
Journal of Geometry and Physics 111 (2017) 54–70

Contents lists available at ScienceDirect

Journal of Geometry and Physics

journal homepage: www.elsevier.com/locate/jgp

Geometry of moduli stacks of (k, l)-stable vector bundles over
algebraic curves
O. Mata-Gutiérrez a,*, Frank Neumannb

a Departamento de Matemáticas, CUCEI, Universidad de Guadalajara, Av. Revolución 1500, C. P. 44430, Guadalajara, Jalisco, Mexico
b Department of Mathematics, University of Leicester, University Road, Leicester LE1 7RH, England, UK

a r t i c l e i n f o

Article history:
Received 19 April 2016
Received in revised form 13 September
2016
Accepted 6 October 2016
Available online 19 October 2016

MSC:
primary14H60
14D23
secondary14D20

Keywords:
Algebraic stacks
Moduli of vector bundles
(k, l)-stability

a b s t r a c t

We study the geometry of the moduli stack of vector bundles of fixed rank and degree
over an algebraic curve by introducing a filtration made of open substacks build from
(k, l)-stable vector bundles. The concept of (k, l)-stability was introduced by Narasimhan
and Ramanan to study the geometry of the coarse moduli space of stable bundles. We will
exhibit the stacky picture and analyse the geometric and cohomological properties of the
moduli stacks of (k, l)-stable vector bundles. For particular pairs (k, l) of integers we also
show that these moduli stacks admit coarse moduli spaces and we discuss their interplay.

© 2016 Elsevier B.V. All rights reserved.

0. Introduction

Let X be a geometrically irreducible smooth projective algebraic curve of genus g ≥ 2 over either the field C of complex
numbers or the algebraic closure Fq of the field Fq with q = ps elements for a prime p. Using Geometric Invariant theory,
Mumford [1] constructed a coarsemoduli spaceMs

X (n, d) for themoduli problemof stable vector bundles of rankn anddegree
d over X and showed that this moduli space is in fact a non-singular quasi-projective scheme of dimension n2(g − 1) + 1.
If in addition the rank n and the degree d are actually coprime, this moduli space is in fact a projective scheme and a fine
moduli space. More generally, considering the notion of S-equivalence classes of vector bundles, Seshadri [2] constructed a
coarse moduli space Mss

X (n, d) for semistable vector bundles of rank n and degree d, which gives a natural compactification
of the moduli spaceMs

X (n, d) of stable bundles over X .
Later, Narasimhan and Ramanan [3,4] introduced a more general concept of (k, l)-stability for vector bundles over an

algebraic curve X defined for any pair (k, l) of integers, which refines the classical notion of stability. A vector bundle E
is hereby (k, l)-stable if for any proper subbundle F of E we have for the generalised slopes µk(F ) < µk−l(E), where for
a given pair (k, l) the generalised slope is defined as µk−l(E) = (deg(E) + k − l)/rk(E). Narasimhan and Ramanan [4]
derived conditions for some special values of integers k and l for which (k, l)-stable bundles over X exist and proved some
fundamental properties of (k, l)-stability, among them openness. In particular, they used (k, l)-stability for the special pairs
(0, 1), (1, 0) and (1, 1) to define an open set inside themoduli spaceMs

X (n, L) of stable bundles over X with fixed determinant
L that allows for the construction of a Hecke correspondence and an associated space of Hecke cycles inside a certain
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Hilbert scheme associated to Ms
X (n, L), which under certain conditions gives a non-singular model for Ms

X (n, L). This Hecke
correspondence has also been used recently inmany otherways to study the geometry of themoduli spaceMs

X (n, d) of stable
bundles over X (see [5,6]).

In this article we embark to study the general moduli problem for (k, l)-stable vector bundles of rank n and degree d over
an algebraic curve X for any pair (k, l) of integers. In the first section we will derive some general theorems (Theorem 1.8
and Proposition 1.9) establishing conditions for the existence of (k, l)-stable vector bundles over X for general pairs (k, l)
of integers and hereby extending the particular existence results of Narasimhan and Ramanan in [4]. In section two we
address the general moduli problem for (k, l)-stable vector bundles and analyse under which conditions with respect to the
choice of integers k, l, n, d the associated moduli functor is representable or corepresentable. It turns out that if the pair
(k, l) of integers meets the conditions that 0 ≤ k(n − 1) + l < (n − 1)(g − 1) and 0 ≤ k + l(n − 1) < (n − 1)(g − 1)
then the coarse moduli space Mk,l

