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We review the conditions for separability of 2-dimensional indefinite natural Hamiltonian
systems. We examine the possibility that the separability condition is satisfied on a
given energy hypersurface only (weak integrability) and derive the additional requirement
necessary to have separability at arbitrary values of the Hamiltonian (strong integrability).
We give a list of separable polynomial potentials and discuss the kind of separable
structures they admit.
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1. Introduction

The method of separation of variables stays at the foundations of analytical mechanics. The application to classical and
quantum Hamiltonian systems leads to a thorough understanding of the conditions for separability and of the form of
separated solutions. Even restricting to natural systems implies an enormous bibliography, among which we just mention
the classical contributions of Jacobi [1] and Eisenhart [2] and the more recent systematic work by Benenti [3]. It is therefore
surprising to observe that in the case of natural systems with indefinite kinetic energy, or indefinite systems for short, a
systematic investigation of their separation has been performed only very recently [4,5]. Maybe, the reasons for this neglect
stay in the prevalent application of indefinite natural systems in celestial mechanics [6], where the main focus is on non-
integrability and perturbation methods. In this framework, the role of indefinite quadratic Hamiltonians is quite clear in
the context of normal form theory [7] even if we are just starting to understand the structure of indefinite resonant normal
forms [8]. On the other hand, an exhaustive investigation of separable potentials of natural indefinite systems is still lacking
even for the simplest case of two degrees of freedom.

The study of separation of variables by means of a general approach based on conformal coordinate transformations was
introduced in [9] and applied in [10,11]. It has been generalized in [4] to get a complete classification of separating coordinate
systems of the indefinite Hamilton–Jacobi equation with the corresponding formal separated potentials and second integral
of motion. Separability of free motion on the flat hyperbolic plane has already been investigated [12,13]. However, in [4,5]
a more general picture is provided, showing how different kinds of separation structures appear. In particular, it is in gen-
eral necessary to use different separating variables, even for the integration of a single orbit [14]. Associating as usual the
existence of a 2nd-rank Killing tensor to that of a system of separating coordinates [2], the picture can be illustrated as

∗ Tel.: +39 06 72594541; fax: +39 06 72594541.
E-mail address: pucacco@roma2.infn.it.

http://dx.doi.org/10.1016/j.geomphys.2014.07.026
0393-0440/© 2014 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.geomphys.2014.07.026
http://www.elsevier.com/locate/jgp
http://www.elsevier.com/locate/jgp
http://crossmark.crossref.org/dialog/?doi=10.1016/j.geomphys.2014.07.026&domain=pdf
mailto:pucacco@roma2.infn.it
http://dx.doi.org/10.1016/j.geomphys.2014.07.026


G. Pucacco / Journal of Geometry and Physics 87 (2015) 382–395 383

follows: for (1 + 1)-dimensional systems there are three possible types of conformal Killing tensors, and therefore, three
distinct separability structures in contrast to the single standard (Liouville) type separation of the positive definite case [10].
One of the new separability structures is the complex-Liouville/harmonic typewhich is characterized by complex separation
variables and the potential is a harmonic function. The other new type is the linear/null separation which occurs when the
conformal Killing tensor has a null eigenvector so that it has the structure of a Jordan block and the potential depends only
linearly on one of the separation variables.

Aim of this paper is to rework the presentation of standard quadratic separability in a more ‘mechanical’ (i.e. less geo-
metric) fashion, adopting the usual ‘direct’ approach [15,16]. However, we will find useful in several places to exploit also
geometrical properties. Several examples are detailed and, in this case, a comparison with the standard positive definite
counterpart is made. Since they are useful toy models for mechanical applications, a special emphasis is accorded to classify
indefinite separable polynomial potentials: it turns out that the set of separable polynomial families is quite larger than in
the positive definite case.

The layout of the paper is as follows: in Section 2 we introduce the coordinate transformations which preserve the
Hamiltonians in ‘null’ form; in Section 3 we get the systems admitting an integral of the motion quadratic in the momenta;
Section 4 accounts for the systems with polynomial potentials; Section 5 contains concluding remarks.

