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1. Introduction

It is known that de Sitter space is a Lorentzian space form with positive curvature. The aim of this paper is to investigate
the geometric meanings of the singularities of the lightlike hypersurfaces and the lightcone Gauss maps of spacelike
submanifolds in de Sitter space as an application of the Legendrian singularity theory. We will give examples of de Sitter
4-space case. The de Sitter 4-space corresponds to the cosmic model and spacelike surfaces in de Sitter 4-space are
submanifolds of codimension two.
Izumiya, Pei and Sano [1] investigated the extrinsic differential geometry of hypersurfaces in hyperbolic space by using

the theory of Legendrian singularities. They observed the singularities of lightcone Gauss indicatrices and lightcone Gauss
maps, which have geometrical meanings of spacelike hypersurfaces. Izumiya, Kossowski, Pei and Romero Fuster [2] investi-
gated lightlike hypersurfaces of spacelike surfaces in Minkowski 4-space. Moreover, Izumiya and Romero Fuster [3] inves-
tigated spacelike submanifold of codimension two in general dimensional Minkowski space. They showed a Gauss–Bonnet
type formula in terms of a Gauss–Kronecker curvature with respect to the lightlike normals. Fusho and Izumiya [4] in-
vestigated lightlike surfaces of spacelike curves in de Sitter 3-space by using the Frenet–Serret type formula and gave a
classification of singularities of lightlike surfaces of generic spacelike curves, which are a cuspidal edge and a swallowtail
(Figs. 1 and 2).
In [5] we investigated the singularities of lightcone Gauss images of spacelike hypersurfaces in de Sitter space, which

is analogous to the case of hyperbolic space [1]. We are motivated to investigate the differential geometry of spacelike
submanifolds of other codimension cases. The normal direction of the spacelike submanifold cannot be chosen uniquely.
However, if we consider the codimension two case, we can determine the lightcone normal frames and define two maps
called Gauss maps and lightlike hypersurfaces by using the analogous tools in [2,3].
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Fig. 1. Cuspidal edge.

Fig. 2. Swallowtail.

In Section 2 we introduce the notion of the lightcone Gauss map, the normalized lightcone Gauss–Kronecker curvature
and principal curvatures. The lightcone Gauss map does not depend on the choice of the future directed normal frame.
In Section 3 we introduce the notions of the lightlike hypersurface and a family of functions that is called the Lorentzian
distance squared function on the spacelike submanifold. The singular set of the lightlike hypersurface corresponds to the
normalized lightcone principal curvatures of the spacelike submanifold, and this can be interpreted as the discriminant set
of the family of height functions. In Sections 4 and 5 we discuss the contact of spacelike submanifolds with lightcones in de
Sitter space. We apply the theory of Legendrian singularities for the study of lightcone Gauss images of generic spacelike
submanifolds. In Sections 6 and 7 we introduce the notion of a family of functions that is called the lightcone height
function. The singular set of the normalized lightcone Gauss map corresponds to the normalized lightcone parabolic set
on the spacelike submanifold, and this can be interpreted as the discriminant set of the family of lightcone height functions.
We discuss the contact of spacelike submanifolds with lightlike cylinders in de Sitter space. In Section 8 we classify the
singularities of lightlike hypersurfaces and lightcone Gauss maps of generic spacelike surfaces in de Sitter 4-space, and give
some examples which have their singularities.

2. Spacelike submanifolds in de Sitter space

In this section we construct the extrinsic differential geometry of spacelike submanifolds of codimension two in de Sitter
space which is analogous to the theory in [3]. Let Rn+1 = {x = (x0, . . . , xn) | xi ∈ R (i = 0, . . . , n)} be an (n + 1)-
dimensional vector space. For any vectors x = (x0, . . . , xn), y = (y0, . . . , yn) inRn+1, the pseudo-scalar product of x and y is
defined by 〈x, y〉 = −x0y0+

∑n
i=1 xiyi.We call (R

n+1, 〈, 〉) aMinkowski (n+ 1)-space and write Rn+11 instead of (Rn+1, 〈, 〉).
We say that a vector x ∈ Rn+11 \ {0} is spacelike, timelike or lightlike if 〈x, x〉 > 0, 〈x, x〉 = 0 or 〈x, x〉 < 0 respectively.

The norm of the vector x ∈ Rn+11 is defined by ‖x‖ =
√
|〈x, x〉|. For a vector v ∈ Rn+11 \ {0} and a real number c , we define

a hyperplane with pseudo-normal v by HP(v, c) = {x ∈ Rn+11 | 〈x, v〉 = c}.We call HP(v, c) a spacelike hyperplane, timelike
hyperplane or lightlike hyperplane if v is timelike, spacelike or lightlike respectively.
We now respectively define hyperbolic n-space and de Sitter n-space by

Hn
+
(−1) = {x ∈ Rn+11 | 〈x, x〉 = −1, x0 ≥ 1},

Sn1 = {x ∈ Rn+11 | 〈x, x〉 = 1}.

For any x1, x2, . . . , xn ∈ Rn+11 , we can define a vector x1 ∧ x2 ∧ · · · ∧ xn with the property 〈x, x1 ∧ · · · ∧ xn〉 =
det(x, x1, . . . , xn), so that x1 ∧ · · · ∧ xn is pseudo-orthogonal to any xi (for i = 1, . . . , n) (c.f. [3]).
We also define a set LCa = {x ∈ Rn+11 | 〈x− a, x− a〉 = 0}, which is called a closed lightconewith vertex a. We denote

LC∗
±
= {x = (x0, . . . , xn) ∈ LC0 | x0 > 0 (x0 < 0)}

and call it the future (resp. past) lightcone at the origin.
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LetX : U −→ Sn1 be an embedding from an open setU ⊂ Rn−2. We say thatX is spacelike in Sn1 if {Xui(u)}
n−2
i=1 are spacelike,

where u ∈ U and Xui = ∂X/∂ui. We identifyM = X(U)with U through the embedding X and callM a spacelike submanifold
of codimension two in Sn1 .
Since 〈X,X〉 ≡ 1, we have 〈Xui ,X〉 ≡ 0 (for i = 1, . . . , n − 2). In this case, for any p = X(u), the pseudo-normal space

NpM is a timelike plane. we can choose a future directed unit normal section nT (u) ∈ NpM satisfying 〈nT (u),X(u)〉 = 0.
Therefore we can construct a spacelike unit normal section nS(u) ∈ NpM by

nS(u) =
nT (u) ∧ Xu1(u) ∧ · · · ∧ Xun−2(u)
‖nT (u) ∧ Xu1(u) ∧ · · · ∧ Xun−2(u)‖

,

and we have 〈nT (u),nT (u)〉 = −1, 〈nT (u),nS(u)〉 = 0, 〈nS(u),nS(u)〉 = 1. Therefore vectors nT (u) ± nS(u) are lightlike.
We call (nT ,nS) a future directed normal frame along M = X(U). The system {X(u),nT (u),nS(u),Xu1(u), . . . ,Xun−2(u)} is a
basis of TpRn+11 .

