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1. Introduction

The key notion of the most recent ‘layer’ of noncommutative differential geonaely
Conned9] is spectral triple which encodes the concept of a noncommutative Riemannian
spin. manifold.

In the classical (commutative) situation the spectral tripie %, D) canonically
associated with a Riemannian spimanifold consists of the algebra of smooth
functions onM, of the Hilbert# space of (square integrable) Dirac spinors, carrying a
representation ofl (by pointwise multiplication), and of the Dirac operafrconstructed
from the Levi—Civita’ connection (metric preserving and torsion-free) plu§l3-connec-
tion.

WhenM is even dimensional there exists the grading (or parity) opesatord when
M is spin one also has operatbof real structure (known also as charge conjugation). All
these data are of great importance both in Mathematics and Physics. They satisfy certain
further seven properties which allow one to reconstruct back the underlying differential,
metric and spin structures.

A generalization of these concepts to noncommutative algebras in the framework of
noncommutative spectral geometry has already found plentiful applications. But the whole
zooof g-deformed spaces coming from the quantum group theory, was commonly believed
not to match well the Connes’ approach. This was supported by some apparent “no-go”
hints such as that exponentially growing spectrum of the quantum Casimir operator would
prevent bounded commutators with the algebra, some known differential calculi seemed
not to come as bounded commutators with &8nyan early classification of equivariant
representations missed the spinorial ones and also on some deformation theory grounds.
However, the intense recent activity indicated a possibility to reconcile these two lines of
mathematical research.

In this paper spectral triples on some of the simplest studied examples of quantum
spheres of lowest dimension (2 and 3) are reviewed. More precisely, we shall be concerned
mainly with (the algebra of) the underlying space of the quantum gsé2) and its two
homogeneous spaces known as the standard and the equatoriél spiaiee (sef5] for
the list of other low dimensional spheres).

For the sake to be consistent as far as possible with the conventions and notation for
different examples we often give the original formulae in an equivalent form. In the sequel

0 < g < land] = [x],, where k], := ‘gx:;:f for any numbex.

2. Noncommutative Riemannian spin manifolds
2.1. Spectral triples and their equivariance

We recall the general definition.

Definition 1. A (compact)spectral triple(A, H, D) consists of a (unitalx-algebraA of
bounded operators on a Hilbert spd¢@nd a self-adjoint operatdd = D' on# with
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(i) compact resolventlp — 1)~1, Vi e C \ sped,
(i) bounded commutatord], «], Yo € A.

A spectral triple is callecvenif a gradingy of # is given,y? = 1, such thatr € A
are even operators;y = yo, andD is odd Dy = —yD. Otherwise it is callecbdd (by
convention thery = 1).

A spectral triple is calledeal if an antilinear isometryl is given, whose adjoint action
sendsA to its commutant

[, JBJ Y =0, Va,pBeA. 1)

We are particularly interested in spectral triples on homogeneous embeddable quantum
spaces, described by a comodule subalgébd a Hopf x-algebraH. It is natural to
employ their symmetry in order to reduce the search freedom or tefjntvariant triples
The formulation of the symmetry in terms odactionandcoproductin H has not yet been
presented but one can work with the dual quantum group.

To deal with the equivariance we shall usetion of a Hopf«-algebrall. Typically U
is dual ofH in the sense of nondegenerate Hopf algebra pairing (e.g. a quantum universal
enveloping algebra). This yields two commuting (left and righthodule algebra structures
onH

ut>h=hiu,hz), h<u=(u,hhz, 2)

where we use Sweedler’s type notation for the coprodutt.ifihe star structure is com-
patible with both actions:

w>h*=((Su)* > h)* h<u=h<(Su)*, VueUhcH, 3)

whereSis the antipode irfJ.

The actions(2) can be combined into a (left) action &f ® U via (u Q u')>x :=
ut>x<u’. (Another option is to pass to the left action@f U by usingSand a suitable
automorphism anti co-homomorphismlaf)

In caseA is a proper subalgebra &f, we assume that (at least) some nontrivial Hopf
subalgebra) of U ® U survives the restriction té.

We shall use the following general definition.

Definition 2. Let U be a Hopfx-algebra and\ be aU-modulex-algebra. A spectral triple
(A, H, D) is calledU-equivariantif there exists a dense subspatm # such that

(i) Visamodule oveAxU, so in particular
u(av) = (u1 > &)(uzv), VueUacA,veV; (4)

(i) »* c u’ onV (as unbounded operators);
(i) D(V) c V andD is invariant

Du=uD (onV), VueU. (5)
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Moreover, folU-equivariant even and/or real spectral triples we shall requirgthgtc v,
uy = yu and/or thatl is the phase part of son¥e which satisfies (V) C V,uJ = J(Su)*,
Yu e U.

(In (4) Sweedler’s type notation is used for the coprodudd iandr> for the action olU
onA)

2.2. Further requirements

On top of the above a series of further seven requirements (ax[@Bisee als§20])
are required to describe a noncommutative (compact Riemannian spin) manifold, that we

briefly recall.
A spectral triple 4, H, D) is regular (or smooth iff
[1DI,...[IDI, B]...]

~~
n

are bounde¢n e N, 8 € AU[D, A].

This condition permits to introduce the analogue of Sobolev spHées: Dom(|D|*)
fors > 0 (assume that{*® := N;=oH* is a core of D|). ThenT : H>* — H> hasanalytic
order kiff T extends to a boundefl: HX+S — #°, Vs > 0.

