
Accepted Manuscript

Generalized derivation extensions of 3-Lie algebras and corresponding
Nambu-Poisson structures

Lina Song, Jun Jiang

PII: S0393-0440(17)30264-4
DOI: https://doi.org/10.1016/j.geomphys.2017.10.011
Reference: GEOPHY 3092

To appear in: Journal of Geometry and Physics

Received date : 31 July 2017
Accepted date : 21 October 2017

Please cite this article as: L. Song, J. Jiang, Generalized derivation extensions of 3-Lie algebras and
corresponding Nambu-Poisson structures, Journal of Geometry and Physics (2017),
https://doi.org/10.1016/j.geomphys.2017.10.011

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to
our customers we are providing this early version of the manuscript. The manuscript will undergo
copyediting, typesetting, and review of the resulting proof before it is published in its final form.
Please note that during the production process errors may be discovered which could affect the
content, and all legal disclaimers that apply to the journal pertain.

https://doi.org/10.1016/j.geomphys.2017.10.011


Generalized derivation extensions of 3-Lie algebras and
corresponding Nambu-Poisson structures ∗

Lina Song and Jun Jiang
Department of Mathematics, Jilin University,

Changchun 130012, Jilin, China
Email: songln@jlu.edu.cn

Abstract
In this paper, we introduce the notion of a generalized derivation on a 3-Lie algebra. We

construct a new 3-Lie algebra using a generalized derivation and call it the generalized derivation
extension. We show that the corresponding Leibniz algebra on the space of fundamental objects
is the double of a matched pair of Leibniz algebras. We also determine the corresponding
Nambu-Poisson structures under some conditions.

1 Introduction
The notion of an n-Lie algebra, or a Filippov algebra, was introduced in [10] and have many
applications in mathematical physics. See the review article [8] for more details. Ternary Lie algebras
are related to Nambu mechanics and Nambu-Poisson structures [22], generalizing Hamiltonian
mechanics by using more than one hamiltonian. The algebraic formulation of this theory is due
to Takhtajan [25], see also [11]. Moreover, 3-Lie algebras appeared in String Theory. See [4, 16]
for classifications of 3-Lie algebras and n-Lie algebras. Deformations of 3-Lie algebras and n-Lie
algebras are studied in [9, 26], see [21] for a review. It is very useful to construct new 3-Lie and n-Lie
algebras. 3-Lie algebras were constructed using Nambu-Poisson structures in [14, 22, 25]; More
generally, one can construct 3-Lie algebras, which are called Jacobian algebras, using a commutative
associative algebra with some derivations [10, 23]; 3-Lie algebras can also be constructed from
Dirac γ-matrix [13] and quadratic Lie algebras that related to integrable systems [15]; Moreover,
R. Bai and her collaborators gave some construction of 3-Lie algebras using Lie algebras and
linear functions [3, 6]; Construction of (n + 1)-Lie algebras from n-Lie algebras are studied in
[2, 5]. Furthermore, abelian extensions of 3-Lie algebras are studied in [17] using generalized
representations, which is a generalization of the usual representation introduced in [20].

The notion of a Leibniz algebra was introduced by Loday [18, 19], which is a noncommutative
generalization of a Lie algebra. The notion of a matched pair of Leibniz algebras was introduced in
[1], which is an approach to construct new Leibniz algebras. 3-Lie algebras and Leibniz algebras are
closely related. Through fundamental objects one may represent a 3-Lie algebra and more generally
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an n-Lie algebra by a Leibniz algebra [7], and one can study n-Lie algebras by the corresponding
Leibniz algebras.

The purpose of this paper is to give an approach to construct new 3-Lie algebras that generalize
the method of derivation extension for Lie algebras. Recall that given a Lie algebra (g, [·, ·]g) and a
derivation D, we can construct a new Lie algebra structure [·, ·]D on the direct sum g⊕KD, which
is called the derivation extension, by

[x+ k1D, y + k2D]D = [x, y]g + k1D(y)− k2D(x), ∀x, y ∈ g, k1, k2 ∈ K.

In [24], the author studied classification of 4-dimensional Lie algebras and Lie-Poisson structures
using the method of derivation extension of Lie algebras. However, for 3-Lie algebras, since
there are three variables, it is impossible to construct new brackets using the usual derivations
on 3-Lie algebras. To solve this difficulty, we introduce the notion of a generalized derivation
on a 3-Lie algebra, by which we can construct new 3-Lie algebras, which we call generalized
derivation extensions of 3-Lie algebras. We study the corresponding Leibniz algebra on the space
of fundamental objects, and show that the Leibniz algebra associated to a generalized derivation
extension is a matched pair of Leibniz algebras. Finally, we study the relation with Nambu-Poisson
structures. Under some conditions, we give the explicit formulas of the Nambu-Poisson structure
corresponding to a generalized derivation extension.

The paper is organized as follows. In Section 2, we give a review on matched pairs of Leibniz
algebras, 3-Lie algebras and Nambu-Poisson structures. In Section 3, we introduce the notion of a
generalized derivation on a 3-Lie algebra, and show that one can construct new 3-Lie algebras using
generalized derivations. In Section 4, we study the corresponding Leibniz algebra on the space of
fundamental objects of a generalized derivation extension of 3-Lie algebras. In Section 5, we study
the corresponding Nambu-Poisson structure of a generalized derivation extension of 3-Lie algebras.
Acknowledgement: We give our warmest thanks to Yunhe Sheng for very helpful suggestions
that improve the paper.

2 Preliminaries
In this paper, we work over an algebraically closed field K of characteristic 0 and all the vector
spaces are over K.

2.1 Matched pair of Leibniz algebras
A Leibniz algebra is a vector space L endowed with a linear map [·, ·]L : L⊗ L −→ L satisfying

[x, [y, z]L]L = [[x, y]L, z]L + [y, [x, z]L]L, ∀ x, y, z ∈ L. (1)

This is in fact a left Leibniz algebra. In this paper, we only consider left Leibniz algebras. A
linear map D : L −→ L is called a left derivation on the Leibniz algebra (L, [·, ·]L) if

D([x, y]L) = [D(x), y]L + [x,D(y)]L, ∀x, y ∈ L.