2. Separation of 2-dimensional and of (1 + 1)-dimensional systems

We consider the general 2-degrees of freedom natural system described by the Hamiltonian

H =
1
2 (p

2
x + σp2y)+ V (x, y) (1)

where σ = +1 for positive definite 2-dimensional systems and σ = −1 for indefinite, (1 + 1)-dimensional systems. We
may then look for a phase–space function I = I(px, py, x, y) preserved along the flow given by Eq. (1), namely such that

{I,H} = 0. (2)
Following the approach already used in the positive definite case [10,17–19], we consistently define, for any given energy E
of the system, the null Hamiltonian

H ≡ H − E =
1
2 (p

2
x + σp2y)− G(x, y; E), (3)

where
G ≡ E − V . (4)

In the positive definite case it turns out to be very helpful to work with complex variables [10,20]. In the indefinite case, it
is useful instead [4] to work with coordinates which are null (lightlike) with respect to the pseudo-Euclidean metric

ds2 = dx2 − dy2. (5)
In both cases, such variables are naturally adapted to the action of the conformal group which plays an essential role for
2-dimensional systems. Introducing the label

ε = i
1+σ
2 =


i (σ = +1),
1 (σ = −1), (6)

we perform the canonical point transformation given by

z = x + εy, p =
1
2


px +

1
ε
py


, (7)

ẑ = x − εy, p̂ =
1
2


px −

1
ε
py


, (8)

so that the null Hamiltonian can be written in the form
H = 2pp̂ − G(z, ẑ; E). (9)

The forms of the null Hamiltonian and of its conformal transforms are the same in both cases σ = ±1 and we can follow
a unified approach based on the direct search of polynomial constants of the motion. To come back to the explicit forms in
the two cases, in the positive definite case the variable z is the standard complex coordinate on the plane so that the hat can
be interpreted as the bar of complex conjugation,

z = x + iy, (10)

ẑ ≡ z̄ = x − iy. (11)
In the indefinite case, the variables are real,

z = x + y, (12)

ẑ = x − y, (13)
and give a null coordinate system on the Minkowski plane M2.
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In the direct approach an ansatz is made for the ‘candidate’ integral

I = I(p, p̂, z, ẑ), (14)

and one tries to solve Eq. (2). The usual ansatz is the polynomial one [16]. Separability is associated with integrals linear
or quadratic in the momenta. We will find it useful to exploit a conformal transformation to standardize the frame and the
coordinate representation of the integral of motion [9]. To that end we may introduce new coordinates w, ŵ by means of
the analytic functions

z = F(w), (15)

ẑ = F̂(ŵ). (16)

The conformal transformation

z → w ≡ X + εY , ẑ → ŵ ≡ X − εY (17)

is given by (15), (16) and determines the canonical point transformation

w = F−1(z), P = F ′p, (18)

ŵ = F̂−1(ẑ), P̂ = F̂ ′p̂, (19)

where the apex denotes the derivative and P, P̂ are the momenta conjugate to w, ŵ. The transformation induces a
corresponding canonical transformation from the old physical coordinates px, py, x, y to the new ones PX , PY , X, Y where
X, Y are introduced in (17) and, in analogy with (7), (8),

P =
1
2


PX +

1
ε
PY


, (20)

P̂ =
1
2


PX −

1
ε
PY


. (21)

Under the transformation (18), (19), the Hamiltonian (9) transforms into the new null Hamiltonian

H =
2PP̂ −G(w, ŵ; E)

F ′F̂ ′
, (22)

whereG = F ′F̂ ′G (23)

is the new ‘potential’. On the ‘shell’ H = 0 we can work with the ‘standard’ null Hamiltonian

HS = 2PP̂ −G(w, ŵ; E) = 0. (24)

A conserved quantity stays conserved if transformed between the two gauges (22) and (24). In terms of real variables, (24)
is given by

HS =
1
2
(P2

X + σP2
Y )−G(X, Y ; E) = 0. (25)

In the following, we will refer to X and Y as separating variables, because, as shown in [5,4], separation of the Hamilton–
Jacobi equation

∂W

∂X

2

+ σ


∂W

∂Y

2

− 2G(X, Y ; E) = 0 (26)

occurs in general, even if in a nonstandard fashion. The procedure common to all cases is based on a conformal transforma-
tion that allows us to get a unique form of the linear differential equation for the integrability condition of the potential, the
same for every system of coordinates. Specific separating coordinates are determined by ‘generating’ functions that at the
same time define the leading order term of the integral. For weak integrability (namely integrability at a fixed value of the
energy, [21]) those functions are arbitrary, whereas strong integrability (‘standard’ integrability at arbitrary values of the
energy) requires that they must be polynomials [20].

In the positive definite case, only the region V < E is relevant implying G > 0, whereas this is in general not necessary
in the indefinite case. However, the additional very important difference is that z, ẑ andw, ŵ are complex conjugates in the
positive definite case, while they are real variables in the indefinite case. This difference turns out to be crucial and leads to
a much richer structure than in the positive definite case.
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3. Separability and quadratic constants of the motion

The present paper is devoted to the indefinite case. However, for the sake of completeness and to enlighten the similarity
between the two settings, we present also the positive definite case in a unified approach.