It turns out thatA(H>°) c H*°. Moreover[14] (see alsd21]) certain algebraD =
UD; of differential operatorscan be introduced as the smallest algebra of operators on
H®° containingA U [D, A] and filtered by the analytic orddre N in such a way that
[D?, Di] C Dyy1. Nextthe space; of pseudodifferential operatos orderk € Z consists
of thoseT : H*® — H> which for anym € Z (especiallym <« 0) can be written in the
form

T =S |D*+ S |Df 1+ 4+ 8, D" + R,

whereS; € D; andR has analytic ordex m. (Here it is assumed thaD| is invertible,
otherwise one works e.g. witf1 + D?2))

It can be seen thabg is the algebra generated by the elementsiaf [D, A] and
their iterated commutators wittD|, and that P2, ;] c W;,1. The algebra structure on
W = Uiz Vg can be read in terms abymptotic expansioff’ ~ ZjeN T;, whenevefl and

T;,for j € N, are operator> — H> andvm € Z,3NsuchthavM > N, T — Zyzl Tj
has analytic ordex m. For instance for complex powers pb| (defined by the Cauchy
formula) one has fof’ € W

Z 9
IEMIEDY < .)[DZ, D% T). ] IDIFEH
- S~~~
j=1 j
The algebra¥ provides a convenient framework to study the residues of the zeta
functions. For that it suffices thadimensionrequirement holds3 »n € N s.t. the
eigenvalues (with multiplicity) of| D|~", ux = O(k~1) as k — oo. (The coefficient
of the logarithmic divergence ofy := ZN uk, denoted f|D|™", defines the ‘non-
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commutative integral’.) Then it follows that fde > n, D* is trace-class, i.€finitely
summable
Let X be thedimension spectrunie. the set of the singularities of zeta functions

¢p(z) = Tracey(B1D| ™) (6)

foranyB € Wy. If X is assumed to be discrete with poles only as singularitiesitiea Wy
the zeta function Trac&(D|~%) is holomorphic in a half plane df with 9iz sufficiently
large and has a meromorphic continuationCtavith all poles contained irk + k. If in
addition® contains only simple poles then the residue functional

t(T) := Res,—oTrace(’|D|™%)

is tracial onT € W (c.f. [30]).

These tools serve for the local index theorem of Connes—Mosdadii;iwhich provides
a powerful algorithm for performing complicated local computations by neglecting plethora
of irrelevant details.

Another analytic requirement finiteness and absolute continuitshich states thaf\
admits a (Fechet) completiond which is a preC*-algebra and{* is finite generated
projective leftA-module.

Among the algebraic conditions for a spectral triple we shall useehlty condition
which requires that4, #H, D) is real (in the sense stated above) and that certain sign
conditions are satisfied for the squareJoéind its (anti) commutation witkk and with
D, and thefirst order conditiorwhich requires that

[[D,a], JBJ =0, Va,peA, (7)

is satisfied. (The absence of these two properties should be interpreted as dealing rather
with a spin manifold and Finsler metric).

There are two more algebraic conditions. The firstorgentability: there exists a
Hochschildn-cycle

S @@ ®: @y € Zu(A A AP), ®)
such that
Z coJ(c6)*J_1[D, c1]---[D,cn]l =y, )

wheren is the dimension ang the gradation operator. The second onéamcaré duality,
which can be formulated as the requirement that the pairing

Ko(A) x Ko(A) = Z, ([p], [q]) = 3 Index(pJqJ (L + yDy)pJgJ ™) (10)

and

K1(A) x K1(A) — Z, ([u], [v]) — ilndex<(1+ |ID)|> uvJt <1+ |g|>>

(11)

is nondegenerate.
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2.3. Reconstruction theorem

As stressed by Connes, the role playedhyg two-fold: as thé<-homology fundamental
class (i.e. théndexaspect) but also as the inverse of the infinitesimal unit of ledgthe.
dsidentifies with thebare Dirac propagator).

It is important to note that a spectral triple satisfying the above seven axioms encodes
all the essential geometric information, which can be reconstructed back from it. This is
certainly the case for a spectral tripld,(*, D) under the assumption that = C*°(M),
whereM is a smooth compact manifold. Its dimensioocan be read off form the dimension
axiom (which is nothing but a reformulation of the Weyl formula for the growth of eigen-
values ofD). Next the metric and spin structure can be extracted byRieonstruction
Theorem of Connel 0]:

(a) There exists a unigue Riemannian mejonM such that the geodesic distance between
any two points, y € M is given by

dp(x, y) = suifla(x) —a(y)| - a € A, ||I[D, a]|| = 1}. (12)

(b) gonly depends upon the unitary equivalence classes, which form a finite collection of
affine space$2, parametrized by the spin structuresn M.
(c) The action functional
1
n(2m)?

Resw(D*™") := / tr(o—_n(x, £)) dx &, (13)

M
whereo_,(x, &) is order—n part of the total symbol oD?~" andtr is a normalized
Clifford trace, is a positive quadratic form on ea@b with a unique minimum given
by the canonical classical spectral triple, at which (up to a constant) it attains the value
equal to the Einstein Hilbert action df i.e.

/ R /gd"x, (14)

whereR s the scalar curvature. We refer[@0] for the proof of the theorem.

Remarks.Though(12) has a ‘dual’ form to the usual(x, y) given byinfimumover the
geodesic lengths, they are in fact equal (by integrating a derivative of a function along a
path one gets thatp(x, y) < d(x, y); the inequality being saturated for the function which
just measures the length along the path).