A representation of a Leibniz algebra (L, [·, ·]L) [19] is a triple (V, ρL, ρR), where V is a vector
space equipped with two linear maps ρL, ρR : L −→ gl(V ) such that the following equalities hold
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for x, y ∈ L :

ρL([x, y]L) = [ρL(x), ρL(y)], (2)
ρR([x, y]L) = [ρL(x), ρR(y)], (3)

ρR(y) ◦ ρL(x) = −ρR(y) ◦ ρR(x). (4)

Definition 2.1. ([1]) A pair (G,H) of two Leibniz algebras is called a matched pair if there
exist a representation (ρL1 , ρR1 ) of G on H and a representation of (ρL2 , ρR2 ) of H on G such that the
identities

(i) ρR1 (x)[u, v]H = [u, ρR1 (x)v]H − [v, ρR1 (x)u]H + ρR1 (ρL2 (v)x)u− ρR1 (ρL2 (u)x)v;

(ii) ρL1 (x)[u, v]H = [ρL1 (x)u, v]H + [u, ρL1 (x)v]H + ρL1 (ρR2 (u)x)v + ρR1 (ρR2 (v)x)u;

(iii) [ρL1 (x)u, v]H + ρL1 (ρR2 (u)x)v + [ρR1 (x)u, v]H + ρL1 (ρL2 (u)x)v = 0;

(iv) ρR2 (u)[x, y]G = [x, ρR2 (u)y]G − [y, ρR2 (u)x]G + ρR2 (ρL1 (y)u)x− ρR2 (ρL1 (x)u)y;

(v) ρL2 (u)[x, y]G = [ρL2 (u)x, y]G + [x, ρL2 (u)y]G + ρL2 (ρR1 (x)u)y + ρR2 (ρR1 (y)u)x;

(vi) [ρL2 (u)x, y]G + ρL2 (ρR1 (x)u)y + [ρR2 (u)x, y]G + ρL2 (ρL1 (x)u)y = 0,

hold for all x, y ∈ G and u, v ∈ H.

Lemma 2.2. ([1]) Given a matched pair (G,H) of Leibniz algebras, there is a Leibniz algebra
structure G ./ H on the direct sum vector space G⊕ H with bracket

[x+ u, y + v]G./H = [x, y]G + ρR2 (v)x+ ρL2 (u)y + [u, v]H + ρL1 (x)v + ρR1 (y)u.

Conversely, if G ⊕ H has a Leibniz algebra structure for which G and H are Leibniz subalgebras,
then the representations defined by

[x, u]G⊕H = ρR2 (u)x+ ρL1 (x)u, [u, x]G⊕H = ρL2 (u)x+ ρR1 (x)u,

endow the couple (G,H) with a structure of a matched pair.

Definition 2.3. ([10]) A 3-Lie algebra is a vector space g together with a skew-symmetric linear
map [·, ·, ·]g : ⊗3g→ g such that the following Fundamental Identity (FI) holds:

Fx1,x2,x3,x4,x5

, [x1, x2, [x3, x4, x5]g]g − [[x1, x2, x3]g, x4, x5]g − [x3, [x1, x2, x4]g, x5]g − [x3, x4, [x1, x2, x5]g]g
= 0. (5)

A linear map D : g −→ g is called a derivation on the 3-Lie algebra (g, [·, ·, ·]g) if the following
equality holds:

D([x, y, z]g) = [D(x), y, z]g + [x,D(y), z]g + [x, y,D(z)]g, ∀x, y, z ∈ g.

For all x, y ∈ g, define adx,y : g −→ g by

adx,yz = [x, y, z]g.
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Then adx,y is a derivation on g, which is called an inner derivation.
Elements in ∧2g are called fundamental objects of the 3-Lie algebra (g, [·, ·, ·]g). There is a

bilinear operation [·, ·]F on ∧2g, which is given by

[X,Y]F = [x1, x2, y1]g ∧ y2 + y1 ∧ [x1, x2, y2]g, ∀X = x1 ∧ x2, Y = y1 ∧ y2. (6)

It is well-known that (∧2g, [·, ·]F) is a Leibniz algebra [7], which plays an important role in the
theory of 3-Lie algebras.

Proposition 2.4. ([4]) There is a unique non-trivial 3-dimensional complex 3-Lie algebra. It has
a basis {e1, e2, e3} with respect to which the non-zero product is given by [e1, e2, e3] = e1.

Proposition 2.5. ([4]) Let A be a non-trivial 4-dimensional complex 3-Lie algebra. Then A has
a basis {e1, e2, e3, e4} with respect to which the product of the 3-Lie algebra is given by one of the
following:

(a) [e1, e2, e3] = e4, [e2, e3, e4] = e1, [e1, e3, e4] = e2, [e1, e2, e4] = e3;

(b) [e1, e2, e3] = e1;

(c) [e2, e3, e4] = e1;

(d) [e2, e3, e4] = e1, [e1, e3, e4] = e2;

(e) [e2, e3, e4] = e2, [e1, e3, e4] = e1;

(f) [e2, e3, e4] = αe1 + e2, α 6= 0, [e1, e3, e4] = e2;

(g) [e2, e3, e4] = e1, [e1, e3, e4] = e2, [e1, e2, e4] = e3.

2.2 Nambu-Poisson structures
Nambu-Poisson structures were introduced in [25] by Takhtajan in order to find an axiomatic
formalism for Nambu-mechanics which is a generalization of Hamiltonian mechanics.

Definition 2.6. ([25]) A Nambu-Poisson structure of order n − 1 on M is an n-linear map
{·, · · · , ·} : C∞(M)× · · · × C∞(M) −→ C∞(M) satisfying the following properties:

(1) skew-symmetry, i.e. for all f1, · · · , fn ∈ C∞(M) and σ ∈ Sym(n),

{f1, · · · , fn} = (−1)|σ|{fσ(1), · · · , fσ(n)};

(2) the Leibniz rule, i.e. for all g ∈ C∞(M), we have

{f1g, f2, · · · , fn} = f1{g, f2, · · · , fn}+ g{f1, f2, · · · , fn};

(3) integrability condition, i.e. for all f1, · · · , fn−1, g1, · · · , gn ∈ C∞(M),

{f1, · · · , fn−1, {g1, · · · , gn}} =
n∑

i=1
{g1, · · · , {f1, · · · , fn−1, gi}, · · · , gn}.
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In particular, a Nambu-Poisson structure of order 1 is exactly a usual Poisson structure. Similar
to the fact that a Poisson structure is determined by a bivector field, a Nambu-Poisson structure of
order n− 1 is determined by an n-vector field π ∈ Xn(M) such that

{f1, · · · , fn} = π(df1, · · · , dfn).