Lemma 2.1. Given two future directed unit timelike normal sections nT (u), n̄T (u) ∈ NpM, the corresponding lightlike normal
sections nT (u)± nS(u), n̄T (u)± n̄S(u) are parallel.

The proof is almost the same as that of Lemma 3.1 in [3], so that we omit it. Under the identification ofM and U through
X, we have the linear mapping provided by the derivative of the lightlike normal sections nT ± nS at p ∈ M

dp(nT ± nS) : TpM −→ TpRn+11 = TpM ⊕ NpM.

Consider two orthonormal projections π t : TpRn+11 −→ TpM and πn : TpRn+11 −→ NpM . We define

dp(nT ± nS)t = π t ◦ dp(nT ± nS),
dp(nT ± nS)n = πn ◦ dp(nT ± nS).

We respectively call the linear transformation S±p (n
T ,nS) = −dp(nT ± nS)t an (nT ,nS)-shape operator of M = X(U) at

p = X(u).
The eigenvalues of S±p (n

T ,nS) denoted by {κ±i (n
T ,nS)(p)}n−2i=1 are called the lightcone principal curvatureswith respect to

(nT ,nS) at p. Then the lightcone Gauss–Kronecker curvaturewith respect to (nT ,nS) at p is defined as
K±` (n

T ,nS)(p) = det S±p (n
T ,nS).

We say that a point p is an (nT ,nS)-umbilic point if all the principal curvatures coincide at p and thus S±p (n
T ,nS) =

κ± idTpM for some κ
±
∈ R. We say thatM is (nT ,nS)-totally umbilic if all points onM are (nT ,nS)-umbilic.

Since Xui (i = 1, . . . , n − 2) are spacelike vectors, we have a Riemannian metric (or the first fundamental form) on M
defined by ds2 =

∑n−2
i,j=1 gijduiduj, where gij(u) = 〈Xui ,Xuj〉 for any u ∈ U . We also have a lightcone second fundamental

form (or the lightcone second fundamental invariant) with respect to the normal vector field (nT ,nS) defined by h±ij (u) =
−〈(nT ± nS)ui ,Xuj〉 for any u ∈ U .

Lemma 2.2. We have the following lightconeWeingartenformula with respect to (nT ,nS).

(nT ± nS)ui = ±〈n
S,nTui〉(n

T
± nS)−

n−2∑
j=1

h±ji (n
T ,nS)Xuj ,

where (hj±i (n
T ,nS))ij =

(
h±ik(n

T ,nS)
)
ik (g

kj)kj and (gkj)kj = (gkj)−1. Therefore we have

π t ◦ (nT ± nS)ui = −
n−2∑
j=1

hj±i (n
T ,nS)Xuj .

The proof is almost the same as that of Proposition 3.2 in [3], so that we omit it. Those formula induce an explicit
expression of the lightcone Gauss–Kronecker curvature in terms of the Riemannian metric and the lightcone second
fundamental invariant as follows:

K±` (n
T ,nS)(p) =

det(h±ij (n
T ,nS)(u))

det(gαβ)(u)
.

We say that a point p is an (nT ,nS)-parabolic point if K±` (n
T ,nS)(p) = 0, and M is an (nT ,nS)-flat point if p is (nT ,nS)-

umbilic and K±` (n
T ,nS)(p) = 0.

For a lightlike vector v = (v0, v1, . . . , vn) we define ṽ = (1, v1/v0, . . . , vn/v0). By Lemma 2.1, if we choose another

future directed unit timelike normal section n̄T (u), then we have ˜nT (u)± nS(u) = ˜n̄T (u)± n̄S(u) ∈ Sn−1+ . Therefore we
define the lightcone Gauss map ofM = X(U) as
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L̃± : U −→ Sn−1
+
, L̃±(u) = ˜nT (u)± nS(u).

The lightcone Gauss map is analogous to the Minkowski space which is studied in [3]. This induces a linear mapping
dL̃± : TpM −→ TpRn+11 under the identification of U andM , where p = X(u). We have the following normalized lightcone
Weingarten formula:

π t ◦ L̃±ui =
1
`±0
(π t ◦ L±ui) = −

n−2∑
j=1

1
`±0
h±ji (n

T ,nS)Xuj ,

where L±(u) = (`±0 (u), . . . , `
±
n (u)).

We call linear transformation S±p = −π
t
◦ dL̃±p : TpM −→ TpM the normalized lightcone shape operator of M at p.

The eigenvalues {̃κ±i (p)}
n−2
i=1 of S̃

±
p are called normalized lightcone principal curvatures. By the above proposition, we have

κ̃±i (p) = (1/`
±

0 (u))κ
±

i (n
T ,nS)(p). The normalized lightcone Gauss–Kronecker curvature of M is defined to be K̃±` (u) = det S̃

±
p .

Then we have the following relation between the normalized lightcone Gauss–Kronecker curvature and the lightcone
Gauss–Kronecker curvature:

K̃±` (u) =
(
1

`±0 (u)

)n−2
K±` (n

T ,nS)(u).

It is clear from the corresponding definitions that the lightcone Gauss map, the normalized lightcone principal curvatures
and the normalized lightcone Gauss–Kronecker curvature are independent on the choice of the normal frame (nT ,nS).
We say that a point u ∈ U or p = X(u) is a lightlike umbilic point if S̃±p = κ̃±p (p)idTpM . By the above proposition, p is a

lightlike umbilic point if and only if p is a (nT ,nS)-umbilic point for any (nT ,nS). We say that M is totally lightlike umbilic
if all points on M are lightlike umbilic. We also say that p is a lightlike parabolic point (briefly L̃±-parabolic) if K̃±` (u) = 0.
Moreover, p is called a lightlike flat point if p is both lightlike umbilic and lightlike parabolic. The spacelike submanifold M
in Sn1 is called totally lightlike flat if every point inM is lightlike flat.