The expressiofil3) given by Wodzicki residue (which on the appropriate class of oper-
ators agrees with the noncommutative integral) is well defined because by combination of
axioms it can be shown th&tis a pseudodifferential operator &

The formula(14) follows by realizing thaiResy (D?>~") is (proportional) to the integral
of the second coefficient of the heat kernel expansio@®{and does not depend upon
couplings toA,, in case of spipstructure).

Connes conjectured that actually for any commutativit can be deduced from the
axioms (notably the Poincare’ duality) that the spectXiof .4 is a smooth manifold and
that the mapX — R", given by the finite coIIectiorzvj. € A involved in the Hochschild
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cyclec of orientation axiom, is actually a smooth embeddindylais a submanifold dR " .
For the reconstruction of the manifold structurexokee[27].

2.4. Connections with General Relativity

Itis worth to mention that if4,5] a ‘universal’ spectral action formula has been proposed
to govern the dynamics including General Relativity

D
Tr x (A) + matteg (15)

wherey is the (smoothed) characteristic function of [0,1] akds a ‘scale’ parameter. In
dimension 4 the first term approximates the Einstein—Hilbert action with a large cosmo-
logical term for “slowly varying” metrics with small curvature. Indeed, by the heat kernel
expansion

SG(D):A“fO/M\@dXJFAZfZ/MR\/gder”"

where fp and f> are certain moments of.

The phase spadeof General Relativity can be taken as Ricci flat metrics (solutions of
the Einstein equations) modulo the (connected component) of the diffeomorphism group
Diff o(M). The observables are just real functionsion

On compacM there is an infinite discrete family of the (ordered) real eigenvalyes
D which are invariant under D M). Assuming that (at least locally) they can be viewed as
functions orT” (i.e. depending og) in [23] (by quantum mechanical perturbation theory and
integration by parts) the Jacobian matrixgf,(x) — A, was computed and their Poisson
brackets expressed in terms of the energy-momentum tensors and of the propagator of the
linearized Einstein equations.

The action(15) can be expressed in termsjofs but to get the equations of motion one
cannot vary with respect to thg,’s, which are not independent variables but satisfy the
(unknown) constraints in order to arise fr@rof some geometry. (Variation with respect to
the metric field produces the equations which are solved by saying that Altbesenergy
momentum tensor of theth eigenspinor scales ag [23].)

It is possible that the problem of unknown constraintsifp(and of the transcendental
dependence oB) can be overcome in the approach of Connes, i.e. by taking the spectral
triples themselves as the right variables for General Relativity. Though the constraints are
highly nonlinear e.g. the orientation axionmidinear inD in dimensiom, at least they can
be spelled out.

Despite some limitations (compactnesswfind positivity ofg) this should be worth
to pursue e.g. in view of exceptionally simple (lineaDhuniversal action functional for
spectral triples.

In the noncommutative realm the spectral triples and spectral geometry a la’ Connes (a
generalization of Riemannian spin manifolds) has already found several applications. But, as
mentioned in Section 1, it was commonly believed thatgaeformed spaces coming from
the quantum group theory do not to match this approach (as supported by some apparent



L. Dabrowski / Journal of Geometry and Physics 56 (2006) 86—-107 93

‘no-go’ hints). It turns out however that these two areas of mathematical research can be
reconciled as | will illustrate on the examples of quantum spheres of lowest dimension (2
and 3).

3. Quantum three-sphere

In this section we review the spectral triples on the quantum three-sphere underlying the
guantum groupsU,(2). We start by recalling its definition, the quantum symmetry algebra
and its representations.

The unital«-algebraA(SU,(2)) [31] (0 < ¢ < 1) is generated by, g satisfying

ap=gba, of*=qgf'e, PB*=p'B, Cat+pB=1 oo +q B =1

The classical subsetis (the ‘equatatigiven by the charactefs— 0, o — A with [A] = 1.
The C*-algebraA associated té is isomorphic to the extension 6f(s?) by £ ® C(s1).
TheK-groups areKo = Z, K1 = Z.

The dual (infinitesimal) symmetry o& can be described using the quantized algebra
U,(su(2)), which is ax-Hopf algebra with generatoes f, k, k1 satisfying relations

ck=qke, kf=aqfk, K —k?=(¢—q(fe—ef),
and the coproduct

Ak=k®k Ae=eQk+k'1®e Af=fQk+k1QFf
Its counite, antipodeS, andsx-structure are given respectively by

e(k) =1, €(e) =0, €(f)=0,
Sk=k=1, Sf = —qf Se = —qle,
k*=k, ee'=f ff=e.

The (commuting) left and right actior(®) of U,(su(2)) on the generators oi(SU,(2))
read explicitly

k> a=q Y k> a* =g 2% k> B=q"?B, k> p* = qY?p",
f>a=0, fooa*=—-8 fop=qgla f>p =0, (16)
el a=qp, e>a*=0, el> B=0, e> B* = —a*,

and
oc<lk=q_l/2a, tx*<lk=q1/2(x*,,3<k=q_1/2,8, ,B*<lk=ql/2ﬂ*,
a<f=-b* a*<f=0 Baf=ql* fraf=0, 17
a<e=0, a* <e=qp, B<e=0, B <e=—a.
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They can be combined into one (left) actionlgf(su(2)) ® U,(su(2)) by
(u ® u)>x = ux<a(S~tO®W)),

where® k> kL ers —f f > —e.
We recall the irreducible finite dimensional representatianef U, (su(2)) labeled by
spint=0,3,1,3,2,...
feem=1€— m]1/2[€ +m+ 1]1/2 €0.m+1s
€€)m = [Z —m+ 1]1/2[£ + m]l/Z €¢,m—1, kel,m = Clm €0m>s (18)

where the vectorsy,,, form = —¢, —¢+1, ..., ¢ — 1, £, form a basis for the irreducible
U-moduleV,. In facto, aresx-representations df,(su(2)), with respect to the hermitian
product onV, for which the vectorg,,, are orthonormal.