3.1. The quadratic integral

We look for systems admitting a second integral of motion which is a quadratic function in the momenta. The ansatz is

I2 = Sp2 + Ŝp̂2 +
1
2
K , (27)

where the two coefficients S, Ŝ and K are assumed to be functions of the coordinates z, ẑ. We remark that (27) is indeed the
most general quadratic polynomial, since mixed terms of the form pp̂ are absorbed in K via the Hamiltonian constraint (9)
and linear terms are absent due to the reversibility of the system. We apply the direct method [22,15,23,16], so the system
of equations ensuing from the conservation condition (2) is the following [20]:

Sẑ = 0, (28)

Ŝz = 0, (29)

Kz + 2ŜGẑ + ŜẑG = 0, (30)
Kẑ + 2SGz + SzG = 0 (31)

where, from hereinafter, with the subscript we denote the partial derivative with respect to the corresponding variable.
Looking at this system, we see that Eqs. (28), (29) are readily solved:

S = S(z), Ŝ = Ŝ(ẑ); (32)

that is S and Ŝ are arbitrary functions of a single variable. Concerning Eqs. (30)–(31) we now have the following ‘Darboux’
integrability condition

2GzzS(z)− 2Gẑẑ Ŝ(ẑ)+ 3GzS ′(z)− 3Gẑ Ŝ ′(ẑ)+ G[S ′′(z)− Ŝ ′′(ẑ)] = 0 (33)

where (32) is already exploited. As discussed above we can simplify Eq. (33) by using a conformal transformation like in
(17). The solution of the integrability condition is determined by the structure of the conformal part of the integral [4,5]. If
the product SŜ is strictly positive the procedure is the same in the definite and indefinite cases (‘Liouville’ separability), if
SŜ vanishes and/or changes sign we get respectively the ‘null/linear’ and the ‘complex/harmonic’ separability. These three
possibilities affect the form of the generalized Darboux equation (33) in the new variables. In fact, recalling the conformal
potential (23), the coordinate transformations leading to the standard form of the

integral, provide the three different equationsGww − sGŵŵ = 0, s = +1,−1, 0. (34)

We now examine each of these cases in turn.

3.2. Liouville separability

In the standard case s = +1, the separation variables are directly given by [9,24,5]

dz
dw

= F ′(w) ≡


S(z(w)), (35)

dẑ
dŵ

= F̂ ′(ŵ) ≡


Ŝ(ẑ(ŵ)), (36)

or equivalently

w =


dz
√
S
, ŵ =


dẑ
Ŝ
. (37)

In the new variables (w, ŵ) the generalized Darboux equation becomesGww −Gŵŵ = GXY = 0 (38)

the solution of which, like in the positive definite case, isG = B1(X)+ B2(Y ), (39)
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with B1 and B2 arbitrary functions of their argument. The null Hamiltonian then takes the explicitly separated form

HS = 2PP̂ −G(w, ŵ; E) =
1
2
(PX 2

− PY 2)+ B1(X)+ B2(Y ). (40)

The equations for the trace (30)–(31) become

KX = −2GX , KY = 2GY . (41)

Using (39), the solution is

K = 2 [B2(Y )− B1(X)] (42)

and the second integral of motion (27) can be written as

I2 = P2
+ P̂2

+
1
2
K =

1
2
(P2

X + p2Y )+ B2(Y )− B1(X). (43)

3.3. Complex/harmonic separability

Let us now consider the case SŜ < 0, s = −1, which has no counterpart for positive definite systems. The separation
variables ((18)–(19)) are now given by

w =


dz
√
S
, ŵ = −


dẑ
Ŝ

(44)

and the form of the generalized Darboux equation written in the separation variables then changes from the wave equation
to the Laplace equationGww +Gŵŵ =

1
2 (

GXX +GYY ) = 0. (45)

It follows that the general solution is a harmonic function given byG = ℜ{Q (Z)}, (46)

where Q (Z) is an arbitrary holomorphic function of Z = X + iY . This means that the system separates if it is written in the
complex variables Z and Z̄ = X − iY , since the null Hamiltonian can be written as

H = p2Z + p2Z̄ + ℜ{Q (Z)}. (47)

We therefore refer to this case as harmonic or complex separation in contrast to the additive Hamilton–Jacobi separation. The
equations for the trace ((30)–(31)) are

KZ + KZ̄ = 2i(GZ̄ −GZ ), KZ − KZ̄ = −2i(GZ̄ +GZ ). (48)

Using (46), we find that the solution is given by

K = i

Q (Z)− Q̂ (Z̄)


. (49)

The second integral then takes the form

I2 = PXPY +
1
2
K = i(P2

Z − p2Z̄ )− ℑ{Q (Z)}. (50)

