < X givesOy = wn/p = wx/p, ® On(H),i.e. H> = —H - p7'E as
cycles onX.

By [17, Lemma I1.4.3] p : X — B has a Weierstrass form: the divisal/ 3s relatively
very ample and iV = p,.Ox(BH)—>0p ® 0®? @ »®3 and P = Proj(S*(V)) (projective
spectrum of the symmetric algebra), then there is a closed immersiBrsohemes :

X < P such thatj*Op(1) = Ox(3H). Moreover; is locally a complete intersection
whose normal sheaf is

N(X/P)S p*o~® @ Ox(9H). (1.1)

This follows by relative duality sincep,p = A2p,— p*w®>(—3), p : P — B being
the projection, due to the exact sequence>02p,p — p*V(-1) — Op — 0. The
morphismp : X — B isthen an|.c.i. morphism in the sensg 1, (6.6)]and has a virtual
relative tangent bundl®x,z = [j*Tr,8] — [Nx,p] in the K-groupK *(X).
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Proposition 1.1. The Todd class of the virtual tangent bundlg s is

td(Tx/p) =1— 3p *E + H- p7*E + Bp~1E? + terms of higher degree

Proof. We compute the Todd class from
J*Tp/p = Ox(3H) ® Ox(3H + 2p*E) & Ox(3H + 3p™E),
andEq. (1.1)usingH? = —H - p~E. O

Let Pch 5 be the functor which to any morphisyh: S — B of schemes associates the
space ofS- flat sheaves opg : X xg § — S, whose restrictions to the fibres pf are
torsion-free, of rank one and degree zero. Two such sheBy&%, are considered to be
equivalent ifF" ~ F ® piN for aline bundleV on S (cf. [3]). Due to the existence of the
sectione, Picg/B is a sheaf functor.

By [3], Pch 5 Is represented by an algebraic varigty X — B (the Altman—Kleiman
ompactlflcatlon of the relative Jacobian). Moreover, the natural morphiggasohemes

X > X, x> m’ @ Oy, (—e(s)) is an isomorphism. Herm, is the ideal sheaf of
the pointx in X;. The relative Jacobiai® — B of X as aB-scheme is the smooth locus
X' of p: X - Bandifd C B is the open subset supporting the smooth fibrep,of
one has]0 ~ Xy. As in[5], we denote b;e B <> X the sectionw o ¢ and by® the
divisoré(B) = @ (H). We write: : X — X for the isomorphism mapping any rank one,
torsion-free and zero-degree sh&abn a fibreX; to its dualF*.

Most of the results ifib] are also true in our more general setting, in some cases just with
straightforward modifications.

1.3. Relative Fourier—Mukai transforms

Here we consider an elliptic fibration : X — B as above and the associated “dual”
fibrationp : X — B. We shall define a relative Fourier—Mukai in this setting by means of
the relative universal Poincaré shéafon the fibred produck x g X normalized so that
PleBf( ~ Oy asin[5]. P is also flat overX, andP* enables us to identify : X — B

with a compactification of the relative Jacobiah— B of p : X — B.
For every morphisns§ — B, we denote all objects obtained by base change ltg a
subscriptS. There is a diagram:

(4\" Xp 2)5 ~ Xg Xs)?gﬂ‘s—) Xs

The relative Fourier—Mukai transform is the functor between the derived categories of
guasi-coherent sheaves given by

Sy : D(Xs) — D(Xy), F > Sg(F) = Rs.(m5F @ Ps).
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We then defineS;(F) = H'(Ss(F)), i = 0,1 so thatS{(F) = R'#s.(riF ® Ps) for
every sheafF on X.

There is then a natural notion of WIand IT; sheaves: we say that a shéabn X is
WIT; if S{(F) = 0for j # i and we say thaF is IT; if it is WIT; andS(F) is locally
free. One easily proves the following proposition.

Proposition 1.2. Let F be an object irD~(Xs). For every morphisng : S’ — S there is
an isomorphism

Lg% (Ss(F)) ~ Sy (Lgx F)

in the derived category)~(Xy), wheregy : Xg — Xs, gz @ Xy — Xg are the
morphisms induced by. g

Due to this property, we shall very often drop the subscfiphd refer only taX — B.
Base-change theory gives the following corollary.

Corollary 1.3. LetF be a sheaf on X, flat over.B

1. The formation oB!(F) is compatible with base change, i.e. one BA&F), ~ S}(]—‘S),
for every points € B.

2. Assume thaf is WIT1 and letF = S'(F) be its Fourier—Mukai transform. Then for
everys € B there is an isomorphism

Tor?s (F, k(s)) ~ SX(F)

of sheaves ovef(s. In particularﬁ is flat over B if and only if the restrictioff to the
fibre X, is WIT 1 for every points € B.

Corollary 1.4. LetF be a sheaf on X, flat over B. There exists an open subschiem®
which is the largest subscheme V fulfilling one of the following equivalent conditiors hold
1. Fy isWIT1 on Xy and the Fourier—Mukai transforrﬁf-‘v is flat over V

2. The sheaveg; are WIT 1 for every points € V.

There are similar properties for sheaveswx T — B x T that are only flat over .
Corollary 1.5. LetT be a scheme, an# a sheaf onX x T, flat over T. Assume that

isWITq and letF = S}ng(]-') be its Fourier—Mukai transform. Then for every morphism
T' — T there is an isomorphism

Tor{™(F, 0r) ~ S 1 (Furr)

of sheaves ovek x 7T’. In particular]:‘ is flat over T if and only if Fpx () is WIT1 on
Xpx)— X foreveryr € T.
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1.4. Fourier—Mukai transform of relatively torsion-free, rank one and degree zero sheaves
Let £ be a sheaf 0X g, flat overS, whose restrictions to the fibres p§ are torsion-free

and have rank one and degree zero. The universal property gives a mogphiSm- X
so that(1 x ¢)*P ~ L ® piN for a certain line bundl/ on S. LetI" : § — X be the

graph of the morphismo ¢ : S — X. Lemma 2.11 and Corollary 2.12 [f] now take the
following form.