3. Lightlike hypersurfaces

In this section we define the Lorentzian distance squared function in order to study the singularities of lightlike
hypersurfaces.
We define a hypersurface LH±M : U × R −→ Sn1 by

LH±M (u, µ) = X(u)+ µL̃±(u).

We call LH±M the lightlike hypersurface along M . It is analogous to the Minkowski 4-space which is studied in [2], and has
been introduced by Izumiya and Fusho [4]. We introduce the notion of Lorentzian distance squared functions on spacelike
submanifold of codimension two, which is useful for the study of singularities of lightlike hypersurfaces. We define a family
of functions G : U × Sn1 −→ R on a spacelike submanifoldM by

G(u, λ) = 〈X(u)− λ,X(u)− λ〉,

where p = X(u). We call G Lorentzian distance squared function on the spacelike submanifold M . For any fixed λ0 ∈ Sn1 , we
write gλ0(u) = G(u, λ0) and have following proposition.

Proposition 3.1. Let M be a spacelike submanifold of codimension two and G : U × Sn1 −→ R the Lorentzian distance squared
function on M. Suppose that p0 = X(u0) 6= λ0 and have the following:

(1) gλ0(u0) = ∂gλ0(u0)/∂ui = 0 (i = 1, . . . , n− 2) if and only if λ0 = LH
±

M (u0, µ) for some µ ∈ R \ {0}.
(2) gλ0(u0) = ∂gλ0(u0)/∂ui = 0 (i = 1, . . . , n − 2) and det Hess (gλ0)(u0) = 0 if and only if λ0 = LH

±

M (u0, µ0) for some
µ0 ∈ R \ {0} and−1/µ0 is one of the non-zero normalized lightcone principal curvatures κ̃±i (p0).

We now naturally interpret the lightlike hypersurface of the spacelike submanifold in Sn1 as a wave front set in the theory
of Legendrian singularities. Let π± : PT (Sn1) −→ Sn1 be the projective cotangent bundles with canonical contact structures.
Consider the tangent bundle τ± : TPT ∗(Sn1) −→ PT ∗(Sn1) and the differential map dπ

±
: TPT (Sn1) −→ T (Sn1) of π

±. For
any X ∈ TPT ∗(Sn1), there exists an element α ∈ T

∗(Sn1) such that τ
±(X) = [α]. For an element V ∈ Tx(Sn1), the property

α(V ) = 0 does not depend on the choice of representative of the class [α]. Thus, we can define the canonical contact
structure on PT ∗(Sn1) by

K = {X ∈ TPT ∗(Sn1) | τ
±(X)(dπ±(X)) = 0}.

On the other hand, we consider a point λ = (λ0, λ1, . . . , λn) ∈ Sn1 , then we have the relation λi =√
λ20 − · · · − λ

2
i−1 − λ

2
i+1 − · · · − λ

2
n + 1 > 0 for some i. So we adopt the coordinate system (λ1, . . . , λ̂i, . . . , λn) of the
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manifold Sn1 . Then we have the trivialization PT
∗(Sn1) ≡ S

n
1 × PR

n−1, and call ((λ0, . . . , λn), [ξ1 : · · · : ξn]) homogeneous
coordinates of PT ∗(Sn1), where [ξ1 : · · · : ξn] are the homogeneous coordinates of the dual projective space PR

n−1.
It is easy to show that X• ∈ K±• if and only if

∑n
i=1 µiξi = 0, where • = (x, [ξ ]) and dπ

±
•
(X•) =

∑n
i=1 µi∂/∂vi ∈ T•S

n
1 .

An immersion i : L −→ PT ∗(Sn1) is said to be a Legendrian immersion if dim L = n− 1 and diq(TqL) ⊂ Ki(q) for any q ∈ L. The
map π ◦ i is also called the Legendrian map and the imageW (i) = image(π ◦ i), thewave front of i. Moreover, i (or the image
of i) is called the Legendrian lift ofW (i).
Let F : (Rn−1 × Rk, (u0, λ0)) −→ (R, 0) be a function germ. We say that F is aMorse family of hypersurfaces if the map

germ∆∗F : (Rn−1 × Rk, (u0, λ0)) −→ (Rn, 0) defined by

∆∗F =
(
F ,
∂F
∂u1

, . . . ,
∂F
∂un−1

)
is nonsingular. In this case, we have a smooth (k− 1)-dimensional smooth submanifold,

Σ∗(F) =
{
(u, λ) ∈ (Rn−1 × Rk, (u0, λ0))

∣∣∣∣F(u, λ) = ∂F
∂u1

(u, λ) = · · · =
∂F
∂un−1

(u, λ) = 0
}
,

and the map germLF : (Σ∗(F), (u0, λ0)) −→ PT ∗Rk defined by

LF (u, λ) =
(
v,

[
∂F
∂u1

(u, λ) : · · · :
∂F
∂un−1

(u, λ)
])

is a Legendrian immersion germ. Then we have the following fundamental theorem of Arnol’d and Zakalyukin [6,7].

Proposition 3.2. All Legendrian submanifold germs in PT ∗Rk are constructed by the above method.

We call F a generating family ofLF (Σ∗(F)). Therefore the wave front is

W (LF ) =
{
λ ∈ Rk

∣∣∣∣∃u ∈ Rn−1 such that F(u, λ) =
∂F
∂u1

(u, λ) = · · · =
∂F
∂un−1

(u, λ) = 0
}
.

We call it the discriminant set of F . By proceeding arguments, the lightlike hypersurface LH±M is the discriminant set of
the Lorentzian distance squared function G, and the singular point set of the lightlike hypersurface is a point λ0 =
LH±M (u0,−1/̃κ

±

i (p0)). We have the following proposition.

Proposition 3.3. Let G be the Lorentzian distance squared function on M. For any point (u, λ) ∈ ∆∗G−1(0), G is a Morse family
of hypersurfaces around (u, λ).

