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0. Introduction

Let Y(gl,) be the Yangian of the general linear Lie algebra gl,. We call two finite-dimensional representations of the
algebra Y(gl,) similar if they differ by an automorphism of the form (1.10). Up to similarity the irreducible finite-dimensional
Y (gl,,)-modules were classified in [1]. Due to this classification every irreducible finite-dimensional Y(gl,)-module is
described by a set of Drinfeld polynomials. Later on, analogous results on the representations of shifted Yangians and
W-algebras were obtained in [2].

Consider the subalgebra of Y(gl,,) consisting of all elements which are invariant under every automorphism of the form
(1.10). This subalgebra is called special Yangian and is isomorphic to the Yangian Y(sl,) of the special linear Lie algebra
sl, C gl, considered in [3,1]. Therefore, two Y(gl,,)-modules are similar if and only if their restrictions to the special Yangian
are isomorphic. Thus, the sets of Drinfeld polynomials correspond to the finite-dimensional irreducible representations of
the Yangian Y(sl,).

In the works [4,5], a certain functor &, from the category of gl,-modules to the category of Y(gl,)-modules was
investigated. This functor arose as a composition of Drinfeld (see [3]) and Cherednik (see [6,7]) functors. The construction
is closely related to the (GL,,, gl,) Howe duality (see [8,9]) and can be regarded as a reformulation of Olshanski centralizer
construction (see [10,11]). An application of the functor &, to the Verma modules of the algebra gl,, produced a series of
standard representations of the Yangian Y(gl,). Then intertwining operators between the standard Y(gl,,)-modules were
constructed using the theory of Zhelobenko operators for Mickelsson algebras (see [ 12-15]). Finally, in the works [16,17] it
was shown that all irreducible finite-dimensional Y(gl,,)-modules considered up to similarity can be realized as the images
of the intertwining operators constructed in [4,5]. The approach introduced by Khoroshkin and Nazarov in [4,5] led to the
more explicit realization of Y(gl,,)-modules. An analogous result for representations of quantum affine algebras appeared
earlier in [18].

Let us call a representation of the Yangian Y(gl,) polynomial if it is a subquotient of a tensor product of vector
representations of Y(gl,). Then, all Y(gl,,)-modules constructed in [4,5] are polynomial. Moreover, any polynomial Y(gl,)-
module appears that way. In this paper, we consider a modification &, 4 of the functor &, with the use of (Up 4, gl,)
Howe duality (see [19-21]). This modification leads to a bigger class of Y(gl,,)-modules called the rational modules. We
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say that a representation of the Yangian Y(gl,) is rational if it is a subquotient of a tensor product of vector and dual
vector representations of Y(gl,,). Irreducible rational representations of Y(gl,,) associated with skew Young diagrams were
investigated by Nazarov in [22]. Irreducible rational modules may be similar but not isomorphic. Using parabolic induction
we decompose the images of Verma gl,,-modules under &, 4 into a tensor product of evaluation modules of the Yangian.
With the help of technique developed for twisted Yangians Y(so2,,), Y(sp,,,) in [23,24] we construct intertwining operators
between obtained tensor products and compute the images of highest-weight vectors under intertwining operators. Using
the results of [16] we observe that under some conditions on the parameters of the modules the image of the certain
intertwining operator is an irreducible rational Y(gl,,)-module. Finally, we state as a conjecture that all irreducible rational
Y(gl,)-modules can be obtained by this construction. We return to this problem in the forthcoming publication.

1. Basics
1.1. Yangian Y(g(,)

The Yangian Y(gl,) is a deformation of the universal enveloping algebra of the polynomial current Lie algebra gl,[u] in
the class of Hopf algebras, see for instance [25]. The unital associative algebra Y(gl,,) has a family of generators
1 —2
T T
Consider the generating functions

wherei,j=1,...,n.

Tyi(u) = & + T u™' + TPu 2+ € Y(gl,)[u '] (1.1)
with formal parameter u. The defining relations in the associative algebra Y(gl,) can be written as
(U —v) - [T(Ww), Tu()] = Ty Ta(v) — Ty (v) Tu(u) (1.2)
wherei,j, k,l=1,...,n
If n = 1, the algebra Y(gl,,) is commutative. The relations (1.2) imply that for any z € C assignments
T, Tj(u) > Tj(u—z) fori,j=1,...,n (1.3)

define an automorphism 7, of the algebra Y(gl,). Here each of the formal series Tj;(u —z) in (u — z)~! should be re-expanded
in u~!, and the assignment (1.3) is a correspondence between the respective coefficients of series in u~!.

Now let Ej; € gl withi,j =1, ..., nbe the standard matrix units. Sometimes E; will also denote elements of the algebra
End(C™") but this should not cause any confusion. The Yangian Y(gl,)) contains the universal enveloping algebra U(gl,) as a

subalgebra, the embedding U(gl,) — Y(gl,) can be defined by the assignments

Ej— Ti;]) fori,j=1,...,n.
Moreover, there is a homomorphism 7,,: Y(gl,,) — U(gl,)) which is identical on the subalgebra U(gl,) C Y(gl,)) and is given
by

T T2 T o> 0 forij=1,....n. (14)

Let T(u) be an n x n matrix whose i, j entry is the series T;;(u). The relations (1.2) can be rewritten by means of the Yang
R-matrix

n
Eij ® Eﬁ

Ru)y=1®1- —_— 1.5
W=11-3 ~— (15)

i,j=1

where the tensor factors Ej; and Ej; are regarded as n x n matrices. Note that

1

RWR(—u)=1— —. (1.6)

u2
Consider two n? x n? matrices whose entries are series with coefficients in the algebra Y(gl,),
Tiw)=Tw)®1 and Tr(v) =1Q T(v).
Then a collection of relations (1.2) for all possible indices i, j, k, | is equivalent to
Ru—v)T1(w) T2 (v) = T2 (v) Th (u) R(u — v). (1.7)

Further, the Yangian Y(gl,) is a Hopf algebra over the field C. We define the comultiplication A : Y(gl,) — Y(gl,) ®Y(gl,,)
by the assignment

A Tyiu) = ) Ti(w) © Tig(w). (18)
k=1



A. Shapiro / Journal of Geometry and Physics 62 (2012) 1677-1696 1679

When taking tensor products of modules over Y(gl,) we use the comultiplication (1.8). The counit homomorphism & :
Y(gl,) — Cis defined by

e:Tj(u) = §; - 1.
The antipode S on Y(gl,,) is given by
S:T(u) > T(u)™!

and defines an anti-automorphism of the associative algebra Y(gl,,).
Let T'(u) be the transpose to the matrix T (u). Then the i, j entry of the matrix T'(u) is Tj;(u). Consider n% x n? matrices

TTw=Tw®1 and T,(v) =1QT'(v).

Note that the Yang R-matrix (1.5) is invariant under applying the transposition to both tensor factors. Hence the relation
(1.7) implies

T, (W) T,(v) R(u — v) = R(u — v) T, (v) T, (u),
R(u — v) T, (—u) T)(—v) = T,(—v) T)(~1) R(u — v). (1.9)

To obtain the latter relation we used (1.6). By comparing the relations (1.7) and (1.9), an involutive automorphism of the
algebra Y(gl,) can be defined by the assignment

w:T() — T'(—u),

understood as a correspondence between the respective matrix entries. For further details on the algebra Y(gl,) see
[26, Chapter 1].

1.2. Representations of Yangian Y(gl,,)

Let @ be an irreducible finite-dimensional Y(gl,,)-module. A non-zero vector ¢ € @ is said to be of highest weight if it is
annihilated by all the coefficients of the series T;;(u) with 1 < i < j < n and is an eigenvector for all the coefficients of the

series T;(u) for 1 < i < n. In that case ¢ is unique up to a scalar multiplier and fori = 1, ..., n — 1 holds
_ 1 1!
Ti(W)Tis1,i41(W) '@ = P; (u + 5) P; (u - 5) @
where P;(u) is a monic polynomial in u with coefficients in C. Then P;(u), ..., P,_1(u) are called the Drinfeld polynomials of

@. Any sequence of n — 1 monic polynomials with complex coefficients arises this way. An irreducible finite-dimensional
Y(gl,)-module is defined by the set of eigenfunctions A;;(u) such that

Ti(we = Ai(u)g
fori =1, ..., n.Thus, anirreducible finite-dimensional Y(gl,,)-module is defined by a set of polynomials P; (1), . .., Py—1 (1)
and some normalizing factor, for example A, (u).

