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1. Introduction

The key notion of the most recent ‘layer’ of noncommutative differential geometryà la
Connes[9] is spectral triple, which encodes the concept of a noncommutative Riemannian
spinc manifold.

In the classical (commutative) situation the spectral triple (A,H,D) canonically
associated with a Riemannian spinc manifold consists of the algebraA of smooth
functions onM, of the HilbertH space of (square integrable) Dirac spinors, carrying a
representation ofA (by pointwise multiplication), and of the Dirac operatorD, constructed
from the Levi–Civita’ connection (metric preserving and torsion-free) plus aU(1)-connec-
tion.

WhenM is even dimensional there exists the grading (or parity) operatorγ and when
M is spin one also has operatorJ of real structure (known also as charge conjugation). All
these data are of great importance both in Mathematics and Physics. They satisfy certain
further seven properties which allow one to reconstruct back the underlying differential,
metric and spin structures.

A generalization of these concepts to noncommutative algebras in the framework of
noncommutative spectral geometry has already found plentiful applications. But the whole
zooof q-deformed spaces coming from the quantum group theory, was commonly believed
not to match well the Connes’ approach. This was supported by some apparent “no-go”
hints such as that exponentially growing spectrum of the quantum Casimir operator would
prevent bounded commutators with the algebra, some known differential calculi seemed
not to come as bounded commutators with anyD, an early classification of equivariant
representations missed the spinorial ones and also on some deformation theory grounds.
However, the intense recent activity indicated a possibility to reconcile these two lines of
mathematical research.

In this paper spectral triples on some of the simplest studied examples of quantum
spheres of lowest dimension (2 and 3) are reviewed. More precisely, we shall be concerned
mainly with (the algebra of) the underlying space of the quantum groupSUq(2) and its two
homogeneous spaces known as the standard and the equatorial Podleś sphere (see[15] for
the list of other low dimensional spheres).

For the sake to be consistent as far as possible with the conventions and notation for
different examples we often give the original formulae in an equivalent form. In the sequel

0< q < 1 and [x] = [x]q, where [x]q := qx−q−x
q−q−1 for any numberx.

2. Noncommutative Riemannian spin manifolds

2.1. Spectral triples and their equivariance

We recall the general definition.

Definition 1. A (compact)spectral triple(A,H,D) consists of a (unital)∗-algebraA of
bounded operators on a Hilbert spaceH and a self-adjoint operatorD = D† onH with
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(i) compact resolvent (D− λ)−1, ∀λ ∈ C \ specD,
(ii) bounded commutators [D,α], ∀α ∈ A.

A spectral triple is calledevenif a gradingγ of H is given,γ2 = 1, such thatα ∈ A
are even operators,αγ = γα, andD is oddDγ = −γD. Otherwise it is calledodd (by
convention thenγ = 1).

A spectral triple is calledreal if an antilinear isometryJ is given, whose adjoint action
sendsA to its commutant

[α, JβJ−1] = 0, ∀α, β ∈ A. (1)

We are particularly interested in spectral triples on homogeneous embeddable quantum
spaces, described by a comodule subalgebraA of a Hopf ∗-algebraH. It is natural to
employ their symmetry in order to reduce the search freedom or to findequivariant triples.
The formulation of the symmetry in terms ofcoactionandcoproductin H has not yet been
presented but one can work with the dual quantum group.

To deal with the equivariance we shall useactionof a Hopf∗-algebraŨ. Typically Ũ
is dual ofH in the sense of nondegenerate Hopf algebra pairing (e.g. a quantum universal
enveloping algebra). This yields two commuting (left and right)Ũ-module algebra structures
onH

u � h = h1(u, h2), h � u = (u, h1)h2, (2)

where we use Sweedler’s type notation for the coproduct inH. The star structure is com-
patible with both actions:

u � h∗ = ((Su)∗ � h)∗, h∗ � u = (h � (Su)∗)∗, ∀u ∈ U, h ∈ H, (3)

whereS is the antipode iñU.
The actions(2) can be combined into a (left) action ofŨ ⊗ Ũop via (u⊗ u′)�x :=

u�x�u′. (Another option is to pass to the left action ofŨ ⊗ Ũ by usingSand a suitable
automorphism anti co-homomorphism ofU.)

In caseA is a proper subalgebra ofH, we assume that (at least) some nontrivial Hopf
subalgebraU of Ũ ⊗ Ũop survives the restriction toA.

We shall use the following general definition.

Definition 2. LetU be a Hopf∗-algebra andA be aU-module∗-algebra. A spectral triple
(A,H,D) is calledU-equivariantif there exists a dense subspaceV inH such that

(i) V is a module overA�U, so in particular

u(αv) = (u1 � α)(u2 v), ∀u ∈ U, α ∈ A, v ∈ V ; (4)

(ii) u∗ ⊂ u† onV (as unbounded operators);
(iii) D(V ) ⊂ V andD is invariant

Du = uD (onV ), ∀u ∈ U. (5)
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Moreover, forU-equivariant even and/or real spectral triples we shall require thatγ(V ) ⊂ V ,
uγ = γu and/or thatJ is the phase part of someJ̃ , which satisfies̃J(V ) ⊂ V , uJ̃ = J̃(Su)∗,
∀u ∈ U.

(In (4) Sweedler’s type notation is used for the coproduct inU and� for the action ofU
onA.)

2.2. Further requirements

On top of the above a series of further seven requirements (axioms)[10] (see also[20])
are required to describe a noncommutative (compact Riemannian spin) manifold, that we
briefly recall.

A spectral triple (A,H,D) is regular (or smooth) iff

[|D|, . . . [|D|, β ] . . .]︸︷︷︸
n

are bounded∀ n ∈ N, β ∈ A ∪ [D,A].
This condition permits to introduce the analogue of Sobolev spacesHs := Dom(|D|s)

for s ≥ 0 (assume thatH∞ := ∩s≥0H
s is a core of|D|). ThenT : H∞ → H∞ hasanalytic

order k iff T extends to a boundedT : Hk+s → Hs, ∀s ≥ 0.
It turns out thatA(H∞) ⊂ H∞. Moreover[14] (see also[21]) certain algebraD =

∪Dk of differential operatorscan be introduced as the smallest algebra of operators on
H∞ containingA ∪ [D,A] and filtered by the analytic orderk ∈ N in such a way that
[D2,Dk] ⊂ Dk+1. Next the space�k ofpseudodifferential operatorsof orderk ∈ Z consists
of thoseT : H∞ → H∞ which for anym ∈ Z (especiallym� 0) can be written in the
form

T = S0 |D|k + S1 |D|k−1 + · · · + Sk−m |D|m + R,

whereSj ∈ Dj andR has analytic order≤ m. (Here it is assumed that|D| is invertible,
otherwise one works e.g. with

√
1+D2.)

