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a b s t r a c t

Let (Mm, gM ) be a closed (compact, without boundary) connected manifold with positive
scalar curvature and (F k, h) a closed connected manifold with constant scalar curvature
(m ≥ 3 and k > 3). By a Theorem of Dobarro and Lami Dozo (1987), there are weights
f : M → R+ such that the warped product (Mm

× F k, gM + f 2h) has constant scalar
curvature. We construct paths of warped product metrics (Mm

× F k, gM + f 2ϵ h), ϵ ∈ (0, ϵ0),
ϵ0 small, with constant scalar curvature, that exhibitmultiplicity of solutions to the Yamabe
equation. Moreover, in the case that (F k, h) has a flat metric we add the constraints of
unit volume and fixed constant scalar curvature to the construction of paths of warped
metrics (Mm

×F k, gM + f 2hϵ), ϵ ∈ (0, ϵ0), that exhibit multiplicity. We use techniques from
bifurcation theory along with spectral theory for warped products.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Given a closed (compact, without boundary) Riemannianmanifold (N, h), the solution of the Yamabe problem (cf. in [12])
gives ametric h̄ forN , of constant scalar curvature andunit volume in the conformal class of h. Thesemetrics are critical points
of theHilbert–Einstein functional restricted to conformal classes. Theminima of the restricted functional are always realized.
This was proved by the combined efforts of H. Yamabe [24], N. S. Trudinger [22], T. Aubin [1] and R. Schoen [19], giving
the solution of the Yamabe problem. It is of interest to ask for other metrics of constant scalar curvature in the conformal
class, as they are critical points of the Hilbert–Einstein functional on conformal classes, that are not necessarily minimizers.
Uniqueness of a metric of constant scalar curvature of unit volume in a conformal class is known to be true in some special
cases: when the scalar curvature is non-positive, by the maximum principle; if h is an Einstein metric that is not isometric
to the round sphere, by a result of M. Obata [13]; and if the metric h is close in the C2,α topology to an Einstein metric and
dim(N) ≤ 7 (or dim(N) ≤ 24 and N is spin), by a result of L. L. De Lima, P. Piccione and M. Zedda [7]. On the other hand,
a rich variety of constant scalar curvature metrics that are not necessarily minimizers have been studied recently, see for
instance [5,10,16,17,20].

Classical results in Bifurcation theory, asserting the existence of bifurcation points in continuous paths of functionals
and critical points, have been applied successfully to the Yamabe problem setting; giving proofs of multiplicity of constant
scalar curvaturemetrics with unit volume in the same conformal class onmany different types of manifolds, for example, on
products of compact manifolds in [7], in the product manifold with a k-sphere [15], (and, more generally, on sphere bundles
in [14]), also on collapsing Riemannian submersions in [3], on non-compact manifolds of the type Sn ×Rd and Sn ×Hd in [4]
and on the product of a manifold of constant positive scalar curvature and a k-Torus in [18].
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Let (Mm, gM ), m ≥ 3, be a closed, connected manifold with positive scalar curvature sgM , not necessarily constant and
(F k, h), k > 3, some closed manifold with constant scalar curvature sh. In this article we will be interested in finding
multiplicity of constant scalar curvature metrics on warped products Mm

×f F k, with the use of local bifurcation theory.
Namely, we find bifurcation points in paths of metrics with constant scalar curvature on Mm

×f F k, for fixed gM , and either
varying f and fixing h, for the case sh ̸= 0, or varying h with f fixed, in the case sh = 0.

Consider a path ofmetrics {Gt}t∈[a,b], of constant scalar curvature and unit volume for a fixed closedmanifoldNm (m ≥ 3).
We call t∗ ∈ [a, b] a bifurcation instant for the path if there exist a sequence tn ∈ [a, b] and a sequence of Riemannian
metrics Ḡn in the conformal class of Gtn (Ḡn ̸= Gtn ), of constant scalar curvature and unit volume, such that limn→∞ tn = t∗
and limn→∞ Ḡn = Gt∗ . Wewill call the correspondingmetric, Gt∗ , a bifurcation point. Hence around Gt∗ we havemultiplicity
of solutions to the Yamabe equation.

Solutions to the Yamabe equation on the warped product of a compact manifold of positive scalar curvature with a
compact manifold of constant scalar curvature were studied in [8] by F. Dobarro and E. Lami Dozo. It is shown there that,
under these conditions, sgM > 0 and sh constant, there are weights f : M → R+ that make the warped product of constant
scalar curvature.

Specifically, for warped products (Mm
× F k, gM + f 2h) to have constant scalar curvature s̃, it must be satisfied

ck∆gMu + sgMu + shuq
= s̃u (1)

with u = f (k+1)/2, ck =
4k
k+1 , q =

k−3
k+1 (Theorem 2.1 in [8]). Let S be the first non-zero eigenvalue of the operator ck∆gM + sgM .

That is

S = inf{
∫
M
(ck|∇v|2 + sgM v

2)dVgM ; v ∈ H2
1 (M),

∫
M
v2dVgM = 1}. (2)

Note that since we are assuming that sgM is a positive scalar curvature for (M, gM ), the constant S will also be positive.
The resulting scalar curvature of the warped product (Mm

× F k, gM + f 2h) may be any s̃, s̃ < S, if sh < 0, and any s̃,
s̃ ∈ (S, S + δ), for some δ > 0, if sh > 0. Once s̃ is fixed, the weight f is unique. In the case sh = 0, the resulting scalar
curvature s̃ can only be equal to S, and the weight f is unique up to constant factors. In any case, the weight f does not
depend on the metric h of the second factor, save for the number sh.

The positive eigenfunction u, associated with the first eigenvalue S, satisfies the following equation,

ck∆gMu + sgMu = S u. (3)

Therefore, taking f = u2/(k+1) the manifold (Mm
× F k, gM + f 2h) has constant scalar curvature S for any Riemannian metric

hwith identically zero scalar curvature.
The spectrum of the Laplacian of warped product metrics on compact manifolds was studied thoroughly by N. Ejiri in [9].