We return to the quantum three-sphsig, (2).

Let x be the normalized Haar state ot and IetLZ(SUq(Z)) be the Hilbert space
associated withy. Take the orthonormal basis DTZ(SUq(Z)) as

eeij =0+ 127, tejNije(—t—t+1,....¢), (19)

wheretfj is (i, j))th matrix element of the unitary irreducible corepresentation of &pin

We shall use the left regular unitary representatiopdah L2(SUq(2)) which on the
generators reads explicitly

 oitj (1 _ q2572j+2)l/2(1 _ q2(72i+2)l/2

@brij=49 (1= U212 iz ELlj2i-1/2.j-1/2
(1 — g2+ 2 — g2t+2iy1/2
tac D2 — oz S 2i-1/2.j-1/2: (20)
o (1= G212 _ g2tt2i+2y1/2
Pecij=—q"" (1= ADI2(1 — frayijz SUH1/2i+1/2.)-1/2
(1 — g2LH20V1/2(] _ g2t-2iy1/2
L+i (1 q ) ( q ) ) )
+ (L= g9)2(1 — 2z Se-V2itl2 -2 (21)

This representation satisfipar excellencé¢he requirement (i) oDefinition 2with the full
symmetryU,(su(2)) ® U, (su(2)).

We pass now to the question of spectral triplessop(2).

In [1] the Hilbert space of Dirac spinors is introduced?#as= C? ® L2(SU,(2)) with
the orthonormal basis chosen as

+ . cl2et12 1/2.6,0+1/2

v = C1)o i a s e+ ®enij-172+ C21 )5 ii1y2 je— ® Eeij+1/2,

o Ay2.0-1)2 N 12,0,6-1/2 N
Vo i = Cryo ez e+ ® eij-172+ CZyj5 1170 je— ® e jt1/2,
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wheref( e %N, i,j=—4,—¢+1,...,¢ ¢ =0, C denote theg-Clebsch-Gordan coeffi-
cients[1] ande,, e_ is the standard orthonormal basisiA (e+ = €12 +1/2 if identifying
C? with V1,2). The unitary representation gf acts or{ as a tensor product @ and the
left regular representatio(riZO) and (21) A candidate for the Dirac operator is defined in
[1] by declarlngve ij» Veij 1o be its eigenvectors with eigenvalué$ b and—[¢ + 1] 2,
respectively. Unfortunately, it has unbounded commutators with the algebra

For that reason ifil9] a modified operatob has been proposed following the sugges-
tion in [13], see alsq12] It has the same elgenvector}‘.l i Vi but the corresponding

eigenvalues + 5 1 and —(¢ + 2) respectively, have a linear growth. It turns out that its
absolute valuQD| (though notD itself) does satisfy the requirement of bounded com-
mutators with the algebra. Thus, @, 7, |D|) is a spectral triple. Unfortunately it fails
to capture topological information of the underlying noncommutative space bhbing
positiveoperator. Indeed the sign o] is trivial and the corresponding Fredholm mod-
ule has trivial pairing withK-theory. Accordingly, the Poincarduality axiom does not
hold.

Another spectral triple 08U, (2) was presented if6]. Therein, the Hilbert spacH is
just (one copy of)LZ(SUq(Z)) with orthonormal basi§l9). The unitary representation is
just(20) and (21) The Dirac operator (up to a numerical factor) is

Degjj=1—28i¢)ls,j

wheres is the Kronecker symbol. It has bounded commutators «itbue to the term with
é the condition (jii) of definition 1 is satisfied only for one copy@f(su(2)), which is the
‘broken’ symmetry of this spectral triple. Thou@his not a positive operator, the Poincare’
duality does not hold8]. Another feature is that there is no ‘classical’ limit sind®, j:]
blows up for somé € A asq — 1. MoreoverJ and the first order condition f@ are not
discussed.

Despite these peculiarities the spectral tripl¢adthas been intensively studied|itil]
from the analytical point of view. Therein, among other things, certain smooth subalgebra of
A was defined, stable under holomorphic functional calculus. The regularity condition was
verified and the pseudodifferential calculus constructed. Its algebra of complete symbols
was determined (by computing the quotient by smoothing operators) and the cosphere
bundle ofSU,(2) constructed together with the geodesic flow. The summability condition
was verified and the dimension spectrum computed t& ke {1, 2, 3}. The reg of the
zeta function was explicitly computed and the explicit formula for the local index cocycle
obtained.

Yet another spectral triple o/, (2) appeared ifi7]. Therein, the Hilbert spacK has
orthonormal basis;; with i € N, j € Z. The (faithful) unitary representation is

[07 8,',}' = (1 — q2i)1/2 81'_1,/‘, (22)

Beij =4 &ij-1. (23)

Itis equivariant under the actien— za, g — wp of the groupU/(1) x U(1), implemented
onH bye; ; — z'w’ e; ;. A class ofU(1) x U(1)-invariant Dirac operators was identified
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and among them
D{;‘,"j = (i sign(j) + J) &ij (24)

which is two-summable and not positive. In the ‘classical’ limilegenerates to 0 argl
becomes the simple shift. Moreovkand the first order condition f@ are not established.
However, interestingly the corresponding Connes—de Rham and the square integrable dif-
ferential complexes have been computed.