3.4. Linear/null separation

We finally consider the third type of separation which occurs when s = 0 and for which there is again no counterpart in
the positive definite case.Wemay then assume S ≠ 0 and Ŝ = 0 (or vice versa). The generalized Darboux equation becomesGww = 0. (51)

One separation variable is w = A(z) where A(z) satisfies [A′(z)]−2
= |S(z)| as in the previous cases. There is no restriction

on the other variable which can therefore be any function independent ofw. It follows that the general solution must have
the formG = C(ŵ)w + D(ŵ), (52)

where C(ŵ) and D(ŵ) are arbitrary functions. This case is referred to as linear or null separation, but is mentioned as Lie
case in Ref. [24]. The terminology ‘null separation’ stems from the fact that the conformal Killing tensor has a double null (or
lightlike) eigenvector [5]. The integrability by quadrature can be checked by following the recipe provided in [4, Section III.E]
and [5, Section 2.2.2].
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Table 1
The possible conformal transformation functions for (1 + 1)-dimensional integrable Hamiltonians with a
second degree invariant.

1. F1(w) = w A1(z) = z S1(z) = 1 k = b = 0, c ≠ 0
2. F2(w) = w2 A2(z) =

√
z S2(z) = 4z k = c = 0, b ≠ 0

3. F3(w) = ew A3(z) = ln z S3(z) = z2 k ≠ 0, D = 0
4. F4(w) = 1 coshw A4(z) = acosh(z/∆) S4(z) = z2 −∆2 k ≠ 0, D > 0
5. F5(w) = 1 sinhw A5(z) = asinh(z/∆) S5(z) = z2 +∆2 k ≠ 0, D < 0

3.5. Strong separability

We now focus our attention on strong separability which, considering definition (4), means that the system is separable
for arbitrary values of E. This is the ordinary separation property which has as a particular case the free (geodesic) motion
on the ‘flat’ (G = 1) hyperbolic plane [12]. When the system is separable (or integrable) only at certain fixed values of E we
speak ofweak separability (or integrability in the general case of non-quadratic integrals [18]). A discussion of this topic for
positive definite systems is given in [20].

Strong separation is obtained by imposing that integrability condition (33) should not depend on E leading to

S ′′(z) = Ŝ ′′(ẑ). (53)

The solutions of (53) are

S(z) = kz2 + bz + c, Ŝ(ẑ) = kẑ2 + b̂ẑ + ĉ (54)

where all arbitrary constants are real. In the positive definite case, the corresponding solution is S(z) = az2 + βz + γ [10],
where a is a real constant whereas β and γ are complex. In both cases the total number of free constants is five and the
leading order coefficients can be assumed to take the values 1 or 0.

In the positive definite case, there arises four distinct cases when evaluating w(z) to obtain the separating variables
(w ± w̄). They correspond precisely to the four classical cases of separability [10]: Cartesian, parabolic, polar and elliptical.
In the indefinite case, the equations to be integrated are (37), so that the functionsw(z) and ŵ(ẑ)may assume five distinct
forms. The forms are enumerated in Table 1, where

A .
= F−1

and, for the cases with k = 0, the standard forms with either c = 1, b = 0 or c = 0, b = 4 are chosen and, for the cases
with k ≠ 0,

D = b2 − 4kc, ∆ =
1
2


|D/k|. (55)

The corresponding ‘‘hatted’’ quantities Â(ẑ), F̂(ẑ), D̂ and ∆̂ are defined in an analogous way in terms of b̂ and ĉ . There
appears a fifth class of transformations since, in the case of real variables, the choice of the hyperbolic sine or cosine provides
two independent coordinate systems. Rather, in the positive definite case, the analogous transformation corresponds to a
hyperbolic function of a complex variable which generates elliptic–hyperbolic coordinates: the choice of the hyperbolic sine
rather than the cosine simply gives a π/2 rotation of the foci of the confocal families of coordinate lines.

When combining the five cases, we have to keep only combinations with the same value of the leading-order constant
k, since k appears both in S and Ŝ. Since there are no other restrictions, this condition gives four classes with k = 0 and
nine with k ≠ 0, thirteen classes in total. However, it is reasonable not to distinguish systems that can be transformed into
each other by the inversion (z, ẑ) → (ẑ, z) or equivalently x → −x. This reduces the number of inequivalent classes to
three for k = 0 and six for k ≠ 0, nine in total. Using the numbers 1–5 appearing in the first column of the table and the
corresponding ‘‘hatted’’ figures 1̂–5̂ the set of possible independent separating coordinates is given, in an obvious notation,
by the combinations

k = 0 : 11̂ 12̂ 22̂
k ≠ 0 : 33̂ 34̂ 35̂ 44̂ 45̂ 55̂.