An n-vector field π ∈ Xn(M) is a Nambu-Poisson structure if and only if for all f1, · · · , fn−1 ∈
C∞(M), we have

Lπ](df1∧···∧dfn−1)π = 0,

where π] : ∧n−1T ∗M −→ TM is defined by

〈π](ξ1 ∧ · · · ∧ ξn−1), ξn〉 = π(ξ1 ∧ · · · ∧ ξn−1 ∧ ξn), ∀ξ1, · · · , ξn ∈ Ω1(M).

3 Generalized derivation extensions of 3-Lie algebras
In this section, we introduce the notion of a generalized derivation on a 3-Lie algebra, by which we
can construct a new 3-Lie algebra, called the generalized derivation extension of 3-Lie algebras.

Definition 3.1. Let (g, [·, ·, ·]g) be a 3-Lie algebra. A linear map D : ∧2g → g is called a
generalized derivation, if for all x, y, z, u ∈ g, the following conditions are satisfied:

(a) D(x, [y, z, u]g) = [D(x, y), z, u]g + [y,D(x, z), u]g + [y, z,D(x, u)]g;

(b) D([x, y, z]g, u) +D(z, [x, y, u]g) = [x, y,D(z, u)]g − [z, u,D(x, y)]g;

(c) D(x,D(y, z)) +D(y,D(z, x)) +D(z,D(x, y)) = 0.

We analyze the three conditions in the above definition. First we have

Lemma 3.2. Let D : ∧2g→ g be a generalized derivation on a 3-Lie algebra (g, [·, ·, ·]g). Then D
defines a Lie algebra structure on the vector space g.

Proof. It follows from Condition (c) in Definition 3.1.

For a linear map D : ∧2g −→ g, define D] : g −→ gl(g) by

D](x)(y) = D(x, y), ∀x, y ∈ g.

Lemma 3.3. Let D : ∧2g→ g be a generalized derivation on a 3-Lie algebra (g, [·, ·, ·]g). Then for
all x ∈ g, D](x) is a derivation on the 3-Lie algebra (g, [·, ·, ·]g).

Proof. It follows from Condition (a) in Definition 3.1.

Consider the Leibniz algebra (∧2g, [·, ·]F). Define ρL : ∧2g −→ gl(g) by

ρL(x ∧ y)(z) = [x, y, z]g, ∀x ∧ y ∈ ∧2g, z ∈ g.

Lemma 3.4. Let (g, [·, ·, ·]g) be a 3-Lie algebra. Then (ρL, ρR = −ρL) is a representation of
the Leibniz algebra (∧2g, [·, ·]F) on g. Consequently, we have a semidirect product Leibniz algebra
(∧2g⊕ g, [·, ·]s), where the Leibniz bracket is given by

[x1 ∧ y1 + z1, x2 ∧ y2 + z2]s = [x1 ∧ y1, x2 ∧ y2]F + [x1, y1, z2]g − [x2, y2, z1]g, (7)

for all x1, y1, z1, x2, y2, z2 ∈ g.
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Proof. It is straightforward by the Fundamental Identity.

Lemma 3.5. Let D : ∧2g → g be a generalized derivation on a 3-Lie algebra (g, [·, ·, ·]g). Then(
0 0
D 0

)
is a left derivation on the Leibniz algebra (∧2g⊕ g, [·, ·]s).

Proof. By Condition (b) in Definition 3.1, we have
(

0 0
D 0

)
[x1 ∧ y1 + z1, x2 ∧ y2 + z2]s − [

(
0 0
D 0

)
(x1 ∧ y1 + z1), x2 ∧ y2 + z2]s

−[x1 ∧ y1 + z1,

(
0 0
D 0

)
(x2 ∧ y2 + z2)]s

= D[x1 ∧ y1, x2 ∧ y2]F − [D(x1, y1), x2 ∧ y2 + z2]s − [x1 ∧ y1 + z1, D(x2, y2)]s
= D[x1 ∧ y1, x2 ∧ y2]F + [D(x1, y1), x2, y2]g − [x1, y1, D(x2, y2)]g
= 0,

which implies the conclusion.

For all v ∈ g, define ad : g −→ Hom(∧2g, g) by

adv(x, y) = [v, x, y]g. (8)

Then we have

Lemma 3.6. For all v ∈ g, adv is a generalized derivation on the 3-Lie algebra (g, [·, ·, ·]g), which
is called an inner generalized derivation.

Proof. First for all x ∈ g, we have
(adv)](x) = adv,x,

which implies that Condition (a) in Definition 3.1 holds.
For all x, y, z, u ∈ g, by the Fundamental Identity, we have

adv([x, y, z]g, u) + adv(z, [x, y, u]g)− [x, y, adv(z, u)]g + [z, u, adv(x, y)]g
= [v, [x, y, z]g, u]g + [v, z, [x, y, u]g]g − [x, y, [v, z, u]g]g + [z, u, [v, x, y]g]g
= 0,

which implies that Condition (b) in Definition 3.1 holds.
Finally, by the Fundamental Identity, we can deduce that adv defines a Lie algebra structure.

The proof is finished.

Remark 3.7. A derivation, no matter on a Lie algebra or a 3-Lie algebra can be viewed as a
1-cocycle with the coefficient in the adjoint representation. It is interesting to investigate whether
one can realize a generalized derivation as a 1-cocycle, and an inner generalized derivation as a
1-coboundary, associated to some cohomological complex.