Very recently a spectral triple appeafd®] with several nice properties.

The Hilbert space isLZ(SUq(Z)) ® C2 (note the order !). The representation of
U,(su(2)) ® Uy(su(2)) comes by coupling the first factor &f= @@3;_o Vi ® V; with V1o.
So in particulary ® u’ is represented as

@ or(u1) ® oe(u') ® o1/2(u2).
2020

Next, this coupling is diagonalized by decomposing the tensor productifits

=yt V= i) e
H=H'on =PwoPw,.
2j>0 2j>1

(For consistency with the labeling of the representationsgig the index¢ is offset by
+3.) Hence, the orthonormal basis is

€juny = Cju€jmprn ® €1/2,-1/2 + Sju €j-y=n ® €1/2,41/2 (25)
for the labelsj = [+ 3, u =m — 3, withpp = —j, ..., jandn = —j~, ..., j~ and

€junt ‘= —Sjy1pu €t ptn @ €172, 12+ Cjr1p €j+ -0 ® €1/2,41/2 (26)
for the labelsj =/ — 3, u =m — 3, withw = —j, ..., jandn = —j*,..., j*. Here the

coefficients are
Ciu =g U2 — V22172 Sj = gU WP [+ u]?[2/17Y% (27)
and shorthand notatioki™ := k + % is adopted. (Notice that there are ovectors for
j=0.)
In order to simplify the formulae for the representatiorAain A, the pair of spinors is
juxtaposed as

. €j

jun)) = ( ”‘"T) (28)
€junl

for j € 1/2N, with u = —j, ..., jandn = —j — &, ..., j+ 3, with the convention that

the lower component is zero when= + (j + %) or j = 0. Furthermore, a matrix with

scalar entries

= e T
ur iy
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is understood to act ojun)) by the rule:

T€junt = T4 €junt + TY4€juny,

(29)
T€junl = Ty €jun) t+ T4 €junt-

The unitary representatiom of A on LZ(SUq(Z)) ® C? is the tensor product of the left
regular representatiai20) and (21)andl,. On the basi$28) it reads explicitly

aljun)) = o, it nt))

Blinn)) = Blulitutn™)) + Byuli utno)),

+ g, rt ),

o jun)) = &, 1T TnT)) + &, i),
B Ljun)) = Bl it ™)) + B, i n e ), (30)

wherea andﬂ
2x2 matrlces

un are, upto phase factors depending onlyj,ahe following triangular

P G VARV

2+ 2] 0

X . . 9
L1 li—n+1/2]Y2 [+ n+1/2]Y2
Rj+1Ri+2 T 2i+1]
oy = qHEITE [ — )V
—j-1 [j—n+ 1/2]1/2 _q_l/z [j+n+ 1/2]1/2
8 [2j+ 1] RARI+1 |
0 qfl/Z[J ”_1/2]
[2/]
I A G VE TR e
[j —n+3/2]? 0
8 [2j +2]
Jj+1 [j+n+ 1/211/2 1/2 [j—n+ 1/2]1/2 ’
i+ aRi+2 ! [2) + 1]
IBJ'_;,Ln = q(—u—n—l/Z)/Z [J - M] 12
_pelitnt VAR Li—n 120
N [2j+ 1] [21[2) + 1] (31)

[j+n—1/21%2 |°

0 2]
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and the remaining matrices are the hermitian conjugates

~+ 7t
Yjun = (a/iu’n’)T’ Biun = (ﬁ./ﬁu’n*)T'

This (spinorial) representation is equivariant (cf. (iipxfinition 2) under the full symmetry
Uy(su(2)) ® Uy(su(2)).

(Note that the decomposition 67 ® V as taken if1,19] differs from V ® C2 by the
g-Clebsch—Gordan coefficients according to the rule

j I m [ j m
C =C
q(r s t ) q<—s —-r —t)

which amounts to a substitution gfby ¢~ in the coefficientsC and S (27). However,
C? ® V is not equivariant in the sense B&finition 2)
As far as the Dirac operator is concerned, it is diagonal with linear eigenvalues:

Dejunt =d] €junys  Déjuny = df €jun, (32)
where
d-civd  d=civc @

withe], e}, ct, s independent gt (The multiplicities are (2 + 1)(2j + 2) and 2i(2j + 1).)
SuchD is self-adjoint on a natural domain and has a compact resolvent. The linearity
of eigenvalues suffices to check that,[x], x € A, are bounded. Moreové is invariant

under the full, (su(2)) ® U,(su(2)) by construction.

In addition, ifci = —cI, c% = —c; + cI then the spectrum dd coincides with that of

the classical Dirac operatyy on the round sphers?, up to rescaling and addition of a
constant. Thus, this spectral triple is an isospectral deformatio@6(£°%), %, ), and in
particular, its spectral dimension is 3.

Altogether, (A(SU,(2)), H, D) forms a 3 -summable spectral triple, equivariant under
the full symmetryU, (su(2)) ® U,(su(2)), which is the whole rationale of its construction.
There is also an antilinear conjugation operat@n #H which is defined explicitly on

the orthonormal spinor basis by

. :2(2j
J €junt = PO € g (34)
Je; = 2@ e

junl Jo—m,—n,{

It is immediate thafl is antiunitary and thaf? = —1, since each g+ 2(x + n) is an odd
integer. Moreover/DJ~1 = D sinceD andJ diagonalize on their common eigenspaces
WJT and Wjl .