It can be seen that�0 is the algebra generated by the elements ofA ∪ [D,A] and
their iterated commutators with|D|, and that [D2, �k] ⊂ �k+1. The algebra structure on
� := ∪k∈Z�k can be read in terms ofasymptotic expansion: T ≈∑j∈N Tj, wheneverTand

Tj, for j ∈ N, are operatorsH∞ → H∞ and∀m ∈ Z,∃Nsuch that∀M > N,T −∑M
j=1 Tj

has analytic order≤ m. For instance for complex powers of|D| (defined by the Cauchy
formula) one has forT ∈ �

[|D|2z, T ] ≈
∑
j≥1

(
z

j

)
[D2, . . . [D2, T ] . . .]︸︷︷︸

j

|D|2z−2j.

The algebra� provides a convenient framework to study the residues of the zeta
functions. For that it suffices thatdimension requirement holds:∃ n ∈ N s.t. the
eigenvalues (with multiplicity) of|D|−n, µk = O(k−1) as k→∞. (The coefficient
of the logarithmic divergence ofσN :=∑N

µk, denoted
∫
- |D|−n, defines the ‘non-
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commutative integral’.) Then it follows that fork > n, D−k is trace-class, i.e.finitely
summable.

Let& be thedimension spectrum, i.e. the set of the singularities of zeta functions

ζβ(z) = TraceH(β |D|−z) (6)

for anyβ ∈ �0. If & is assumed to be discrete with poles only as singularities then∀ T ∈ �k
the zeta function Trace(T |D|−z) is holomorphic in a half plane ofC with �z sufficiently
large and has a meromorphic continuation toC with all poles contained in&+ k. If in
addition& contains only simple poles then the residue functional

τ(T ) := Resz=0Trace(T |D|−z)

is tracial onT ∈ � (c.f. [30]).
These tools serve for the local index theorem of Connes–Moscovici[14], which provides

a powerful algorithm for performing complicated local computations by neglecting plethora
of irrelevant details.

Another analytic requirement isfiniteness and absolute continuitywhich states thatA
admits a (Fŕechet) completionA which is a preC∗-algebra andH∞ is finite generated
projective leftA-module.

Among the algebraic conditions for a spectral triple we shall use thereality condition
which requires that (A,H,D) is real (in the sense stated above) and that certain sign
conditions are satisfied for the square ofJ and its (anti) commutation withγ and with
D, and thefirst order conditionwhich requires that

[[D,α], JβJ−1] = 0, ∀α, β ∈ A, (7)

is satisfied. (The absence of these two properties should be interpreted as dealing rather
with a spinc manifold and Finsler metric).

There are two more algebraic conditions. The first isorientability: there exists a
Hochschildn-cycle∑

c0 ⊗ c′0 ⊗ c1 ⊗ · · · ⊗ cn ∈ Zn(A,A⊗Aop), (8)

such that∑
c0J(c′0)∗J−1[D, c1] · · · [D, cn] = γ, (9)

wheren is the dimension andγ the gradation operator. The second one isPoincaré duality,
which can be formulated as the requirement that the pairing

K0(A)×K0(A) �→ Z, ([p], [q]) �→ 1
2 Index(pJqJ−1(1+ γDγ)pJqJ−1) (10)

and

K1(A)×K1(A) �→ Z, ([u], [v]) �→ 1

4
Index

((
1+ D

|D|
)
uJvJ−1

(
1+ D

|D|
))

(11)

is nondegenerate.
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2.3. Reconstruction theorem

As stressed by Connes, the role played byD is two-fold: as theK-homology fundamental
class (i.e. theindexaspect) but also as the inverse of the infinitesimal unit of lengthds(i.e.
ds identifies with thebareDirac propagator).

It is important to note that a spectral triple satisfying the above seven axioms encodes
all the essential geometric information, which can be reconstructed back from it. This is
certainly the case for a spectral triple (A,H,D) under the assumption thatA = C∞(M),
whereM is a smooth compact manifold. Its dimensionncan be read off form the dimension
axiom (which is nothing but a reformulation of the Weyl formula for the growth of eigen-
values ofD). Next the metric and spin structure can be extracted by theReconstruction
Theorem of Connes[10]:

(a) There exists a unique Riemannian metricgonM such that the geodesic distance between
any two pointsx, y ∈ M is given by

dD(x, y) = sup{|a(x)− a(y)| : a ∈ A, ‖[D, a]‖ ≤ 1}. (12)

(b) g only depends upon the unitary equivalence classes, which form a finite collection of
affine spaces0σ parametrized by the spin structuresσ onM.

(c) The action functional

ResW (D2−n) := 1

n(2π)n

∫
S∗M

tr(σ−n(x, ξ)) dx dξ, (13)

whereσ−n(x, ξ) is order−n part of the total symbol ofD2−n and tr is a normalized
Clifford trace, is a positive quadratic form on each0σ with a unique minimum given
by the canonical classical spectral triple, at which (up to a constant) it attains the value
equal to the Einstein Hilbert action ofg, i.e.∫

R
√
g dnx, (14)

whereR is the scalar curvature. We refer to[20] for the proof of the theorem.

Remarks.Though(12) has a ‘dual’ form to the usuald(x, y) given by infimumover the
geodesic lengths, they are in fact equal (by integrating a derivative of a function along a
path one gets thatdD(x, y) ≤ d(x, y); the inequality being saturated for the function which
just measures the length along the path).

The expression(13)given by Wodzicki residue (which on the appropriate class of oper-
ators agrees with the noncommutative integral) is well defined because by combination of
axioms it can be shown thatD is a pseudodifferential operator onM.

The formula(14) follows by realizing thatResW (D2−n) is (proportional) to the integral
of the second coefficient of the heat kernel expansion ofD2 (and does not depend upon
couplings toAµ in case of spinc structure).