(56)

For each combination of S and Ŝ, we need to check the possible values of s (±1 or 0): the negative sign can only be present
when S1, S2 and S4 are involved, whereas SŜ may only vanish when S1 and S2 are involved.

In each separable system, we have solutions with the metric factor given byG = ΨG, where Ψ (X, Y ) .= F ′F̂ ′. We recall
from (4) that the physical potential is given by

V = G + E =

G
Ψ

+ E. (57)
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For the ‘strong’ Liouville separability, it turns out that also the conformal factor associatedwith the corresponding coordinate
transformation separates so that

Ψ (X, Y ) = Ψ1(X)+ Ψ2(Y ). (58)

Actually, it is straight-forward to check [25] that a necessary and sufficient condition for

ΨXY = 0

is provided just by (53). Using (57), we can then write the physical potential in the form

V =
f1(X)+ f2(Y )
Ψ1(X)+ Ψ2(Y )

, (59)

where f1 and f2 are arbitrary functions. Referring to (40) we have

B1(X) = f1(X)− EΨ1(X),
B2(Y ) = f2(Y )− EΨ2(Y ),

(60)

so that the physical Hamiltonian (1) in separating coordinates can be written as

H =
1

Ψ1(X)+ Ψ2(Y )


1
2
(PX 2

− PY 2)+ f1(X)+ f2(Y )


(61)

and the second integral of motion is

I2 =
1

Ψ1(X)+ Ψ2(Y )


Ψ2(Y )(P2

X − 2f1(X))+ Ψ1(X)(P2
Y + 2f2(Y ))


. (62)

In the case of complex/harmonic separation, the conformal factor always separates in the form

Ψ =
1
2


ψ(Z)+ ψ̄(Z̄)


= ℜ{ψ(Z)}, (63)

so that, proceeding as in the Liouville case, we can write the physical potential in the form

V =
Q1(Z)+ Q̄1(Z̄)
ψ(Z)+ ψ̄(Z̄)

=
ℜ{Q1(Z)}
ℜ{ψ(Z)}

, (64)

where Q1(Z) is an arbitrary function. Referring now to (47) we can write

Q (Z) = Q1(Z)− Eψ(Z) (65)

which leads to

H =
ℜ{2P2

Z + Q1(Z)}
ℜ{ψ(Z)}

, (66)

while the second integral of motion becomes

I2 =
ℜ{−iψ̄(2P2

Z + Q1(Z))}
ℜ{ψ(Z)}

. (67)

Finally, considering linear/null separation, the simplest case is that in which S = S1 = 1, Ŝ = 0 (Cartesian-zero case).
The Hamiltonian and the second integral are then given by

H = −2PwPŵ + C(ŵ)w + D(ŵ) (68)

and the second invariant is

I2 = P2
w +

1
2
K = P2

w −


C(ŵ)dŵ (69)

and are therefore already in the desired separated form. For the other non-trivial cases, we refer to [4].

4. Polynomial separable systems

Herewe list the cases of potentials which are polynomial in the ‘physical’ coordinateswhich separate in one of the classes
given above. This list is compiled in analogy with that appearing in the seminal review by Hietarinta [16], where in the anal-
ysis of quadratic integrable systems also the complex cases were included. Under suitable transformations, some of these
cases correspond to indefinite systems: however, the analysis performed in [16] is incomplete.
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4.1. The Cartesian–Cartesian (11̂) class

The system separates in the physical coordinates coinciding with the separating coordinates. Actually, for the sake of
simplicity,wedonot consider dilations and rotations by assuming c ≠ ĉ ≠ 1 in (54). The conformal factor and the coordinate
transformations have the trivial forms

S1(z) = 1, Ŝ1(ẑ) = 1
F1(w) = w = z = A1(z)

F̂1(ŵ) = ŵ = sẑ = Â1(ẑ), s =


+1 Liouville separation
−1 complex/harmonic separation
0 linear/null separation

X = x, Y = y, s = 1
X = y, Y = x, s = −1.

(70)

In the linear/null case, only one separating variable is actually fixed, but it is convenient to use ŵ(=ẑ) as the second variable.

4.1.1. Sub-class (11̂)+
The Hamiltonian and the second integral are given by

H =
1
2 (px

2
− py2)+ xm ± yn, m, n ∈ N, Ĩ2 =

1
2px

2
+ xm. (71)

4.1.2. Sub-class (11̂)−
Defining the complex variable z = x+ iy, for a polynomial potential of degreem, the Hamiltonian and the second integral

are given by

H =
1
2 (px

2
− py2)+ ℜ{zm} = pz2 + pz̄2 +

1
2 (z

m
+ z̄m),

I2 = pxpy − ℑ{zm}, Ĩ2 = pz2 +
1
2 z

m.
(72)

4.1.3. Sub-class (11̂)0
Since there is just one separating variable which we take as w = z = x + y, it is convenient to use the complementary

null variable ŵ = ẑ = x − y as the other independent variable. The Hamiltonian and the second integral are then given by
the expressions

H =
1
2 (px

2
− py2)+ (x + y)(x − y)m−1

+ (x − y)m,

I2 =
1
4 (px + py)2 −

1
m
(x − y)m.