Proposition 1.6. In the above situatio53(£) = 0 and SL(£) ® pIN =~ I(ws). In
particular:

1. S‘}((P) = 0 and S}((P) ~ . p*w, where? : X — X xp X is the graph of the
morphism.
2. S‘;((P*) = Oandsi?(P*) ~ 8, p*w,wheres : X — X x g X is the diagonal immersion.

3. S2(Ox,) = 0andSL(Ox,) = Op ® p*w.

Corollary 1.7. Let £ be a rank one, zero-degree, torsion-free sheaf on a frerhen
SWL =0 SHL) =« (LY.

where[£*] is the point ofX, defined byC*.

The first application is the invertibility of the Fourier—Mukai transform; if we consider
the functor

Sy : D(Xs5) = D(Xs), G+ S5(G) = Rus (76 ® Qs),

whereQ = P* @ n*p*w1, then proceeding as in Theorem 3.2[6f and taking into
accountProposition 1.6we obtain the following invertibility result (see al§®)).

Proposition 1.8. For everyG < D()?)S, F € D(Xy) there are functorial isomorphisms
Ss(S5(G) ~ G[-1].  Ss(Ss(F)) ~ F[-1]
in the derived categorie@(f( s) and D(Xg), respectively

The second application is the characterization of relative semistability as the dMhF
dition. This is a consequence of the properties of semistable torsion-free of degree zero
sheaves on a fibré&. The structure theorems for those sheaves are essentially due to
Atiyah [2] and Tu[23] in the smooth case and to Friedman ef®d] for Weierstrass curves
and locally free sheaves. What we need is the following proposition.

Proposition 1.9. Every torsion-free semistable sheaf of rank n and defrem X; is
S-equivalent to a direct sum of torsion-free, rdn&nd degred sheaves

F~®_, (ﬁi o @ L,-) :
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If X, is smooth all the sheaves are line bundles. IX is singular, at most one of them,
sayLo, is hon-locally free; the numbaey of factors isomorphic t&€y can be zero. Now we
have the following proposition.

Proposition 1.10. Let F be a zero-degree sheaf of rank> 1 on a fibreX;. ThenF is
torsion-free and semistable dxy if and only if it isWIT 1.

Proof. Assume first thatF is torsion-free and semistable. The case- 1 is Corollary

1.7. Forn > 1, we can assume th& is indecomposable; blyroposition 1.9there is an
exact sequence of torsion-free, degree 0 sheaves 0 — F — F — 0, whereL has

rank 1 andF’ is semistable. The claim follows by induction mfirom the associated exact
sequence of Fourier—Mukai transforms. For the conversg,ig WIT, all its subsheaves

are WIT; as well, and ther¥ has neither subsheaves supported on dimension zero, nor
torsion-free subsheaves of positive degree. O

We go back to our elliptic fibratiop : X — B. By Corollary 1.4andProposition 1.10
we have obtain the following proposition.

Proposition 1.11. Let F be a sheaf on X, flat over B and of fibrewise degree zero. There
exists an open subscherfigF) C B which is the largest subscheme of B fulfilling one of
the following equivalent conditions

1. Fsr) is WIT1 and Fs ) is flat overS(F).
2. The sheaveg&; are WIT 1 for every points € S(F).
3. The sheave§; are torsion-free and semistable for every poird S(F).

We shall callS(F) therelative semistability locusf F.

Corollary 1.12. LetF be a sheaf on X flat over B and fibrewise of degree ze®(JH) is
dense, thedF is WIT 1.

Proof. By the previous propositionFs s is WIT; and thensg(]-‘)g(;) = 0 because
S(F) — S is a flat base change. Tthg(}') = 0 since it is flat overS so thatF
is WIT1. O

1.5. The spectral cover

In this section, we give a construction of the spectral cover similar to the one described
in [12,14](Sections 4.3 and 5.1) and].
We have seen that the Fourier—-Mukai transform of a torsion-free, rank onebead
fibre determines a shedf = «(¢*) concentrated at the poigt € X, determined byC*.
If we take a higher rank semistable shggfof degree zero oX, we will see thaﬂt} is
concentrated on a finite set of points)b,f. WhenZF; moves in a flat familyF on X — B,
the support off; moves as well giving a finite covering — B. One notices, however, that
the fibre over of the support ofF may fail to be equal to the support #t. To circumvent
this problem, we consider the closed subscheme defined by the Oth Fitting ideéseg,
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for instance[21] for a summary of properties of the Fitting ideals). The precise definition
is given as follows.

Definition 1.13. Let 7 be a sheaf oiX. The spectral cover af is the closed subscheme
C(F) of X defined by the Oth Fitting idedly(SL(F)) of SL(F).

The support oB(F) is contained in the spectral cov€(F) and differs very little from
it, in that some embedded components may have been removed. Corollaries 1.3 and 5.1 of
[21] give the desired base-change property.