Connes conjectured that actually for any commutativeA it can be deduced from the
axioms (notably the Poincare’ duality) that the spectrumX of A is a smooth manifold and
that the mapX→ R

N , given by the finite collectionaij ∈ A involved in the Hochschild



92 L. Da̧browski / Journal of Geometry and Physics 56 (2006) 86–107

cyclecof orientation axiom, is actually a smooth embedding ofM as a submanifold ofRN .
For the reconstruction of the manifold structure ofX, see[27].

2.4. Connections with General Relativity

It is worth to mention that in[4,5] a ‘universal’ spectral action formula has been proposed
to govern the dynamics including General Relativity

Tr χ

(
D

:

)
+matter, (15)

whereχ is the (smoothed) characteristic function of [0,1] and: is a ‘scale’ parameter. In
dimension 4 the first term approximates the Einstein–Hilbert action with a large cosmo-
logical term for “slowly varying” metrics with small curvature. Indeed, by the heat kernel
expansion

SG(D) = :4f0

∫
M

√
g dx+:2f2

∫
M

R
√
g dx+ · · · ,

wheref0 andf2 are certain moments ofχ.
The phase space= of General Relativity can be taken as Ricci flat metrics (solutions of

the Einstein equations) modulo the (connected component) of the diffeomorphism group
Diff 0(M). The observables are just real functions on=.

On compactM there is an infinite discrete family of the (ordered) real eigenvaluesλn of
Dwhich are invariant under Diff0(M). Assuming that (at least locally) they can be viewed as
functions on= (i.e. depending ong) in [23] (by quantum mechanical perturbation theory and
integration by parts) the Jacobian matrix ofgµν(x) → λn was computed and their Poisson
brackets expressed in terms of the energy-momentum tensors and of the propagator of the
linearized Einstein equations.

The action(15)can be expressed in terms ofλn’s but to get the equations of motion one
cannot vary with respect to theλn’s, which are not independent variables but satisfy the
(unknown) constraints in order to arise fromD of some geometry. (Variation with respect to
the metric field produces the equations which are solved by saying that above: the energy
momentum tensor of thenth eigenspinor scales asλn [23].)

It is possible that the problem of unknown constraints forλn (and of the transcendental
dependence onD) can be overcome in the approach of Connes, i.e. by taking the spectral
triples themselves as the right variables for General Relativity. Though the constraints are
highly nonlinear e.g. the orientation axiom isn-linear inD in dimensionn, at least they can
be spelled out.

Despite some limitations (compactness ofM and positivity ofg) this should be worth
to pursue e.g. in view of exceptionally simple (linear inD) universal action functional for
spectral triples.

In the noncommutative realm the spectral triples and spectral geometry a la’ Connes (a
generalization of Riemannian spin manifolds) has already found several applications. But, as
mentioned in Section 1, it was commonly believed that theq-deformed spaces coming from
the quantum group theory do not to match this approach (as supported by some apparent
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‘no-go’ hints). It turns out however that these two areas of mathematical research can be
reconciled as I will illustrate on the examples of quantum spheres of lowest dimension (2
and 3).

3. Quantum three-sphere

In this section we review the spectral triples on the quantum three-sphere underlying the
quantum groupSUq(2). We start by recalling its definition, the quantum symmetry algebra
and its representations.

The unital∗-algebraA(SUq(2)) [31] (0< q < 1) is generated byα, β satisfying

αβ = qβα, αβ∗ = qβ∗α, ββ∗ = β∗β, α∗α+ β∗β = 1, αα∗ + q2ββ∗ = 1 .

The classical subset is (the ‘equator’)S1 given by the charactersβ �→ 0, α �→ λwith |λ| = 1.
TheC∗-algebraA associated toA is isomorphic to the extension ofC(S1) byK⊗ C(S1).
TheK-groups areK0 = Z,K1 = Z.

The dual (infinitesimal) symmetry ofA can be described using the quantized algebra
Uq(su(2)), which is a∗-Hopf algebra with generatorse, f, k, k−1 satisfying relations

ek = qke, kf = qfk, k2 − k−2 = (q− q−1)(fe− ef ),

and the coproduct

?k = k ⊗ k, ?e = e⊗ k + k−1 ⊗ e, ?f = f ⊗ k + k−1 ⊗ f.

Its counitε, antipodeS, and∗-structure are given respectively by

ε(k) = 1, ε(e) = 0, ε(f ) = 0,

Sk = k−1, Sf = −qf, Se = −q−1e,

k∗ = k, e∗ = f, f ∗ = e.

The (commuting) left and right actions(2) of Uq(su(2)) on the generators ofA(SUq(2))
read explicitly

k � α = q−1/2α, k � α∗ = q1/2α∗, k � β = q1/2β, k � β∗ = q−1/2β∗,
f � α = 0, f � α∗ = −β∗, f � β = q−1a, f � β∗ = 0,

e � α = qβ, e � α∗ = 0, e � β = 0, e � β∗ = −α∗,
(16)

and

α � k = q−1/2α, α∗ � k = q1/2α∗, β � k = q−1/2β, β∗ � k = q1/2β∗,
α � f = −b∗, α∗ � f = 0, β � f = q−1α∗, β∗ � f = 0,

α � e = 0, α∗ � e = qβ, β � e = 0, β∗ � e = −α.
(17)
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They can be combined into one (left) action ofUq(su(2))⊗ Uq(su(2)) by

(u⊗ u′)�x := u�x�(S−1C(u′)),

whereC : k �→ k−1, e �→ −f, f �→ −e.
We recall the irreducible finite dimensional representationsσD of Uq(su(2)) labeled by

spinD = 0, 1
2,1,

3
2,2, . . .

f εD,m = [D−m]1/2[D+m+ 1]1/2 εD,m+1,

e εD,m = [D−m+ 1]1/2[D+m]1/2 εD,m−1, k εD,m = qm εD,m, (18)

where the vectorsεDm, for m = −D,−D+1, . . . , D− 1, D, form a basis for the irreducible
U-moduleVD. In factσD are∗-representations ofUq(su(2)), with respect to the hermitian
product onVD for which the vectorsεDm are orthonormal.