Besides these usual propertiegeparts from the axiom scheme for real spectral triples.
Namely it does not map’(A) to its commutant, but it does (!) modulo the two-sided ideal
G of B(H) generated by the (positive trace-class) operafgyun)) := g/ ljun)). (G C K
is contained in all ideals of infinitesimals of ordefor any« > 0).
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More precisely, for any, y € A,
[JxJ7L y] €G. (35)
Also the first order condition holds only up & that is for allx, y € A,
[JxJ =5 [D. )] €G. (36)

We remark that in a sense this spectral triple realizes the suggestjp8]i(see also
[12]). However differently to[19] (and[1]), the spinor representation is constructed by
tensorinng(SUq(Z)) byC? on the right rather than on the left. Though the Clebsch—Gordan
decomposition looks similar, the different asymptotics of the appropriate Clebsch—Gordan
coefficients leads to bounded commutatr fz(x)] instead of unbounded one for somig
[19] (there the off-diagonal terms a{x) are not compact but rather estimatedby 0 from
below). The origin of such a drastic difference is the (unbounded) non-co-commutativity
of U,(su(2)).

We refer to[29] for the analysis of this example along the line$df] culminating with
the local index formulae.

4. Quantum two-spheres

We pass now to two-dimensional examples.

4.1. The standard quantum sphere

The algebraA of the standard Poddequantum spher25] can be defined in terms of
generatora = a*, b, b* and relations (6< ¢ < 1)

ab = ¢’ba, ab* =q %b*a, bb* =g %a(l—a), b*b=a(l— ¢°a). (37)

The associated™-algebra is isomorphic to the minimal unitization of the comp#ct#
has one classical point given by the charaates 0, b — 0 andK-groups arekKg = Z?,
K, =0.

The algebr@ was discovered as4(SU,(2))-comodule algebra, butit can be also viewed
as a subalgebra of(SU,(2)) generated by

b=—a*B, b*=-Ba, a=pB* =d". (38)

The standard Podiequantum sphere is not only a homogenestig(2)-space, but also a
quotient spacs8U,(2)/U(1). (In fact the quantum Hopf fibration and monopole connection
are well known.)

Ther> action(16) of U,(su(2)) descends té, up to equivalence it reads

e>b=—q"?+q%a+q%? exb*=0era=qg
k>b=gb, krb"=q¢ " k>a=a,
feob=0fob*=@"?+q¢Y?a—-qg V% fra=—q"%. (39)
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However this is not the case fer. Indeed setting fom € %Z
Ay =1{h € A(SU4,(2)h <k =q"h}

(in particularAg = A) it is easy to see that,,<te = A, 1 andA,, < f = A,,,_1. (Never-
theless< will still play a role in the sequel.)

A spectral triple on the standard Pa&liphere has been constructeflli®]. The Hilbert
spaceH has the orthonormal basig,, s with ¢ e N+ 1/2,m € {—¢,—¢+1, ..., ¢} and
s € {—1, 1}. The bounded representatiarof A on# reads:

+ 0 -
a€om,s = Qg py s€0+1,m,s + Ap.m,s€C,m,s + Ay m,s€—Lm,s>

+ 0 -
beE,W,S = bz,m,s6€+l,m+l,s + be,m,see,m+1,s + bz’m’sée—l,m+l,37 (40)
where
+ o 20tmil-s/2
Ay s— — 4

(1 — g2-2m+2)1/2(1 _ j2t+2m+2)1/2

" (1= A L2(14 g3 g2l 1 gBl+T_ (Bi+5_ j80+8)1/2°

s =01+¢)"
N (1_q4l+2+q2K+2m +q21+2m+2)((1_q2/é—1) x (1_q2€+3)_sq21+s(1_q2))
(1+¢%)(1—g*)(1—g*+4)
— _ 2ttm—1-s)2 (1— g?2m)l2(1 — g2t+2m)l/2
Clﬁ,m,s_ —q (1 _ q42)1/2(1 + q2i+l + qZE—l _ q6/d+l _ qSZ—l _ qSZ)l/Z ’
(41)

9

(1 — g2+amtay1/2() _ j2t+2m+2)1/2

bt = /2
em,s = 4 (1 — g 1/2(1 4 q20+3 1 q20+1 — gBE+7 _ g60+5 _ ;8E+8)1/2

(1 o q2/é+2m+2)1/2(1 _ qZE—Zm)l/Z(sq2K+x(1 _ 6]2)
_(1 _ qzefl)(l _ q2€+3))

bO m—+L

tom,s — 4 (1 _ q4£)(1 _ q42+4) s
by = g2 (1 — g2=2m)L/2(] — g2t=2m=2)1/2 |
L,m,s (1- q4€)l/2(1 + qzz+1 + qz/é—l _ q61+l _ q6l—l _ q86)1/2

(42)

(The formulae fob* are similar.)

The action ofU,(su(2)) on A is as in(39). The x-representation olJ,(su(2)) on
H is a direct sum of the half integer spid € N + 1/2) finite dimensional irreducible
representations, (18) of U,(su(2)) with multiplicity 2 (s = +1). This corresponds
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to the simplest possible even spectral triple; higher multiplicities can be dealt accor-
dingly.

With this,  is a direct sum of (the only) two inequivalet, (su(2))-equivariant rep-
resentationsry of A(Sg) onHy (s = £1). In fact, 7 are irreducible representations of
A(S2) % U, (su(2)).

Next, in[16] the following operators are constructed: the grading

Y€tm,s = S€Lm,s»

the reality structure
JE(Z,m,s = izméf,—m,—s (43)

(antilinear isometry satisfying? = —1, yJ = —Jy and sendingq(qu) to its commutant),
and the Dirac operator

DEE,m,s = V + %:| €0.m,—s» (44)

satisfyingDy = —yD andDJ = JD andDu = uD, Vu € U,(su(2)).