It is shown there that given a base manifold (Mm, gM ) and a fiber (F k, h) with eigenvalues 0 = λ0 < λ1 ≤ · · · ≤ λi → ∞,
then the eigenvalues of the Laplacian of the warped product metric (M × F , gM + f 2h) with weight f ∈ C∞(M), f > 0, are
given by the union of the sets of eigenvalues of the operators

Lλi = ∆M −
k
f
∇grad f +

λi

f 2
, (4)

for each λi, i = 0, 1, 2, . . . . Note that for λ0 = 0, the operator

L0 = ∆M −
k
f
∇grad f , (5)

does not depend on the metric h at all.
As our first result, we construct families of warped metrics with infinitely many bifurcation points if the fiber manifold

has positive, zero or negative constant scalar curvature.

Theorem 1.1. Let (Mm, gM ) and (F k, h) be closed connected Riemannian manifolds (m ≥ 3 and k > 3) with sgM positive and sh
constant. Assume that S

m+k−1 /∈ Spec{L0}, then there exists a path of warped product metrics Gϵ = gM + f 2ϵ h, with ϵ ∈ (0, ϵ0), for
some ϵ0 > 0, of constant scalar curvature that has infinitely many (discrete) bifurcation points.

Recall that S is given by Eq. (2). Even though the metrics described in Theorem 1.1 will be shown to have constant scalar
curvature close to S, we will see that the volumes of the metrics will grow to infinity as ϵ → 0, so that the metrics where
bifurcation points occur are of high energy, for the restricted Hilbert–Einstein functional.

On the other hand, if the metric of the fiber manifold is flat, then we may construct paths of metrics with constant
scalar curvature S and unit volume, with infinitely many bifurcation points. Hence, these metrics may be low energy for
the restricted Hilbert–Einstein functional.

Theorem 1.2. Let (Mm, gM ), (F k, h) be closed connected Riemannianmanifolds of unit volume, m ≥ 3, k > 3, with positive scalar
curvature sgM and flat metric h, respectively. Let f ∈ C∞(M) be the unique weight such that (Mm

× F k, gM + f 2h) is of constant
scalar curvature S and unit volume, for any closed, unit volume flat manifold (F k, h). If S

m+k−1 /∈ Spec{L0}, then there is a path of
unit volume warped product metrics Gϵ = gM + f 2hϵ , on Mn

× F k, with ϵ ∈ (0, 1), and with each hϵ a flat metric of unit volume,
such that there are infinitely many, discrete, bifurcation points Gϵ∗ , ϵ∗

∈ (0, 1).
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Recall that existence and uniqueness of the weight f in Theorem 1.2 is guaranteed by Theorem 3.1 in [8]. Moreover,
f does not depend on the metrics hϵ as they all have constant scalar curvature zero. Note that if (Mm, gM ) is of constant
scalar curvature sgM and of unit volume, then we have that f = 1 and we recover some cases of product manifolds studied
previously [4,18]. In the case of product manifolds, the hypothesis S

m+k−1 /∈ Spec{L0} simplifies to
sgM

m+k−1 /∈ Spec{∆gM }.
We remark that the hypothesis S

m+k−1 /∈ Spec{L0} is necessary, given that in the path of warped metrics only the metric
of the second factor is varying. Consider for example the manifold (Mm, gM ) = (S2

× T 2, g1 + g2), where g1 is the round
metric and g2 is a flat metric on T 2 such that λ =

2
7 is an eigenvalue of∆g2 and the product metric g1 + g2 has unit volume

(such a metric g2 on T 2 is easy to construct, by choosing the appropriate size of the lattice Γ , such that T 2
= R2/Γ ; see

the end of Section 3 for some details on flat metrics for T n and the eigenvalues of their Laplacians). Note that sgM = 2 and
λ =

2
7 ∈ Spec{∆gM }. Consider now the manifold (S2

× T 2
× T 4, gM + h), with h any flat metric of unit volume on T 4. It

follows that gM + h is of constant scalar curvature 2 and unit volume. We also have
sgM

4+4−1 =
2
7 ∈ Spec{∆gM }. This implies

that regardless of the path of unit volume flat metrics ht , t ∈ (0, 1), we choose for T 4, the metrics Gt = gM + ht are going
to be degenerated in the sense of Morse Theory (see Section 2 for details). This means that we will always be missing a
necessary condition (see Proposition 2.1) to ensure the existence of bifurcation points in these paths. Small perturbations of
this example illustrate that this is also the case for warped products.

For our first result, our strategy will be to vary the weight fϵ so that the constant scalar curvature s̃ϵ of the path of warped
product metrics satisfies s̃ϵ → S as ϵ → 0, and then study the spectra of the Laplacian of the resulting metrics Gϵ , as ϵ → 0,
in order to prove the existence of bifurcation points in the path of metrics.

For the second result, our strategy will be to vary the flat metric h on F k in order to get a family of warped product metrics
of constant scalar curvature and unit volume, and then prove the existence of a bifurcation point in this family. This goes
along the general direction of some results in [18] and [4], onmultiplicity of constant scalar curvaturemetrics on the product
of a manifold with positive constant scalar curvature and a flat manifold.

2. Variational formulation and bifurcation

We recall the variational framework for the Yamabe problem, we refer the reader to [12,20] for details. Given a closed
smooth manifoldMn, n ≥ 3, for any metric g , its H2

1 (M) conformal class is given by [g] = {ϕ
4

n−2 g : ϕ ∈ H2
1 (M), ϕ > 0}. Note

that the H2
1 (M) conformal class can be canonically identified with the space of positive H2

1 (M) functions. We thus denote
by [g]1 the set of positive H2

1 (M) functions, ϕ, normalized so that
∫
M ϕ

2n
n−2 dVg = 1. That is, those functions ϕ such that

ϕ
4

n−2 g ∈ [g] and ϕ
4

n−2 g has unit volume.
It happens that [g]1 is a submanifold of H2

1 (M), and at ϕ0 = 1,

Tϕ0 [g]1 ≈ {ψ ∈ H2
1 (M) :

∫
M
ψdVg = 0}.