We return to the quantum three-sphereSUq(2).
Let χ be the normalized Haar state onA, and letL2(SUq(2)) be the Hilbert space

associated withχ. Take the orthonormal basis ofL2(SUq(2)) as

εD,i,j := [2D+ 1]1/2q−itDi,j, D ∈ 1
2 N, i, j ∈ {−D,−D+ 1, . . . , D}, (19)

wheretDij is (i, j)th matrix element of the unitary irreducible corepresentation of spinD.

We shall use the left regular unitary representation ofA in L2(SUq(2)) which on the
generators reads explicitly

α εD,i,j = q2D+i+j+1 (1− q2D−2j+2)1/2(1− q2D−2i+2)1/2

(1− q4D+2)1/2(1− q4D+4)1/2
εD+1/2,i−1/2,j−1/2

+ (1− q2D+2j)1/2(1− q2D+2i)1/2

(1− q4D)1/2(1− q4D+2)1/2
εD−1/2,i−1/2,j−1/2, (20)

β εD,i,j = −qD+j (1− q2D−2j+2)1/2(1− q2D+2i+2)1/2

(1− q4D+2)1/2(1− q4D+4)1/2
εD+1/2,i+1/2,j−1/2

+qD+i (1− q2D+2j)1/2(1− q2D−2i)1/2

(1− q4D)1/2(1− q4D+2)1/2
εD−1/2,i+1/2,j−1/2. (21)

This representation satisfiespar excellencethe requirement (ii) ofDefinition 2with the full
symmetryUq(su(2))⊗ Uq(su(2)).

We pass now to the question of spectral triples onSUq(2).
In [1] the Hilbert space of Dirac spinors is introduced asH = C

2 ⊗ L2(SUq(2)) with
the orthonormal basis chosen as

v+D,ij := C1/2,D,D+1/2
1/2,j−1/2,je+ ⊗ εD,i,j−1/2 + C1/2,D,D+1/2

−1/2,j+1/2,je− ⊗ εD,i,j+1/2,

v−D,ij := C1/2,D,D−1/2
1/2,j−1/2,je+ ⊗ εD,i,j−1/2 + C1/2,D,D−1/2

−1/2,j+1/2,je− ⊗ εD,i,j+1/2,
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whereD ∈ 1
2 N, i, j = −D,−D+ 1, . . . , D; D = 0, C denote theq-Clebsch–Gordan coeffi-

cients[1] ande+, e− is the standard orthonormal basis inC
2 (e± = ε1/2,±1/2 if identifying

C
2 with V1/2). The unitary representation ofA acts onH as a tensor product ofI2 and the

left regular representation(20) and (21). A candidate for the Dirac operator is defined in
[1] by declaringv+D,i,j, v

−
D,i,j to be its eigenvectors with eigenvalues [D]q2 and−[D+ 1]q2,

respectively. Unfortunately, it has unbounded commutators with the algebraA.
For that reason in[19] a modified operator̃D has been proposed following the sugges-

tion in [13], see also[12]. It has the same eigenvectorsv+D,i,j, v
−
D,i,j but the corresponding

eigenvaluesD+ 1
2 and−(D+ 1

2) respectively, have a linear growth. It turns out that its
absolute value|D̃| (though notD̃ itself) does satisfy the requirement of bounded com-
mutators with the algebraA. Thus, (A,H, |D̃|) is a spectral triple. Unfortunately it fails
to capture topological information of the underlying noncommutative space being|D̃| a
positiveoperator. Indeed the sign of|D̃| is trivial and the corresponding Fredholm mod-
ule has trivial pairing withK-theory. Accordingly, the Poincaré duality axiom does not
hold.

Another spectral triple onSUq(2) was presented in[6]. Therein, the Hilbert spaceH is
just (one copy of)L2(SUq(2)) with orthonormal basis(19). The unitary representation is
just (20) and (21). The Dirac operator (up to a numerical factor) is

DεD,i,j = (1− 2δi,D) D εD,i,j,

whereδ is the Kronecker symbol. It has bounded commutators withA. Due to the term with
δ the condition (iii) of definition 1 is satisfied only for one copy ofUq(su(2)), which is the
‘broken’ symmetry of this spectral triple. ThoughD is not a positive operator, the Poincare’
duality does not hold[8]. Another feature is that there is no ‘classical’ limit since [D,h]
blows up for someh ∈ A asq→ 1. Moreover,J and the first order condition forD are not
discussed.

Despite these peculiarities the spectral triple of[6] has been intensively studied in[11]
from the analytical point of view. Therein, among other things, certain smooth subalgebra of
A was defined, stable under holomorphic functional calculus. The regularity condition was
verified and the pseudodifferential calculus constructed. Its algebra of complete symbols
was determined (by computing the quotient by smoothing operators) and the cosphere
bundle ofSUq(2) constructed together with the geodesic flow. The summability condition
was verified and the dimension spectrum computed to be& = {1,2,3}. The res0 of the
zeta function was explicitly computed and the explicit formula for the local index cocycle
obtained.

Yet another spectral triple onSUq(2) appeared in[7]. Therein, the Hilbert spaceH has
orthonormal basisεij with i ∈ N, j ∈ Z. The (faithful) unitary representation is

α εi,j = (1− q2i)1/2 εi−1,j, (22)

β εi,j = qi εi,j−1. (23)

It is equivariant under the actionα �→ zα, β �→ wβ of the groupU(1)× U(1), implemented
onH by ei,j �→ ziwj ei,j. A class ofU(1)× U(1)-invariant Dirac operators was identified
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and among them

Dεi,j = (i sign(j)+ j) εi,j (24)

which is two-summable and not positive. In the ‘classical’ limitα degenerates to 0 andβ
becomes the simple shift. MoreoverJand the first order condition forD are not established.
However, interestingly the corresponding Connes–de Rham and the square integrable dif-
ferential complexes have been computed.

Very recently a spectral triple appeared[18] with several nice properties.
The Hilbert space isL2(SUq(2))⊗ C

2 (note the order !). The representation of
Uq(su(2))⊗ Uq(su(2)) comes by coupling the first factor ofV =⊕∞

2l=0Vl ⊗ Vl with V1/2.
So in particular,u⊗ u′ is represented as⊕

2D≥0

σD(u1)⊗ σD(u′)⊗ σ1/2(u2).