Proof. Forλ = (λ0, . . . , λn) ∈ Sn1 ,λi 6= 0 for some i.Without loss of generality, we assume thatλn > 0 and local coordinates

around λ in de Sitter space Sn1 is given by λ = (λ0, . . . , λ̂k, . . . , λn−1), where λn =
√
1+ λ20 − λ

2
1 − · · · − λn−1. Jacobian of

∆∗G is given by

B(u, λ) =


(
−Xj(u)+ Xn(u)

λn
λj

)
j=0,...,n−1(

Xj,ui(u)−
Xn,ui (u)
λn

λj

)
j=0,...,n−1
i=1,...,n−2


where X(u) = (X0(u), . . . , Xn(u)),Xui = (X0,ui(u), . . . , Xn,ui(u)) for (i = 1, . . . , n − 1). On the other hand,
λ,X(u),Xu1(u), . . . ,Xun−2 are linearly independent on (u, λ) ∈ ∆

∗G−1(0), so that rank of n× (n− 1)matrix
λ0 −λ1 · · · −λn−1 −λn
X0(u) −X1(u) · · · −Xn−1(u) −Xn(u)
X0,u1(u) −X1,u1(u) · · · −Xn−1,u1(u) −Xn,u1(u)

...
...

...
...

X0,un−2(u) −X1,un−2(u) · · · −Xn−1,un−2(u) −Xn,un−2(u)


is n. We subtract the first row multiplied by Xn(u)/λn from the second row, and then subtract the first row multiplied by
Xn,uk(u)/λn from the (2+ k)th row for k = 1, . . . , n− 2. We have

λ0 − λ1 · · · − λn−1 −λn

B(u, λ)

0
...
0

 .
Therefore rank B(u, λ) = n− 1. This completes the proof. �
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Since G is a Morse family of hypersurfaces, we have the Legendrian immersionL±G : Σ∗(G) −→ PT ∗(Sn1) defined by

L±G (u, λ) =

(
λ,

[
∂G
∂λ1

(u, λ) : · · · :
∂̂G
∂λk

(u, λ) : · · · :
∂G
∂λn

(u, λ)

])
where λ = (λ0, . . . , λn) and Σ∗(G) = (∆∗G)−1(0) = {(u, λ) ∈ U × Sn1 | λ = LH

±

M (u, µ), µ ∈ R}. We observe that G is a
generating family of the Legendrian immersionL±G whose wave front set is the image of LH

±

M .

4. Contact with lightcones

In this section we use the theory of contacts between submanifolds due to Montaldi [8]. We define a set LC(Sn1)λ0 =
LCλ0 ∩ S

n
1 and call it a de Sitter lightcone.

Proposition 4.1. Let λ0 ∈ Sn1 and M be a spacelike submanifold of codimension two without umbilic points satisfying K̃` 6= 0.
Then M ⊂ LC(Sn1)λ0 if and only if λ0 is an isolated singular value of the lightlike hypersurface LH

±

M and LH
±

M (U ×R) ⊂ LC(Sn1)λ0 .

Proof. We assume that M ⊂ LC(Sn1)λ0 . By Proposition 3.1, there exists a smooth function µ : U −→ R such that

X(u) = λ0 + µ(u) · ˜(nT ± nS)(u). Therefore, LH±M (U × R) ⊂ LC(Sn1)λ0 .
We now show that λ0 is isolated singularity. It follows that

∂LH±M
∂t

(u, t) = ˜(nT + nS)(u)

∂LH±M
∂ui

(u, t) = µui(u)
˜(nT + nS)(u)+ (t + µ(u)) ˜(nT + nS)ui(u) (i = 1, . . . , n− 2).

Then, we have

P(u) := X(u) ∧
∂LH±M
∂t

(u, t) ∧
∂LH±M
∂u1

(u, t) ∧ · · · ∧
∂LH±M
∂un−2

(u, t)

= (t + µ(u))n−2 · X(u) ∧ ˜(nT + nS)(u) ∧ ˜(nT + nS)u1(u) ∧ · · · ∧
˜(nT + nS)un−2(u).

On the other hand, X(u) − λ0 = µ(u) · ˜(nT + nS)(u) 6= 0 is a lightlike vector and TpM are spacelike, so that X(u),X(u) −
λ0,Xu1(u), . . . ,Xun−2(u) are linearly independent. Therefore we have

0 6= X(u) ∧ (X(u)− λ0) ∧ Xu1(u) ∧ · · · ∧ Xun−2(u)

= µ(u)n−1 · X(u) ∧ ˜(nT + nS)(u) ∧ ˜(nT + nS)u1(u) ∧ · · · ∧
˜(nT + nS)un−2(u)

so that X(u)∧ ˜(nT + nS)(u)∧ ˜(nT + nS)u1(u)∧ · · · ∧
˜(nT + nS)un−2(u) 6= 0. Therefore P(u) = 0 if and only if t +µ(u) = 0.

This means that λ0 is an isolated singular value of LH±M . The converse is trivial. �

We remark that this proposition is generalization of Proposition 4.1 in [2]. We now consider the contact of spacelike
submanifolds of codimension two with lightcones due to Montaldi’s result [8]. Let Xi and Yi (i = 1, 2) be submanifolds of
Rn with dim X1 = dim X2 and dim Y1 = dim Y2. We say that the contact of X1 and Y1 at y1 is the same type as the contact of
X2 and Y2 at y2 if there is a diffeomorphism germ Φ : (Rn, y1) −→ (Rn, y2) such that Φ(X1) = X2 and Φ(Y1) = Y2. In this
case we write K(X1, Y1; y1) = K(X2, Y2; y2).
Two function germs g1, g2 : (Rn, ai) −→ (R, 0) (i = 1, 2) are K-equivalent if there are a diffeomorphism germ

Φ : (Rn, a1) −→ (Rn, a2), and a function germ λ : (Rn, a1) −→ R with λ(a1) 6= 0 such that f1 = λ · (g2 ◦ Φ). In [8]
Montaldi has shown the following theorem.

Theorem 4.2. (Montaldi [8]) Let Xi and Yi (for i = 1, 2) be submanifolds of Rn with dim X1 = dim X2 and dim Y1 = dim Y2.
Let gi : (Xi, xi) −→ (Rn, yi) be immersion germs and fi : (Rn, yi) −→ (Rp, 0) be submersion germs with (Yi, yi) = (f −1i (0), yi).
Then K(X1, Y1; y1) = K(X2, Y2; y2). if and only if f1 ◦ g1 and f2 ◦ g2 areK-equivalent.

Returning to lightlike hypersurfaces, we now consider the functionG : Sn1×S
n
1 −→ R defined byG(x, λ) = 〈x−λ, x−λ〉.

For a given λo ∈ Sn1 , we denote gλ0(x) = G(x, λ0), then we have g−1λ0 (0) = LC(S
n
1)λ0 . For any u0 ∈ U , we take the point

λ±0 = X(u0)+ µ0L̃±(u0) and have

(gλ±0
◦ X)(u0) = G ◦ (X× idSn1 )(u0, λ

±

0 ) = G(u0, λ
±

0 ) = 0,
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where p0 = X(u0) and µ0 = −1/̃κ±i (u0), (i = 1, . . . , n− 1). We also have

∂(gλ±0
◦ X)

∂ui
(u0) =

∂G
∂ui
(u0, λ±0 ) = 0.