Let Sg denote the scalar curvature of g . Consider the Hilbert–Einstein functional,A(g) = Vol(M, g)
2−n
n
∫
M SgdVg , restricted

to the space of metrics of volume 1 in the same H2
1 (M) conformal class, which can be canonically identified with the space

of functions [g]1. Thus we may write,

A|[g]1 : [g]1 → R,

A|[g]1 (ϕ) =

∫
M

(
4(n − 1)
(n − 2)

⟨∇ϕ,∇ϕ⟩g + Sgϕ2
)
dVg , ϕ ∈ [g]1.

ϕ is a critical point ofA|[g]1 if and only if ϕ is smooth and g̃ = ϕ
4

n−2 g has constant scalar curvature. If g has constant scalar
curvature (i.e. ϕ0 = 1 is a critical point) then the second derivative of A at ϕ0 = 1 is a symmetric bilinear form,

d2(A)(ϕ0)(ψ1, ψ2) =
(n − 1)(n − 2)

2

∫
M

(
⟨∇ψ1,∇ψ2⟩g −

Sg
n − 1

ψ1ψ2

)
dVg ,

which can be represented by the self-adjoint elliptic operator

J (ψ) =
(n − 1)(n − 2)

2

(
∆gψ −

Sg
n − 1

ψ

)
,

called the Jacobi operator. Let g be ametric such that 1 is a critical point ofA restricted to [g]1.We say that g is nondegenerate,
in the usual sense of Morse theory, if and only if either Sg = 0 or if Sg

n−1 /∈ Spec{∆g}.
The Morse index ηg of a critical point g is the number of negative eigenvalues of the Jacobi operator; that is, the number

of eigenvalues of the Laplace–Beltrami operator,∆g , counted with multiplicity, that are less than Sg
n−1 .

We now take a look at local bifurcation theory, in particular, applied to solutions for the Yamabe problem. By a classical
result in variational bifurcation theory, given a continuous path of smooth functionals and of critical points, there is a
bifurcating branch issuing from the given path at each point where the Morse index changes. See for example the non
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equivariant bifurcation Theorem in the work of J. Smoller and A. G. Wasserman [21], see also the work of H. Kielhöfer [11].
We refer, for instance, to Theorem 3.3, in [7], by De Lima, Piccione and Zedda, for an application to the Yamabe problem
setting:

Proposition 2.1 ([7, Theorem 3.3]). Let Mn be a compact manifold with n ≥ 3 and {gt}t∈[a,b] a C1-path of Riemannian metrics
on M with constant scalar curvature. Let St denote the scalar curvature and ηt the number of eigenvalues of ∆gt counted with
multiplicity that are less than St

n−1 . If ηa ̸= ηb and Sa
n−1 = 0 or Sa

n−1 /∈ Spec{∆ga} and
Sb
n−1 = 0 or Sb

n−1 /∈ Spec{∆gb}, then there
exists a bifurcation instant t∗ ∈ (a, b) for the path of metrics {gt}t∈[a,b].

3. Spectral theory and Proof of Theorem 1.2

Given a compact manifold (Mm, gM ) of positive scalar curvature, and a compact manifold (F k, h) of constant scalar
curvature, we fix a weight f ∈ C∞(M) that makes the warped product (Mm

× F k, gM + f 2h) of constant scalar curvature
(see [8] for details on f ) and study the spectra of the Laplacian of the metric gM + f 2h. If sh = 0, then f is unique as soon as
one requires also volume one for the resulting metric gM + f 2h.

The eigenvalues αi of the Laplacian of a compact Riemannian manifold are discrete, of finite multiplicity and accumulate
only at infinity: αi → ∞ as i → ∞.

Let 0 = λ0 < λ1 ≤ · · · ≤ λi → ∞ denote the eigenvalues of the Laplacian of the metric h. For fixed λi denote the
eigenvalues of the elliptic operator Lλi from Eq. (4) by µ0

i < µ1
i ≤ · · · ≤ µ

j
i → ∞. The eigenvalues of ∆gM+f 2h are exactly

the list {µ
j
i} for i, j = 0, 1, 2, . . .. We refer the reader to [9,23] for details.

An application of the min–max principle to the operator Lλi and Hölder’s inequality, yields the following comparison
between µ0

i and λi, for each i ∈ N.

Proposition 3.1 ([23, Theorem 2]). For a warped product of compact connected manifolds (Mm
× F k, gM + f 2h), we have

µ0
i

∥f ∥2k
∥1∥2k

≤ λi, for i ∈ N. Equality holds if and only if f is constant.

Proof. For ψ, ϕ ∈ C∞(M) we denote by ⟨ψ, ϕ⟩, the scalar product given by ⟨ψ, ϕ⟩ =
∫
M

(∫
F ψϕ f kdVh

)
dVgM . Fixing λi and

f , the operator Lλi acts on ϕ ∈ C∞(M) as

Lλiϕ = ∆M ϕ −
k
f
∇grad f ϕ +

λiϕ

f 2
.

We apply the min–max principle to Lλi . In particular, for ϕ = 1, we have

µ0
i ≤

⟨Lλi (1), 1⟩
⟨1, 1⟩

=

(∫
M

(∫
F
Lλi (1) f kdVh

)
dVgM

)(
1∫

M

(∫
F f

kdVh
)
dVgM

)

=

(∫
M

(∫
F

λi

f 2
f kdVh

)
dVgM

)(
1∫

M

(∫
F f

kdVh
)
dVgM

)
= λi

∫
M f k−2dVgM∫
M f kdVgM

.

Then, using Hölder’s inequality,

µ0
i ≤ λi

∫
M f k−2dVgM∫
M f kdVgM

≤ λi

(∫
M f kdVgM

)(k−2)/k (
∫
M dVgM )2/k

(
∫
M f kdVgM )

= λi
∥1∥2

k

∥f ∥2
k
. □

For a given λ, we may denote the eigenvalues of the operator Lλ = L(λ) defined in Eq. (4), by µ0
λ ≤ µ1

λ ≤ · · · ≤ µ
j
λ ≤ · · ·,

for j ∈ N. In the following, we generalize a result of K. Tsukada and see that in this sense, µj
λ is increasing as a function of λ,

for any j ≥ 0.