Next, this coupling is diagonalized by decomposing the tensor product withC
2 as

H = H↑ ⊕H↓ =
⊕
2j≥0

W
↑
j ⊕

⊕
2j≥1

W
↓
j .

(For consistency with the labeling of the representations byspin the indexD is offset by
±1

2.) Hence, the orthonormal basis is

εjµn↓ := Cjµ εj−µ+n ⊗ ε1/2,−1/2 + Sjµ εj−µ−n ⊗ ε1/2,+1/2 (25)

for the labelsj = l+ 1
2, µ = m− 1

2, with µ = −j, . . . , j andn = −j−, . . . , j− and

εjµn↑ := −Sj+1,µ εj+µ+n ⊗ ε1/2,−1/2 + Cj+1,µ εj+µ−n ⊗ ε1/2,+1/2 (26)

for the labelsj = l− 1
2, µ = m− 1

2, with µ = −j, . . . , j andn = −j+, . . . , j+. Here the
coefficients are

Cjµ := q−(j+µ)/2 [j − µ]1/2[2j]−1/2, Sjµ := q(j−µ)/2 [j + µ]1/2[2j]−1/2 (27)

and shorthand notationk± := k ± 1
2 is adopted. (Notice that there are no↓ vectors for

j = 0.)
In order to simplify the formulae for the representation ofA onH, the pair of spinors is

juxtaposed as

|jµn〉〉 :=
(
εjµn↑
εjµn↓

)
(28)

for j ∈ 1/2N, with µ = −j, . . . , j andn = −j − 1
2, . . . , j + 1

2, with the convention that

the lower component is zero whenn = ±
(
j + 1

2

)
or j = 0. Furthermore, a matrix with

scalar entries

τ =
(
τ↑↑ τ↑↓
τ↓↑ τ↓↓

)
,



L. Da̧browski / Journal of Geometry and Physics 56 (2006) 86–107 97

is understood to act on|jµn〉〉 by the rule:

τεjµn↑ = τ↑↑εjµn↑ + τ↓↑εjµn↓,
τεjµn↓ = τ↓↓εjµn↓ + τ↑↓εjµn↑.

(29)

The unitary representationπ of A on L2(SUq(2))⊗ C
2 is the tensor product of the left

regular representation(20) and (21)andI2. On the basis(28) it reads explicitly

α |jµn〉〉 = α+jµn|j+µ+n+〉〉 + α−jµn|j−µ+n+〉〉,
β |jµn〉〉 = β+jµn|j+µ+n−〉〉 + β−jµn|j−µ+n−〉〉,
α∗ |jµn〉〉 = α̃+jµn|j+µ−n−〉〉 + α̃−jµn|j−µ−n−〉〉,
β∗ |jµn〉〉 = β̃+jµn|j+µ−n+〉〉 + β̃−jµn|j−µ−n+〉〉, (30)

whereα±jµn andβ±jµn are, up to phase factors depending only onj, the following triangular
2× 2 matrices:

α+jµn = q(1/2−µ−n)/2 [j + µ+ 1]1/2

×


 q

j+1/2 [j + n+ 3/2]1/2

[2j + 2]
0

q−1/2 [j − n+ 1/2]1/2

[2j + 1] [2j + 2]
qj

[j + n+ 1/2]1/2

[2j + 1]


 ,

α−jµn = q(1/2−µ−n)/2 [j − µ]1/2

×


 q

−j−1 [j − n+ 1/2]1/2

[2j + 1]
−q−1/2 [j + n+ 1/2]1/2

[2j] [2j + 1]

0 q−j−1/2 [j − n− 1/2]1/2

[2j]


 ,

β+jµn = q(−µ−n−1/2)/2 [j + µ+ 1]1/2

×




[j − n+ 3/2]1/2

[2j + 2]
0

−qj+1 [j + n+ 1/2]1/2

[2j + 1] [2j + 2]
q1/2 [j − n+ 1/2]1/2

[2j + 1]


 ,

β−jµn = q(−µ−n−1/2)/2 [j − µ]1/2

×


−q1/2 [j + n+ 1/2]1/2

[2j + 1]
−q−j [j − n+ 1/2]1/2

[2j] [2j + 1]

0 − [j + n− 1/2]1/2

[2j]


 , (31)
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and the remaining matrices are the hermitian conjugates

α̃±jµn = (α∓
j±µ−n− )†, β̃±jµn = (β∓

j±µ−n+ )†.

This (spinorial) representation is equivariant (cf. (ii) ofDefinition 2) under the full symmetry
Uq(su(2))⊗ Uq(su(2)).

(Note that the decomposition ofC
2 ⊗ V as taken in[1,19] differs fromV ⊗ C

2 by the
q-Clebsch–Gordan coefficients according to the rule

Cq

(
j l m

r s t

)
= Cq

(
l j m

−s −r −t

)

which amounts to a substitution ofq by q−1 in the coefficientsC andS (27). However,
C

2 ⊗ V is not equivariant in the sense ofDefinition 2.)
As far as the Dirac operator is concerned, it is diagonal with linear eigenvalues:

Dεjµn↑ = d↑j εjµn↑, Dεjµn↓ = d↓j εjµn↓, (32)

where

d
↑
j = c↑1j + c↑2 , d

↓
j = c↓1j + c↓2 , (33)

with c↑1 ,c↑2 ,c↓1 ,c↓2 independent ofj. (The multiplicities are (2j + 1)(2j + 2) and 2j(2j + 1).)
SuchD is self-adjoint on a natural domain and has a compact resolvent. The linearity

of eigenvalues suffices to check that [D, x], x ∈ A, are bounded. MoreoverD is invariant
under the fullUq(su(2))⊗ Uq(su(2)) by construction.

In addition, ifc↓1 = −c↑1 , c↓2 = −c↑2 + c↑1 then the spectrum ofD coincides with that of
the classical Dirac operator on the round sphereS3, up to rescaling and addition of a
constant. Thus, this spectral triple is an isospectral deformation of (C∞(S3),H, ), and in
particular, its spectral dimension is 3.

Altogether, (A(SUq(2)),H,D) forms a 3+-summable spectral triple, equivariant under
the full symmetryUq(su(2))⊗ Uq(su(2)), which is the whole rationale of its construction.

There is also an antilinear conjugation operatorJ onH which is defined explicitly on
the orthonormal spinor basis by

J εjµn↑ := i2(2j+µ+n) εj,−µ,−n,↑,
J εjµn↓ := i2(2j−µ−n) εj,−µ,−n,↓.