(73)

4.2. The Cartesian–parabolic (12̂) class

This is the first nontrivial class, since it combines rotated Cartesian and parabolic coordinates. As in the Cartesian–
Cartesian class we do not include dilations and rotations. The conformal coordinate transformation is given by

S1(z) = 1, Ŝ2(ẑ) = 4ẑ
w = A1(z) = z, F1(w) = w

ŵ = Â2(ẑ) =

√

sẑ, F̂2(ŵ) = sŵ2, s =


+1 Liouville separation
−1 complex/harmonic separation
0 linear/null separation

X =
1
2 (x + y +

√
x − y), Y =

1
2 (x + y −

√
x − y), s = +1, x > y

X =
1
2 (x + y +

√
y − x), Y =

1
2 (x + y −

√
y − x), s = −1, x < y.

(74)

Again, in the linear/null case, only one separating variable is actually fixed, but it is convenient to use ŵ(=ẑ) as the second
variable.

4.2.1. Sub-class (12̂)+
The conformal factor is Ψ = 2ŵ = 2(X − Y ) = 2

√
x − y, so that

Ψ1 = 2X, Ψ2 = −2Y . (75)
This leads to the physical potential

V =
f1(X)+ f2(Y )

X − Y
. (76)
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The Hamiltonian and the second integral are given by

H =
1
2 (px

2
− py2)+

f1

x + y +

√
x − y


+ f2


x + y −

√
x − y


2
√
x − y

(77)

and

I2 =
1
4 (px + py)2 − 2(px − py)(ypx + xpy)+


x + y −

√
x − y


f1(X)+


x + y +

√
x − y


f2(Y )

√
x − y

. (78)

With the choice

f1 = Xm, f2 = −Ym, m ∈ N, (79)

we get the sequence of polynomial potentials

V = x − y + 3(x + y)2, m = 3, (80)

V = x2 − y2 + (x + y)3, m = 4, (81)

V = (x − y)2 + 10(x − y)(x + y)2 + 5(x + y)4, m = 5 (82)

and so forth. These potentials can be freely superposed.

4.2.2. Sub-class (12̂)−
With the complex variable Z = X + iY , the separating variables are

Z =
1
2


(1 + i)(x + y)− (1 − i)

√
y − x


, Z̄ =

1
2


(1 − i)(x + y)− (1 + i)

√
y − x


(83)

so that the conformal factor is

Ψ = 2(Y − X) = (1 + i)Z + (1 − i)Z̄ . (84)

This leads to a physical potential of the form

V =

ℜ


Q1


1
2


(1 + i)(x + y)− (1 − i)

√
y − x


2
√
y − x

. (85)

The Hamiltonian and the second integral are given by

H =
1
2 (px

2
− py2)+

ℜ{Q1(Z)}
2
√
y − x

(86)

and

I2 =
1
4 (px + py)2 − 2(px − py)(ypx + xpy)−

ℜ


x + y − i
√
y − x


Q1(Z)


√
y − x

. (87)

The sequence of polynomial potentials corresponding to those given above is provided by the choice

Q1 = (1 − i)m−2Zm. (88)

4.2.3. Sub-class (12̂)0
In view of the choice of the second separating variable, this coincides for all expressions with the sub-class (11̂)0 above.

4.3. The parabolic–parabolic (22̂) class

In this purely parabolic case, the coordinate transformation is given by

S2(z) = 4z, Ŝ2(ẑ) = 4ẑ

w = A2(z) =
√
z, F2(w) = w2

ŵ = Â2(ẑ) =

√

sẑ, F̂2(ŵ) = sŵ2, s =


+1 Liouville separation
−1 complex/harmonic separation
0 linear/null separation

X =
1
2

√
x + y +

√
x − y


, Y =

1
2

√
x + y −

√
x − y


, s = +1, x2 − y2 > 0

X =
1
2

√
x + y +

√
y − x


, Y =

1
2

√
x + y −

√
y − x


, s = −1, x2 − y2 < 0.