Proposition 3.2 ([23, Lemma 1]). Let 0 ≤ λ < λ′, then µj
λ < µ

j
λ′ , for j ≥ 0.

Proof. Let Grj(C∞(M)) be the j-dimensional Grassmannian in C∞(M). Recall the min–max characterization of µj
λ:

µ
j
λ = inf

V∈Grj+1(C∞(M))
sup

v∈V\{0}

⟨Lλv, v⟩
⟨v, v⟩

.

Note that∫
M
(f kv)(∆Mv) dVgM

=

∫
M
(∇v,∇(f kv))gM dVgM =

∫
M
f k(∇v,∇v)gM dVgM +

∫
M
kf k−1v(∇v,∇f )gM dVgM . (6)
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We compute

⟨Lλv, v⟩ =

∫
M

(∫
F
v(∆Mv −

k
f
(∇v,∇f )gM +

λ

f 2
v)f kdVh

)
dVgM

=

(∫
M

(
f kv∆Mv − kf k−1v(∇v,∇f )gM + λf k−2v2

)
dVgM

)
(Vol(F , h)) ,

and using Eq. (6), we obtain

⟨Lλv, v⟩ =

(∫
M
f k|∇v|2gdVgM + λ

∫
M
f k−2v2dVgM

)
(Vol(F , h)). (7)

Since f is positive, this implies that

⟨Lλv, v⟩ ≤ ⟨Lλ′v, v⟩,

if 0 ≤ λ ≤ λ′. Also, ⟨Lλv, v⟩ = ⟨Lλ′v, v⟩, if and only if λ = λ′.
Finally, since for each j ∈ N,

µ
j
λ = inf

V∈Grj+1(C∞(M))
sup

v∈V\{0}

⟨Lλv, v⟩
⟨v, v⟩

,

then, µj
λ ≤ µ

j
λ′ , if 0 ≤ λ ≤ λ′. And µj

λ = µ
j
λ′ , if and only if λ = λ′. □

The following proposition proves Theorem 1.2, assuming the existence on F k of a path of flat metrics hϵ , ϵ ∈ (0, 1], with
specific properties.

Proposition 3.3. Let (M, gM ) and (F k, h) be closed connected Riemannian manifolds with positive scalar curvature and a flat
metric of unit volume, respectively. Suppose that on F k there is a path of flat unit volume metrics hϵ , ϵ ∈ (0, 1], with h1 = h.
Denote the eigenvalues of the Laplacian of hϵ by λi(ϵ). Suppose that for each i, i > 0, λi(ϵ) is a nonconstant polynomial function
of ϵ and 1

ϵ
, and that there is some sequence {λqj(ϵ)}, j ∈ N, with λqj(ϵ) → 0 as ϵ → 0. If S

m+k−1 /∈ Spec{L0}, then there is a
path of warped product metrics Gϵ = gM + f 2hϵ , ϵ ∈ (0, 1), of constant scalar curvature S and unit volume, with infinitely many
bifurcation points.

Proof. Given the path of unit volume flat metrics hϵ , ϵ ∈ (0, 1], from the hypothesis, consider the path of warped product
metrics Gϵ = gM + f 2hϵ , ϵ ∈ (0, 1). Here f is the uniqueweight that makes Gϵ of constant scalar curvature S and unit volume.
As discussed before, such f does not depend on the metric hϵ and hence is the same through all the path Gϵ , ϵ ∈ (0, 1).

Let ϵ0 ∈ (0, 1). We will show that there exist a, b ∈ (0, ϵ0) such that the path {Gϵ}ϵ∈[b,a], contains a bifurcation point. Let
S̄ =

S
m+k−1 . Recall that in order to use Proposition 2.1 the path must begin with a metric Ga such that S̄ /∈ Spec{∆Ga}.

Let α ∈ (0, ϵ0), if S̄ /∈ Spec{∆Gα }, we let Ga = Gα , otherwise we do the following.
Suppose that S̄ ∈ Spec{∆Gα }. Let µ

j1
i1
, µ

j2
i2
, . . . , µ

jn
in be the finite set of eigenvalues of the Laplacian of Gα , equal to S̄. Recall

the hypothesis, S̄ /∈ Spec{L0}; this means that neither of i1, i2, . . . , in is equal to zero, for the given set of eigenvalues. Thus,
by hypothesis, advancing the path (i.e. decreasing ϵ) modifies (increases or decreases) the values of each of the eigenvalues
of the Laplacian of the metric on F k, in particular, of λi1 , λi2 , . . . , λin (recall that for i > 0, the functions ϵ → λi(ϵ) are
nonconstant polynomial functions of ϵ and 1

ϵ
by hypothesis). By Proposition 3.2, this in turn means that the values of

µ
j1
i1
, µ

j2
i2
, . . . , µ

jn
in , are modified, as they are increasing functions of λi1 , λi2 , . . . , λin . Since the eigenvalues are discrete and

the path is continuous, there exists in the path a metric Ga (0 < a < α) such that S̄ /∈ Spec{∆Ga}.
Now, let ηa be the Morse index of Ga, that is, the number of eigenvalues of the Laplacian of Ga, counted with multiplicity,

such that they are less than S̄. Let r be a positive integer such that r > ηa. Then, we advance our path {Gϵ}ϵ≤a (i.e. we decrease
ϵ), starting from Ga, until Gϵ1 , where ϵ1 ∈ (0, a) is small enough so that the eigenvalue λqr (ϵ) from the sequence {λqj} in the
hypothesis satisfies

∥1∥2
k

∥f ∥2
k
λqr (ϵ1) < S̄.