Proposition 1.14. The spectral cover is compatible with base change, i £.i$ a sheaf
on X flat over B, thei€ (Fy) = C(F); as closed subschemesXf for every points € B.

The fibred structure of the spectral cover is a consequence of the following lemma.

Lemmal.15. LetF be a zero-degree torsion-free semistable sheaf of #tankl on a fibre
Xs.

1. TheOth Fitting ideal Fo(F) of F = SL(F) only depends on the S-equivalence class of
F.

2. One hasFy(F) = [T m:‘f, whereF ~ ®/_,(L; & -- " @ L;) is the S-equivalence
given byProposition 1.9ndm; the ideal of the point* e X, defined byC?. Then,
Iength(OXt/Fo(ﬁ)) > n with equality if eitherng = Oorng = 1,i.e. if the only possible
non-locally free ranKL torsion-free sheaf of degréeoccurs at most once

Proof.

1. Since the formation of the Oth Fitting ideal is multiplicative over direct sums of arbi-
trary sheavef?1, (5.1)] we can assume thdt is indecomposable; as in the proof of
Proposition 1.1@here is an exact sequence of torsion-free, degree 0 sheaves 0>
F — F' — 0,whereL hasrank 1 and is semistable. The sequence of Fourier—Mukai
transforms is 0— k[£*] — F — F' — 0 so that it splits and again by (5.1) 1]
we haveFy(F) = Fo(k[L£*]) - Fo(F’). Induction orm gives the result.

2. The description of the Fitting ideal follows from (1) sinEg(«[L£}]) = m;. Thenlength

(O;(V/Fo(ﬁ)) > n with equality if and only if either all point§* are smooth or the
exponent:g of the maximal ideal of the singular poigyf is equal to 1. a

Proposition 1.16. If Fis relatively torsion-free and semistable of rank n and degree zero on
X — B, then the spectral cover(F) — B is a finite morphism with fibres of degreen.

Proof. Since the spectral cover commutes with base char@ges) — S is quasi-finite
with fibres of degree= n by Lemma 1.15then it is finite. O

The most interesting case is when the bAss asmooth curveand the generic fibre is
smooth Let F be a sheaf oiX flat over B and fibrewise of degree zero. Assume that the
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restriction ofF to the generic fibre is semistable so that iFiss WIT4 by Corollary 1.12
We then have the following proposition.

Proposition 1.17. LetV < B be the relative semistability locus &f.

1. Thg spectral covef (F) — B is flat of degree n over V; thefi(Fy) is a Cartier divisor
of Xy.
2. If s ¢ V is a point such thaf; is unstable, theit (F) contains the whole fibrét .

ThusC (F) — Bisfinite(and automatically flat of degreg@iiand only if F; is semistable
for everys € B.

Pr oof.

1. C(Fy) — V is finite by Proposition 1.1@ndV is a smooth curve so th&t(F)y =
C(Fy) — V isdominant and then it is flat.
2. Let

0O—-§G—>F,—-K—=0

be a destabilizing sequence, whefes a sheaf onX; of negative degree. Thek is
WIT; andK is torsion-free (se]). SinceSt(F,) — SL(K) is surjective,C(F), =
C(Fy) = X;. O

Remark 1.18. By Proposition 1.17if B is a curve a semistable she&f on a singular
fiore X S-equivalent to®!_,(L; @ -- " @ L;) with ng > 1 cannot be extended to a flat
parameterizatiotF of semistable sheaves ch— B.

2. Moduli of relatively semistable degree zero sheaves on dliptic fibrations
2.1. Moduli of relatively semistable sheaves

In this section, we describe the structure of relatively semistable sheaves on an elliptic
fibration p : X — B. If we start with a single fibreX, thenProposition 1.9means that
S-equivalence classes of semistable sheaves ofiramkl degree 0 o are equivalent to
families ofn torsion-free, rank one sheaves of degree z&ro; ®/_,(L; @ ---" @ L;).

This gives a one-to-one correspondence

M(Xy, n,0) <> Synt" X,, F > nogg + - - +n,&7, & =[L7] (2.1)

between the moduli space of torsion-free and semistable sheaves of eamikdegree 0
on X, and thenth symmetric product of the compactified Jacobién The reason for
taking duals comes fronCorollary 1.7and Lemma 1.15the skyscraper sheaf([£;"])
is the Fourier—Mukai transform of;, and ifng = 0 (i.e. if F is S-equivalent to a
direct sum of line bundles), themi& + --- + n.&* is the spectral cover
C(F).
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We are now going to exten(®.1) to the whole elliptic fibrationX — B under the
assumption that the base schebis normal of dimension bigger than zesad the generic
fibre issmooth

Let Hilb"(X/B) — B be the Hilbert scheme a8-flat subschemes ot of fibrewise
dimension 0 and length and let Synj}, X be the relative symmetrig-product of the
fibrationX — B. The Chow morphism Hilb(X /B) — Synt, X induces an isomorphism
Hilb” (X’/B) ~ Synt, X', whereX’ — B is the smooth locus @b : X — B.

Let us denote byM (n, 0) the (coarse) moduli scheme of torsion-free and semistable
sheaves of rank and degree 0 on the fibres &f— B and byM (n, 0) the corresponding
moduli functor (seg22]). M(n, 0) will be the open subscheme d#(n, 0) defined by
those sheaves on fibres which &requivalent to a direct sum of line bundles, anid:, 0)
the corresponding moduli functor.