(34)

It is immediate thatJ is antiunitary and thatJ2 = −1, since each 4j ± 2(µ+ n) is an odd
integer. Moreover,JDJ−1 = D sinceD andJ diagonalize on their common eigenspaces
W

↑
j andW↓

j .
Besides these usual propertiesJ departs from the axiom scheme for real spectral triples.

Namely it does not mapπ′(A) to its commutant, but it does (!) modulo the two-sided ideal
G of B(H) generated by the (positive trace-class) operatorLq|jµn〉〉 := qj |jµn〉〉. (G ⊂ K
is contained in all ideals of infinitesimals of orderα for anyα > 0).
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More precisely, for anyx, y ∈ A,

[JxJ−1, y] ∈ G. (35)

Also the first order condition holds only up toG, that is for allx, y ∈ A,

[JxJ−1, [D, y]] ∈ G. (36)

We remark that in a sense this spectral triple realizes the suggestion in[13] (see also
[12]). However differently to[19] (and [1]), the spinor representation is constructed by
tensoringL2(SUq(2)) byC

2 on the right rather than on the left. Though the Clebsch–Gordan
decomposition looks similar, the different asymptotics of the appropriate Clebsch–Gordan
coefficients leads to bounded commutator [D,π(x)] instead of unbounded one for somex in
[19] (there the off-diagonal terms ofπ(x) are not compact but rather estimated byε > 0 from
below). The origin of such a drastic difference is the (unbounded) non-co-commutativity
of Uq(su(2)).

We refer to[29] for the analysis of this example along the lines of[11] culminating with
the local index formulae.

4. Quantum two-spheres

We pass now to two-dimensional examples.

4.1. The standard quantum sphere

The algebraA of the standard Podleś quantum sphere[25] can be defined in terms of
generatorsa = a∗, b, b∗ and relations (0≤ q < 1)

ab = q2ba, ab∗ = q−2b∗a, bb∗ = q−2a(1− a), b∗b = a(1− q2a). (37)

The associatedC∗-algebra is isomorphic to the minimal unitization of the compactsK. It
has one classical point given by the charactera �→ 0, b �→ 0 andK-groups areK0 = Z

2,
K1 = 0.

The algebraAwas discovered as aA(SUq(2))-comodule algebra, but it can be also viewed
as a subalgebra ofA(SUq(2)) generated by

b = −α∗β, b∗ = −β∗α, a = ββ∗ = a∗. (38)

The standard Podleś quantum sphere is not only a homogeneousSUq(2)-space, but also a
quotient spaceSUq(2)/U(1). (In fact the quantum Hopf fibration and monopole connection
are well known.)

The� action(16)of Uq(su(2)) descends toA, up to equivalence it reads

e � b = −(q1/2 + q−3/2)a+ q−3/2, e � b∗ = 0, e � a = q−1/2b∗,

k � b = qb, k � b∗ = q−1b∗, k � a = a,
f � b = 0, f � b∗ = (q3/2 + q−1/2)a− q−1/2, f � a = −q1/2b. (39)



100 L. Da̧browski / Journal of Geometry and Physics 56 (2006) 86–107

However this is not the case for�. Indeed setting form ∈ 1
2 Z

Am = {h ∈ A(SUq(2))|h� k = qmh}

(in particularA0 = A) it is easy to see thatAm� e = Am+1 andAm� f = Am−1. (Never-
theless� will still play a rôle in the sequel.)

A spectral triple on the standard Podleś sphere has been constructed in[16]. The Hilbert
spaceH has the orthonormal basisεD,m,s with D ∈ N+ 1/2,m ∈ {−D,−D+ 1, . . . , D} and
s ∈ {−1,1}. The bounded representationπ of A onH reads:

aεD,m,s = a+D,m,sεD+1,m,s + a0
D,m,sεD,m,s + a−D,m,sεD−1,m,s,

bεD,m,s = b+D,m,sεD+1,m+1,s + b0
D,m,sεD,m+1,s + b−D,m,sεD−1,m+1,s, (40)

where

a+D,m,s=− q2D+m+1−s/2

× (1− q2D−2m+2)1/2(1− q2D+2m+2)1/2

(1− q4D+4)1/2(1+ q2D+3+ q2D+1− q6D+7− q6D+5− q8D+8)1/2
,

a0
D,m,s = (1+ q2)−1

+ (1−q4D+2+q2D+2m+q2D+2m+2)((1−q2D−1)× (1−q2D+3)−sq2D+s(1−q2))

(1+q2)(1−q4D)(1−q4D+4)
,

a−D,m,s=− q2D+m−1−s/2 (1− q2D−2m)1/2(1− q2D+2m)1/2

(1− q4D)1/2(1+ q2D+1 + q2D−1 − q6D+1 − q6D−1 − q8D)1/2
,

(41)

b+D,m,s = qD−s/2
(1− q2D+2m+4)1/2(1− q2D+2m+2)1/2

(1− q4D+4)1/2(1+ q2D+3 + q2D+1 − q6D+7 − q6D+5 − q8D+8)1/2
,

b0
D,m,s = qm+D

(1− q2D+2m+2)1/2(1− q2D−2m)1/2(sq2D+s(1− q2)

−(1− q2D−1)(1− q2D+3))

(1− q4D)(1− q4D+4)
,

b−D,m,s = −q2m+3D−s/2 (1− q2D−2m)1/2(1− q2D−2m−2)1/2

(1− q4D)1/2(1+ q2D+1 + q2D−1 − q6D+1 − q6D−1 − q8D)1/2
.

(42)

(The formulae forb∗ are similar.)
The action ofUq(su(2)) on A is as in (39). The ∗-representation ofUq(su(2)) on

H is a direct sum of the half integer spin (D ∈ N+ 1/2) finite dimensional irreducible
representationsσD (18) of Uq(su(2)) with multiplicity 2 (s = ±1). This corresponds
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to the simplest possible even spectral triple; higher multiplicities can be dealt accor-
dingly.

With this, π is a direct sum of (the only) two inequivalentUq(su(2))-equivariant rep-
resentationsπ± of A(S2

q ) onH± (s = ±1). In fact,π± are irreducible representations of

A(S2
q )�Uq(su(2)).