Relations (1.2) show that for any formal power series g(u) in u~' with coefficients from C and leading term 1, the
assignments

Tij(w) — g)T;(u) (1.10)

define an automorphism of the algebra Y(gl,,). The subalgebra in Y(gl,,) consisting of all elements which are invariant under
every automorphism of the form (1.10), is called the special Yangian of gl,,. The special Yangian of g, is a Hopf subalgebra of
Y(gl,,) and is isomorphic to the Yangian Y(sl,) of the special linear Lie algebra sl,, C gl,, considered in [3,1]. For the proofs of
the latter two assertions see [27, Subsection 1.8].

Two irreducible finite-dimensional Y(gl,,)-modules are called similar if and only if their restrictions to the special Yangian
are isomorphic. Therefore, irreducible finite-dimensional Y(s[,)-modules are defined by a set of Drinfeld polynomials, while
irreducible finite-dimensional Y(gl,,)-modules are parameterized by their Drinfeld polynomials only up to similarity. For
further details on representations of Y(gl,,) see [1,28].

Now, let us define the fundamental representation V, and the dual fundamental representation V, of Y(g[,,). As a vector
space V, = V, = C", the corresponding actions are given by evaluation and dual evaluation homomorphisms

E::
Tz = T 0 Tz Y(gly) —> Ul(gly), Tjj(u) = & + 7 s
u+z

E“
) =m0t 0w Y(gl) — Ugl), T > 8 — —2
u+z

Let also £2, and §2, denote one-dimensional representations of Y(gl,) defined as evaluation and dual evaluation
homomorphisms in A™(C") with standard action of g[,,. Thus,

u+z+1 u+z—1
Ti(w) — & - ﬁ and Tj(u) — Bﬁ.ﬁ

on §2, and §2, correspondingly.
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Definition 1.1. (a) Representation of Yangian Y(gl,) is called polynomial if it is isomorphic to a subquotient of tensor
product of fundamental representations V, with arbitrary values of z.

(b) Representation of Yangian Y(gl,,) is called rational if it is isomorphic to a subquotient of tensor product of fundamental
and dual fundamental representations V, and V, with arbitrary values of z.

Note that representations V, and £2, are polynomial while representations V, and §2, are rational. We would also like
to point out that the modules £2, and £2, are central, i.e. in tensor products of Y(gl,,)-modules one can permute them with
other modules. More precisely, the form of the comultiplication map A implies that for any Y(gl,,)-module M there is a pair
of canonical isomorphism

M®R2,=Z2,®M and MQ2,=Z2,QM
sendingm ® a > a ® mwherem € Manda € 2, ora € £2;.

1.3. Functor

Let E be an m x m matrix whose a, b entry is the generator E,, € gl,,,. Let E’ be the transposed matrix. Consider a matrix

X) = (u+6E)"" withe = +1 (1.11)
whose a, b entry is a formal power series in u~!
o0
Xap(u) = u™! <sab + ng,?u‘s‘]) ) (1.12)
s=0
Fora,b =1, ..., melements X;f,) € U(gl,,), moreover

m

XY = —6E, and Xx§ = Z (=0 Ec,aEeye, - - Ecye,_ Epe, fOrs > 1.

Consider the ring # (C™ ® C") of polynomial functions on C™ ® C" with coordinate functions x,; wherea = 1,...,m
andi=1,...,nLet 2D (C™ ® C") be the ring of differential operators with polynomial coefficients on & (C™ ® C"), and
let dq; be the partial derivation corresponding to x,;.

Consider also the Grassmann algebra ¢ (C™ ® C") of the vector space C™ ® C". It is generated by the elements x,; subject
to the anticommutation relations x,iX,; = —XpjX,; for allindicesa, b =1, ..., mandi,j = 1, ..., n. Let 9, be the operator
of left derivation on § (C™ ® C") corresponding to the variable x,;. Let 4D (C™ ® C") denote the ring of C-endomorphisms
of ¢ (C™ ® C") generated by all operators of left multiplication x,; and by all operators d;.

Let us define

H(C"RC) =2 (C"®C") and #D(C"QC")=2LD(C"®C") ifo=1,
H(C"®C")=6(C"®C") and HD(C"®C")=4D(C"®C") ife =—1.

Therefore, algebra # (C™ ® C") is generated by the elements x,;,a = 1,...,m, i = 1, ..., nsubject to relations
XaiXpj — bejxai =0.

Algebra #D (C™ ® C") is generated by the elements x,; and 955, a,b=1,...,m, i,j = 1,..., nsubject to relations

XaiXpj — OXpiXqi = 0,
04i0pj — O0pj0qi = 0, (1.13)
8m-xbj — Qijaai = 3ab5,‘j.
Note that & = 1 corresponds to the case of commuting variables, while & = —1 corresponds to the case of anticommuting
variables.

From now on and till the end of the paper we assume m = p-+q, where p and q are non-negative integers. Let us introduce
new coordinates

_ | —0xq4, forc=1,....p _J0q, forc=1,....,p
p”_{ad, forc=p+1,...,m bei = Xi, forc=p+1,...,m. (1.14)
Now, relations (1.13) can be rewritten in the following form

Qaiqpj — OqbjGai = 0,

DaiPbj — OPbiPai = 0,

PaiGbj — OqbiPai = Sapdij-
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Define the elements E‘a,-,bj e HD (C"Q®C") as

éai,bj = {aiPbj- (1.15)

Elements E‘a,-,bj satisfy relations

I:Eai,bja éck,dl] = fsbcfsjkéai,dl - Badfsiléck,bﬁ (1.16)

Eai,bjéck,dl — Oéck,bjéai,dl = 5bc5ﬂ<1§ai,dl - eaabsijéck,dl (1.17)

which also imply

Eck,dléai,bj — OEck,bani,dl = 5ad5i11§ck,bj - 95ab5zjéck,d1- (1.18)

There is an action of the algebra gl,, on the space # (C™ ® C") which is defined by homomorphism ¢,: U(gl,,) +>
HD (C" Q@ C):

n ~
n (Eab) = e(sabg + ZEak,bk- (1.19)

n
k=1

The homomorphism property can be verified using the relation (1.16). Hence, there exists an embedding U(gl,,,) <>
U(gly,) ® #D (C™ ® C") defined fora, b = 1, ..., m by the mappings

Ep—>Ep®1T+1Q Cn(Eab)' (120)
Proposition 1.2. (i) One can define a homomorphism a,,;: Y(gl,) — U(gl,) @ #D (C™ @ C") by mapping

m
ot Ty(u) > 85+ > Xap(u) ® Eqiy. (1.21)

a,b=1
(ii) The image of Y(gl,,) under the homomorphism (1.21) commutes with the image of U(gl,,) under the embedding (1.20).
Consider an automorphism of the algebra #D (C™ ® C") such thatforalla=1,...,mandi=1,...,n
Xai = qai and g = Pai. (1.22)

Now, proof of Proposition 1.2 can be obtained by applying the automorphism (1.22) to the results of [4, Proposition 1.3] if
6 = 1 and to the results of [5, Proposition 1.3] if 8 = —1. In the Appendix we give an explicit proof of the Proposition 1.2.
Finally, let V be an arbitrary gl,,-module. Then we can define a U(gl,;,) ® #D (C™ ® C")-module

&) =VeH(C"®C"). (1.23)
The results of Proposition 1.2 turns &, 4 into a functor from the category of gl,,-modules to the category of gl,,, and Y(gl;,)

bimodules, where the actions of the algebras gl,,, and Y(g!,,) are defined by homomorphisms (1.20) and (1.21) respectively.

2. Reduction to standard modules
2.1. Parabolic induction

For any positive integer I let U be a module over the Lie algebra gl;. Let [ = I; + I, then &, 1, (U) is a Y(gl,,)-module. For
any z € C denote by 8,7; b (U) the Y(gl,)-module obtained from &, ;, (U) via pull-back through the automorphism 7_g, of
Y(gl,), in other words, the underlying vector space of 8,21 b (U) is the same as of &, ;, (U), but the action of T;;(u) on 8121,12 U)is
given by the same formula as the action of Tj;(u +-6z) on &, ;, (U). Note that as a gl;-module 8,21‘,2 (U) coincides with &, , (U).