Hence, using Proposition 3.1, we have

µ0
qr (ϵ1) ≤

∥1∥2
k

∥f ∥2
k
λqr (ϵ1) < S̄, (8)

That is, Gϵ1 has at least r eigenvalues (µ0
q1 (ϵ1) ≤ µ0

q2 (ϵ1) ≤ · · · ≤ µ0
qr (ϵ1)) that are less than S̄. This makes the Morse index

of Gϵ1 , strictly greater than that of Ga. To finish the path, we must find a final metric Gb, b ∈ (0, ϵ1), such that S̄ /∈ Spec{∆Gb},
while keeping its Morse index greater than ηa. We achieve this by advancing our path a little more, as we did in the case
of Ga.
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Note that, by construction, advancing the path (i.e. decreasing ϵ) modifies (increases or decreases) all the eigenvalues
of the Laplacian of hϵ1 . This in turn modifies those eigenvalues of the Laplacian of Gϵ1 that were equal to S̄, since, by
Proposition 3.2, the eigenvalues µj

λ are strictly increasing, as functions of λ. Also, Eq. (8) is still valid for ϵ < ϵ1, since for
ϵ < ϵ1,

µ0
qr (ϵ) ≤

∥1∥2
k

∥f ∥2
k
λqr (ϵ) <

∥1∥2
k

∥f ∥2
k
λqr (ϵ1) < S̄. (9)

This means that if we advance the path, the eigenvalues µ0
q1 (ϵ), µ

0
q2 (ϵ), . . . , µ

0
qr (ϵ) would still be strictly less than S̄, and

hence the Morse index of Gϵ would still be greater than r (and hence strictly greater than ηa) for ϵ ≤ ϵ1. As before, since
the path is continuous and the eigenvalues are discrete, there exists a metric Gb = gM + f 2hb, for b ∈ (0, ϵ1), ϵ > 0,
such that S̄ /∈ Spec{∆Gb} (and ηb > ηa). We have constructed a path of metrics, {Gϵ}ϵ∈[b,a], that satisfies the conditions of
Proposition 2.1, proving thus the existence of a bifurcation point somewhere in the path. Note that since ϵ0 was arbitrary,
we may repeat the process for ϵ ∈ (0, b) and find another bifurcation instant in an interval (b′, a′) ⊂ (0, b).

In order to obtain an infinite (discrete) sequence of bifurcation instants we can repeat the argument above for a sequence
of intervals [bl, al], l ∈ N, with a1 = a, b1 = b and al > bl > al+1 > bl+1 > 0 for each l ∈ N. □

There exist paths of flatmetrics hϵ , ϵ ∈ (0, 1), on the k-Torus that satisfy the hypothesis of Proposition 3.3, see for instance
Example 3.5 and [18]. Given a closed flat manifold (F k, h), it is a classical result that (F k, h) is isometric to the orbit space
Rk/π of a free action on Rk of the fundamental group π of F k. Such groups are called Bieberbach groups. By studying the
moduli space of flatmetrics, R. Bettiol and P. Piccione constructed in [4] paths of unit volume flatmetrics, on any flatmanifold
(F k, h), that satisfy the hypothesis of Proposition 3.3.

Proposition 3.4 ([4, Proposition 4.3]). Any closed flat manifold (F k, h) of unit volume admits a real analytic family hϵ , ϵ ∈ (0, 1],
h1 = h, of flat metrics with unit volume, such that there is some sequence {λqj}, j ∈ N, of eigenvalues of the Laplacian, with
λqj(ϵ) → 0 as ϵ → 0. Moreover, the eigenvalues of the Laplacian of hϵ , are nonconstant polynomials in ϵ and 1

ϵ
.

Proof. Proposition 4.3 in [4] establishes the existence of a family hϵ of unit volume flat metrics, with ϵ ∈ (0, 1] and h1 = h,
such that diam(F k, hϵ) → ∞, as ϵ → 0. Since Richϵ ≥ 0 on (F k, hϵ), we may follow the proof of Proposition 4.4 in [4] and use
the classical eigenvalue estimate of S. Y. Cheng in terms of diameter (Corollary 2.2 in [6]):

λi(ϵ) ≤ 2i2
k(k + 4)

(diam(F k, hϵ))2
. (10)

It follows from (10) that for each i ∈ N, we may always find ϵ > 0 small enough so that the first i eigenvalues of the
Laplacian of hϵ are arbitrarily small. This yields the sequence {λqj(ϵ)}, j ∈ N, of eigenvalues such that λqj(ϵ) → 0 as ϵ → 0.
The claim that the eigenvalues of the Laplacian of hϵ are nonconstant polynomials in ϵ and 1

ϵ
is also explicit in Section 4.4

of [4]. □

Proof of Theorem 1.2. To prove the theorem we use the metrics hϵ provided by Proposition 3.4. Note that Gϵ = gM + f 2hϵ
verifies the hypothesis of Proposition 3.3, where f is the unique weight that makes gM + f 2h of constant scalar curvature S and
unit volume. f is fixed through the whole path and depends only on (M, gM ) and k. Since hϵ is flat and of unit volume for each
0 < ϵ < 1, we have that (M × F k,Gϵ) is of unit volume and constant scalar curvature S for each ϵ ∈ (0, 1). □

We now construct an example of a path of warped product metrics with infinitely many bifurcation points, which is a
direct consequence of Proposition 3.4 and Theorem 1.2.

Example 3.5. Let (M, gM ) be compact with sgM > 0. Any k-Torus (T k, h) endowed with a unit volume flat metric admits
a family hϵ of flat metrics with unit volume, ϵ ∈ (0, 1), such that there is a sequence of eigenvalues of the Laplacian of hϵ ,
{λqi (ϵ)}, such that λqi (ϵ) → 0 as ϵ → 0. As a consequence if S

m+k−1 /∈ Spec{L0}, then there is a path of warped product
metrics Gϵ = gM + f 2hϵ , ϵ ∈ (0, 1), of unit volume and constant scalar curvature S, with infinitely many bifurcation points,
where f is the unique weight that makes gM + f 2h of constant scalar curvature S and unit volume.

We will make an explicit construction of the path of metrics Gϵ of Example 3.5 in the last part of this section. We first
recall some elementary facts about the eigenvalues of the Laplacian of flat metrics with unit volume on T k; we refer the
reader, for example, to [2]. Recall that a lattice Γ ⊂ Rk is a set consisting of linear combinations with integer coefficients
of a basis of Rk. We may thus associate to a lattice Γ , a matrix B ∈ GL(k), with its columns given by a basis (v1, v2, . . . , vk)
of Rk. Moreover, since we will only deal with metrics of unit volume, we will only consider basis B, such that |det(B)| = 1.
Recall that a flat metric on T k is given by Rk/Γ , for some lattice Γ ⊂ Rk, where Γ acts by isometries on Rk. Recall also that
(T k, gΓ ) and (T k, gΓ ′ ) are isometric if and only if there exists an isometry F of the Euclidean space such that F (Γ ) = Γ ′.