For any linear map D : ∧2g→ g, denote by KD the 1-dimensional vector space generated by D.
On the direct sum g⊕KD, define a totally skew-symmetric linear map [·, ·, ·]D : ∧3(g⊕KD) −→
g⊕KD by

[x+ k1D, y + k2D, z + k3D]D = [x, y, z]g + k1D(y, z) + k2D(z, x) + k3D(x, y), (9)

for all x, y, z ∈ g, k1, k2, k3 ∈ K.
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Theorem 3.8. Let (g, [·, ·, ·]g) be a 3-Lie algebra and D : ∧2g → g a linear map. Then (g ⊕
KD, [·, ·, ·]D) is a 3-Lie algebra if and only if D is a generalized derivation on g.

Proof. For all x, y, z, u, v ∈ g and ki ∈ K, i = 1, · · · , 5, by direct computation, we have

[x+ k1D, y + k2D, [z + k3D,u+ k4D, v + k5D]D]D
= [x+ k1D, y + k2D, [z, u, v]g + k3D(u, v) + k4D(v, z) + k5D(z, u)]D
= [x, y, [z, u, v]g + [x, y, k3D(u, v)]g + [x, y, k4D(v, z)]g + [x, y, k5D(z, u)]g

+k1D(y, [z, u, v]g) + k1D(y, k3D(u, v)) + k1D(y, k4D(v, z)) + k1D(y, k5D(z, u))
+k2D([z, u, v]g, x) + k2D(k3D(u, v), x) + k2D(k4D(v, z), x) + k2D(k5D(z, u), x),

[[x+ k1D, y + k2D, z + k3D]D, u+ k4D, v + k5D]D
= [[x, y, z]g + k1D(y, z) + k2D(z, x) + k3D(x, y), u+ k4D, v + k5D]D
= [[x, y, z]g, u, v] + [k1D(y, z), u, v]g + [k2D(z, x), u, v]g + [k3D(x, y), u, v]g

+k4D(v, [x, y, z]g) + k4D(v, k1D(y, z)) + k4D(v, k2D(z, x)) + k4D(v, k3D(x, y))
+k5D([x, y, z]g, u) + k5D(k1D(y, z), u) + k5D(k2D(z, x), u) + k5D(k3D(x, y), u),
[z + k3D, [x+ k1D, y + k2D,u+ k4D]D, v + k5D]D

= [z + k3D, [x, y, u]g + k1D(y, u) + k2D(u, x) + k4D(x, y), v + k5D]D
= [z, [x, y, u]g, v]g + [z, k1D(y, u), v]g + [z, k2D(u, x), v]g + [z, k4D(x, y), v]g

+k3D([x, y, u]g, v) + k3D(k1D(y, u), v) + k3D(k2D(u, x), v) + k3D(k4D(x, y), v)
+k5D(z, [x, y, u]g) + k5D(z, k1D(y, u)) + k5D(z, k2D(u, x)) + k5D(z, k4D(x, y)),

and

[z + k3D,u+ k4D, [x+ k1D, y + k2D, v + k5D]D]D
= [z + k3D,u+ k4D, [x, y, v]g + k1D(y, v) + k2D(v, x) + k5D(x, y)]D
= [z, u, [x, y, v]g + [z, u, k1D(y, v)]g + [z, u, k2D(v, x)]g + [z, u, k5D(x, y)]g

+k3D(u, [x, y, v]g) + k3D(u, k1D(y, v)) + k3D(u, k2D(v, x)) + k3D(u, k5D(x, y))
+k4D([x, y, v]g, z) + k4D(k1D(y, v), z) + k4D(k2D(v, x), z) + k4D(k5D(x, y), z).

Define ∆,Θ : ⊗4g −→ g and Λ : ⊗3g −→ g by

∆(x, y, z, u) = D(x, [y, z, u]g)− [D(x, y), z, u]g − [y,D(x, z), u]g − [y, z,D(x, u)]g,
Θ(x, y, z, u) = D([x, y, z]g, u) +D(z, [x, y, u]g)− [x, y,D(z, u)]g + [z, u,D(x, y)]g,

Λ(x, y, z) = D(x,D(y, z)) +D(y,D(z, x)) +D(z,D(x, y)).

Then (g⊕ RD, [·, ·, ·]D) is a 3-Lie algebra if and only if the following equalities hold:

k1∆(y, z, u, v) = 0, k2∆(x, z, u, v) = 0,
k3Θ(x, y, u, v) = 0, k4Θ(x, y, z, v) = 0, k5Θ(x, y, z, u) = 0,
k1k3Λ(y, u, v) = 0, k1k4Λ(y, z, v) = 0, k1k5Λ(y, z, u) = 0,
k2k3Λ(x, u, v) = 0, k2k4Λ(x, z, v) = 0, k2k5Λ(x, z, u) = 0.

Therefore, (g⊕KD, [·, ·, ·]D) is a 3-Lie algebra if and only if D is generalized derivation. The proof
is finished.
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Remark 3.9. In [12, Example 1], the author give a way to construct a 3-Lie algebra from a Lie
algebra. Since a generalized derivation gives a Lie algebra structure naturally, the generalized
derivation extension can be viewed as a generalization of the approach given in [12] in some sense.

As expected, if two generalized derivation are differed by an inner generalized derivation, then
the corresponding generalized extension are isomorphic.

Proposition 3.10. Let D and D′ be two generalized derivation on a 3-Lie algebra (g, [·, ·, ·]g). If
there exists some v ∈ g such that D = D′ + adv, then the corresponding generalized derivation
extensions (g⊕KD, [·, ·, ·]D) and (g⊕KD′, [·, ·, ·]D′) are isomorphic.

Proof. Define v : KD −→ g by
v(kD) = kv, ∀k ∈ K.

Then
(

Idg v
0 1

)
is an isomorphism between 3-Lie algebras (g⊕KD, [·, ·, ·]D) and (g⊕KD′, [·, ·, ·]D′).