(89)

In the linear/null case we assumew = A1(z) =
√
z for the first variable and keep ẑ(=ŵ) as the second variable.
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4.3.1. Sub-class (22̂)+
The conformal factor is

Ψ = 4wŵ = 4(X2
− Y 2) = 4


x2 − y2 (90)

leading to

Ψ1 = 4X2, Ψ2 = −4Y 2. (91)

The physical potential then takes the form

V =
f1(X)+ f2(Y )

X2 − Y 2
. (92)

The Hamiltonian and the second invariant are given by

H =
1
2 (px

2
− py2)+

f1
√

x + y +
√
x − y


+ f2

√
x + y −

√
x − y


x2 − y2

(93)

and

I2 = py(xpy + ypx)−


x −


x2 − y2


f1(X)+


x +


x2 − y2


f2(Y )

x2 − y2
. (94)

With the choice

f1 = X2m, f2 = −Y 2m, m ∈ N, (95)

we get the sequence

V = 4x2 − y2, m = 3, (96)

V = 2x3 − xy2, m = 4, (97)

V = 16x4 − 12x2y2 + y4, m = 5 (98)

and so forth.

4.3.2. Sub-class (22̂)−
Using the complex variable Z = X + iY , the separating coordinates are

Z =
1
2 (1 + i)

√
x + y + i

√
y − x


, Z̄ =

1
2 (1 − i)

√
x + y − i

√
y − x


(99)

corresponding to the conformal factor

Ψ = 4

y2 − x2 = 2(Z2

+ Z̄2). (100)

This leads the physical potential

V =
ℜ


Q1

 1
2 (1 + i)

√
x + y + i

√
y − x


y2 − x2

(101)

where Q1 is an arbitrary function. The Hamiltonian and the second invariant are given by

H =
1
2 (px

2
− py2)+

ℜ{Q1(Z)}
y2 − x2

(102)

and

I2 = py(xpy + ypx)+
ℜ


u − i


y2 − x2


Q1(Z)


y2 − x2

. (103)

The sequence of polynomial potentials corresponding to those of the previous sub-class is provided by the choice

Q1 = im+1Z2m. (104)
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4.3.3. Sub-class (22̂)0
In this case there is just one separating variable which we take as w =

√
z. It is convenient to use the complementary

null variable ŵ = ẑ = x− y as the other independent variable. The Hamiltonian and the second invariant are then given by

H =
1
2 (px

2
− py2)+

√
x + yC ′(x − y)+ D(x − y)

I2 = (px + py)(xpx + ypy)− C(x − y)−
x − y

√
x + y

D(x − y)− (x − y)C ′(x − y)
(105)

where Y and D are arbitrary functions.

4.4. The polar–elliptical class of the first kind (34̂)

The cases (34̂)s combine polar and elliptical coordinates and admit standard and harmonic separations. The conformal
coordinate transformation is (with ∆̂ = 1)

S3(z) = z2, Ŝ4(ẑ) = ẑ2 − 1, w = A3(z) = ln |z|, F3(w) = ew

ŵ = Â4(ẑ) =


dẑ

s(ẑ2 − 1)
=


arccosh ẑ, F̂4(ŵ) = cosh ŵ, s = +1, Liouville separation
arcsin ẑ, F̂4(ŵ) = sin ŵ, s = −1, harmonic separation

(106)

or in non-null coordinates

X =
1
2


ln(x + y)+ ln


x − y +


(x − y)2 − 1


Y =

1
2


ln(x + y)− ln


x − y +


(x − y)2 − 1


 s = +1, |x − y| > 1 (107)

and

X =
1
2


ln(x + y)+ arcsin(x − y)


Y =

1
2


ln(x + y)− arcsin(x − y)


 s = −1, |x − y| < 1. (108)

4.4.1. Sub-class (34̂)+
The conformal factor in this standard Liouville case is given by

Ψ = ew sinh ŵ = (x + y)

(x − y)2 − 1 (109)

so that

Ψ1 =
1
2 e

2X , Ψ2 = −
1
2 e

2Y . (110)

The physical potential then takes the form

V =
f1(X)+ f2(Y )
e2X − e2Y

. (111)

The Hamiltonian and the second invariant are given by

H =
1
2 (px

2
− py2)+

f1(X)+ f2(Y )

(x + y)

(x − y)2 − 1

(112)

and

I2 = (xpy + ypy)2 −
1
4 (px − py)2 −


x − y

(x − y)2 − 1
− 1


f1(X)−


x − y

(x − y)2 − 1
+ 1


f2(Y ). (113)

With the choice

f1 = e2mX , f2 = −e2mY , m ∈ N, (114)

we get the sequence

V = 4(x − y)(x + y), m = 2, (115)

V = 2(−1 + 4(x − y)2)(x + y)2, m = 3, (116)

V = 8(−1 + 2(x − y)2)(x − y)(x + y)3, m = 4 (117)

and so forth.
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4.4.2. Sub-class (34̂)−
In this harmonic case the separating variables are