Given a lattice Γ with associated basis B, its dual lattice Γ ∗ is the lattice associated to a basis B∗, which is the dual of
the basis B. In practice, this means that if B is a matrix of a basis associated to Γ , then the inverse of its transpose, (BT )−1,
is a matrix of a basis associated to Γ ∗. Now, given a lattice Γ , with dual lattice Γ ∗, the eigenvalues of the Laplacian of the
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Riemannian metric for T k
= Rk/Γ , are given by λi = 4π2

∥βi∥
2, where βi ∈ Γ ∗. In the following, we will denote by M

the set of unit volume flat metrics on T k. Given a metric hϵ in M, we will denote by λi(ϵ) the eigenvalues of its Laplacian
and by Gϵ the warped product metric Gϵ = gM + f 2hϵ . Recall that f is the unique weight that makes (M × T k,Gϵ) of unit
volume and positive constant scalar curvature S; neither f nor S depend on ϵ. Given a metric h1 ∈ Mwith associated matrix
B = (v1, v2, . . . , vk), we denote its dual matrix by (BT )−1, with columns (w1, w2, . . . , wk), i.e. (BT )−1

= (w1, w2, . . . , wk).
With this in mind, for 0 < ϵ < 1, consider the path of flat, unit volume metrics hϵ ∈ M, given by the family of matrices

Bϵ = (ϵk−1v1,
1
ϵ
v2, . . . ,

1
ϵ
vk), (11)

(hence (BT
ϵ )

−1
= ( 1

ϵk−1w1, ϵw2, . . . , ϵwk)). Consider the corresponding path {Gϵ}0<ϵ<1, with Gϵ = gM + f 2hϵ . Recall that we
are assuming S

m+k−1 /∈ Spec{L0}.
The path of metrics Gϵ in this example satisfies the hypothesis of Proposition 3.3. For example, the eigenvalues {λqj}

associated with the last columns of (BT
ϵ )

−1: ϵw2, ϵw3, . . . , ϵwk, satisfy λqj (ϵ) → 0, as ϵ → 0. Also, all nonzero eigenvalues are
nonconstant polynomial functions of ϵ and 1

ϵ
. In fact, the metrics are of unit volume. It follows from Proposition 3.3 that the

path of warped product metrics Gϵ exhibits infinitely many bifurcation points Gϵ∗ , ϵ∗
∈ (0, 1).

4. Proof of Theorem 1.1

Let (Mm, gM ) and (F k, h), m ≥ 3, k > 3, be closed connected manifolds with positive scalar curvature sgM and constant
scalar curvature sh as before.

Recall that S is the principal eigenvalue of the operator ck∆gM + sgM . Let u0 be the positive eigenfunction associated with
S such that max u0 = 1. For warped products (Mm

× F k, gM + f 2h) to have constant scalar curvature s̃ it must be satisfied

ck∆gMu + sgMu + shuq
= s̃u (12)

with u = f (k+1)/2, ck =
4k
k+1 , q =

k−3
k+1 (Theorem 2.1 in [8]).

By Theorem 3.3 in [8], if sh > 0 then there is some ϵ0 > 0 such that for every ϵ ∈ (0, ϵ0), there exists a unique positive
solution uϵ to Eq. (12) with s̃ = S + ϵ. On the other hand, if sh < 0, by Theorem 3.2 in [8], for every ϵ > 0 there exists a
unique positive solution uϵ to Eq. (12) with s̃ = S − ϵ. If sh = 0, by Theorem 3.1 in [8], a unique positive solution (up to
constant factors) to Eq. (12) exists and only for s̃ = S.

LetMϵ = max uϵ and ϕϵ =
uϵ
Mϵ

.
The idea of the proof is to show that if sh ̸= 0, then, as ϵ → 0, Mϵ → ∞ and ϕϵ → u0 in Lr (M), for some specific r . We

will see that the first implication would let us accumulate eigenvalues of the Laplacian below S
m+k−1 , giving place to jumps

in the Morse index. The second implication, would indicate that the eigenvalues of the Laplacian of Gϵ = gM + u
4

k+1
ϵ h are

getting closer to those of gM +u
4

k+1
0

1
ϵ2
h, as ϵ → 0. Together with the hypothesis S

m+k−1 /∈ L0, this would allow us to start and
finish paths of metrics on non-degenerated metrics, in the Morse sense, ensuring the existence of bifurcation points.

We start with the following.
Claim 1. If sh ̸= 0,Mϵ → ∞, as ϵ → 0.

Proof. We divide the proof of this claim in cases.
Case 1. sh > 0.
By Theorem 3.3 in [8], given sh > 0, there is some ϵ0 > 0 such that for any ϵ ∈ (0, ϵ0), there is a unique positive solution

uϵ to Eq. (12) with s̃ = S+ϵ. In the proof of (Theorem 3.3, [8]) was shown that these solutions uϵ are obtained as a bifurcation
from infinity and the claim thatMϵ → ∞ as ϵ → 0 is explicit.

Case 2. sh < 0
Consider the operator (ck∆gM + sgM − S + ϵ). Note that for any R > 0,

(ck∆gM + sgM − S + ϵ)R u0 ≥ ϵ R u0.

It follows that R u0 is a supersolution of Eq. (1) if

(ck∆gM + sgM − S + ϵ)R u0 ≥ ϵ Ru0 ≥ |sh|Rquq
0

that is, if ϵ ≥ |sh|Rq−1uq−1
0 .