If F is a sheaf onX — B defining aB-valued point ofM (n, 0), the spectral cover
C(F) is flat of degree: over B by Proposition 1.17and then defines &-valued point
of Hilb”(X’/B) which depends only on th§-equivalence class of. This is still true
whenF is defined onXg — S for an arbitrary base-change— B so that we can define a
morphism of functort (n, 0) — HiIb”()?’/B). By definition of the coarse moduli scheme,
this results in a morphism d@#-schemes

C': M(n,0) — Hilb"(X'/B) ~ Syn, X’

defined over geometric points I/ ([F]) = C(F) where [F] is the point of M(n, 0)
defined byF.

Theorem 2.1.

1. C': M(n,0) — Hilb"(X’/B) ~ Synt, X’ is an isomorphism.

2. C’ extendsto anisomorphism of B-sche@esM (n, O):>Synf,§ X.For every geometric
point F ~ @;(L; ® --" @ L;) the imageC([F]) is the point ofSynT; X defined by
néy + - +n§k

Proof.

1. To see thaC’ is an isomorphism we define a morphigen: Syn; X - M@,0)
inducing the inverse isomorphis@’ : Synt, X' — M(n,0). Such a morphism is
uniquely determined by af’-equivariant functor morphisré : [ X* = M(n,0),
whereS" denotes the symmetric group. L&t— B be aB-scheme and let : § —
[Ts X be a morphism oB-schemes, i.e. a family of points : § — X. We then define
®(0) = [®;P;], whereP; (1 x 0;)*P is the sheaf orX s defined byo;. SinceC’ o G’
andG’ o C’ are the identity on closed points (£8.1)), C is an isomorphism.

2. We know(2.1)thatG is bijective on closed points. If we prove th& (n, 0) is normal,
then Zariski’'s main theorem implies th@tis an isomorphism, an@ = G~ extends
C'. We first notice that Syfp X is a normal becaus is normal of dimension greater
than one. Since the codimension®f(n, 0) — M (n, 0) equals to the codimension of
Sy, X — Sy}, X’ which is greater than 1M (n, 0) is regular in codimension one.
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By part (1) and the normality of sypv? , we have only to prove tha¥(n, 0) has depth

>2 at every poing of M(n, 0) — M(n, 0) of codimension bigger than one. The image

s of &£ in B is not the generic point because the fibre over the generic point is contained
in M(n, 0). Then we are reduced to see thiat(X,, n, 0) has depth>1 at&. Since&

lies in the image of the closed immersign (X;, n — 1, 0) < M (X, n, 0) given by

F — F & Lo, we finish by induction om. O

We denote by/" — B the relative Jacobian of line bundles pn X — B fibrewise of
degree:. Similarly, /" — B istherelative degreeJacobianop : X — B.Letusconsider

the following isomorphismse : Jj" = J? is the translation (£) = £L ® O4(—n®), w*
J95 JOis the isomorphisminduced iy : X— X and: : /%= JCis the natural involution.
Let y 1 J"5J%be the compositiom =towm*or.If &+ +&, is a positive divisor in

o theny[Og 1+ - +&)] = [£] ® - ® L}], whereg; = [£;]. We have obtain the
followmg theorem

Theorem 2.2. There is a commutative diagram of B-schemes

c ~
M(n,0) —= Sym’(X")
dctl l(Pn
.]0 - j\,,
wheredetis the “determinant” morphism and, the Abel morphism of degree n

The previous theorem generalizes Theorem 3.1fLdf and can be considered as a
global version of the results obtained in Section 41af] about the relative moduli space
of locally free sheaves ok — B whose restrictions to the fibres have ranknd trivial
determinantTheorem 2.2eads to these results by using the standard structure theorems for
the Abel morphism. The sectién B < X induces a sectiod), : Synf’ X Sy X
and®, = en(Syrrf’ X) is the natural relative polarization for Sj];n:}(. Then,®, 0 =
Cc1(@,)is anatural polarization for the moduli spat#(n, 0) as aB-scheme. Let,, be a
universal line bundle over : X x J" — J". The Picard shed®, = qu*(ﬁ,;l@w;(/g)
is a locally free sheaf of rankand then defines a projective bun@l€P;") = ProjS*(P,).
The following result is well known (see, for instance, R8t).

Lemma 2.3. There is a natural immersion crff"-scheme§yrrf}3 X P(P}) such that
O, N Syn, X’ is a hyperplane section. Moreovesyni, X' is dense inP(Py) and the
above immersion induces an isomorphiSymy, Xu—>rP>(73 -

If P, = (y~H*P,, by Theorem 2.2and Lemma 2.30ne has obtained the following
proposition.

Proposition 2.4. Thereis a naturalimmersion gP-schemed(n, 0) < IP’(75;I) such that
®,.0isahyperplane section. Moreover\, (n, 0) is the pre-image @f by M (n, 0) — B,
the above immersion induces an isomorphistyy (2, 0)—N>]P(75,f‘u).
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Corollary 2.5.

Pp—> (€Y O A (1.0) (O 0)-

We now obtain the structure theorem provedid]: let M(n, Ox) = (deth~1(é(B))
be the subscheme of those locally free sheavesigr, 0) with trivial determinant and
My (n, Ox) = M(n, Ox) N My(n, 0).