In [16] itis shown that such datad #, D, J, y) define a (compact) real evéfy(su(2))-
equivariant spectral triple, which satisfies the first order condition. Moreover, with the action
(39) and the representatiq0)—(42) D is unique up to multiplication of the r.h.s. ¢14)
respectively by (or z) whens = +1 (ors = —1), wherez € C \ {0}.

Evidently D is a (unbounded) self-adjoint operator defined on a natural
dense domain in#H consisting of ¥ =3, < cems€ems: cems €C, such that

05 (L4 €+ 31)leemsl? < oo.

The limitg — 1isin agreementwith the classical spectral tripleséyidentifyinge, . .
with Yg'fm. Also, J coincides with the charge conjugation on spinors Briths the correct
g = 1 limit.

The geometrical meaning 61, J, D given above is quite clear. Recall that classically
Dirac spinory on 2 is a section of certain rank two vector bundle associated to the bundle
of spin frameswhich is nothing but the Hopf bundlé(1) — SU(2) — $°. Equivalentlyys
can be thought of a&(1)-equivariant (undez — z~1 @ z) C?-valued function orsU(2),
or equivalently, a&% &) % eigenvector okl H (Cartan generator af:(2)). Of course the
spacd” = {y/} of such polynomial spinors is a finite projective module o&er

The g-deformation of these bundles (and more) is well kng&22] and we can view
SU,(2) as the bundle of spig-frames, and Dirac spinoig, asq~/? @ ¢%/2 eigenspace of
the action< of K on A(SU,(2)). Explicitly,

Iy =A_12® A1z = span{a, B} @ span, {«*, B*}.

It is a finite projective module ovek, with a projector in Mat(2A) & Mat(2, A) being

ao™  of* ofa qotp
@ 45
(ﬂa* ﬂﬁ*) (qﬁ*a qzﬂ*ﬁ) o
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1—q%a —qb* l1—a —qgb
- 74T ) g . (46)
—qgb a —gb*  qg“a
The Hilbert scalar product comes by restriction fralr%(SUq(Z)) and sending ,, s —

[2¢ + 1]7Y2¢75/%¢4 5 /5. gives unitary isomorphism. This explains the relatiorof and
‘H to g-deformed Hopf bundles.

With this setup the above Dirac operator is ju%tsc g €). Then the invariancés) is

clear and sinced e and< f are twisted derivations it is immediate to 428,24]that for
xeA

. 0 gY%h < e
D= (q—l/zh af o ) (47)

are bounded.

We comment on other axioms. Concerning the dimension axiom the eigenvalues of
|D| are £[k], with degeneracy & wherek := ¢+ 1/2 € N. Thus the eigenvalues of
| D|~* decrease exponentially As—> oo for Rez > 0 (recall thaty < 1). By summing the
derivative of the geometric series finite-summability holds, actuaiymmability for any
e>0

4q —q1)q*
(¢ — 1)

Nextoy/logN — O for all z > 0, - oo for z < 0. So, loosely speaking, the metric
dimension of this geometry is {0, which matches the known drop by two of the coho-
mological dimension off-spaces. More precisely, the dimension spectiirshould be
studied, e.qg. the singularities &(z) = Tracey (8 |D|~%). For g = 1 its most divergent part
goes as

Tracey|D|” € <

fl)Zm'n/h

_ 44q—-4q
~ Ao — le kgk~ 2 1 J
@=a) = 7 (z — 2min/ h)?

asz ~ 2nin/h, whereh = loggq, Vn € N (at least forRe(z) > 0). This suggests that
should contain a (discrete) infinite latticei2 / h, n € Z of doublepoles on the imaginary
axis.

That simple poles are excluded could be expected from the divergengg &dg N at
z = 0, due to Tauberian theorem. Recall also that complex poles may appear on fractals
and multiple poles on singular manifolds.

Concerning the reality requiremedis tailored as in the (naive) dimensian= 2 (as
indicated by the signsii® = —1, JD = +DJ andJy = —yJ), which has at least the same
parity as metric dimension.

The regularity axiom does not hd@4] in its rigorous form but it looks as if there might
be some substitute for it since fére A,,, |D|*h|D|~* — ¢™*h is of order—1. Thus, by
(47)and recalling thak <e € A1 andh < f € A_3 for h € Ag = A, it appears that the
principal symbol of D| is not a scalar. But one can still work with this sort of ‘spin anomaly’
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by usingg-mutators since

_ g0 - —z—1
|DI™*[D, h] — (0 q_z>[D,h]|D| “=«k(2)IDI7*,

wherek(z) are bounded operators analyticarin fact a ‘twisted local index formula’ for
SU,(2) was worked out ii24] in the framework of twisted cyclic conomology.

Concerning the orientation axiom perhaps some modificatiorj28f containing
some proofs due to Heckenberger, and [28] may be helpful. They show, that
do = i[ D, m(a)] gives the unique two-dimensional covariant first order differential calculus
of [26].

The related universal differential calculus contain8-eentral two-form, with which
one can associate (via the Haar measursuch thaty(ab) = x(bo(a)), whereo is the
algebra automorphism @ given byo = K2 1>) a nontrivialo-twistedcyclic Hochschild
two-cocycler onA

(e, B.y) = x(@(B < )y < f) = dPa(B < )y < )
—-1\-1 10 2 -z
=(9—¢ ") "loggRes—>Try (0_q2>K |DI™*a[D, BI[D, y]

[28] (see also Versions 1 and 2[a0]).
4.2. The equatorial quantum sphere

The algebra of equatorial Po8lephere can be written as

ba=qPab, b'b+a®=1 bb*+q*a®=1.