Then, given ϵ > 0 let Rϵ =

(
ϵ

|sh|

) 1
q−1

. Since max u0 = 1, it follows from the previous arguments that Rϵu0 is a

supersolution with Rϵ → ∞ as ϵ → 0, since q − 1 =
−4
k+1 < 0. This implies that a solution uϵ satisfies

Rϵu0 ≤ uϵ . (13)

We conclude thatMϵ → ∞, as ϵ → 0. □

Claim 2. ϕϵ =
uϵ
Mϵ

→ u0, as ϵ → 0, weakly in H2
1 (M) (and thus strongly in Lp(M) for p ∈ (2, 2m

m−2 )).
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Proof. We use the same notation as before. Note that

∆gMϕϵ + sϵϕϵ = −
sh
ck
ϕq
ϵM

q−1
ϵ (14)

with sϵ =
sgM −(S+ϵ)

ck
or sϵ =

sgM −(S−ϵ)
ck

depending on whether sh > 0 or sh < 0.
Multiplying (14) by ϕϵ and integrating onM we get∫

M
(|∇ϕϵ |2 + sϵϕ2

ϵ )dVgM = −
sh
ck

∫
M
ϕq+1
ϵ Mq−1

ϵ dVgM . (15)

Note that the right hand side of Eq. (15) tends to zero as ϵ goes to zero, since

0 <
∫
M
ϕq+1
ϵ Mq−1

ϵ dVgM ≤ M
−

4
k+1

ϵ Vol(M, gM )

and M
−

4
k+1

ϵ → 0 as ϵ → 0.
Therefore, ϕϵ is bounded in H2

1 (M). Since bounded sets in a Hilbert space are weakly precompact, this implies that a
subsequence converges weakly to a function ϕ0. This weak convergence implies∫

M
|∇ϕ0|

2dVgM = lim
ϵ→0

∫
M
⟨∇ϕϵ,∇ϕ0⟩dVgM

≤ lim sup
ϵ→0

(∫
M

|∇ϕϵ |
2dVgM

)1/2 (∫
M

|∇ϕ0|
2dVgM

)1/2

Therefore∫
M
(|∇ϕ0|2 + s0ϕ2

0 )dVgM ≤ lim
ϵ→0

∫
M
(|∇ϕϵ |2 + sϵϕ2

ϵ )dVgM = 0, (16)

with s0 =
sgM −S

ck
. Note also that since S is an infimum (Eq. (2)), we have

S
∫
M
ϕ2
0 dVgM ≤

∫
M
(ck|∇ϕ0|2 + sgMϕ

2
0 )dVgM .

It follows that

0 ≤

∫
M
(|∇ϕ0|2 +

sgM − S
ck

ϕ2
0 )dVgM ,

that is

0 ≤

∫
M
(|∇ϕ0|2 + s0ϕ2

0 )dVgM . (17)

Inequalities (16) and (17) then imply that ϕ0 is a weak solution to

∆ϕ0 + s0ϕ0 = 0. (18)

We also know by construction that ϕ0 ≥ 0 and maxϕ0 = 1. By standard regularity arguments ϕ0 > 0 and is C∞(M). This
implies that ϕ0 = u0, the unique positive solution of Eq. (3) with max u0 = 1.

The strong convergence ϕϵ =
uϵ
Mϵ

→ u0 in Lp(M) for p ∈ (2, 2m
m−2 ) as ϵ → 0, then follows from the Sobolev embedding

Theorem. This finishes the proof of the claim. □

Now let fϵ = u
2

k+1
ϵ . For the metric Gϵ = gM + f 2ϵ h, we denote the eigenvalues of the Laplacian of Gϵ by µ

j
i(ϵ), and for an

eigenvalue λ of the Laplacian of h the operator in Eq. (4) turns into

Lλ(ϵ) = ∆gM −
k
fϵ

∇grad fϵ +
λ

f 2ϵ
. (19)

Claim 3. For fixed λi, and fixed j ∈ N, an eigenvalue µj
i(ϵ) → µ

j
0 as ϵ → 0. Being µj

0 an eigenvalue of the L0 operator of

Eq. (5), with f = f0 = u
2

k+1
0 .

Proof. Let Grj(C∞(M)) be the j-dimensional Grassmannian in C∞(M). Recall the min–max characterization of µj
i:

µ
j
i(ϵ) = inf

V∈Grj+1(C∞(M))
sup

v∈V\{0}

⟨Lλiv, v⟩
⟨v, v⟩

.
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Using Eq. (7) we obtain from Eq. (19) that

⟨Lλi (ϵ)v, v⟩ =

(∫
M
f kϵ |∇v|2gdVgM + λi

∫
M
f k−2
ϵ v2dVgM

)
Vol(F k, h) (20)

Let ψϵ = ϕ
2

k+1
ϵ = M

−
2

k+1
ϵ fϵ , and f0 = u

2
k+1
0 . Since f kϵ = u

2k
k+1
ϵ , and since by Hölder’s inequality, the norms L

2k
k+1 (M) and

L
2(k−2)
k+1 (M) are dominated by Lp(M) for p ∈ (2, 2m

m−2 ), it follows that ψϵ → f0 in Lk(M) and Lk−2(M). In turn, this implies that,
as ϵ → 0,∫

M
ψk
ϵ dVgM →

∫
M
f k0 dVgM (21)

and ∫
M
ψk−2
ϵ dVgM →

∫
M
f k−2
0 dVgM . (22)

Recall that ⟨v, v⟩ =
(∫

M v
2 f kϵ dVgM

)
Vol(F k, h). From the above discussion, for any v ∈ V \ {0}, V ∈ Grj(C∞(M)) we have,

as ϵ → 0:∫
M f kϵ |∇v|2gdVgM∫
M f kϵ v2dVgM

=

∫
M ψ

k
ϵ |∇v|

2
gdVgM∫

M ψ
k
ϵ v

2dVgM
→

∫
M f k0 |∇v|2gdVgM∫

M f k0 v2dVgM
, (23)

also

M
−

2(k−2)
k+1

ϵ

∫
M f k−2

ϵ v2dVgM

M
−

2k
k+1

ϵ

∫
M f kϵ v2dVgM

=

∫
M ψ

k−2
ϵ v2dVgM∫

M ψ
k
ϵ v

2dVgM
→

∫
M f k−2

0 v2dVgM∫
M f k0 v2dVgM

,

that is, for some c independent of ϵ,

0 ≤

∫
M f k−2

ϵ v2dVgM∫
M f kϵ v2dVgM

≤ M
−

4
k+1

ϵ c.