Z =
1
2 (1 + i)


ln(x + y)+ i arcsin(y − x)


, Z̄ =

1
2 (1 − i)


ln(x + y)− i arcsin(y − x)


(118)

so that the conformal factor

Ψ = ew cos ŵ = (x + y)

1 − (x − y)2 =

1
2


e(1−i)Z

+ e(1+i)Z̄ (119)

can be written in the form

Ψ =
1
2


e(1−i)Z

+ e(1+i)Z̄. (120)

This leads to a physical potential of the form

V =

ℜ


Q1


1
2 (1 + i)


ln(x + y)+ i arcsin(y − x)


(x + y)


1 − (x − y)2

(121)

where Q1 is an arbitrary function. The Hamiltonian and the second invariant are given by

H =
1
2 (px

2
− py2)+

ℜ{Q1(Z)}

(x + y)

1 − (x − y)2

(122)

and

I2 = (xpy + ypy)2 −
1
4 (px − py)2 +

ℜ


x − y + i

1 − (x − y)2


Q1(Z)


(x + y)


1 − (x − y)2

. (123)

The sequence of polynomial potentials corresponding to those of the previous sub-class is provided by the choice

Q1 = e(1−i)mZ . (124)

4.5. The polar–elliptical class of the second kind (35̂)

The polar–elliptical class (35̂) admits only the standard Liouville separation. The conformal coordinate transformation is
(with ∆̂ = 1)

S3(z) = z2, Ŝ5(ẑ) = ẑ2 + 1
w = A3(z) = ln |z|, F3(w) = ew

ŵ = Â5(ẑ) = arcsinh ẑ, F̂5(ŵ) = sinh ŵ

(125)

or in non-null coordinates

X =
1
2


ln(x + y)+ ln


x − y +


(x − y)2 + 1


Y =

1
2


ln


x + y)− ln(x − y +


(x − y)2 + 1


.

(126)

The conformal factor is

Ψ = ew cosh ŵ = (x + y)

(x − y)2 + 1 (127)

so that

Ψ1 =
1
2 e

2X , Ψ2 =
1
2 e

2Y . (128)

This leads to a physical potential of the form

V =
f1(X)+ f2(Y )
e2X + e2Y

. (129)

The Hamiltonian and the second invariant are given by

H =
1
2 (px

2
− py2)+

f1(X)+ f2(Y )

(x + y)

(x − y)2 + 1

(130)

and

I2 = (xpy + ypx)2 +
1
4 (px − py)2 −


x − y

(x − y)2 + 1
− 1


f1(X)−


x − y

(x − y)2 + 1
+ 1


f2(Y ). (131)
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With the choice

f1 = e2mX , f2 = (−1)m−1e2mY , m ∈ N, (132)

we get the sequence

V = 4(x − y)(x + y), m = 2, (133)

V = 2(1 + 4(x − y)2)(x + y)2, m = 3, (134)

V = 8(1 + 2(x − y)2)(x − y)(x + y)3, m = 4 (135)

and so forth.

5. Comments and conclusions

The generalization of the standard (Liouville) separability notion for (1+1)-dimensional natural systems to include also
the complex/harmonic and the linear/null separation structures has interesting consequences. Several classes of potentials
which admit separation in one of the classes with linear or quadratic conformal factor, may require coordinate patches with
different separation structure, also implying different coordinates for even a single orbit. On the other hand, in the cases
in which different separation structures live together on the same subset of the pseudo-plane, we have examples of multi-
separable potentials. The simplest example is provided by the indefinite harmonic oscillator: choosingm = 2 in Section 4.1,
we get the potential

V =
1
2
(x2 − y2)

with integrals

I2 =
1
2 (px

2
+ py2)+

1
2
(x2 + y2)

in the Liouville case and

Ĩ2 = pxpy − xy

in the complex/harmonic case. We remark on the agreement of these results with those obtained in the investigation of
superintegrable systems [24], by observing that the class of systems just mentioned coincides, after suitable linear combi-
nations of the integrals, with the Class II2 introduced in Ref. [24].

The cases of polynomial systems listed in this work provide a large set of examples to play with for applications to geom-
etry [26,27], celestial mechanics (in particular we mention the triangular Lagrangian equilibrium in the restricted 3-body
problem [28]), singularity theory of resonant normal forms [29], relativity [30,31] and quantummechanics, with a particular
emphasis on the theory of Dirac’s equation [32,33]. Among other possibilities, the exploration of separable natural systems
can be extended by looking for more general homogeneous potentials that, in analogy to the examples given in [16], can be
constructed in the classes 33̂, 44̂, 45̂, 55̂.
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