Next, in [16] the following operators are constructed: the grading

γεD,m,s = s εD,m,s,

the reality structure

JεD,m,s = i2mεD,−m,−s (43)

(antilinear isometry satisfyingJ2 = −1, γJ = −Jγ and sendingA(S2
q ) to its commutant),

and the Dirac operator

DεD,m,s =
[
D+ 1

2

]
εD,m,−s, (44)

satisfyingDγ = −γD andDJ = JD andDu = uD,∀u ∈ Uq(su(2)).
In [16] it is shown that such data (A,H,D, J, γ) define a (compact) real evenUq(su(2))-

equivariant spectral triple, which satisfies the first order condition. Moreover, with the action
(39) and the representation(40)–(42), D is unique up to multiplication of the r.h.s. of(44)
respectively byz (or z̄) whens = +1 (or s = −1), wherez ∈ C \ {0}.

Evidently D is a (unbounded) self-adjoint operator defined on a natural
dense domain inH consisting of ψ =∑D,m,s cD,m,sεD,m,s, cD,m,s ∈ C, such that∑
D,m,s(1+ [D+ 1

2]2)|cD,m,s|2 <∞.
The limitq→ 1 is in agreement with the classical spectral triple onS2, identifyingεD,m,±

with Y±D,m. Also, J coincides with the charge conjugation on spinors andD has the correct
q = 1 limit.

The geometrical meaning ofH, J, D given above is quite clear. Recall that classically
Dirac spinorψ onS2 is a section of certain rank two vector bundle associated to the bundle
of spin frames, which is nothing but the Hopf bundleU(1)→ SU(2)→ S2. Equivalently,ψ
can be thought of asU(1)-equivariant (underz→ z−1 ⊕ z) C

2-valued function onSU(2),
or equivalently, as−1

2 ⊕ 1
2 eigenvector of� H (Cartan generator ofsu(2)). Of course the

space= = {ψ} of such polynomial spinors is a finite projective module overA.
Theq-deformation of these bundles (and more) is well known[2,22] and we can view

SUq(2) as the bundle of spinq-frames, and Dirac spinors=q asq−1/2 ⊕ q1/2 eigenspace of
the action� of K onA(SUq(2)). Explicitly,

=q = A−1/2 ⊕ A1/2 = spanA{α, β} ⊕ spanA{α∗, β∗}.

It is a finite projective module overA, with a projector in Mat(2, A)⊕Mat(2, A) being(
αα∗ αβ∗

βα∗ ββ∗

)
⊕
(
α∗α qα∗β
qβ∗α q2β∗β

)
(45)
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=
(

1− q2a −qb∗
−qb a

)
⊕
(

1− a −qb
−qb∗ q2a

)
. (46)

The Hilbert scalar product comes by restriction fromL2(SUq(2)) and sendingεD,m,s →
[2D+ 1]−1/2q−s/2εD,s/2,m gives unitary isomorphism. This explains the relation ofH± and
H to q-deformed Hopf bundles.

With this setup the above Dirac operator is just (0 � e
� f 0 ). Then the invariance(5) is

clear and since� e and� f are twisted derivations it is immediate to see[28,24] that for
x ∈ A

[D, x] =
(

0 q1/2h � e
q−1/2h � f 0

)
(47)

are bounded.
We comment on other axioms. Concerning the dimension axiom the eigenvalues of

|D| are±[k]q with degeneracy 4k, wherek := D+ 1/2 ∈ N. Thus the eigenvalues of
|D|−z decrease exponentially ask→∞ for Rez > 0 (recall thatq < 1). By summing the
derivative of the geometric series finite-summability holds, actuallyε-summability for any
ε > 0

TraceH|D|−ε < 4(q− q−1)εqε

(qε − 1)2
.

Next σN/ logN → 0 for all z > 0, →∞ for z ≤ 0. So, loosely speaking, the metric
dimension of this geometry is ‘0+’, which matches the known drop by two of the coho-
mological dimension ofq-spaces. More precisely, the dimension spectrum& should be
studied, e.g. the singularities ofζβ(z) = TraceH(β |D|−z). Forβ = 1 its most divergent part
goes as

∼ 4(q− q−1)z
∑
k∈N

kqzk ∼ 4(q− q−1)2πin/h

(z− 2πin/h)2

as z ∼ 2πin/h, whereh = logq, ∀n ∈ N (at least forRe(z) ≥ 0). This suggests that&
should contain a (discrete) infinite lattice 2πin/h, n ∈ Z of doublepoles on the imaginary
axis.

That simple poles are excluded could be expected from the divergence ofσN/ logN at
z = 0, due to Tauberian theorem. Recall also that complex poles may appear on fractals
and multiple poles on singular manifolds.

Concerning the reality requirementJ is tailored as in the (naive) dimensiond = 2 (as
indicated by the signs inJ2 = −1, JD = +DJ andJγ = −γJ), which has at least the same
parity as metric dimension.

The regularity axiom does not hold[24] in its rigorous form but it looks as if there might
be some substitute for it since forh ∈ Am, |D|zh|D|−z − qmzh is of order−1. Thus, by
(47) and recalling thath � e ∈ A1 andh � f ∈ A−1 for h ∈ A0 = A, it appears that the
principal symbol of|D| is not a scalar. But one can still work with this sort of ‘spin anomaly’
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by usingq-mutators since

|D|−z[D,h] −
(
qz 0

0 q−z

)
[D,h]|D|−z = κ(z)|D|−z−1,

whereκ(z) are bounded operators analytic inz. In fact a ‘twisted local index formula’ for
SUq(2) was worked out in[24] in the framework of twisted cyclic cohomology.

Concerning the orientation axiom perhaps some modification of[28] containing
some proofs due to Heckenberger, and of[24] may be helpful. They show, that
dα := i[D,π(α)] gives the unique two-dimensional covariant first order differential calculus
of [26].

The related universal differential calculus contains aA-central two-form, with which
one can associate (via the Haar measureχ, such thatχ(ab) = χ(bσ(a)), whereσ is the
algebra automorphism ofA given byσ = K2 �) a nontrivialσ-twistedcyclic Hochschild
two-cocycleτ onA

τ(α, β, γ) := χ(α(β � e)(γ � f )− q2α(β � f )(γ � e))

= (q− q−1)−1logqResz=2 TrH

(
1 0

0 −q2

)
K2|D|−zα[D,β][D, γ]

[28] (see also Versions 1 and 2 of[19]).