It follows that the lightcone g−1
λ±0
(0) = LC(Sn1)λ0 is tangent to M at p0 = X(u0). In this case, we call each LCλ±0 a tangent

lightcone ofM at p0.
We now review some notions of Legendrian singularity theory to study the contact between hypersurfaces and de Sitter

hyperhorospheres.We say that Legendrian immersion germs ij : (Uj, uj) −→ (PT ∗Rn, pj) (j = 1, 2) are Legendrian equivalent
if there exists a contact diffeomorphism germ H : (PT ∗Rn, p1) −→ (PT ∗Rn, p2) such that H preserves fibers of π and
H(U1) = U2. A Legendrian immersion germ at a point is said to be Legendrian stable if for every map with the given germ
there are a neighborhood in the space of Legendrian immersions (in the Whitney C∞-topology) and a neighborhood of the
original point such that each Legendrian map belonging to the first neighborhood has in the second neighborhood a point
at which its germ is Legendrian equivalent to the original germ.

Proposition 4.3 (Zakalyukin [9]). Let i1, i2 be Legendrian immersion germs such that regular sets of π ◦ i1 and π ◦ i2 are
respectively dense. Then i1, i2 are Legendrian equivalent if and only if corresponding wave front sets W (i1) and W (i2) are
diffeomorphic as set germs.

Let Fi : (Rn × Rk, (ai, bi)) −→ (R, c) (k = 1, 2) be k-parameter unfoldings of function germs fi, we say F1 and F2
are P–K-equivalent if there exists a diffeomorphism germ Φ : (Rn × Rk, (a1, b1)) −→ (Rn × Rk, (a2, b2)) of the form
Φ(u, x) = (φ1(u, x), φ2(x)) for (u, x) ∈ Rn × Rk and a function germ λ : (Rn × Rk, (a1, b1)) −→ R such that λ(a1, b1) 6= 0
and F1(u, x) = λ(u, x) · (F2 ◦ Φ)(u, x).

Theorem 4.4 (Arnol’d, Zakalyukin [6,7]). Let F ,G : (Rk × Rn, 0) −→ (R, 0) be Morse families and denote the corresponding
Legendrian immersion germs byLF ,LG. Then

(1) LF andLG are Legendrian equivalent if and only if F and G are P–K-equivalent.
(2) LF is Legendrian stable if and only if F isK-versal deformation of f .

Let LH±M,i : (U, ui) −→ (Sn1 , λ
±

i ) (for i = 1, 2) be lightlike hypersurface germs of Xi : (U, ui) −→ (Sn1 , λi). We say
that LH±M,1 and LH

±

M,2 are A-equivalent if and only if there exist diffeomorphism germs φ : (U, u1) −→ (U, u2) and
Φ : (Sn1 , λ

±

1 ) −→ (Sn1 , λ
±

2 ) such that Φ ◦ L±1 = L±2 ◦ φ. We denote gi,λ±i : (U, ui) −→ (R, 0) by gi,λ±i (u) = Gi(u, λ
±

i ).
Then we have gi,λ±i (u) = (gi,λ±i ◦ Xi)(u). By Theorem 4.2,

K(X1(U), LCλ±1 ; λ
±

1 ) = K(X2(U), LCλ±2 ; λ
±

2 )

if and only if g1,λ±1 and g2,λ±2 areK-equivalent.
Let Q±(X, u0) be the local ring of the function germ gλ±0 : (U, u0) −→ R defined by

Q±(X, u0) = C∞u0 (U)/〈gλ±0 〉C
∞
u0 (U)

,

where λ0 = LH±M (u0, µ0) and C
∞
u0 (U) is the local ring of function germs at u0 with the unique maximal idealM.

Proposition 4.5. Let F ,G : (Rk × Rn, 0) −→ (R, 0) be Morse families. Suppose that Legendrian immersion germs LF and LG
are Legendrian stable, then the following conditions are equivalent:

(1) (W (LF ), λ) and (W (LG), λ′) are diffeomorphic as set germs.
(2) LF andLG are Legendrian equivalent.
(3) Q (f ) and Q (g) are isomorphic as R-algebras, where f = F |Rk×{0} and g = G |Rk×{0}.

The proof is almost the same as that of Theorem 6.3 in [1], so that we omit it. By the above propositions, we have following
theorem.

Theorem 4.6. Let Xi : (U, ui) −→ (Sn1 , pi) (for i = 1, 2) be spacelike submanifold germs such that the corresponding Legendrian
immersion germs are Legendrian stable. Then the following conditions are equivalent:

(1) Lightlike hypersurface germs LH±M,1 and LH
±

M,2 areA-equivalent.
(2) Legendrian immersion germsL±1 andL±2 are Legendrian equivalent.
(3) Lorentzian distance squared function germs G1 and G2 are P–K-equivalent.
(4) g±1,λ1 and g

±

2,λ2
areK-equivalent.

(5) K(X1(U), LCλ±1 ; p1) = K(X2(U), LCλ±2 ; p2)
(6) Local rings Q±(X1, u1) and Q±(X2, u2) are isomorphic as R-algebras.
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Proof. Since LH±M,1 and LH
±

M,2 are Legendrian stable, regular sets of LH
±

M,1 and LH
±

M,2 are respectively dense, by Proposi-
tion 4.3, the conditions (1) and (2) are equivalent. And we apply Theorem 4.4, the conditions (2) and (3) are equivalent.
By the previous arguments from Theorem 4.2, the conditions (4) and (5) are equivalent. If we assume the condition (3),
then P–K-equivalence preserves theK-equivalence, so that the condition (4) holds. Since the local ring Q±(Xi, ui) isK-
invariant, this means that the condition (6) holds. By Proposition 4.5, the condition (6) implies the condition (2). �

In the next section, we will prove that the assumption of the Theorem 4.6 is a generic property in the case when n ≤ 6.
In general we have the following proposition.

Proposition 4.7. Let Xi : (U, ui) −→ (Sn1 , pi) (for i = 1, 2) be spacelike submanifold germs and regular sets of their lightlike
surfaces LH±M,i are dense in U. If lightlike hypersurface germs LH

±

M,1 and LH
±

M,2 areA-equivalent, then

K(X1(U), LCλ±1 ; p1) = K(X2(U), LCλ±2 ; p2).