X (n, d) for (k, l)-stable vector bundles over X exists as an open subscheme of the moduli
space Ms

X (n, d) of stable vector bundles. The third section exhibits a general discussion of the set of isomorphism classes of
(k, l)-stable vector bundles over X for any pair (k, l) of integers, where among other things filtrations between the different
sets of isomorphism classes are derived and how they relate to the coarse moduli spaces constructed before. This allows
for further characterisations of (k, l)-stable vector bundles. In the fourth section we introduce the moduli stack Bunk,l

X (n, d)
of (k, l)-stable vector bundles of rank n and degree d over the algebraic curve X for any pair (k, l) of integers and study its
basic geometric properties. It turns out that it is an Artin stack, which is locally of finite type and has an open embedding in
the moduli stack BunX (n, d) of all vector bundles of rank n and degree d over X (Theorem 4.1). We also establish particular
filtrations of the moduli stack BunX (n, d) by means of open substacks of (k, l)-stable bundles:

· · · ⊂ Bunk−3,l
X (n, d) ⊂ Bunk−2,l

X (n, d) ⊂ Bunk−1,l
X (n, d) ⊂ Bunk,l

X (n, d) ⊂ · · ·

· · · ⊂ Bunk,l−3
X (n, d) ⊂ Bunk,l−2

X (n, d) ⊂ Bunk,l−1
X (n, d) ⊂ Bunk,l

X (n, d) ⊂ · · · .

In section fivewe then carefully analyse the relations between themoduli stacks and the coarsemoduli spaces of (k, l)-stable
vector bundles with respect to the conditions under which these coarse moduli spaces do exist. Finally, in the last section
we derive some cohomological properties of the moduli stacks BunX (n, d) and in particular discuss the rank 2 case. We end
by discussing a general Hecke correspondence involving the moduli stacks BunX (n, d) by using appropriate Grassmannian
bundles of the universal bundles over the moduli stacks involved. In this way we extend the approach of Narasimhan and
Ramanan in [4] to the general case.

Notation and conventions. All schemes will be considered over the base Spec(F), where F is either the field C of complex
numbers or the algebraic closure F = Fq of the finite field Fq of characteristic pwith q = ps elements for a prime number p.
The category of schemes Sch/Spec(F) over Spec(F) will be endowedwith the étale topologywhenever we need to emphasise
a site.

1. Vector bundles over algebraic curves, Segre invariants and (k, l)-stability

Let X be an irreducible smooth projective algebraic curve of genus g ≥ 2 over Spec(F), where F is either the field of
complex numbers C or the algebraic closure F = Fq of the field Fq.

Narasimhan and Ramanan in [4] introduced the notion of (k, l)-stability and (k, l)-semistability for vector bundles over X
and showed that (k, l)-stability is an open property for vector bundles over X (see [4, Proposition 5.3]). FollowingNarasimhan
and Ramanan we define (see [4, Definition 5.1]):

Definition 1.1. Let (k, l) be a pair of integers and E a vector bundle over X . We define the generalised slope as the rational
number

µk−l(E) =
deg(E)+ k− l

rk(E)
,

and say that the vector bundle E over X is (k, l)-stable (resp. (k, l)-semistable) if for any subbundle F of E, we have

µk(F ) < µk−l(E) (resp. µk(F ) ≤ µk−l(E)). (1.1)

Criteria for the existence of (k, l)-stable vector bundles for the pairs (0, 1), (1, 0) and (1, 1) were given by Narasimhan and
Ramanan in [4, Proposition 5.4]. In Theorem 1.8, we will extend this result for any pair (k, l) of integers.

Obviously, (0, 0)-stability (resp. (0, 0)-semistability) just gives the classical notion of stability (resp. semistability) for
vector bundles over algebraic curves. It is also an easy consequence from the definition, that if E is a (k, l)-stable vector bundle
and L a line bundle, then E⊗L is (k, l)-stable and the dual vector bundle E∗ is (l, k)-stable. A vector bundle of degree 0 is stable if
and only if it is (0, 1)-stable and a vector bundle of degree 1 is stable if and only if it is (0, 1)-semistable (see [4, Remark 5.2].

We also have the following fundamental properties for (k, l)-stability of vector bundles:

Proposition 1.2 (Narasimhan–Ramanan). Let (k, l) be a pair of integers. Then we have the following:

(1) (k, l)-stability is an open property.
(2) If E is (k, l)-stable, then E is also (k, l− 1)-stable and (k− 1, l)-stable.
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(3) Given an exact sequence of locally free sheaves

0→ E ′ → E → Or
X → 0,

it follows that if E is (k, l)-stable, then E ′ is (k, l− r)-stable.