In fact, for all x, y, z ∈ g and k1, k2, k3 ∈ K, we have
(

Idg v
0 1

)
[x+ k1D, y + k2D, z + k3D]D = [x, y, z]g + k1D(y, z) + k2D(z, x) + k3D(x, y),

and

[
(

Idg v
0 1

)
(x+ k1D),

(
Idg v
0 1

)
(y + k2D),

(
Idg v
0 1

)
(z + k3D)]D′

= [x+ k1v + k1D
′, y + k2v + k2D

′, z + k3v + k3D
′]D′

= [x+ k1v, y + k2v, z + k3v]g + k1D
′(y + k2v, z + k3v) + k2D

′(z + k3v, x+ k1v)
+k3D

′(x+ k1v, y + k2v)
= [x, y, z]g + k1[v, y, z]g + k2[v, z, x]g + k3[v, x, y]g + k1D

′(y, z) + k2D
′(z, x) + k3D

′(x, y).

Thus by D = D′ + adv, we deduce that
(

Idg v
0 1

)
is an isomorphism between 3-Lie algebras.

Example 3.11. Let g be a 2-dimensional trivial 3-Lie algebra with a basis {e1, e2}. Then
D : ∧2g −→ g defined by

D(e1 ∧ e2) = e1 (10)

is a generalized derivation on the 2-dimensional trivial 3-Lie algebra g. Acturally, any non-trivial
2-dimensional Lie algebra is isomorphic to the one given by (10). The 3-Lie algebra obtained by
generalized derivation is exactly the one given in Proposition 2.4. Therefore, any 3-dimensional
3-Lie algebra can be realized as a generalized derivation extension.

Example 3.12. Let g be a 3-dimensional abelian 3-Lie algebra with a basis {e1, e2, e3}.

(i) the map D : ∧2g −→ g defined by

D(e2 ∧ e3) = e1, D(e1 ∧ e3) = 0, D(e1 ∧ e2) = 0 (11)

is a generalized derivation on the 3-dimensional abelian 3-Lie algebra g. The 3-Lie algebra
obtained by generalized derivation is exactly the one given by (c) in Proposition 2.5.
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(ii) the map D : ∧2g −→ g defined by

D(e2 ∧ e3) = e1, D(e1 ∧ e3) = e2, D(e1 ∧ e2) = 0 (12)

is a generalized derivation on the 3-dimensional abelian 3-Lie algebra g. The 3-Lie algebra
obtained by generalized derivation is exactly the one given by (d) in Proposition 2.5.

(iii) the map D : ∧2g −→ g defined by

D(e2 ∧ e3) = e2, D(e1 ∧ e3) = e1, D(e1 ∧ e2) = 0 (13)

is a generalized derivation on the 3-dimensional abelian 3-Lie algebra g. The 3-Lie algebra
obtained by generalized derivation is exactly the one given by (e) in Proposition 2.5.

(iv) the map D : ∧2g −→ g defined by

D(e2 ∧ e3) = αe1 + e2, D(e1 ∧ e3) = e2, D(e1 ∧ e2) = 0 (14)

is a generalized derivation on the 3-dimensional abelian 3-Lie algebra g. The 3-Lie algebra
obtained by generalized derivation is exactly the one given by (f) in Proposition 2.5.

(v) the map D : ∧2g −→ g defined by

D(e2 ∧ e3) = e1, D(e1 ∧ e3) = e2, D(e1 ∧ e2) = e3 (15)

is a generalized derivation on the 3-dimensional abelian 3-Lie algebra g. The 3-Lie algebra
obtained by generalized derivation is exactly the one given by (g) in Proposition 2.5.

4 Matched pairs of Leibniz algebras
In this section, we always assume that (g, [·, ·, ·]g) is a 3-Lie algebra and D : ∧2g −→ g is a
generalized derivation on g. In the last section, we have obtain a 3-Lie algebra structure on g⊕KD.
In this section, we analyze the corresponding Leibniz algebra structure on the space of fundamental
objects. Note that ∧2(g⊕KD) ∼= (∧2g)⊕ (g⊗KD) naturally.

First we introduce a representation of the Leibniz algebra (∧2g, [·, ·]F) on g ⊗ KD. Define
ρL1 , ρ

R
1 : ∧2g −→ gl(g⊗KD) by

ρL1 (x ∧ y)(u⊗D) = [x, y, u]g ⊗D, (16)
ρR1 (x ∧ y)(u⊗D) = 0, (17)

for all x, y, u ∈ g. Then we have

Lemma 4.1. With the above notations, (ρL1 , ρR1 ) is a representation of the Leibniz algebra (∧2g, [·, ·]F)
on g⊗KD.

Proof. For all x, y, u, v, w ∈ g, by direct computation, we have

ρL1 ([u ∧ v, w ∧ x]F)(y ⊗D) = ρL1 ([u, v, w]g ∧ x+ w ∧ [u, v, x]g)(y ⊗D)
= [[u, v, w]g, x, y]g ⊗D + [w, [u, v, x]g, y]g ⊗D,

[ρL1 (u ∧ v), ρL1 (w ∧ x)](y ⊗D) = ρL1 (u ∧ v)ρL1 (w ∧ x)(y ⊗D)− ρL1 (w ∧ x)ρL1 (u ∧ v)(y ⊗D)
= [u, v, [w, x, y]g]g ⊗D − [w, x, [u, v, y]g]g ⊗D.
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By the Fundamental Identity, we deduce that

ρL1 ([u ∧ v, w ∧ x]F) = [ρL1 (u ∧ v), ρL1 (w ∧ x)].

Since ρR1 = 0, it is obvious that (ρL1 , ρR1 ) is a representation of the Leibniz algebra ∧2g on g⊗KD.
The proof is finished.

On the tensor space g⊗KD, define a skewsymmetric linear map {·, ·} : ∧2(g⊗KD) −→ g⊗KD
by

{u⊗D, v ⊗D} = −D(u, v)⊗D. (18)
Then we have

Proposition 4.2. With the above notations, (g⊗KD, {·, ·}) is a Lie algebra.

Proof. For all u, v, w ∈ g, by Condition (c) in Definition 3.1, we have

{u⊗D, {v ⊗D,w ⊗D}}+ {v ⊗D, {w ⊗D,u⊗D}}+ {w ⊗D, {u⊗D, v ⊗D}}
= {u⊗D,D(w, v)⊗D}+ {v ⊗D,D(u,w)⊗D}+ {w ⊗D,D(v, u)⊗D}
=
(
D(D(w, v), u) +D(D(u,w), v) +D(D(v, u), w)

)
⊗D

= 0.