In this case, (X−11 (LCλ±1 ), u1) and (X
−1
2 (LCλ±2 ), u2) are diffeomorphic as set germs.

Proof. By Proposition 4.3, if LH±M,1 and LH
±

M,1 areA-equivalent, thenL±1 andL±2 are Legendrian equivalent. By Theorem 4.4,
G1 and G2 are P–K-equivalent, so that g1,λ±1 and g2,λ±2 areK-equivalent. Applying Theorem 4.2, the first assertion holds.

On the other hand, g−1
i,λ±i
(0) = (X−1i (LCλ±i ), ui) andK-equivalence preserves the zero level sets, so that (X−11 (LCλ±1 ), u1) and

(X−12 (LCλ±2 ), u2) are diffeomorphic as set germs. �

5. Generic properties

In this section we consider generic properties of spacelike submanifolds in Sn1 . We consider the space of spacelike
embeddings Sp-Emb(U, Sn1) with Whitney C

∞-topology. We define a function G : Sn1 × S
n
1 −→ R by G(x, λ) = 〈x, λ〉, and

denote gx(λ) = G(x, λ). Then gx is a submersion at x 6= λ for any λ ∈ Sn1 . For any spacelike submanifolds x ∈ Sp-Emb(U, S
n
1),

we have G = G ◦ (x× idSn1 ). We also have the `-jet extension j
`
1G : U × S

n
1 −→ J`(U,R) defined by j`1G(x, λ) = j

`gλ(u). We
consider the trivialization J`(U,R) ≡ U×R×J`(n−1, 1). For any submanifoldQ ⊂ J`(n−1, 1), we denote Q̃ = U×{0}×Q .
Then we have the following proposition as a corollary of Lemma 6 of Wassermann [10].

Proposition 5.1. Let Q be a submanifold of J`(n− 1, 1). Then the set

TQ = {x ∈ Sp-Emb(U, Sn1) | j
`
1G is transversal to Q̃ }

is a residual subset of Sp-Emb(U, Sn1). If Q is a closed subset, then TQ is open.

We remark that if the corresponding Lorentzian distance squared function gλ0 is `-deter- mined relative toK , then G is
aK-versal deformation if and only if j`1G is transversal to K̃`

g,λ0
, whereK`

g,λ0
is theK-orbit through j`gλ0(0) ∈ J

`(n− 1, 1).
Applying Theorem 4.4, this condition is equivalent to the condition that the corresponding Legendrian immersion germ is
Legendrian stable. From the previous arguments and the Appendix of [2], we have the following proposition. (See also [6].)

Theorem 5.2. if n ≤ 6, there exists an open subset O ⊂ Sp-Emb(U, Sn1) such that for any x ∈ O, the corresponding Legendrian
immersion germL is Legendrian stable.

6. Lightcone Gauss maps and lightcone height functions

In this section, we define the lightcone height function whose wave front set is the image of the lightcone Gauss map.
We define a lightcone height function H : U × Sn−1+ −→ R by H(u, v) = 〈X(u), v〉. For v0 ∈ Sn−1+ , we write

hv0(u) = H(u, v0) and have following proposition.

Proposition 6.1. Let H be the lightcone height function of spacelike submanifold X, then we have the following:
(1) H(u0, v0) = Hui(u0, v0) = 0 (i = 1, . . . , n− 2) if and only if v0 = L̃±(u0).
(2) H(u0, v0) = Hui(u0, v0) = 0 (i = 1, . . . , n− 2) and det Hess (hv0)(u0) if and only if v0 = L̃±(u0) and K̃±` (u0) = 0.

Proof. Let v0 = λX(u0) + ηTnT (u0) + ηSnS(u0) +
∑n−2
j=1 ξjXj(u0) for some λ, η

T , ηS, ξj ∈ R. By the assumption, we have
λ = 0, |ηT | = |ηS | and H̄′(u0, v0) = (gij(u0)) ξ̄, where H̄

′
=

t(Hu1 , . . . ,Hun−2), ξ̄ =
t(ξ1, . . . , ξn−2) and (gij) is the first

fundamental form onM . Since (gij(u0)) is regular, H̄
′
(u0, v0) = 0 if and only if ξ̄ = 0. Therefore we have v0 = L̃±(u0). The

converse of (1) is trivial. By the calculation,(
∂2H
∂ui∂uj

(u0, v0)
)
ij
=
(
〈Xuiuj(u0), L̃

±(u0)〉
)
ij
=

1
`±0 (u0)

(
h±ij (u0)

)
,
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where `±0 (u0) is the first component of L̃
±(u0) and (h±ij (u0)) is the lightcone second fundamental form with respect to the

lightcone normal frame (nT ,nS). Therefore HessH(u0, v0) is degenerate if and only if u0 is a lightcone parabolic point. This
completes the proof. �

By the above proposition, the discriminant set of the lightcone height function is given by

DH =
{
v ∈ Sn−1

+

∣∣v = L̃±(u), u ∈ U
}

which is the image of the lightcone Gauss map ofM . The singular set of the lightcone Gauss map is the normalized lightcone
parabolic set ofM .

Proposition 6.2. Let H is the lightcone height function on M. Then H is a Morse family of hypersurfaces around (u, v) ∈
∆∗H−1(0).

Proof. We denote that X(u) = (X0(u), . . . , Xn(u)), Xui(u) = (X0,ui(u), . . . , Xn,ui(u)) and v = (v0, . . . , vn). Without the loss
of generality, we assume that vn > 0. Therefore we denote a matrix B and C by

B =


(
Xj(u)−

vj
vn
Xn(u)

)
j=1,...,n−1(

Xj,ui(u)−
vj
vn
Xn,ui(u)

)
j=1,...,n−1
i=1,...,n−2

 , C =



1 0 · · · 0
L̃±(u)
X(u)
Xu1(u)
...

Xun−2(u)

 .

Then we have J(∆∗H) = (∗|B) and det B = (−1)n−2 det C/vn.
On the other hand, determinant of a matrix

C


−1 0
0 1 O

O
. . . 0
0 1

 tC =


−1 −1
−1 0

∗ · · · ∗

0 · · · 0
∗ 0
...