4.2. The equatorial quantum sphere

The algebra of equatorial Podleś sphere can be written as

ba = q2ab, b∗b+ a2 = 1, bb∗ + q4a2 = 1.

The classical subset is (the ‘equator’)S1 given by the charactersa �→ 0, b �→ λwith |λ| = 1.
The relatedC∗-algebra is extension ofC(S1) byK⊕K andK0 = Z

2,K1 = 0.
The symmetry used for the equivariance is now

k � a = a, e � a = q−1/2b∗, f � a = −q−3/2b,

k � b = q−1b, e � b = −(1+ q−2)q5/2a, f � b = 0,

k � b∗ = qb∗, e � b∗ = 0, f � b∗ = (1+ q−2)q3/2a.

In [17] the dataH, γ and J are as in Section4.1 and the representation (up to equiv-
alence) isπ = π+ ⊕ π− whereπ± are the (only) two irreducibleUq(su(2))-equivariant
∗-representations

a εD,m = −qD−m (1− q2D−2m+2)1/2(1− q2D+2m+2)1/2

1− q4D+4 εD+1,m

∓q2D−1 (1− q2)(1+ q4D+2 − q2D−2m − q2D−2m+2)

(1− q4l)(1− q4l+4)
εD,m

−qD−m−1 (1− q2D−2m)1/2(1− q2D+2m)1/2

1− q4D εD−1,m, (48)
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b εD,m = q2D−2m+1 (1− q2D+2m+2)1/2(1− q2D+2m+4)1/2

1− q4D+4 εD+1,m+1

±q3D−m−1 (1− q4)(1− q2D+2m+2)1/2(1− q2D−2m)1/2

(1− q4l)(1− q4l+4)
εD,m+1

− (1− q2D−2m)1/2(1− q2D−2m−2)1/2

1− q4D εD−1,m+1. (49)

They are equivalent to the representation obtained by restricting the representation(20) and
(21)ofA(SUq(2)) to the subalgebraAand by restrictingH to the (L2-completion) of certain
vector spaces (leftA-modules) constructed in[3].

It is shown in[17] thatJ does not mapπ(A) to its commutant, but it does modulo the
idealG ⊂ K generated by the operatorql on εD,m,s. More precisely, for anyx, y ∈ A,

[JxJ−1, y] ∈ G. (50)

The Dirac operator is

DεD,m,s =
(
D+ 1

2

)
εD,m,−s. (51)

It is unique (up to rescaling and addition of a constant) under the same postulates as in
Section4.1except the first order condition is required only up toG, that is for allx, y ∈ A,

[JxJ−1, [D, y]] ∈ G. (52)

More importantly, for anyx ∈ A, the commutators [D, x] are bounded. Moreover, it is
evident thatD is self-adjoint on a natural domain inH and has compact resolvent. Since the
eigenvalues of|D| arek = D+ 1

2 ∈ N with multiplicity 4k the deformation is isospectral
and the dimension requirement is satisfied with the spectral dimension of (A,H,D) being
n = 2.

4.3. The generic quantum sphere

The algebra of generic Podleś sphereS2
q,c can be written as

ba = q2ab, b∗b+ a2 − a = c1, bb∗ + q4a2 − q2a = c1,

whereq < 1, 0< c <∞. The classical subset isS1 given by the charactersa �→ 0, b �→ λ

with |λ| = c. The relatedC∗-algebra is extension ofC(S1) byK⊕K andK0 = Z
2,K1 = 0.

A spectral triple onS2
q,c appeared in[7]. Therein, the Hilbert spaceH has orthonormal

basisen,s with n ∈ N, s ∈ {−1,+1}. The (faithful) unitary representation is

a εn,s =
(

1
2 + s(c + 1

4)1/2
)
q2n εn,s, (53)

b εn,s =
((

1
2 + s(c + 1

4)1/2
)
q2n −

(
1
2 + s(c + 1

4)1/2
)2
q4n + c

)1/2

εn,s. (54)
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It is equivariant under the actionα �→ zα, β �→ wβ of the groupU(1)× U(1), implemented
onH by ei,j �→ ziwj ei,j. A class ofU(1)× U(1)-invariant Dirac operators was identified
and among them,

Dεn,s = n εn,−s, (55)

which is one-summable, not positive and has bounded commutators with the algebra. This
spectral triple is even,γεn,s = s εn,s, has nontrivial Chern character butJand the first order
condition are not considered. However, interestingly the corresponding Connes–de Rham
differential complex has been computed.

5. Final comments

It is worth mentioning thatD, or its spectrum, taken individually carries only part of the
available geometric information. It is the interplay of all the data of the spectral triple (also
J andγ) on the Hilbert space, that imposes some really stringent restrictions and produces
the spectacular consequences.

The examples of some recently constructed spectral triples on quantum spheres we
have described dissolve the widespread belief that Connes’ approach to noncommutative
geometry does not match quantum-group theory.

The last example in Section3 acting on two copies of theL2 space is odd, isospec-
tral to the classical Dirac operator, three-summable and has theUq(sl(2))⊗ Uq(sl(2))
symmetry. It exhibits a variation of ‘up to infinitesimals’ of the reality condition
and the first order condition, which was anticipated by the even, isospectral, two-
summable,Uq(sl(2))-equivariant example in Section4.2. The (even) example of Section
4.1 is not isospectral but it satisfies the reality and the first order axioms in the strict
sense.

We believe the isospectral deformations will prove useful in theq-geometry and will be
omnipresent on otherq-deformed spaces. In fact this point is currently studied on general
Podlés sphere (including the standard one).

There are several interesting open mathematical problems regarding the analytic
properties of these spectral triples (regularity and finiteness) as well as the alge-
braic ones (orientation and Poincaré duality) and of the local index formulae on two-
spheres.

From the more physical point of view the interesting questions regard e.g. the construction
of a wider class of spectral triples and of the Yang–Mills and gravitation theories onq-
deformed spaces. In particular the action functional(15)on spectral triples, the gravitational
part of which exhibits a huge symmetry includingq-deformations ofA with isospectral
deformations ofD, and its extrema should be further studied.
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