Thus, (g⊗KD, {·, ·}) is a Lie algebra.

Now we view g⊗KD as a Leibniz algebra and define ρL2 , ρR2 : g⊗KD −→ gl(∧2g) by

ρL2 (u⊗D)(x ∧ y) = D(x, u) ∧ y + x ∧D(y, u),
ρR2 (u⊗D)(x ∧ y) = u ∧D(x, y).

Lemma 4.3. With the above notations, (ρL2 , ρR2 ) is a representation of the Leibniz algebra (g ⊗
KD, {·, ·}) on ∧2g.

Proof. For all u, v, x, y ∈ g, we have

ρL2 ({u⊗D, v ⊗D})(x ∧ y) = ρL2 (−D(u, v)⊗D)(x ∧ y)
= −D(x,D(u, v)) ∧ y − x ∧D(y,D(u, v)),

and

[ρL2 (u⊗D), ρL2 (v ⊗D)](x ∧ y)
= ρL2 (u⊗D)ρL2 (v ⊗D)(x ∧ y)− ρL2 (v ⊗D)ρL2 (u⊗D)(x ∧ y)
= ρL2 (u⊗D)(D(x, v) ∧ y + x ∧D(y, v))− ρL2 (v ⊗D)(D(x, u) ∧ y + x ∧D(y, u))
= −(D(D(x, u), v)−D(D(x, v), u)) ∧ y − x ∧ (D(D(y, u), v)−D(D(y, v), u)).

By Condition (c) in Definition 3.1, we have

ρL2 ({u⊗D, v ⊗D}) = [ρL2 (u⊗D), ρL2 (v ⊗D)].

Obviously, we have

ρR2 ({u⊗D, v ⊗D})(x ∧ y) = ρR2 (−D(u, v)⊗D)(x ∧ y) = −D(u, v) ∧D(x, y).
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By Condition (c) in Definition 3.1, we have

[ρL2 (u⊗D), ρR2 (v ⊗D)](x ∧ y)
= ρL2 (u⊗D)(v ∧D(x, y))− ρR2 (v ⊗D)(D(x, u) ∧ y + x ∧D(y, u))
= D(v, u) ∧D(x, y) + v ∧D(D(x, y), u)− v ∧D(D(x, u), y)− v ∧D(x,D(y, u))
= ρR2 ({u⊗D, v ⊗D})(x ∧ y).

Finally, we have

(ρR2 (v ⊗D) ◦ ρL2 (u⊗D) + ρR2 (v ⊗D) ◦ ρR2 (u⊗D))(x ∧ y)
= ρR2 (v ⊗D) ◦ (D(x, u) ∧ y + x ∧D(y, u)) + ρR2 (v ⊗D) ◦ (u ∧D(x, y))
= v ∧D(D(x, u), y) + v ∧D(x,D(y, u)) + v ∧D(u,D(x, y))
= 0.

Therefore, (ρL2 , ρR2 ) is a representation of g⊗KD on ∧2g.

Now we are ready to give the main result in this section.

Theorem 4.4. Let (g, [·, ·, ·]g) be a 3-Lie algebra and D : ∧2g −→ g a generalized derivation. Then
(∧2g, g ⊗ KD) is a matched pair of Leibniz algebras, whose double is the Leibniz algebra on the
space of fundamental objects associated to the generalized derivation extension (g⊕KD, [·, ·, ·]D).

Proof. One can show that conditions (i)-(vi) in Definition 2.1 hold directly. Thus, (∧2g, g⊗KD)
is a matched pair of Leibniz algebras. Here we use a different approach to prove this theorem.
Using the isomorphism between ∧2(g⊕KD) and ∧2g⊕ (g⊗KD), the Leibniz algebra structure on
∧2(g⊕KD) is given by

[x1 ∧ y1 + z1 ⊗D,x2 ∧ y2 + z2 ⊗D]F
= [x1 ∧ y1, x2 ∧ y2]F + [x1 ∧ y1, z2 ⊗D]F + [z1 ⊗D,x2 ∧ y2]F + [z1 ⊗D, z2 ⊗D]F
= [x1 ∧ y1, x2 ∧ y2]F + [x1, y1, z2]g ⊗D + z2 ⊗D(x1, y1)

+D(x2, z1) ∧ y2 + x2 ∧D(y2, z1) +D(z2, z1)⊗D
= [x1 ∧ y1, x2 ∧ y2]F + {z1 ⊗D, z2 ⊗D}+ ρL1 (x1, y1)(z2 ⊗D)

+ρL2 (z1 ⊗D)(x2 ∧ y2) + ρR2 (z2 ⊗D)(x1 ∧ y1).

Thus, by Lemma 2.2, we deduce that (∧2g, g⊗KD) is a matched pair of Leibniz algebras.

Example 4.5. Consider the generalized derivation extension given in Example 3.11. The corre-
sponding Leibniz algebra on the space of fundamental objects is a matched pair of ∧2g and g⊗KD,
where ∧2g is an abelian 1-dimensional Leibniz algebra with the basis e1 ∧ e2 and g ⊗ KD is a
2-dimensional Lie algebra which is isomorphic to the one given by (10). Here ρL1 = ρR1 = 0, and ρL2 ,
ρR2 are given by

ρL2 (e1 ⊗D)(e1 ∧ e2) = D(e1, e1) ∧ e2 + e1 ∧D(e2, e1) = −e1 ∧ e1 = 0,
ρL2 (e2 ⊗D)(e1 ∧ e2) = D(e1, e2) ∧ e2 + e1 ∧D(e2, e2) = e1 ∧ e2,

ρR2 (e1 ⊗D)(e1 ∧ e2) = e1 ∧D(e1, e2) = e1 ∧ e1 = 0,
ρR2 (e2 ⊗D)(e1 ∧ e2) = e2 ∧D(e1, e2) = e2 ∧ e1.
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Example 4.6. Consider the generalized derivation extension given in Example 3.12.