The decomposition C™' = C™ @ C' determines an embedding of the direct sum gl,, @ g}, of Lie algebras into gl,, 41 As

a subalgebra of gl,,, ), the direct summand gl,, is spanned by the matrix units E,, € gl,,,, wherea, b =1, ..., m. The direct
summand gl; is spanned by the matrix units E;, wherea,b = m + 1, ..., m + L Let g and g’ be the Abelian subalgebras of
gl spanned respectively by matrix units Epg and Egp foralla=1,...,mandb=m+1,...,m+1LPutp =g, & gD q'.

Then p is a maximal parabolic subalgebra of the reductive Lie algebra g, ;, and moreover
9[m+l =qDp.

Denote by V X U the gl,,,, ,-module parabolically induced from the gl,,, & gl;-module V ® U. To define V X U, one first extends
the action of the Lie algebra gl,,, @ gl; on V ® U to the Lie algebra p, so that any element of the subalgebra q' C p acts on
V ® U as zero. By definition, V X U is the gl,;;,-module induced from the p-module V ® U.
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Now consider bimodules &, 4+-(V ® U) and &, ¢(V X U) over gl,,,, and Y(gl,), which are parabolically induced from
the gl, @ glgy or gly,, @ gl,-module V ® U. The action of Y(gl,) commutes with the action of the Lie algebra gl ,, and
hence with the action of the subalgebra q C gl;,,,,. For any gl,,-module W denote by W, the vector space W /q - W of the
coinvariants of the action of the subalgebra q C gl,,, on W.Then vector spaces &, ., (VXU), and &, o(VRU), are quotients
of the Y(gl,,)-modules & ¢, (VR U) and &, (V ®U). Note that the subalgebras gl, & gl and gl,, . @ gl, also act on these
quotient spaces.

Theorem 2.1. (i) The bimodule &, 4, (VXU), over the Yangian Y(gl,,) and the direct sum gl, & gl is isomorphic to the tensor
product &, o(V) ® &7 (U).

(ii) The bimodule &, 4(V ® U), over the Yangian Y(gl,) and the direct sum gl,,, ©® gl, is isomorphic to the tensor product
&0(V) ® &,(U).

The Theorem 2.1 is equivalent to [4, Theorem 2.1] under the action of automorphism (1.22) if 6 = 1 and to [5, Theorem
2.1] under the action of automorphism (1.22) if &6 = —1. In both cases Theorem 2.1 was proved by establishing a linear map

X1 €n(V) ® E'(U) = Enpa(V BU),.

Both the source and the target are bimodules over the algebras gl,,, ® g, and Y(gl,,), while x is a bijective map intertwining

actions of algebras. One can easily show that the map x commutes with the automorphism (1.22), hence the intertwining

property follows in our case. The proof that the map  is bijective can be almost word by word taken from [4] or [5] except for

automorphism (1.22) alters the filtration described in the papers just mentioned. Thus, we should take descending filtrations
o0 o0

PECH@PNC) and PLYCM @ P[C) if6 =1,

N=K N=K

Pecmegic) and PgCMH () ifo=-1
N=K N=K

for cases (i) and (ii) of the Theorem 2.1 respectively. Therefore, the proof of the theorem follows in our case.
Let us consider the triangular decomposition of the Lie algebra gl,,,,

gy =n®hdn. (2.1)
Here b is the Cartan subalgebra of gl,,, with the basis vectors E1q, ..., Enn. Further, n and n” are the nilpotent subalgebras
spanned respectively by the elements Ey, and Egp for alla,b = 1, ..., m such that a < b. Denote by V,, the vector space

V /un - V of the coinvariants of the action of the subalgebra n C gl,,, on V. Note that the Cartan subalgebra  C gl,, acts on
the vector space V,,. Now consider the bimodule &, 4(V). The action of Y(gl,,) on this bimodule commutes with the action
of the Lie algebra gl,,, and hence with the action of the subalgebra n C gl,,,. Therefore, the space &, 4(V), of coinvariants of
the action of n is a quotient of the Y(g(,,)-module &, ;(V). Thus, we get a functor from the category of all gl,,-modules to the
category of bimodules over  and Y(gl,,)

Vie &,V)y = (Ve H(C"®C"), . (2.2)

By the transitivity of induction, Theorem 2.1 can be extended from the maximal to all parabolic subalgebras of the Lie
algebra gl,,,. Consider the case of the Borel subalgebra h @ n’ of gl;,,. Apply the functor (2.2) to the gl,,-module V = M,,, where
M, is the Verma module of weight & € h*. We obtain the Y(g(,,) and h-bimodule

&p.q(My)w = (M, ® # (C"®CY)), .

Using the basis Eqq, . . . , Emm we identify h with the direct sum of m copies of the Lie algebra g[;. Consider the Verma modules
My, ..., M,,, over gl;. By applying Theorem 2.1 repeatedly we get the next result.

Corollary 2.2. The bimodule &, ((M,,). of b and Y(gl,) is isomorphic to the tensor product

E1.0My)) ® Sll,o(M/tz) Q- ® gf,B](Mﬂp) ® 85,1(Mﬂp+1) ® - ® 8(’)1:11_1(Ml/~m)'

2.2. Standard modules

Let us now describe the bimodules &% ,(M;) and & , (M) over gl; and Y(gl,) for arbitrary t, z € C. The Verma module M;
over gl; is one-dimensional, and the element E{; € ’g[] acts on M; by multiplication by t. The vector space of bimodules
&1.0(M;) and & 1(M,) is the algebra #(C!' ® C") = #(C"). Then E;; acts on the bimodules &10(M;) and &y 1(M;) as
differential operators

n i n i
t+6-—0 owXye and t+ 60— X1x0
+ 5 ; kX 1k + 2+Z k91K

k=1
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respectively. The action of E1; on Sg’q(Mf) is the same as on &, 4(M;). The action of Y(g[;;) on Sio(M[) and 85’1 (My) is given
by

31iX1;' X1i31j
u+06(t—2) u+0(—2z2)
respectively, this is what Proposition 1.2 states in the case m = 1. Note that both operators x;;0,; and —69;;x¢; describe
actions of the element Ej; € gl on #H(C' ® C") = #(C"). When speaking about these actions we will omit the first indices
and write x; and 9; instead of x;; and 9y;. Hence, actions of the algebra Y(gl,) on &f ;(M,) and & ; (M;) can be obtained from
the actions of gl, on #(C") by pulling back through the evaluation homomorphism 7).
Now, consider Y(gl,,)-modules 52 and &, with the underlying vector space #(C") and Yangian actions defined by

Tj(w) — 6; — 0 and Tj(u) — &; + (2.3)

8in Xi 3]‘

T;j(u) — 8U_9u+92 and T;(u) — 6 + oy

correspondingly. Therefore, the bimodules &7 ,(M,) and &¢ , (M;) are respectively isomorphic to 3%_2 and @, _, asthe Y(gl,)-

modules. Moreover, Corollary 2.2 implies that the bimodule &.q(My), of h € gl and Y(gl,) is isomorphicas a Y(gl,)-module
to the tensor product

q)mﬂh ®---® qj#pﬂ’p ® (pl’-p+1+0p+1 Q- ® ¢l/-m+)0m (2.4)

where p; = 1 —i.
Let us also define a Y(gl,)-module @, with the underlying vector space #(C") and the Y(gl,)-action is given by
Tycu) > 85 — — 9%
u+60z—1

Using commutation relation 0;x; — 6x;0; = ; one can verify that

5 dxj u+0@z—-1) ( L X;0; )

v u+6z u+0z v u+6z—1)

which implies the isomorphism of Y(gl,,)-modules
b, =2 @D, ifo=1,
b, 20,00, ifo=—1.
Hence, the bimodule &, (M), of b € gl and Y(gl,,) is isomorphic as the Y(gl,)-module to the tensor product

p p m
® oo @ ® (p;Li+Pi ® ® Puitp (25)
i=1 i=1

i=p+1
where

Q=9 if6=1 and 2=, ifo=-1.

z z

Note that the Y(gl,)-modules &, and @, can be also realized as evaluation and dual evaluation homomorphisms to
P (C") or §(C™). Moreover, modules @, and @, are rational, and hence so are their subquotients. We call an Y(gl,,)-module
a standard rational module if it is a tensor product of modules &, and &, with arbitrary values of z.