Corollary 2.6. There is a dense immersion BfschemesM(n, Ox) — P(V,), where
V, = p«(Ox(nH)). Moreover, this morphism induces an isomorphisnifeéchemes

My (n, Ox)>PV,00)-

Proof. It follows from &*(P,)— (p.Ox (nH))*. U

2.2. The Picard group and the dualizing sheaf of the moduli scheme

Theorem 2.;andProposition 2.4&nable us to compute the Picard group and the canonical
series of the moduli schem®t(n, 0). We are assuming as in the former section thas
normaland the generic fibre smooth

Proposition 2.7. There is a group immersion : Pic(X) — Pic(M (n, 0)) defined by
associating to a divisor D in X the closure i (n, 0) of the divisor(det)*l(w(D)l,o).
Moreover, there is an isomorphism

Pic(M(n, 0)) ~ n(Pic(X)) @ O,0 - Z.

Proof. By Theorem 2.2the complement af(n, 0) has codimension at least 2\ (1, 0).

By Proposition 2.4M (n, 0) is a subscheme dﬂ(ﬁ;{) whose complement has codimension
greater than 1 so that Rig1(n, 0)) ~ Pic(IP’(73,j‘)). Moreover,Corollary 2.5implies that
the class of the relative polarizati@®, o in Pic(M (n, 0)) goes to the class cﬁ)ﬂ,(ﬁ;) (2)

in Pic(P(P*)). Finally, Pig X)— Pic(J%), and the result is now straightforward. [

WhenB is smooth X (andX) are Gorenstein. Lek x be a canonical divisor ifx in this
case.

Proposition 2.8. The Cartier divisorK = n(Kx) — n®, is a canonical divisor of
M(n, 0).

Proof. We have two open immersions: M(n,0) — M(n,0) andh : M(n,0) —
P(P;) (Proposition 2.3% and then, a natural isomorphism between the restrictions of the
dualizing sheavegi*(wM(nvo)) ~ h*(w]},,(ﬁ*)). Relative duality for the projective bundle

@, : P(P*) - JO giveswp p.) = Op) (—1) ® Py (w,0), and then

h*(wp(']}:)) >~ O 1,0/ (@n,0M@n,0) ® (deD_l(w;(”o).
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Moreover, sinceM (n, 0) is the smooth locus aM (n, O):>Sym}3(f() and this scheme is
normal, we haveuM(n)o) ~ juj* (@pn,0)), thus finishing the proof. O

3. Absolutely semistable sheaves on an dlliptic surface

In this section, we apply the theory so far developed to the study of the moduli space of
absolutely stable sheaves on an elliptic surface. The first step is the computation of the Chern
character of the Fourier—Mukai transforms. This enables to the study of the preservation of
stability. We shall see that stable sheaves on spectral covers transform to absolutely stable
sheaves on the surface and prove that in this way one obtains an open subset of the moduli
space of absolutely stable sheaves on the surface.

In the whole section, the bage is a projective smooth curvand the generic fibre is
smooth

3.1. Topological invariants of the Fourier—Mukai transforms

Let us denote by the degree of the divisaf on B; we haveH - p*E = ¢ = —H? and
Kx/p = p*E = en wherep is the class of a fibre op. There are similar formulas for

#:X — B,namely® - p*E = ¢ = —62 andK; , = p*E = efi.
By Proposition 1.1the Todd class of the virtual relative tangent bundle @ given by

td(Tx/p) =1— 3p1E + ew, (3.1)

wherew is the fundamental class a&f. A similar formula holds forp.

Let F be an object oD (X). The topological invariants of the Fourier—Mukai transform
S(F) = R7.(w*F ®P) are computed by using the singular Riemann—Roch theorefin for
This is allowed because is an |.c.i. morphism since it is obtained frggrby base change.
By [15, Corollary 18.3.1]we have

chS(F) = 7,[n*(chF) - ch(P) td(Tx,)].

The Todd class @y, p) is readily determined frorkq. (3.1) The Chern character ¢t is
computed from

P=I®n*Ox(H)®#*04(0) ® ¢* w1,
whereZ is the ideal of the grapp : X < X xg X of w : X>X andg = pow = po#.

Lemma3.1. The Chern character f is

ch(@) = 1— (1) — 37:(P*E) + ey (w).

Proof. Z = (1 x w 1)*Z, whereZ, is the ideal of the diagonal immersién: X —
X x g X. We are then reduced to prove thatfR) = 1 — A — 1/28,(p*E) + eé,(w). We
have cliZ,) = 1—ch(8,Oyx). Sinces is a perfect morphisifi5, Corollary 18.3.1]singular
Riemann—Roch gives ¢, Ox) - Td(X xg X) = 8,(Td(X)). MoreoverX xpg X is |.c.i.
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becauseB is smooth and the corresponding virtual tangent bundlg i§, x = 75 Tx + T,.
Then

Td(X) = td(Tx) = 1— 3Kx + ew,

Td(X xp X) = td(Txx,x) = (1 — 375 Kx + emjw) - (1 — 3¢*(E) + enjw)
by the same reference. A standard computation gives the formula. O
Proposition 3.2. LetF be inD(X). The Chern character of the Fourier—Mukai transform
S(F)is

ch(S(F)) = 7au[7*(chF) - (1 — y(D) — %V*(P*E) + eys(w))

(A+7*H — tew) - (1—1p*E+ew)] - (1+ 06 — 1) - (1 + efd).

Corollary 3.3. The first Chern characters &(F) are

cho(S(F)) =d, ch(S(F)) = —o@(c1(F))+dp*E+(d —n)® + (c — %ed+ i,

Ch(S(F)) = (—c — de+ %ne)ﬁ),
wheren = chy(F), d = c1(F) - uis the relative degree = ¢1(F) - H andchp(F) = sw.