(i) The corresponding Leibniz algebra on the space of fundamental objects is a matched pair
of ∧2g and g ⊗ KD, where ∧2g is an abelian 3-dimensional Leibniz algebra with the basis
{e1 ∧ e2, e1 ∧ e3, e2 ∧ e3} and g⊗KD is a 3-dimensional Lie algebra which is isomorphic to
the one given by (11). Here ρL1 = ρR1 = 0, and nontrivial ρL2 , ρR2 are given by

ρL2 (e2 ⊗D)(e2 ∧ e3) = e1 ∧ e2, ρL2 (e3 ⊗D)(e2 ∧ e3) = e1 ∧ e3,
ρR2 (e2 ⊗D)(e2 ∧ e3) = −e1 ∧ e2, ρR2 (e3 ⊗D)(e2 ∧ e3) = −e1 ∧ e3.

Thus, it is straightforward to see that the Leibniz algebra on the space of fundamental objects
is a Lie algebra.

(ii) The corresponding Leibniz algebra on the space of fundamental objects is a matched pair
of ∧2g and g ⊗ KD, where ∧2g is an abelian 3-dimensional Leibniz algebra with the basis
{e1 ∧ e2, e1 ∧ e3, e2 ∧ e3} and g⊗KD is a 3-dimensional Lie algebra which is isomorphic to
the one given by (12). Here ρL1 = ρR1 = 0, and nontrivial ρL2 , ρR2 are given by

ρL2 (e2 ⊗D)(e2 ∧ e3) = e1 ∧ e2, ρL2 (e3 ⊗D)(e2 ∧ e3) = e1 ∧ e3,
ρL2 (e1 ⊗D)(e1 ∧ e3) = −e1 ∧ e2, ρL2 (e3 ⊗D)(e1 ∧ e3) = e2 ∧ e3,
ρR2 (e2 ⊗D)(e2 ∧ e3) = −e1 ∧ e2, ρR2 (e3 ⊗D)(e2 ∧ e3) = −e1 ∧ e3,
ρR2 (e1 ⊗D)(e1 ∧ e3) = e1 ∧ e2, ρR2 (e3 ⊗D)(e1 ∧ e3) = −e2 ∧ e3.

Thus, the Leibniz algebra on the space of fundamental objects is also a Lie algebra.

(iii) The corresponding Leibniz algebra on the space of fundamental objects is a matched pair
of ∧2g and g ⊗ KD, where ∧2g is an abelian 3-dimensional Leibniz algebra with the basis
{e1 ∧ e2, e1 ∧ e3, e2 ∧ e3} and g⊗KD is a 3-dimensional Lie algebra which is isomorphic to
the one given by (13). Here ρL1 = ρR1 = 0, and nontrivial ρL2 , ρR2 are given by

ρL2 (e1 ⊗D)(e2 ∧ e3) = e1 ∧ e2, ρL2 (e2 ⊗D)(e1 ∧ e3) = −e1 ∧ e2,
ρL2 (e3 ⊗D)(e1 ∧ e2) = 2e1 ∧ e2, ρL2 (e3 ⊗D)(e1 ∧ e3) = e1 ∧ e3,
ρL2 (e3 ⊗D)(e2 ∧ e3) = e2 ∧ e3, ρR2 (e1 ⊗D)(e2 ∧ e3) = e1 ∧ e2,
ρR2 (e2 ⊗D)(e1 ∧ e3) = −e1 ∧ e2, ρR2 (e3 ⊗D)(e1 ∧ e3) = −e1 ∧ e3,
ρR2 (e3 ⊗D)(e2 ∧ e3) = −e2 ∧ e3.

(iv) The corresponding Leibniz algebra on the space of fundamental objects is a matched pair
of ∧2g and g ⊗ KD, where ∧2g is an abelian 3-dimensional Leibniz algebra with the basis
{e1 ∧ e2, e1 ∧ e3, e2 ∧ e3} and g⊗KD is a 3-dimensional Lie algebra which is isomorphic to
the one given by (14). Here ρL1 = ρR1 = 0, and nontrivial ρL2 , ρR2 are given by

ρL2 (e1 ⊗D)(e1 ∧ e3) = −e1 ∧ e2, ρL2 (e2 ⊗D)(e1 ∧ e3) = −e1 ∧ e2,
ρL2 (e2 ⊗D)(e2 ∧ e3) = αe1 ∧ e2, ρL2 (e3 ⊗D)(e1 ∧ e2) = e1 ∧ e2,
ρL2 (e3 ⊗D)(e1 ∧ e3) = e2 ∧ e3, ρL2 (e3 ⊗D)(e2 ∧ e3) = (αe1 + e2) ∧ e3,
ρR2 (e1 ⊗D)(e1 ∧ e3) = e1 ∧ e2, ρR2 (e1 ⊗D)(e2 ∧ e3) = e1 ∧ e2,
ρR2 (e2 ⊗D)(e2 ∧ e3) = −αe1 ∧ e2, ρR2 (e3 ⊗D)(e1 ∧ e3) = −e2 ∧ e3,
ρR2 (e3 ⊗D)(e2 ∧ e3) = −(αe1 + e2) ∧ e3.

(v) The corresponding Leibniz algebra on the space of fundamental objects is a matched pair
of ∧2g and g ⊗ KD, where ∧2g is an abelian 3-dimensional Leibniz algebra with the basis
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{e1 ∧ e2, e1 ∧ e3, e2 ∧ e3} and g⊗KD is a 3-dimensional Lie algebra which is isomorphic to
the one given by (15). Here ρL1 = ρR1 = 0, and nontrivial ρL2 , ρR2 are given by

ρL2 (e2 ⊗D)(e2 ∧ e3) = e1 ∧ e2, ρL2 (e3 ⊗D)(e2 ∧ e3) = e1 ∧ e3,
ρL2 (e1 ⊗D)(e1 ∧ e3) = −e1 ∧ e2, ρL2 (e3 ⊗D)(e1 ∧ e3) = e2 ∧ e3,
ρL2 (e1 ⊗D)(e1 ∧ e2) = −e1 ∧ e3, ρL2 (e2 ⊗D)(e1 ∧ e2) = −e2 ∧ e3,
ρR2 (e2 ⊗D)(e2 ∧ e3) = −e1 ∧ e2, ρR2 (e3 ⊗D)(e2 ∧ e3) = −e1 ∧ e3,
ρR2 (e1 ⊗D)(e1 ∧ e3) = e1 ∧ e2, ρR2 (e3 ⊗D)(e1 ∧ e3) = −e2 ∧ e3,
ρR2 (e1 ⊗D)(e1 ∧ e2) = e1 ∧ e3, ρR2 (e2 ⊗D)(e1 ∧ e2) = e2 ∧ e3.