3. Zhelobenko operators

3.1. Definition
Consider &, as the Weyl group of the reductive Lie algebra gl,,. Let EJ,, ..., E;,, be the basis of h* dual to the basis
Ei1, ..., Emm of the Cartan subalgebra b C gl,,,. The group &,, acts on the space h* so that foranyo € G,anda=1,..., m

o Er E;"(a)(,(a).

If we identify each weight i € §* with the sequence (u1, ..., um) of its labels, then
o (s oo i) B (Rg=1(1)s -+ Ho=1m))-

Let p € b* be the weight with sequence of labels (0, —1, ..., 1 — m). The shifted action of any element 0 € &, on h* is
defined by the assignment

ur>ocopu=oc(u+p)—p.
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The Weyl group also acts on the vector space gl,,, so that foranyo € G,anda,b=1,...,m
o Eab = Ea(a)("(b).

The latter action extends to an action of the group &,, by automorphisms of the associative algebra U(gl,,,). The group &,,
also acts by automorphisms of the space #D (C™ ® C") so that element ¢ € &,, maps

Pai = Po@i and  Gui = qo (a)i-

Note that homomorphisms (1.20) and (1.21) of the algebras gl,,, and Y(gl,) into the algebra U(gl,,) ® #D (C™ ® C") are
Gm-equivariant.
Let A be the associative algebra generated by the algebras U(gl,,,) and #D (C™ ® C") with the cross relations

(X, Y] =[&(X), Y] (3.1)

forany X € gl,and Y € #D (C™ ® C"). The brackets at the left hand side of the relation (3.1) denote the commutator
in A, while the brackets at the right hand side denote the commutator in the algebra #9D (C™ ® C") embedded into
A. In particular, we will regard U(gl,,) as a subalgebra of A. An isomorphism of the algebra A with the tensor product
U(gl,) ® HD (C™ ® C") can be defined by mapping the elements X € gl,, and Y € #D (C™ @ C") in A respectively
to the elements

X®1+1®%X) and 1®Y

in U(gl,) ® #D (C™ ® C"). The action of the group &,, on A is defined via the isomorphism of A with the tensor product
U(gl,) ® HD (C™ @ C"). Since the homomorphism ¢, is G,;,-equivariant the same action of &, is obtained by extending
the actions of &,, from the subalgebras U(gl,,) and #D (C™ ® C") to A.

Foranya,b=1,...,mputng =E;, —E;, € b* and nc = n¢ c4q withc =1, ..., m — 1. Put also
Ec = Eccy1, Fe =Eci1c and He = Eec — Eciqcq1- (3.2)
Foranyc = 1,..., m — 1 these three elements form an sl,-triple.
Let U(h) be the ring of fractions of the commutative algebra U(h) relative to the set of denominators
{Ewa —Epp+z|1<a,b<m;, a#b;, zeZ}. (3.3)

The elements of this ring can also be regarded as rational functions on the vector space h*. The elements of U(h) C U(h) are
then regarded as polynomial functions on h*. Denote by A the ring of fractions of A relative to the set of denominators (3.3),
regarded as elements of A using the embedding of  C gl,, into A. The ring A is defined due to the following relations in the
algebras U(gl,,) and A: fora,b=1,...,mandH €

[H, Eqp] = nap(H)Eqgp, [H, pa] = —0E;,(H)pax, [H, qok] = Ej, (H) gk, (3.4)

where pqc and gy are given by (1.14). Therefore, the ring A satisfies the Ore condition relative to its subset (3.3). Using left
multiplication by elements of U(), the ring of fractions A becomes a module over U(h).
The ring A is also an associative algebra over the field C. The action of the group &, on A preserves the set of denominators

(3.3) so that &, also acts by automorphisms of the algebra A. Foreachc = 1, ..., m — 1 define a linear map &£&.: A — A by
setting
0 -~
E(Y) =Y+ Y (SHO)TEF(Y) (3.5)
s=1

forY € A. Here
H® =H.(H.—1)---(H. —s+ 1)

andfc is the operator of adjoint action corresponding to the element F. € A, so that
F(Y) = [F., Y.

For any given element Y € A only finitely many terms of the sum (3.5) differ from zero, hence the map & is well defined.
Let J and ] be the right ideals of the algebras A and A respectively, generated by all elements of the subalgebran C gl,,,.
Let ]’ be the left ideal of the algebra A, generated by the elements X — ¢,(X) or equivalently by the elements

X®1eUl,) ®1C Ugl, ®#D (C"®C"), (3.6)

where X € 1. Denote ] = U(h)J', then ]’ is a left ideal of the algebra A.
Now we give a short observation of some results proved in [4]. For any elements X € h and Y € A we have

E.(XY) € (X + na(X))&a(Y) +]. (3.7)
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The property (3.7) allows us to define a linear map &,: A — ] \ A by setting
E,(XY) =Z&(Y)+] forX eU(p)andY € A (3.8)
where the element Z € U(h) is defined by the equality

Z(p) = X(u+mnq) forpebp” (3.9)

and both X and Z are regarded as rational functions on h*. The backslash in] \ A indicates that the quotient is taken relative
to a right ideal of A.

The action of the group &, on the algebra U(gl,,,) extends to an action on U(h) so that for any o € &,
(0 (X)) () = X0~ (),

when the element X € U(h) is regarded as a rational function on §*. The action of &, by automorphisms of the algebra A
then extends to an action by automorphisms of A. Foranyc = 1, ..., m— 1let o, € &, be the transposition of ¢ and ¢ + 1.
Then, by [4, Proposition 3.5] we have

Eoc(0) CT +] (3.10)
Now consider the image o (J), that is again a right ideal of A. By [4, Proposition 3.2] we also have

oc() C keré&,.

This allows us to define foranyc = 1, ..., m — 1 a linear map
E:J\A—TJ\A (3.11)
as the composition &0, applied to the elements of A taken modulo J. The operators &1, . . ., £n_1 on the vector space ] \ A
are called the Zhelobenko operators. By [4, Proposition 3.3] the Zhelobenko operators &1, ..., £n,—1 on] \ A satisfy the braid
relations

Ecbe1be =668 forc<m—1,

Eyé =& & forb<c—1.

Therefore, for any reduced decomposition o = o, - - - o, in &, the composition 551 e éq( of operators on ] \ A does not
depend on the choice of decomposition of o. Finally, for any o € &, X € U(h),and Y € ] \ A we have relations

E,(XY) = (0 0 X)E, (Y) (3.12)

which follows from [4, Proposition 3.1].

3.2. Intertwining properties

Let§ = (61, ...,6m) be a sequence of m elements from the set {1, —1}. Let the symmetric group &,, act on the set of

sequences {5} by

c@)=0-8
where

8=(1,--,8, —8pt1s.--, —8psq) and o-8= (Bo=1(1ys -+ +» S5 =1(my)-
Denote

st=(,...,1) and & =686t=(,...,1,—1,...,—1).

——— ——
P q

For a given sequence § let o denote a composition of automorphisms of the ring #D (C™ ® C") such that
Xak > —00gq and  Og — Xq whenever §;, = —1.

For any gl,,,-module V we define a bimodule &; (V) over gl,, and Y(gl,). Its underlying vector space is # (C™ ® C") for every
8. The action of the algebra gl,, on the module &;(V) is defined by pushing the homomorphism &, forward through the
automorphism o

Ep—Ep®14+1Q w(gn(Eab))-
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The action of the algebra Y(gl,) on the module &;(V) is defined by pushing the homomorphism «, forward through the
automorphism @, applied to the second tensor factor #D (C™ ® C") of the target of «;,

m
Ti(u) = 8+ Y Xap(1) ®  (Eaiy)-
a,b=1

For instance, we have &, (V) = &;+ (V).
Let i € b* be a generic weight of gl,,,, which means that

Hag— up €Z foralla,b=1,...,m. (3.13)

In the remaining of this section we show that the Zhelobenko operator ég determines an intertwining operator
&p.g(M,)n — E5(Myop)n where s = o (57). (3.14)
Let Is be the left ideal of the algebra A generated by the elements x,, k = 1,...,n, for §, = —1 and by the elements
dak, k=1,...,n,for§, = 1. For instance, ideal Is+ is generated by the elements 0, witha=1,...,mandk=1,...,n.