Similar calculations can be done for the inverse Fourier—Mukai transform.

Corollary 3.4. LetG be inD()?). The first Chern characters éf(g) are

cho(S(9)) =4,
chi(8(9) =@ Hc1(G) = Ap*E — (d + M H + (5 + fie — & — ged)p,
cha(S(0)) = —(& + de + 3he)w,

whered = chy(G), d = c1(G) - [ is the relative degre€ = ¢1(G) - ® andchp(G) = sw.
3.2. Pure dimension one sheaves on spectral covers

We know that ifS = B x T and.F is anS-flat sheaf onXg — S, fibrewise, torsion-free
and semistable of rankand degree 0, thefi is WIT; and the spectral covét(F) — S is
finite of degree: and contains the support of the Fourier—Mukai transfd@friProposition
1.17). We consider the spectral cover as a family of cu@és), — X (¢ € T) flat of de-
green over B. As the curve& (F), may fail to be integral we need to choose a polarization
in them to be able to define rank, degree and stability.

We first consider the case of a single Cartier divisoin X finite of degree: over B.
The fibres ofp define a polarizatiopme = 2N C onC.

Definition 3.5. The rank and the degree (with respectuto) of a sheafG on C are the
rational numbers¢(G) andd¢ (G) determined by the Hilbert polynomial

P(G,m) = x(C,G(muc)) =rc(@n-m+dc(G) +rc(@x(C).
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With this definition, rank and degree coincide with the standard ones when the curve is
integral. Stability and semistability considered in terms of the siigfi§) /¢ (G) are clearly
equivalent with Simpson’R2].

In the relative case, given a Cartier divisor— X x T such thalC — B x T is finite
and flat of degree, the relative curv& — T admits a relative polarization¢ of relative
degreen given by the fibres op. We define the relative rank and degree df-#flat sheaf
G onC as above.

Proposition 3.6. Let g be the genus of.B

1. Let G be a rankn’ sheaf on X. Assume thétis WIT and that the support of is
contained in C. Then1(G) - © = 0 andg has rankn’/n on C and degree

!/

de@) =c —nle+n'(1—g)— ";x(@

with respect tqu p, wherec’ = ¢1(G) - H.

2. Let F be a sheaf orX — B flat over B, fibrewise, torsion-free and semistable of rank
n and degre®. As a sheaf on the spectral cou&(.F), the Fourier—Mukai transforn
has pure dimension one, rank one and degree

der)(F) =c —ne+n(l—g) — x(C(F)).

Proof.

1. By Corollary 3.3 we have
ch(Gm)) = [ (c1(G) + n'mft +1'® — (¢ + 5] + (' — Sn'e +n'm)id,

where ch(G) = s’w, and thery (G(mﬁ)) =n -m+c +nl-g)—rle.

2. If there is a subshe&f of F concentrated on a zero-dimensional subschenm@&),
theng is WITg as a sheaf oif andS%(G) is a subsheaf of concentrated topologically
on some fibres which is absurd. Thénis of pure dimension 1. By 1F has rank one
onC(F) and degree — ne+ n(1 — g) — x(C(F)). O

Let C — X be a Cartier divisor flat of degreeover B. We writep = 1 — x(C) and
L=C-06.

Lemma3.7. LetL be a sheaf on C of pure dimension one, rank one and degree r. As a sheaf
on X, £ is WITo and the inverse Fourier—Mukai transforfhis a B-flat sheaf orX — B
fibrewise of rank n, torsion-free, of degree zero and semistable whose Chern character is
(n, A(n,r, p,2),s),whereA(n,r, p, ) = o HC)—nH+ (r — p+l+n(g—1)—0Ou

ands = s(n, £) = —(ne+ Hw.

Proof. £ is WITg as a sheaf ol since it is concentrated on points. Moreoyes flat over
B sinceB is a smooth curve. ]’hLJS = (L) is a sheaf orX flat overB. Since the Chern
characters ofZ as a sheaf oiX are chy(£) = 0, chy(£) = C, chp(L) = r — %CZ, the
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formula for ch(£) now follows fromCorollary 3.4andProposition 3.6ThenZ has ranks:
and its relative degree is zero. Semistability follows frBroposition 1.11 O

3.3. Preservation of absolute stability
Let C < X be a Cartier divisor flat of degreeover B.

Proposition 3.8. Givena > 0, there exist$o > 0 depending only op = 1 — x(C) and

¢ = C - ® such that for everyp > bg and every sheaf on C of pure dimension one,
rank one, degree r and semistable with respegt.¢q the Fourier—Mukai transfornt is
semistable on X with respect to the polarization &tb... Moreover, if£ is stable on C,
then. is stable as well on X

Proof. If the statement is not true, giverandb there exists a destabilizing sequence with
respecttad’ = aH + by,

0>G—>L—>E—0, 3.2)

whereg is torsion-free of rank’ < n, £ the torsion-free andl’-semistable andc1 (G) —
n'c1(L)] - H > 0. Let us writec = c1(£) - H, ¢ = c1(G) - H, " = c1(€) - H and
d' = c1(G) - u. We haved — d’ > 0 sincel is fibrewise semistable byemma 3.7 then
d <.

Assume first thad’ < 0 and letp be the maximum of the integens; (F) - H — rk(F)c
for all non-zero subsheavegof £. Then hci(G) — n’cl(ﬁ)] -H' =nacd —n’ac+nbd <
ap + nbd is strictly negative fob sufficiently large, which is absurd.