The classical subset s (the ‘equatdi)given by the charactets— 0, b — A with || = 1.
The related”*-algebra is extension af(s*) by K @ K andKo = Z2, K1 = 0.
The symmetry used for the equivariance is now

k>a=a,e>a=q Y2* fr>a=—q %2,
k>b=qg,e>b=—-1+q¢ g%, fr>b=0,

In [17] the data#, y andJ are as in Sectiod.1 and the representation (up to equiv-
alence) ism = my @ m_ whereny are the (only) two irreduciblé/,(su(2))-equivariant
x-representations
 em (1 _ q2672m+2)1/2(1 _ q2€+2m+2)1/2
a€ym = —¢q 1— q4£+4 €¢+1m

2[_1(1 _ q2)(1+ q4€+2 _ qZZ—Zm _ q26—2m+2)
1-¢")1 - g%
P (1 _ q2l—2m)1/2(1 _ q2£+2m)1/2
1— g%

€0,m

€0—1,m> (48)
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2+2m+2)1/2(1 _ 20+ 2m+4)1/2

2-2m1(l—¢
1 _ q4[+4 €€+1,m+l

begm=q

2+2m+2)1/2(1 _ g20-2m1/2

3t—m—1 (1 - 6]4)(1 —q
+4 @~ A 4%

(1 _ q25—2m)1/2(1 _ q2£—2m—2)1/2
1— q4€

€0, m+1

€0—1,m+1- (49)

They are equivalent to the representation obtained by restricting the represef2@fiand
(21)of A(SU,(2)) to the subalgebraand by restricting{ to the (L2-completion) of certain
vector spaces (lef--modules) constructed {i3].

It is shown in[17] thatJ does not mapr(A) to its commutant, but it does modulo the
idealG c K generated by the operaigrone, , ;. More precisely, for any, y € A,

[xJ74 ) €G. (50)
The Dirac operator is
De@,m,s = (ﬁ + %) €0,m,—s- (51)

It is unique (up to rescaling and addition of a constant) under the same postulates as in
Sectiord.1except the first order condition is required only ugitdhat is for allx, y € A,

[xJ7%[D,y]] €G. (52)

More importantly, for anyx € A, the commutatorsi), x] are bounded. Moreover, it is
evident thaD is self-adjoint on a natural domain# and has compact resolvent. Since the
eigenvalues ofD| arek = £ + % e N with multiplicity 4k the deformation is isospectral
and the dimension requirement is satisfied with the spectral dimensian &f,(D) being
n=2.

4.3. The generic quantum sphere

The algebra of generic Poélspheresqz’c can be written as
ba = g’ab, b*b+d®>—a=cl, bb*+q*a® - q¢%a =1,
whereg < 1, 0 < ¢ < oo. The classical subset §& given by the charactets— 0, b — A
with |A| = c. The related’*-algebra is extension @f(S1) by K @ K andK = Z2, K1 = 0.

A spectral triple onS(iC appeared ifi7]. Therein, the Hilbert spack has orthonormal
basise, s with n € N, s € {—1, +1}. The (faithful) unitary representation is

aens = (3 +sc+PY2) ¢ ens. (53)

5 1/2
beps = ((% + s(c + %)1/2) a— (% +s(c + %)1/2) g+ c) s (54)
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Itis equivariant under the actien— za, g — wp of the groupU/(1) x U(1), implemented
onH bye; ; — zZ'w’ e; ;. A class ofU(1) x U(1)-invariant Dirac operators was identified
and among them,

De,s=ney g, (55)

which is one-summable, not positive and has bounded commutators with the algebra. This
spectral triple is everye, ; = s €, 5, has nontrivial Chern character hland the first order
condition are not considered. However, interestingly the corresponding Connes—de Rham
differential complex has been computed.

5. Final comments

It is worth mentioning thab, or its spectrum, taken individually carries only part of the
available geometric information. It is the interplay of all the data of the spectral triple (also
Jandy) on the Hilbert space, that imposes some really stringent restrictions and produces
the spectacular consequences.

The examples of some recently constructed spectral triples on quantum spheres we
have described dissolve the widespread belief that Connes’ approach to honcommutative
geometry does not match quantum-group theory.

The last example in SectioB acting on two copies of thé, space is odd, isospec-
tral to the classical Dirac operator, three-summable and had/§€(2)) ® U,(si(2))
symmetry. It exhibits a variation of ‘up to infinitesimals’ of the reality condition
and the first order condition, which was anticipated by the even, isospectral, two-
summable U, (sI(2))-equivariant example in Sectigh2 The (even) example of Section
4.1is not isospectral but it satisfies the reality and the first order axioms in the strict
sense.

We believe the isospectral deformations will prove useful incgeeometry and will be
omnipresent on othay-deformed spaces. In fact this point is currently studied on general
Podl& sphere (including the standard one).

There are several interesting open mathematical problems regarding the analytic
properties of these spectral triples (regularity and finiteness) as well as the alge-
braic ones (orientation and Poinéaduality) and of the local index formulae on two-
spheres.

Fromthe more physical point of view the interesting questions regard e.g. the construction
of a wider class of spectral triples and of the Yang—Mills and gravitation theories on
deformed spaces. In particular the action functig¢h&) on spectral triples, the gravitational
part of which exhibits a huge symmetry includigedeformations ofA with isospectral
deformations oD, and its extrema should be further studied.
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