Let I5 be the left ideal of the algebra A generated by the same elements as the ideal I in A. Occasionally, 15 will denote the
image of the ideal I; in the quotient space ] \ A.

Proposition 3.1. For any o € &, the operator éo maps the subspace Iy+ to Tg(3+).

Proof. Foralla =1, ..., m — 1 consider the operatorﬁ]. Due to (3.1), (3.2) and (1.19) we have

R n

Fo(Y) = [PakGas1ks Y]

k=1

forany Y € #D (C™ ® C"). The above description of the action of?a witha = 1,...,m — 1 on the vector space
HD (C™ @ C") shows that this action preserves each of the two 2n dimensional subspaces spanned by the vectors

Qai and qqy1; Wherei=1,...,n; (3.15)

Dai and pgiq; wherei=1,...,n. (3.16)
This action also maps to zero the 2n dimensional subspace spanned by

Dai and Qgqiq; wherei=1,...,n. (3.17)
Therefore, for any § the operator Eﬂ maps the ideal 15 of A to the image of Iy inj \ A unless §, = 8/ and 8441 = —8;“ for
a=1,...,m—1.Hence, the operator éa = §aoa maps the subspace 15 to the image off(,((;) unless 8, = —4, and §11 = 8[1+1.

From now on we will denote the image of the ideal I in the quotient space ] \ A by the same symbol I. Put

pt+q
8= 8uEj— > SaEjy
a=1 a=p+1

Then for every o € &,,;, we have the equality U/(S\) =0 (’8\) where at the right hand side we use the action of the group &,

on h*. Let (, ) be the standard bilinear form on §* so that the basis of weights E}, witha = 1, ..., m is orthonormal. The

above remarks on the action of the Zhelobenko operators on I5 can now be rewritten as

£(Is) Cloysy if(8.ma) > 0. (3.18)
We will prove the proposition by induction on the length of the reduced decomposition of o. Recall that the length £(o)
of a reduced decomposition of ¢ is the total number of the factors o1, ..., op_1 in that decomposition. This number is

independent of the choice of decomposition and is equal to the number of elements in the set
A, ={nea|o@ ¢ At

where AT denotes the set of all positive roots of the Lie algebra gl,,.
If o is the identity element of G,,, then the statement of the proposition is trivial. Suppose that for some o € &,

5(7 (Tg+) C TJ(5+).
Take o, such that
L(og0) = L(o) + 1. (3.19)

Now it is only left to prove that

éa (Ia(sﬂ) - Ioao(a)-
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Due to (3.18), the desired property will take place if
(0(8%), ma) = (0(8%), na) > 0.

Note that 7, is a simple root of the algebra gl,, and hence, o,(n) € AT for any n € A" such that n # n,. Since £(o)
and £(o,0) are the numbers of elements in A, and A, respectively, condition (3.19) implies that n, € o (A™). Therefore,
Ne = o (Ey, — EZ) forsome 1 < b < ¢ < m.Thus

m
(05", n0) = (0 (6%, o (B — E2)) = (Z 81F s By — Eéi) >0. O
a=1

Corollary 3.2. For any o € &, the operator éa on] \ A maps
INT 41+ +D = INT + 1o +D).

Proof. For the proof of the Corollary 3.2 see [23, Corollary 5.2]. O
For generic p let I, 5 be the left ideal of the algebra A generated by I5 + ]’ and by the elements

Eqq — ¢n(Eqq) — 4g wWherea=1,...,m.
Recall that under the isomorphism of the algebra A with U(gl,,) ® #D (C™ ® C") element X — ¢,(X) € A maps to the
element (3.6) for every X € gl,,. Let 1, s denote the subspace U(h) I, s of A. Note that I, 5 is a left ideal of the algebra A.
Theorem 3.3. For any element o € &, the operator éa on] \ A maps

j\ (T;/,,zSJr +j) - j\ (Lrou,a(é*) +j)
Proof. Let x be a weight of gl,, with the sequence of labels («1, . . ., kn). Suppose that the weight « satisfies the conditions
(3.13) instead of . Let I, s denote the left ideal of A generated by I; + ]’ and by the elements

Egqqa — kg Wherea=1,...,m.
Relation (3.10) and Corollary 3.2 imply that the operator 5(, on] \ A maps

IN st +D =T\ Gooc o) +D-
Now choose

n /
K=uU— 953 (3.20)

where the sequence &’ is regarded as a weight of gl,,, by identifying the weights with their sequence of labels. Then the
conditions on « stated in the beginning of this proof are satisfied. For every o € &, we shall prove the equality of left ideals
of A,

i(ro;(,¢7(<3"') = Ttro;L,(T(S"’)' (321)

Theorem 3.3 will then follow. Denote § = o - §’. Then by our choice of k, we have

n
UOKZUOM—955~ (3.22)
Let the index a run through 1, ..., m — 1, then

n

n .
¢n(Eaa) + 95 =0 kX:;pakQak € ]U((Sﬂ ifé, =1,

n

n )
¢n(Eqa) — 95 = ;Qakpak €yt ifdy =—1.

Hence, the relation (3.22) implies the equality (3.21). O
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Consider the quotient vector space A/l, s for any sequence §. The algebra U(gl,,) acts on this quotient via left
multiplication, being regarded as a subalgebra of A. The algebra Y(gl,,) also acts on this quotient via left multiplication, using
the homomorphism o, : Y(gl,) — A. Recall that in Section 1 the target algebra of the homomorphism «;,, was defined as
the tensor product U(gl,,,) ® #D (C™ ® C") isomorphic to the algebra A by means of the cross relations (3.1). Part (ii) of the
Proposition 1.2 implies that the image of o, in A commutes with the subalgebra U(gl,,) C A. Thus, the vector space A/, s
becomes a bimodule over gl,,, and Y(gl,,).

Consider the bimodule &5 (M,,) over gl,; and Y(gl,) defined in the beginning of this section. This bimodule is isomorphic
to A/l, s. Indeed, let Z run through # (C™ ® C"). Then a bijective linear map

&M,) — A/ls,
intertwining the actions of gl,,, and Y(gl,), can be determined by mapping the element
1,®ZeM,®#(C"®C")
to the image of
o '(2) e #D(C"®C") CA
in the quotient A/I, 5. The intertwining property here follows from the definitions of &(M,,) and I, 5. The same mapping
determines a bijective linear map
&s(M,) — A/l,s. (3.23)

In particular, the space &s(M,,),, of n-coinvariants of € (M,,) is isomorphic to the quotlent]\A/lM s as a bimodule over the
Cartan subalgebra § C gl,, and over Y(gl,). Theorem 3.3 implies that the operator Sa on] \ A determines a linear operator

j\ A/T;L,S‘*' g j\ A/iaop.,a(z?‘*')- (324)

The definition (3.5) and the fact that the image of Y(gl,,) in A under «,, commutes with the subalgebra U(gl,,) C A imply that
the latter operator intertwines the actions of Y(gl,) on the source and the target vector spaces. We also use the invariance
of the image of Y(g[,,) in A under the action of &, Recall that &, 4(V) = &s+ (V). Hence, by using the equivalences (3.23) for
the sequences § = §* and § = o (8), the operator (3.24) becomes the desired Y(gl,)-intertwining operator (3.14).