Thus, the Leibniz algebra on the space of fundamental objects is also a Lie algebra.

5 Nambu-Poisson structures
In this section, we analyze the Nambu-Poisson structure associated to a generalized derivation
extension. Let (g, [·, ·, ·]g) be a 3-Lie algebra such that it induces a linear Nambu-Poisson structure
πg on g∗. Let D : ∧2g −→ g be a generalized derivation, and πD the corresponding linear Poisson
structure on g∗. Let {e1, · · · , en} be a basis of g, which can be viewed as coordinate functions on
g∗. Then πD is given by

πD =
∑

i<j

D(ei, ej)
∂

∂ei
∧ ∂

∂ej
.

It is obvious that {e1, · · · , en, D} constitute a basis of g ⊕ KD. ∂
∂D is a constant vector field on

(g⊕KD)∗ satisfying ∂D
∂D = 1 and ∂ei

∂D = 0.

Theorem 5.1. Let (g, [·, ·, ·]g) be a 3-Lie algebra such that it induces a linear Nambu-Poisson
structure πg on g∗, and D : ∧2g −→ g a generalized derivation on g. Then

πg + ∂

∂D
∧ πD ∈ X3((g⊕KD)∗)

is the Nambu-Poisson structure corresponding to the 3-Lie algebra (g⊕KD, [·, ·, ·]D) if and only if

π]D(df) ∧ πD = 0, ∀f ∈ C∞(M).

Proof. πg + ∂
∂D ∧ πD is a Nambu-Poisson structure if and only if for all φ, ϕ ∈ C∞((g⊕KD)∗),

there holds:
L(πg+ ∂

∂D∧πD)](dφ∧dϕ)(πg + ∂

∂D
∧ πD) = 0. (19)

For all f, g ∈ C∞(g∗), by the fact πg is a Nambu-Poisson structure, we have

L(πg+ ∂
∂D∧πD)](df∧dg)(πg + ∂

∂D
∧ πD)

= Lπ]g(df∧dg)πg + ∂

∂D
∧ Lπ]g(df∧dg)πD + L〈πD,df∧dg〉 ∂∂D πg

= ∂

∂D
∧ (Lπ]g(df∧dg)πD − ιd〈πD,df∧dg〉πg).
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For all f ∈ C∞(g∗) and µ ∈ C∞((KD)∗), we have

L(πg+ ∂
∂D∧πD)](dµ∧df)(πg + ∂

∂D
∧ πD)

= L ∂µ
∂Dπ

]
D

(df)(πg + ∂

∂D
∧ πD)

= ∂µ

∂D
Lπ]

D
(df)πg −

∂2µ

∂D2π
]
D(df) ∧ πD + ∂µ

∂D

∂

∂D
∧ Lπ]

D
(df)πD.

Therefore, πg + ∂
∂D ∧ πD is a Nambu-Poisson structure if and only if the following equalities hold:

Lπ]g(df∧dg)πD − ιd〈πD,df∧dg〉πg = 0, (20)
Lπ]

D
(df)πg = 0, (21)

Lπ]
D

(df)πD = 0, (22)

π]D(df) ∧ πD = 0. (23)

First it is obvious that (22) is equivalent to that πD is a Lie-Poisson structure corresponding to the
Lie algebra structure D. That is, (22) is equivalent to Condition (c) in Definition 3.1. Then (21) is
equivalent to Condition (a) in Definition 3.1. In fact, for linear functions x, y, z, u ∈ g on g∗, we
have

〈Lπ]
D

(dx)πg, dy ∧ dz ∧ du〉

= π]D(dx)〈πg, dy ∧ dz ∧ du〉 − 〈πg, (Lπ]
D

(dx)dy) ∧ dz ∧ du〉
−〈πg, dy ∧ (Lπ]

D
(dx)dz) ∧ du〉 − 〈πg, dy ∧ dz ∧ (Lπ]

D
(dx)du)〉

= π]D(dx)[y, z, u]g − 〈πg, d〈π]D(dx), dy〉 ∧ dz ∧ du〉
−〈πg, dy ∧ d〈π]D(dx), dz〉 ∧ du〉 − 〈πg, dy ∧ dz ∧ d〈π]D(dx), du〉〉

= D(x, [y, z, u]g)− [D(x, y), z, u]g − [y,D(x, z), u]g − [y, z,D(x, u)]g,

which implies that (21) is equivalent to Condition (a). Finally, we have

〈Lπ]g(dx∧dy)πD − ιd〈πD,dx∧dy〉πg, dz ∧ du〉
= π]g(dx ∧ dy)〈πD, dz ∧ du〉 − 〈πD, Lπ]g(dx∧dy)dz ∧ du〉 − 〈πD, dz ∧ Lπ]g(dx∧dy)du〉
−〈πg, d〈πD, dx ∧ dy〉 ∧ dz ∧ du〉

= [x, y,D(z, u)]g −D([x, y, z]g, u)−D(z, [x, y, u])− [D(x, y), z, u]g,

which implies that (20) is equivalent to Condition (b) in Definition 3.1. Thus, πg + ∂
∂D ∧ πD is a

Nambu-Poisson structure if and only if (23) holds. It is straightforward to see that the corresponding
3-Lie algebra is (g⊕KD, [·, ·]D). The proof is finished.

Remark 5.2. Not every 3-Lie algebra, or more generally n-Lie algebra can give rise to a Nambu-
Poisson structure on the dual space. However, it gives rise to a Filippov tensor which was introduced
in [12]. A Filippov tensor is a Nambu-Poisson structure if and only if it is a decomposable. The
condition in the above theorem guarantee that the corresponding Filippov tensor is decomposable.
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