Thend’ = 0 and the destabilizing conditioni&’ > n’c. We will get a contradiction by
applying the Fourier—-Mukai transformiwy. (3.2) The sheag is WIT1 since itis a subsheaf
of £; £ is WIT as well byProposition 1.1because; is torsion-free and semistable of
degree zero for every point € B. We then have an exact sequence of Fourier—Mukai
transforms

0—>§’;—>£—><‘f—>0.

By Proposition 3.6G hasrank’/n and degreé¢ (G) = ¢/ —n'e+n'(1—g)—x (C)n’/nonC
and we have = c—ne+n(1—g) — x (C). The semistability of impliesdc(G)/(n'/n) <
r; we then obtaimc < r»’c which is absurd. The same argument proves the stability
statement. O

Coroallary 3.9. In the situation of the previous proposition, if C is integral, then for every
sheaf’ on C of pure dimension one, rank one and degree r, the Fourier—Mukai transform
L is stable on X with respect to the polarization atb .

Proof. Every torsion-free, rank one sheaf on an integral curve is stable. O

Remark 3.10. Inthe case of non-integral spectral cov€rs> B, the stability condition for
the sheaf’ on C is essential because even line bundles may fail to be semistable. One may
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then havdine bundles on C whose Fourier—Mukai transform is unstabét us consider,
for instance, the exact sequence

0— pro®0p — pra’@Oc — pre’ @ Op — 0,
whereC = 20. The Fourier—Mukai transform of this sequence is the exact sequence
0—- Ox - F— p*w— 0,

where F is the rank 2 vector bundle ok obtained as the Fourier—Mukai transform of
the line bundle = p*w? ® O¢ on C. One sees thaF is unstable with respect to every
polarization of the formraH + bu unlesse = 0. But according tdefinition 3.5 one checks
that the slope of as a sheaf o’ is —4e, whereas the slope ¢gf*w ® Og is —3e. This
proves thatl is unstableon C, again unlesg = 0, which agrees withiProposition 3.8
Actually, the structure she&¢ is unstable as well.

Friedman11, Theorem 3.3]Friedman and Morgafi 2] and O'Grady{20, Proposition
1.1.6] have proved that for vector bundles of positive relative degree there exists a polar-
ization on the surface such that absolute stability with respect to it is equivalent to the
stability of the restriction to the generic fibre. For degree 0, the result is no longer true, but
if we consider semistability instead of stability we can adapt O’Grady’s proof to show the
following.

Lemma 3.11. Let us fix a Mukai vecton, A, s) with A - © = 0. For everya > 0, there
existshg such that for every > bg and every sheafF on X with Chern charactefn, A, s)
and semistable with respect to the polarization-alu, the restriction ofF to the generic
fibre X, is semistabl€v is the generic point of B In particular F is WIT 1 (Corollary
1.12).

Proof. If the restrictionF, = F|x, to the generic fibre is unstable, there exists a subsheaf
G of F of rankn’ < n of fibrewise positive degred, > 0. Then there exists such that if

b > bo,nc1(G)-(@H+bu)—n'c1(F)-(@H+bu) = a(nc1(G)—n'c1(F))-H+bnd is strictly
positive, andF is unstable as well. Moreover, we can choose the integerdependent of

F. Since we are considering sheaves with fixed Hilbert polynomial, there is only a finite
number of possibilities for the Hilbert polynomials of the subshegve$the sheaves§

with respect to a given polarization, and then there is also a finite number of possibilities
for c1(G) - H andd’ = c1(G) - u. O

Let us writeA = A(n,r, p,£) and letaH + bu be a polarization ofX of the type
considered irLemma 3.11for (n, A, s). Let 7 be a sheaf orX flat over B with Chern
characteln, A, s) andsemistablevith respect taH + bu. We assume > 1. ThenF is
WIT, by Corollary 1.12and the spectral cover(F) is finite over the open subset of the
pointss € B for which F; is semistableFroposition 1.1}.

Proposition 3.12. If the spectral covelC(F) of F is finite over B, thenf is of pure
dimension one, rank one, degree r and semistabl€ @F). Moreover, ifF is stable on X
F is stable onC (F) as well
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Proof. Let
0>G—>F—>K—0 (3.3)

be a destabilizing exact sequence®F). We have an exact sequence of Fourier—Mukai
transforms 0— G — F — K — 0. If we writec = c1(F) - H, ¢’ = c1(G) - H and

n’ = rk(G), then by the semistability oF with respect t@H + b, we haver’n < cn'. By
Proposition 3.6 has rank one ot () and degree — ne+n(1—g) — x (C(¥)) = r and

G hasrank’/n onC(F) and degree’ —n'e+n'(1—g) — x (C(F))n’/n. The destabilizing
condition forEq. (3.3)now readsnc > n’c, which is absurd. The proof of the stability is
the same. O

Very recently, Jardim and Maciodia6] and Yoshiokd25] have obtained stability results
related with those in this section.

3.4. Moduli of absolutely stable sheaves and compactified Jacobian of the universal
spectral cover

In this section, we shall prove that there exists a universal spectral cover over a Hilbert
scheme and that the Fourier—Mukai transform embeds the compactified Jacobian of the
universal spectral cover as an open subspace the moduli space of absolutely stable sheaves
on the elliptic surface. Most of what is needed has been proven in the preceding
section.