As usual, for any gl,,-module V and any element A € §* let V* C V be the subspace of vectors of weight A so that any
X € b acts on V* via multiplication by A(X) € C. It now follows from the property (3.12) of £, that the restriction of our
operator (3.14) to the subspace of weight A is an Y(gl,)-intertwining operator

&pqM,)Y — € (Myo, ) where § = o (87). (3.25)

Consider Y(gl,,)-modules @, and q)z described at the end of the Section 2. The underlying vector space of each of these
modules coincides with the algebra #(C"). Note that the action of Y(gl,) on each of these modules preserves the polynomial
degree. Now for any N = 1, 2, ... denote respectively by 11/” and ¥, ~N the submodules in &, and @, consisting of the
polynomial functions of degree N. It will also be convenient to denote by lI/ZO the vector space C with the trivial action of
Y(gly)-

The element E1; € gl; acts on &;,0(M;) and & 1 (M;) by

n n
t—OE—deg and t+95+deg

respectively where deg is the degree operator. Therefore, Corollary 2.2 yields the isomorphism between the source Y(gl,)-
module in (3.25) and the tensor product

—v Vp+1
lpﬂllp] ®-® t[/ p+Pp ® lII/¢£-¢-1Jr/>p+1 ® Q¥ Hm+pm (3.26)

where

n
va:—Aa+ua—95 fora=1,...,p,

n (3.27)
v,,:)\a—uu—ei fora=p+1,...,m
Let us now consider the target Y(gl,)-module in (3.25). Foreacha = 1, ..., m denote
ﬁa = Ho—1(a)s Vo = Vo—1(a)» ;50 = Po—1()-

The above description of the source Y(gl,)-module in (3.25) can now be generalized to the target Y(gl,)-module which
depends on an arbitrary element o € G,
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Proposition 3.4. For § = o (§™) the Y(gl,,)-module &s (Mooﬂ)gOA is isomorphic to the tensor product

_51‘)1 R - ® q/ ‘SPVP ® ,I/8P+1VP+] ® - ® ‘I/(Smum (328)

ll«1+,01 Hip+Pp Mp+1+0p+1 Am+pPm*
Proof. Consider the bimodule é’p,q(MC,OM)‘“’"l over h and Y(gl,). By Corollary 2.2 and the arguments just above this
proposition, this bimodule is isomorphic to the tensor product

QWP @...@uln

Mp+1+0p+1

@ W

e (3.29)

Mp+/)p m~+Pm

as a Y(gl,,)-module. The bimodule &5 (M., ). can be obtained by pushing forward the actions of h and Y(gl,,) on &, ¢(Msoy)n
through the composition of automorphisms

X, —> —00, and 0, — Xq (3.30)

for every tensor factor with number a such that §, = —1. These automorphisms exchange Y(g(,)-modules &,, and 5za
but leave invariant the degree of polynomials. Therefore, they interchange llfz’;’ and lIIZ;N which implies the resulting Y(gl,,)-
module to be as in (3.28). O

Thus, for any non-negative integers vy, ..., v,; we have shown that the Zhelobenko operator é(, on ] \ A defines the
intertwining operator between the Y(gl,)-modules

-V Vp+1
lp/t]ﬂ)] Q- ® lpﬂp+ﬂp ® lp Hp+1+Pp+1 ®--- Q¥ Hm+pm

and

w8 —8pVp 5p+1"p+1 Smm
#1+P1 Q- ® l}/ Tip+0p ® Y pr1+0p+1 ®- Y Hm~+Pm

Moreover, the operator Sg permutes tensor factors of the module (3.26), therefore modules 8p.q(Mu)ﬁ and &s (Mgou)g"*,
written in the form (2.5), contain similar tensor factors £2,, or §2; . Now recall that modules £2,, and §2; are central and that
the Zhelobenko operator 5(, acts on them as identity operator. These two observations allow us to exclude £2,, and .Qz/a from
both source and target modules of the mapping (3.25) and to define an intertwining operator &, between tensor products
of modules ¢, and @,. For any integer N denote respectively by Q>;V and qﬁ;” the submodules of &, and &, consisting of

polynomial functions of degree N. Note that @é\’ coincides with lI/ZN for positive N but differs for negative N. Hence, the
following theorem holds.

Theorem 3.5. Given a generic weight ;1 and non-negative integers vy, .. ., v, the map &_ intertwines rational Y(gl,,)-modules
-V Vp+1
q)mﬂ)l Q- ® q)llpﬂ)p ® (pﬂp+1+0p+1 ®-® ¢um+pm (3.31)
and

=811

—8pV) Sp+17p+1 Sy
M1+p1® ®¢ PP® P p ® ®®mm

Hp+op H—p+1+Pp+1 Am+pPm*

4. Highest weight vectors
4.1. Symmetric case

In this subsection we consider only the case of commuting variables, hence from now on and till the end of the subsection
we assume 6 = 1. Proposition 4.4 determines the image of the highest weight vector U;AL of the Y(gl,)-module SP,Q(MM)ﬁ

under the action of the operator éo. The proof of the Proposition 4.4 is based on the following three lemmas. Proofs of the
first two of them are similar to the proof of Lemma 5.6 in [23]. Proof of the last one is similar to the proof of Lemma 5.7
in[23].Lets,t =0,1,2,...andk, £ =1,...,n

Lemma4.1. Foranya=1,...,m — 1 the operator &, on ]\ A maps the image in] \ A of p$,p., ;. € Ato the imagein]\ A of
the product

S Hy+r+1
t s a
DarP ||
akFa+1k 1 Hy+r—t

plus the images in | \ A of elements of the left ideal in A generated by ] and (3.15).

Lemma4.2. Foranya=1,...,m — 1 the operator &, on ]\ Amaps the image in] \ A of ¢, q., ,, € A to the imagein] \ A of
the product
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t
Hy+r1+1
t s a
qq . _—
akta+1k E Hy+r—s

plus the images in ] \ A of elements of the left ideal in A generated by ]’ and (3.16).

Lemma4.3. Foranya = 1,...,m — 1the operator &, on] \ Amaps the image in ]\ A of p%,q5,,, € Ato the imagein]\ A of
the product

S Hg+r
r s L ifn=1landk=¢=1,
QaePatrr Yot Ha+1 41
1 ifn>1landk # ¢
plus the images in ] \ A of elements of the left ideal in A generated by J' and (3.17).

We l<eep assuming that the weight u satisfies the condition (3.13). Let (u], . .., u},) be the sequence of labels of weight
u+ p — 38'.Suppose that for alla = 1, ..., m the number v, defined by (3.27) is a non-negative integer. For each positive
rootn = Ebb E € At with 1 < b < ¢ < m define a number z, € C by

Vh * *
—ur=r
n% iftb,c=1,...,p,
1Ay AL
Ve * *
Ky — e —T .
_ ifbc=1,..., 1,
l_[ A —Af 4T Pt
zy, =

—T 1 =
l_[ﬂb + ifb_l""’p’ andn=1,
A*—k*+r c=p+1,...,m,
b=1,...,p,

C:p+17'..’m,andn>1.

1, if

Here v = min(vp, v.). Let vft denote the image of the vector

p
Hp l_[ qseA
a=1

a=p+1

in the quotient space ] \ A/iu,ﬁ-

Proposition 4.4. (i) The vector vﬁ does not belong to the zero coset in ] \ /_\/TWH.

ii e vector v’ is of weight A under the action of hon]\ A _L_5+ and is of highest weight with respect to the action of Y(gl,

(ii) Th ﬁ f weight A under th ionof honJ\ A/l d is of high h h h f Y(gl,)
on the same quotient space. o B

(iii) For any o € G, the operator (3.24) determined by &, maps the vector vﬁ to the image in ] \ A/lyo,.0(5+) Of a(v;}) €A
multiplied by ] Z.

nNe€Aqs

Proof. Part (i) follows directly from the definition of the ideal TWH. Let us now prove Part (ii). Subalgebra h acts on the
quotient space ] \ A/l s+ via left multiplication on A. Let symbol = denote the equalities in A modulo the left ideal I, s+.
Then we have

Eaavﬁ = U,);Eaa + [gn(Eaa)s Uﬁ] = Uﬁ (Eaa F va) = U,); (6n(Eqa) + Ha F Va)
n
U/); (qu + e F Va) = )\avl);

where one should choose the upper sign fora = 1, ..., p and the lower sign fora = p + 1, ..., m. Next, Y(gl,,)-modules
I\ A/IM s+ and &, ¢(M,,), are isomorphic. Recall that Tii(u) acts on &, 4(M,,), with the help of the comultiplication A. Now

Corollary 2.2 and formulas (2.3) imply that T,j(u)vu = 0forall 1 <i < j < n. Moreover, one can check that

U+ g+ Pa+ Va

=

wpp1 Ut et pa =1
Tii(u)vﬁzvﬁ' P+ g+ pg —va — 1 .

al:! Ut patpa

1, otherwise.