...
∗ 0

1 O
O (gij)


equals to− det(gij) 6= 0, where (gij) is the first fundamental form onM . This implies that both B and C are regular, therefore
rank J(∆∗H) = n− 1. This completes the proof. �

By Proposition 3.2 and the above proposition, we have the Legendrian immersion L±H : Σ∗(H) −→ PT ∗(Sn−1+ ) defined
by

L±H (u, v) =

(
λ,

[
∂H
∂v1

(u, v) : · · ·
∂̂H
∂vk

(u, v) : · · ·
∂H
∂vn

(u, v)

])
where v = (v0, v1, . . . , vn) ∈ Sn+1+ andΣ∗(H) = {(u, v) ∈ U | v = L̃±(u), K̃±` (u0) = 0}. The lightcone height function H
is the generating family of the Legendrian immersionL±H whose wave front set is the image of lightcone Gauss map L̃±.

7. Contact with lightlike cylinders

In this section we describe contacts of submanifolds with lightlike cylinders by applying Montaldi’s theory.
For any v ∈ Sn−1+ , we define a lightlike cylinder along v by HP(v, 0) ∩ Sn1 . It is an (n− 1)-dimensional submanifold in S

n
1

which is isomorphic to Sn−2 × R. We observe that its tangent space at each point has lightlike directions.

Proposition 7.1. Let L̃± be a lightcone Gauss map of X. Then L̃± is a constant map if and only if M is a part of lightlike cylinder
HP(v, 0) ∩ Sn1 for some v ∈ S

n−1
+ .

Proof. Necessity is trivial, so we prove sufficient condition. IfM ⊂ HP(v, 0)∩Sn1 , then v = α(u)n
T (u)+β(u)nS(u) for some

functions α, β : U −→ R. Since v is lightlike, we have α = |β| > 0. Therefore v = L̃±(u) for all u ∈ U . This completes the
proof. �

We now consider the function H : Sn1 × S
n−1
+ −→ R defined by H(x, v) = 〈x, v〉. Given v0 ∈ Sn−1+ , we denote

hv0(x) = H(x, v0), so that we have h−1v0 (0) = HP(v0, 0) ∩ S
n
1 . For any u0 ∈ U , we take the point v

±

0 = L̃±(u0) and have

(hv0 ◦ X)(u0) = H ◦ (X× idSn−1
+

)(u0, v±0 ) = H(u0, v
±

0 ) = 0,
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where p0 = X(u0). We also have
∂(hv±0

◦ X)

∂ui
(u0) =

∂H
∂ui
(u0, v±0 ) = 0.

It follows that the lightcone h−1
v±0
(0) = LCv0 is tangent toM at p0 = X(u0). In this case, we call LCv±0 a tangent lightlike cylinder

ofM at p0.

Theorem 7.2. Xi : (U, ui) −→ (Sn1 , pi) (i = 1, 2) be spacelike submanifold germs and vi = L̃±i (ui). If the corresponding
Legendrian immersion germs are Legendrian stable. Then the following conditions are equivalent:

(1) Lightcone Gauss map germs L̃±1 and L̃±2 areA-equivalent.
(2) Legendrian immersion germsL±1 andL±2 are Legendrian equivalent.
(3) Lightcone height function germs H1 and H2 are P–K-equivalent.
(4) h±1,v1 and h

±

2,v2
areK-equivalent.

(5) K(X1(U),HP(v1, 0) ∩ Sn1 ; p1) = K(X2(U),HP(v2, 0) ∩ Sn1 ; p2)

Proof. This proof is similar to the proof of Theorem 4.6. �

We observe that the assumption of the Theorem 7.2 is a generic property in the case when n ≤ 6.

Proposition 7.3. Let Xi (for i = 1, 2) be spacelike submanifold germs and regular sets of their lightcone Gauss maps L̃±i are
dense in U. If lightcone Gauss map germs L̃±1 and L̃±2 areA-equivalent, then we have

K(X1(U),HP(v±1 , 0) ∩ S
n
1 ; p1) = K(X2(U),HP(v±2 , 0) ∩ S

n
1 ; p2)

In this case, (X−11 (HP(v
±

1 , 0) ∩ S
n
1), u1) and (X

−1
2 (HP(v

±

2 , 0) ∩ S
n
1), u2) are diffeomorphic as set germs.

The proof of this proposition is almost the same as Proposition 6.5 in [1], so that we omit it.We call (X−1i (HP(v
±

i , 0)∩S
n
1), ui)

a tangent lightlike cylindrical indicatrix germ ofMi at p0.

8. Classification in de Sitter 4-space

In this section we consider the case of n = 4 and classify singularities of lightlike hypersurface and lightcone Gauss map.
We also give some examples of spacelike surfaces in de Sitter 4-space.
We now defineK-invariants of spacelike surfaces in de Sitter space. For open subset U ⊂ R2 and spacelike submanifold

X : U −→ S41 , we define theK-codimension (or Tyurina number) of the function germs hv±0 , gλ±0 and corank of hv±0 , gλ±0 by

H-ord±(X, u0) = dim C∞u0 /〈hv±0 (u0), ∂hv±0 (u0)/∂ui〉C
∞
u0
,

H-corank±(X, u0) = 2-rankHess (hv±0 (u0)),

G-ord±(X, u0) = dim C∞u0 /〈gλ±0 (u0), ∂gλ±0 (u0)/∂ui〉C
∞
u0
,

G-corank±(X, u0) = 2-rankHess (gλ±0 (u0)),

where v±0 = L̃±(u0) and λ±0 = X(u0)+ t0.

Theorem 8.1. Let Sp-Emb(U, Sn1) be the set of spacelike submanifolds. We have open dense subset O ⊂ Sp-Emb(U, Sn1) such
that for X ∈ O, v±0 = L±(u0) and λ±0 = LH

±

M (u0, t0), we have the following:

(1) λ±0 is an singular value of LH
±

M if and only if G-corank
±(X, u0) = 1 or 2.

(2) If G-corank±(X, u0) = 1 then there are distinct principal curvatures κ̃±1 , κ̃
±

2 such that κ̃
±

1 6= 0, t0 = −1/̃κ
±

1 and LH
±

M has
theAk-type singularity (k = 2, 3, 4) at (u0, t0). In this case we have G-ord±(X, u0) = k.