Then, since λi is fixed, as ϵ → 0,

λi

∫
M f k−2

ϵ v2dVgM∫
M f kϵ v2dVgM

→ 0. (24)

Using Eq. (20) we have

⟨Lλi (ϵ) v, v⟩
⟨v, v⟩

=

∫
M f kϵ |∇v|2gdVgM∫
M f kϵ v2dVgM

+ λi

∫
M f k−2

ϵ v2dVgM∫
M f kϵ v2dVgM

.

It follows from (23) and (24) that, as ϵ → 0,

⟨Lλi (ϵ) v, v⟩
⟨v, v⟩

→

∫
M f k−2

0 v2dVgM∫
M f k0 v2dVgM

,

that is, as ϵ → 0,
⟨Lλi (ϵ) v, v⟩

⟨v, v⟩
→

⟨L0 v, v⟩
⟨v, v⟩

.

Finally, since for each j ∈ N,

µ
j
i(ϵ) = inf

V∈Grj+1(C∞(M))
sup

v∈V\{0}

⟨Lλi(ϵ)v, v⟩
⟨v, v⟩

,

we conclude µj
i(ϵ) → µ

j
0 as ϵ → 0. □

For sh ̸= 0 let Gϵ = gM + f 2ϵ h with fϵ = u2/(k+1)
ϵ , for ϵ ∈ (0, ϵ0). Note that if sh > 0, by uϵ we mean the unique solution

for Eq. (12), with s̃ϵ = S + ϵ, ϵ ∈ (0, ϵ0). And if sh < 0, by uϵ we mean the unique solution for Eq. (12), with s̃ϵ = S − ϵ,
ϵ ∈ (0, ϵ0). There should be no confusion since if sh > 0, Eq. (12) has no solutions with s̃ϵ = S − ϵ, ϵ ∈ (0, ϵ0). And if sh < 0,
Eq. (12) has no solutions with s̃ϵ = S + ϵ, ϵ ∈ (0, ϵ0). In the same way, note that Gϵ has constant scalar curvature s̃ϵ = S + ϵ

or s̃ϵ = S − ϵ, depending on whether sh > 0 or sh < 0.
Claim 4. Given any ϵ1 > 0, there is some c ∈ (0, ϵ1), such that s̃c

m+k−1 /∈ Spec{∆Gc }.
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Proof. Since Spec{∆Gϵ } is discrete for each ϵ, the claim would be false only if there are some i, j ∈ N such that µj
i(ϵ) ∈

Spec{∆Gϵ } for some interval (0, ϵ2), 0 < ϵ2 < ϵ1.
But since s̃ϵ

m+k−1 →
S

m+k−1 and µj
i(ϵ) → µ

j
0, as ϵ → 0, if this interval (0, ϵ2) existed, then, by continuity, there would be

eigenvalues of L0 equal to S
m+k−1 , which contradicts the hypothesis S

m+k−1 /∈ Spec{L0}. □

We are now ready to prove that the path Gϵ has infinitely many bifurcation instants.

We begin with the case sh ̸= 0. Recall that fϵ = ψϵM
2

k+1
ϵ , hence

∥fϵ∥k = M
2

k+1
ϵ ∥ψϵ∥k.

By Claim 1 we haveMϵ → ∞ and by (21), ∥ψϵ∥k → ∥f0∥k. It follows that

∥fϵ∥k → ∞, (25)

as ϵ → 0. By Claim 4 there exists a ∈ (0, ϵ0) such that s̃a
m+k−1 does not belong to the spectrum of∆Ga .

Let ηa be the number of eigenvalues, counted with multiplicity, that are less than s̃a
m+k−1 . Let l ∈ N, such that l > ηa.

It follows from (25) that there is some ϵb ∈ (0, a) small enough so that

∥1∥k

∥fϵb∥k
λl <

s̃ϵb
m + k − 1

with λl the lth eigenvalue of∆h. Proposition 3.1 then yields

µ0
λl

≤
∥1∥k

∥fϵb∥k
λl <

s̃ϵb
m + k − 1

,

and by Proposition 3.2 we also have: µ0
λ1

≤ µ0
λ2

≤ · · · ≤ µ0
λl
<

s̃ϵb
m+k−1 .

This implies that at Gϵb we have at least l > ηa eigenvalues that are less than s̃ϵ
m+k−1 . Note that taking any ϵ ∈ (0, ϵb)

still guarantees that at Gϵ there are at least l > ηa eigenvalues less than s̃ϵ
m+k−1 . In order to finish the path we use Claim 4

to find some b ∈ (0, ϵb) such that the eigenvalues of the Laplacian of Gb, are different from s̃b
m+k−1 . By Proposition 2.1 we

conclude that a bifurcation instant took place somewhere in (b, a) ⊂ (0, ϵ0) for the path of constant scalar curvature metrics
Gϵ , ϵ ∈ [b, a].

We may iterate this process to find infinitely many more bifurcation instants in (0, b). This concludes the proof for the
case sh ̸= 0.

Finally, we treat the case sh = 0. In this case, Eq. (1) turns into

ck∆gMu + sgMu = Su. (26)

Note that u0 is a solution, and tu0 is also a solution, for t > 0. For ϵ ∈ (0, 1], consider the metrics Gϵ = g + ( 1
ϵ
f0)2 h =

g + f 20
1
ϵ2

h = g + f 20 hϵ , with f0 = u2/(k+1)
0 , and hϵ =

1
ϵ2

h. Note that this path of metrics has constant scalar curvature S for
any ϵ > 0 and each eigenvalue of the Laplacian of hϵ , satisfies λi(ϵ) → 0 as ϵ → 0. Also, they are nonconstant polynomial
functions of ϵ and 1

ϵ
. The hϵ =

1
ϵ2

h are scalar flat metrics for each ϵ and h1 = h. Following the same arguments as in the
proof of Proposition 3.3, we obtain that there are infinitely many bifurcation instants in (0, 1) for Gϵ .
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