Therefore, vﬁ is a highest weight vector with respect to the action of Y(gl,,) on the quotient space ] \ A/Tﬂ’(ﬁ.
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We will prove Part (iii) by induction on the length of a reduced decomposition of o. If ¢ is the identity element of G,
then the required statement is tautological. Now suppose that for some o € &, the statement of (iii) is true. Take any simple
reflection o, € &, with 1 < a < m — 1 such that 0,0 has a longer reduced decomposition in terms of o4, .. ., 0, than o.

Consider the simple root 1, corresponding to the reflection o,. Let n = o ~!(1,) then

040 () = 0q(na) = —1a & A™.

Thus, Ay, = A, U {n}. Letk € h* be the weight with the labels determined by (3.20). Using the proof of Theorem 3.3, we
get the equality of two left ideals of the algebra A,

T(<ra<r)ou,(Uaa)(éJr) = T(Uaa)cw,(<ra<r)(6+)'
Modulo the second of these two ideals the element H, equals
((040) 0 k)(Hg) = (040 (k + p) — p)(Hy) = (k + p)(o'ilaa(Ha)) — p(Ha)
= —(k+p) (0 "(H)) = 1= =k +p)(Hy) — 1= —pj +p; — 1.

Here H, = o~ '(H,) is the coroot corresponding to the root 7, and we use the standard bilinear form on §*.
Let us use the statement of (iii) as the induction assumption. Denote § = o (§1). Consider three cases.
L.Leth,c =1,...,p,thend, = 8, and 1 = 8a+1 Hence,

A Y
o (vu) = p:gpafH nY

where Y is an element of the subalgebra of 2D (C™ ® C") generated by all x4, and 9y, with d # a, a+ 1. Now we apply the
Lemma 4.1 with s = v, and t = v,. After substitution —uy; + u; — 1 for H, the fraction in the lemma turns into

l—b[ R ﬁuz‘—u?—r
LMy —ve—T rz]kjj—)»g*—i—f

I.Letb,c=p+1,...,m,thend, = —8, and 5o 1 = -5,

.1- Hence,

o (vl) = CIZ'iQZCH 1Y

where Y is an element of the subalgebra of £ (C™ ® C") generated by all x4, and 9y, with d # a, a+ 1. Now we apply the
Lemma 4.2 with s = v, and t = v,. After substitution —u}; + u; — 1 for H, the fraction in the lemma turns into

1“—] —uE A+ :”C Wi =i —r
—up v —vy -1 LA —A 4T

r=1

Il.Letb=1,...,p,c=p+1,...,mthend, = §, and §g11 = —§,

«t+1- Hence,

g (vfl) = p;ﬁquyl 1Y

where Y is an element of the subalgebra of #D (C™ ® C") generated by all xg, and dg, with d # a, a+ 1. Now we apply the
Lemma 4.3 with s = v, and t = v.. When n = 1, after substitution —uj + u} — 1 for H, the fraction in the lemma turns
into

ﬁ —py 4+ pui4r—1 _l—[Mb pe—r+1

iy o L S L Ay —Ar4T

Thus, in the three cases considered above the operator

0o I\ A/l st = Logo)op, (0a0)(5+)

maps the vector vﬁ to the image of

oao(vﬁ)- 1_[ z, € A

N€loqo

in the vector space ] \ A/(s,0)0u.(0q0)(s+)- This observation makes the induction step. O
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4.2. Skew-symmetric case

In this subsection we consider only the case of anticommuting variables, hence from now on and till the end of this
subsection we assume 6 = —1. Proposition 4.8 determines the image of the highest weight vector vﬁ of the Y(gl,,)-module

&pq(M, M)ﬁ under the action of the operator éa. The proof of the Proposition 4.8 is based on the following three lemmas. Proofs
of the first two of them are similar to the proof of Lemma 5.6 in [24]. Proof of the last one is similar to the proof of Lemma
5.7in[24].Lets,t = 1,...,n, define

fas = Pan—s+1-*+Pan and  ggs = qa1 - - - Gos-

Lemma 4.5. Foranya = 1, ..., m — 1 the operator éa on] \ A maps the image inJ \ A of fufus1: € Ato the image in] \ A of
the product
Hi+s—t+1

fa+1sfat' Ha+]
1 ifs<t

ifs>t,

plus the images in | \ A of elements of the left ideal in A generated by ] and (3.15).

Lemma 4.6. Foranya =1, ..., m — 1 the operator éﬂ on] \ A maps the image in ] \ Aof Zas8a+1t € A to the image in] \ Aof
the product
Hy+t—s+1
— ifs<t,
8a+1s8at - Hy +1
1 ifs>t

plus the images in ] \ A of elements of the left ideal in A generated by ]’ and (3.16).

Lemma4.7. Foranya =1, ..., m — 1 the operator éa on] \ A maps the image in] \ A of fugas1¢ € A to the imagein] \ A of
the product
Hi+s+t—n+1
ifs+t>n,
fa+1sgat : Ha +1
1 ifs+t<n

plus the images in | \ A of elements of the left ideal in A generated by ] and (3.17).

We keep assuming that the weight u satisfies the condition (3.13). We also assume that vy, ..., v, € {0, 1, ..., n}. Let
(13, ..., 1) be the sequence of labels of weight ;14 p + %8/. For each positive rootn = Ej, —EX € Atwith1<b<c<m
define a number z, € C by

Ay — A .

- ifb,c=1,...,pand vy, > v,

Ky — M

Ay — A ,

- ifb,c=1,...,p+Tand v, < v,
Zy =y Mp — M

Af—Ar+n =1,...

M At b=1,....p, and vy + ve > 1,

,U«E—M’C" c=p+1,...,m,
1, otherwise.

Let v/ﬁ denote the image of the vector

)4 m _
Hfavu : 1_[ Za, €A
a=1

a=p+1

in the quotient space ] \ A/fﬂﬁ.

Proposition 4.8. (i) The vector vﬁ does not belong to the zero coset inJ \ A/iﬂ,5+.

(ii) The vector vﬁ is of weight A under the action of b on] \ /_\/TM’SJr and is of highest weight with respect to the action of Y(gl,)
on the same quotient space. o B

(iii) For any o € &, the operator (3.24) determined by &, maps the vector vﬁ to the image in | \ A/lyo,.0(5+) Of a(vﬁ) eA
multiplied by [ ], », 2.
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Proof. Part (i) follows directly from the definition of the ideal TW;+. Let us now prove Part (ii). Subalgebra h acts on the

quotient space ] \ A/I,, 5+ via left multiplication on A. Let symbol = denote the equalities in A modulo the left ideal I,, 5+.
Then we have

Eaavl}: = vl),tEaa + [{n(Eaa)’ v,);] = Uﬁ (Eaa F Vo) = vl); (&n(Eqa) + Ha F Va)

v :I:E—i— Va) = At
u > Ha FVa ) = AdVy,

where one should choose the upper sign fora = 1, ..., p and the lower sign fora = p + 1, ..., m. Next, Y(gl,)-modules
J\ A/l s+ and & (M,,), are isomorphic. Recall that T;(u) acts on &, 4(M,,), with the help of the comultiplication A. Now,

Corollary 2.2 and formulas (2.3) imply that T,-j(u)vﬁ = 0forall 1 <i < j < n.Moreover, one can check that

U— g — pgt+1 U— g — pg+ 1
Liwv, = v}~ [ =P UZHa=pat1
tcasp, YT HMa—Pa piicaem, YT Ma— Pa
vg<n—i vazi

Therefore, vﬁ is a highest weight vector with respect to the action of Y(gl,,) on the quotient space ] \ A/iu, s+
We will prove Part (iii) by induction on the length of a reduced decomposition of . If ¢ is the identity element of G,
then the required statement is tautological. Now suppose that for some o € &, the statement of (iii) is true. Take any simple
reflection o, € &, with 1 < a < m — 1 such that 6,0 has a longer reduced decomposition in terms of o4, ..., o,;, than o.
Consider the simple root 7, corresponding to the reflection o,. Let n = ¢ ~1(#,) then
040 () = 0a(Na) = —1Na & AT,
Thus A, = A, U {n}. Let k € h* be the weight with the labels determined by (3.20) with & = 1. Using the proof of
Theorem 3.3, we get the equality of two left ideals of the algebra A,
T(Uaa)ou.(tfua)@*) = T(<fa<f)o'<,((rad)(rS*)-
Modulo the second of these two ideals the element H, equals
((040) 0 k)(Ha) = (040 (k + p) — p)(Ha) = (k + p)(0~'0a(Ha)) — p(Ha)
=—(k+p)0 ' (H)) —1=—(k+p)H) —1=—pj +pni—1.
Here H, = o~ '(H,) is the coroot corresponding to the root 7, and we use the standard bilinear form on §*.