(3) If G-corank±(X, u0) = 2 then u0 is an non-flat umbilic point and t0 = −1/̃κ±1 . In this case, LH
±

M has theD
+

4 -type orD
−

4 -type
singularity at (u0, t0). In this case we have G-ord±(X, u0) = 4.

where the singular type of LH±M isA-equivalent to one of the map germs f : (R
3, 0) −→ (R4, 0) in the following list:

(A2) f (u1, u2, u3) = (3u21, 2u
3
1, u1, u2)

(A3) f (u1, u2, u3) = (4u31 + 2u1u2, 3u
4
1 + u2u

2
1, u2, u3)

(A4) f (u1, u2, u3) = (5u41 + 3u2u
2
1 + 2u1u3, 4u

5
1 + 2u2u

3
1 + u3u

2
1, u2, u3)

(D+4 ) f (u1, u2, u3) = (2(u31 + u
3
2)+ u1u2u3, 3u

2
1 + u2u3, 3u

2
2 + u1u3, u3)

(D−4 ) f (u1, u2, u3) = (2(u31 − u1u
2
2)+ (u

2
1 + u

2
2)u3, u

2
2 − 3u

2
1 − 2u1u3, u1u2 − u2u3, u3).
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Proof. By Proposition 3.1, if λ±0 is singular value then G-corank
±(X, u0) ≤ 2. By Theorem 5.2, there exists an open subset

O ⊂ Sp-Emb(U, Sn1) such that for any X ∈ O, corresponding Lorentzian distance squared function G is a versal deformation
of g±λ0 . By Thom’s classification of function germs, g

±

λ0
isK-equivalent to Ak-type germ (k = 2, 3, 4) or D±4 -type function

germ, so that we have G-corank±(X, u0) ≥ 1, therefore (1) holds. If g±λ0 hasAk-type singularity, then it isK-equivalent to
f (u1, u2) = u21 ± u

k+1
2 and G-ord±(X, u0) = k. Since the corresponding lightlike hypersurface LH±M is the discriminant set

of the Lorentzian distance squared function G, therefore (2) holds. If g±λ0 hasD
±

k -type singularity, then it isK-equivalent to
f (u1, u2) = u31 ± u1u

2
2 and G-ord

±(X, u0) = 4. This completes the proof. �

We remark that corresponding tangent lightcone indicatrix germ is diffeomorphic to the following list:

(A2) {(u1, u2) ∈ (R2, 0) | u21 + u
3
2 = 0} (ordinary cusp)

(A3) {(u1, u2) ∈ (R2, 0) | u21 ± u
4
2 = 0} (tacnode or a point)

(A4) {(u1, u2) ∈ (R2, 0) | u21 + u
5
2 = 0} (rhamphoid cusp)

(D+4 ) {(u1, u2) ∈ (R2, 0) | u1 + u2 = 0} (a line)

(D−4 ) {(u1, u2) ∈ (R2, 0) | u31 − u1u
2
2 = 0} (triple point).

For normalized Gauss maps, we have following results.

Theorem 8.2. There exists an open dense subset O′ ⊂ Sp-Emb(U, Sn1) such that for any X ∈ O′, the following conditions hold.

(1) u0 is an L̃±-parabolic point if and only if H-corank±(X, u0) = 1 (that is, u0 is not a flat point).
(2) The L̃±-parabolic set K̃−1` (0) is a regular curve. Along the curve L̃± has cuspidal edge points except at isolated points. At this
points L̃± has swallowtail points.

(3) If L̃± has the cuspidal edge points, then hv±0 isK-equivalent to (u
2
1 + u

3
2) : (R

2, 0) −→ (R, 0) and H-ord±(X, u0) = 2. In
this case, the tangent lightlike cylindrical indicatrix germ is an ordinary cusp.

(4) If L̃± has the swallowtail points, then hv±0 isK-equivalent to (u
2
1 ± u

4
2) : (R

2, 0) −→ (R, 0) and H-ord±(X, u0) = 3. In
this case, the tangent lightlike cylindrical indicatrix germ is a tacnode or a point.

where L± has cuspidal edge point if L± isA-equivalent to (3u21, 2u
3
1, u1) : (R

2, 0) −→ (R3, 0), and L± has swallowtail point
if L± isA-equivalent to (4u31 + 2u1u2, 3u

4
1 + u2u

2
1, u2).

Proof. By Proposition 6.1, the condition that v±0 is singular value is equivalent to the condition H-corank
±(X, u0) ≥ 1. By

Theorem 5.2, there exists an open subset O′ ⊂ Sp-Emb(U, Sn1) such that for any X ∈ O, corresponding lightcone height
function H is a versal deformation of hv±0 . By Thom’s classification of function germs, hv±0 hasAk-type singularity (k = 2, 3)
and H-corank±(X, u0) = 1, therefore (1) holds. On the other hand, the condition H-corank±(X, u0) = 1 means that the
parabolic set K̃−1` (0) is a part of curves. If hv±0 has A2-type singularity, then it isK-equivalent to f (u1, u2) = u21 + u

3
2 and

H-ord±(X, u0) = 2. Since the corresponding lightcone GaussmapL± is the discriminant set of the lightcone height function
H , therefore (3) holds. If hv±0 hasA3-type singularity, then it isK-equivalent to f (u1, u2) = u

3
1± u

3
2 and H-ord

±(X, u0) = 3,
therefore (4) holds. On the other hand, the swallowtail points are isolated points, therefore (2) holds. This completes the
proof. �

Example 8.3. Let f : (U, 0) −→ R, f (0) = fui(0) = 0 and spacelike submanifoldM = X(U) in Sn1 by

Xf (u1, u2) =
(
f (u), 0,

√
1+ f (u)2 − u21 − u

2
2, u1, u2

)
.

If f = 1
2 (u

2
1 − u

2
2 + 2u

k+1
1 ) for some k = 2, 3, 4, then LH+M and LH

−

M haveAk-type singularities at λ±0 = LH
±

M (0, 1). In this
case, the corresponding tangent lightcone indicatrix germs (X−1f (LCλ±0 ), 0) are {(u1, u2) | u

2
1 + u

k+1
1 = 0}.

If f = 1
2 (u

2
1 + u

2
2 + u

3
1 ± u1u

2
2), then LH

+

M and LH
−

M haveD±4 -type singularities at λ
+

0 = LH
+

M (0,−1), λ
−

0 = LH
−

M (0,−1).
The corresponding tangent lightcone indicatrix germs are {(u1, u2) | u31 ± u1u

2
2 = 0}.

If f = 1
2u
2
1 −

1
ku
k+1
2 for some k = 2, 3, then both L+ and L− haveAk-type singularities at the origin. The corresponding

tangent lightlike cylindrical indicatrix germs are ordinal cusp (k = 2) and tacnode (k = 3).
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