In this section, the bask is always asmooth projective curvalVe start by describing
the spectral cover of a relatively semistable sheaf in terms of the isomorpHiem0) —

Syniy X provided byTheorem 2.1There is a “universal” subscheme

Cc—>)A(xBSyan§)A(

defined as the image of the closed immerstor 3 Symls ' X < X x  Synt}, X, (£, &+
o+ &) > (E,E+ &+ -+ &,-1). The natural morphismg : C — Syn; X is finite
and generically of degree. Let A : S — Syni X be a morphism oB-schemes and let
C(A) = (1 x A)"Y(C) — X be the closed subscheme ®f obtained by pulling the
universal subscheme back by the grapk 4 : X5 < X xp Synfy X of A. There is a
finite morphismg, : C(A) — S induced byg.

By Theorem 2.1anS-flat sheafF on X fibrewise, torsion-free and semistable of rank
n and degree 0 defines a morphigm § — Synf’S()?S); we easily see froohemma 1.15
the following proposition.

Proposition 3.13. C(A) is the spectral cover associated g C(A) = C(F).

WhenS = B, Ais merely asection ofSy@ff ~ M(n,0) — B.Inthiscase((A) — B
is flat of degree: because it is finite an@ is a smooth curve (see algwoposition 1.1Y.
The same happens when the base scheme is of theSfesrnB x T, whereT is an arbitrary
scheme.
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Proposition 3.14. For every morphismd : B x T — Syn X of B-schemes, the spectral
cover projectiorg, : C(A) — B x T is flat of degree n

If the sectionA takes values in Sy@f(/ ~ M(n,0) — B,thengy : C(A) - B
coincides with the spectral cover constructegili].

Let H be the Hilbert scheme of sections of the projectign: Syn X > B.IfTis
ak-scheme, & -valued point ofH is a sectionB x T — Syni, X x T of the projection
finx1: Sy X x T — B x T, i.e. a morphismB x T — Synf, X of B-schemes.
There is a universal sectio : B x H — Syni; X. It gives rise to &universal” spectral
coverC(A) < X x H. By Proposition 3.14the “universal” spectral cover projection
ga : C(A) —> B x H is flat of degree:. It is endowed with a relative polarizatiafi =
gt (s} x H) (s € B).

Let ' — H be the functor of sheaves of pure dimension one, rank one, dedafe
Definition 3.5, and semistable with respect.®on the fibres of the flat family of curves
p : C(A) — M. A T-valued point ofJ" is then a pair(A, |£|) where A is a T-valued
point of H (i.e. a morphismA : B x T < Syn X of B-schemes) an{l’| is the class
of a sheafl on the spectral covef (A), flat overT, and whose restrictions to the fibres
of pr : C(A) — T have pure dimension one, rank one, degread are semistable. Two
such sheaves, £’ are equivalent iz’ = £ ® pN, where\ is a line bundle orT'.

Let #,.¢ be the subscheme of those poihte H such that the Euler characteristic of
p~Y(h)is1—pandp=1(h)-® = ¢. The subschem#,, . is a disjoint union of connected
components of{ and then we can decompagsas a union of projections,, ¢ : C(A),.¢ —
Hp,e. We decompos@” accordingly into functoréfy’(.

By Theorem 1.21 o22] there exists a coarse moduli scheﬁ_‘ggz for 3;% in the category
of H, ¢-schemes. It is projective ovéf, , and can be considered as a “compactified” rel-
ative Jacobian of the universal spectral cougy : C(A),.¢ — Hp.¢. The open subfunctor
J),. 0 of f];l corresponding to stable sheaves has a fine moduli spag@nd it is an open
subscheme Qﬂ;_e.

Onthe other side, we can consider the coarse moduli schd(aeb) torsion-free sheaves
on X that are semistable with respectald + b and have Chern character, A, s) and
the corresponding moduli functdd (a, b) (see againi22]). Let M(a, b) C M(a, b) the
open subscheme defined by the stable sheaves. It is a fine moduli scheme for its moduli
functorM (a, b).

Givena > 0, let us fixbg so thatProposition 3.&holds for p and¢ andLemma 3.11
holds for(n, A = A(n, r, p, £), s), and takeb > bo.

Lemma 3.15. The Fourier—Mukai transform induces morphisms of functors
§:73, , > M(a.b), L:7, , < M. b)

that are representable by open immersions

Proof. If T isak-schemeandA, [£]) isaT-valued point oﬁ;,l, thenég(c) (S=BxT)

is aT-valued point ofM p.¢(a, b) by Proposition 3.8Moreover, by the invertibility of the
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Fourier—Mukai transformRroposition 1.8 Proposition 3.12and Corollary 1.5 ég is an
isomorphism ofJ;’[ with the subfunctorl\?l’p,g(a, b) of those points oM (a, b) whose
spectral covec is finite overS = B x T and verifiesy (C;) = 1— p, C; - ©® = ¢ for every
t € T. By Corollary 1.12 M;,e(“v b) parameterizes precisely those semistable sheaves

whose restriction to every fibre if semistablé,’p ¢(a, b) is then an open subfunctor of

M (a, b) (Proposition 1.1)L By Proposition 3.88° preserves stability and the statement for
the stable case follows. O

Theorem 3.16. The Fourier—Mukai transform gives a morphié‘h: j,f_e — M(a, b) of
schemes that induces an isomorphism '

L7, S>M, (a.b),

WhereM/p’ ,(a, b) isthe open subscheme of those sheavad (n, b) whose spectral cover
is finite overS = B x T and verifiesy (C;) =1—p, C;- ©® = ¢ foreveryr € T.
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