Let us use the statement of (iii) as the induction assumption. Denote § = o (§T). Consider three cases.
l.Leth,c =1,...,p,thend, = §, and 8,1 = &, ;. Hence,

a+1°
A
o (vu) = fapfar1v Y

where Y is an element of the subalgebra of $D (C™ ® C") generated by all xg, and dg, with d # a, a + 1. Now we apply the
Lemma 4.5 with s = v, and t = v,. After substitution —uy; + u; — 1 for H, the fraction in the lemma turns into

—Wy s tvp—ve Ay — AL
—Mp g My — ¢

I.Leth,c =p+1,...,m,thend, = =6, and .41 = —§,, ;. Hence,

o (U,)l) = 8avp8a+1 veY

where Y is an element of the subalgebra of $D (C™ ® C") generated by all xg, and dg, with d # a, a + 1. Now we apply the
Lemma 4.6 with s = v and t = v.. After substitution —uy + uF — 1 for Hy, the fraction in the lemma turns into

—Wy R tve—vy Ay — AL
—Mp g My — ¢

l.Letb=1,...,p,c=p+1,...,m,thend, = 8, and 6,41 = —,_ ;. Hence,

o (vl);) = favbga+l vCY

where Y is an element of the subalgebra of $D (C™ ® C") generated by all xg, and dg, with d # a, a + 1. Now we apply the
Lemma 4.7 with s = v, and t = v.. When n = 1, after substitution —u}; + u} — 1 for H,, the fraction in the lemma turns
into

—pptuitvptve—n Ay —Al+n
—up 4 wy—
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Thus, in the three cases considered above the operator
gauu:.l \ A/I[L,8+ - l(aaa)oll..(oao)(8+)

maps the vector vﬁ to the image of

aao(vz) . l_[ z, € A

N€Aoqo

in the vector space | \ A/T((,a,,)o“,((,a(,)(,;ﬂ. This observation makes the induction step. O

5. Conjecture

The formula (3.5) yields that for any vector v € J \ /_\/Twﬁ the image of v under the operator 5(, is well defined unless
(Hs + 1 — r)v = 0 for some integer r. As we have shown in the previous section H, acts as —u; + u — 1 for some
1 < b < ¢ < mon the target module in the mapping (3.25). It follows from relations (3.4) that after commuting H, with v,

we will get v(A; — A% + r). Therefore, the operators éa are well defined unless
Ap—Ar=-1,-2,... forsomel<b<c<gm. (5.1)

In the latter case it can be shown that a factor of module (3.26) by the kernel of operator 5,,0 is an irreducible (and non-
zero under certain condition on the numbers vy, ..., vy) Y(gl,)-module where oy is the longest element of the Weyl group
(see [16]).

Conjecture 5.1. Every irreducible finite-dimensional rational module of the Yangian Y(gl,,) may be obtained as the factor of the
module (3.31) over the kernel of the intertwining operator E(/IO for some weights u and X, with A satisfying condition (5.1).
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Appendix
Let us first prove some properties of the matrix X (u) defined by (1.11).

Proposition A.1. (i) The following relation holds:

(u—v) - XWX©) =X () —XWw); (A1)
(ii) The elements Xqp (1) satisfy the Yangian relation:
U —v) - Xap (W), Xea(v)] = 0 Kep (W)Xaa (V) — Xep (V) Xaa (). (A2)

Proof. The part (i) follows from equality
(u—v) = (u+0E) — (v+06F)

multiplied by X (1) from the left and by X (v) from the right. Let us start the proof of the part (ii) with equality
[(u + GE,)ef s (U + QE/)gh] = éethg — ngEhe-

We multiply the above equality by X,.(u) from the left, by Xg (u) from the right, and take a sum over indices e, f:

M=

(Xae(u) (4 0F") (v +OF') X () — Xae ) (v + OF) , (u+0E') xﬂ,(u))

o
[y
Il
—_

(Xae (u)5e11Engfb (U) — Xee (u)angheXﬂJ (u)) .

m
ef=1
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Thus, we get
m
[(0+6F) 1y Xao() | = D (Xan WEXi ) — Xae (X (@)
ef=1
Using that

D ExXp(u) =6 (85 — uXgp(w))  and D Xee(UEpe = 6 (8an — uXan () ,
f=1 e=1

we obtain
[(v +oE),, ,Xab(u)] = 0 (SpgXan (1) — SanXep (1)) -

Multiplying the above equation by X, (v) from the left, by X;4(v) from the right, and taking a sum over indices g, h, we arrive
to equality

[Xap (), Xea(0)] = 6 [Xep(0)Xan (WX (v) — Xeg (0)Xgp ()Xaa(v)]
g,h=1

Now using the result of the part (i), we get

(1= 0) - Kap (W), Xt )] = 0 (Xep (0) (Xat () = Xaa @) = (Xep (1) = Xep (1) Xaa () )
and the statement of the part (ii) follows. O

Proof of Proposition 1.2. We prove the part (i) by direct calculation. During the proof we will write T;;(u) instead of its
image under «,, in the algebra U(gl,,) ® #D (C™ ® C"). Using relations (1.17), (1.18), we get

m

Z (u—v)- (Xab(U)Xcd(U) ® (Qéck,bjéai,dl + 5bc5jkl§ai,dl - 95ab5ijéck,dl)
a,b,c,d=1

—Xea(V)Xep (1) ® (eéck,bjéai,dl + 5ad8iléck,bj - 95ab5ijéck,d1))

u—v) - [T, Tu()]

m
> w-v)- ([xab<u>, Xea(0)] ® O (Eck biEai.at — SapSiiEer.ar)
a,b,c,d=1

+ Xap (WX (V) @ 8b08jkéai,dl — Xea (V) Xep (1) ® 5adf3iléck,bj)-

Next, using relations (A.1) and (A.2), we obtain

m

@=—0) - [w, @] = Y ((xcbw)xad(v)—xfbw)xad(u))®(éck,b,-ém,dz—6abaijéck,dl)

a,b,c,d=1
+@—v)- (Xab WX (v) ® 8bc6jkéai,dl — Xed (V) Xep (1) ® 5ad8iléck,bj>)-

Now, using the definition of the homomorphism «;,, we get

(Tig(w) — &56) (Ta(w) — &) — (Ty(®) = 8 (Taw) = 81) = & Y_ (XWX W), — KX (W),,) & Eta
c,d=1

+8k Y U= 0) (XWX (©))ar) ® Eaiar + 8 Y, (= v) (XWX ())ep) ® Eer.py-

a,d=1 b,c=1

It follows from relation (A.1) that X (u)X(v) = X(v)X(u). Therefore, we finish the proof of the part (i) by the following
calculations:

(=) - [T, Tu()] = T Tu(v) — Tig(W) Tu(u) — Si(Tu(v) — Taw)) — Su(Tii(u) — Ty (v))
+ 8 (Ta(v) — Ty (W) + 8 (Tig (W) — Ty ()
= T Ty(v) — Tii(v) Ty (u).
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The part (ii) is also proved by straightforward verification:

(et ® 1418 £y(Ee), Ty

m n m
Ea®1, Z Xap(U) @ Egipj | +|1® ZEck,dlw Z Xap (1) ® Egipj
a,b=1 k=1 a,b=1
Z <5bdxac (W) — 8qcXap (U)> ® Eqipj + (Xab(u) ® <5ad5ik5ck,bj - 5bc5jk5ai,dk>)
a,b=1 k=1 a,b=

I
3 o

m m m
ZXac (1) ® Egigj — Zxdb(u) ® Ecipj + Zxdb(u) ® Ecipj — ZXac(U) ®Euigg=0. O
a=1 b=1

b=1 a=1
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