Proof. The first property (1) is basically [4, Proposition 5.3]. Property (2) is a direct consequence of the definition. Finally,
the last property (3) is a consequence of [4, Lemma 5.5] and the argument goes as follows: Let F be a proper subbundle of E ′
and F̄ the saturation of F in E. Then F̄ is a proper subbundle of E and therefore µk(F̄ ) < µk−l(E). Moreover, µk(F ) ≤ µk(F̄ ) <
µk−l(E) = µk−l+r (E ′). This is our assertion. □

Now we will recollect some general properties of Segre invariants (see [7–10]), which we will need to use later.

Definition 1.3. Let E be vector bundle over X of rank n and degree d. Let m ∈ Z such that 1 ≤ m ≤ n − 1. The m-Segre
invariant for E, is denoted by sm(E) and defined as the integer sm(E) = md − n · deg(F )max, where Fmax ⊂ E is a proper
subbundle of rankm and maximal degree.

Hirschowitz proved in [11] the following fundamental inequality

sm(E) ≤ m(n−m)(g − 1)+ (n− 1). (1.2)

Specifically, he proved that there is a unique integer δm with 0 ≤ δm ≤ n− 1 andm(n−m)(g − 1)+ δm ≡ md mod n, such
that

sm(E) ≤ m(n−m)(g − 1)+ δm. (1.3)

Equality holds if E is general.
LetMs

X (n, d) be the set of all stable vector bundles of rank n and degree d over X . Furthermore, the set of all stable vector
bundles of rank n and degree d with m-Segre invariant equal to s will be denoted by Ms

X (n, d,m, s), that is M
s
X (n, d,m, s) :=

{E ∈ Ms
X (n, d)| sm(E) = s}. If s is such that 0 < s ≤ m(n − m)(g − 1), s ≡ md mod n and g ≥ 2, then Ms

X (n, d,m, s) is
non-empty and irreducible of dimension n2(g − 1)+ 1+ s−m(n−m)(g − 1) (see [9,10]).

Remark 1.4. From the definition of the Segre invariant and the definition of (k, l)-stability we can see that E is (k, l)-stable
if and only if sm(E) > k(n−m)+ml for allm with 1 ≤ m ≤ n− 1.

Remark 1.5. Suppose that E is a stable vector bundle of rank n and degree d. Also suppose that E is not (k, l)-stable. Then
there exists a proper subbundle F ⊂ E such that

µk(F ) ≥ µk−l(E)

and an exact sequence

0→ F → E → E/F → 0. (1.4)

Let now rk(F ) = m and deg(F ) = δ. Then we have (δ + k)/m ≥ (d+ k− l)/n and d/n > δ/m.

Now, applying [3, Proposition 2.6] to F and (m, δ) we get a family F of vector bundles on X of rank m and degree δ
parametrised by a scheme R with the following properties:

(1) R is irreducible,
(2) the family F contains F and all stable vector bundles of rankm and degree δ on X .

Furthermore, let G be the family of vector bundles on X of rank n − m and degree d − δ parametrised by a scheme S
obtained by applying [3, Proposition 2.6] to E/F and (n−m, d− δ).

Now let H ⊂ R×S be the open subscheme given such that (r, s) ∈ H if H0(X,Hom(Gs,Fr )) = 0. Then R1
pR×S (X×R×S,

Hom(p∗13G, p
∗

12F)) is locally free on H .
Note that H is non-empty, because Hom(E/F , E) = 0. Indeed, if such an homomorphism f ∈ Hom(E/F , F ) would exist,

it would give, by composition a non-zero homomorphism E ↠ E/F → F ↪→ E , which is not an isomorphism. But this is
impossible, since E is stable.

We set P := P(R1
pR×S (X×R×S,Hom(p∗13G, p

∗

12F)))|H and letπ : P → H be the projection. Then by [3] (see also [12, Lemma
2.4]) we have the exact sequence

0→ π∗p∗X×RF ⊗ p∗PτP → E → π∗p∗X×SG→ 0

on X×P , where E is a family of vector bundles parametrised by P and τP the tautological hyperplane bundle. Now let P st be
the open subscheme given by the stability condition, i.e., q ∈ P st if and only if E|X×{q} is stable. Moreover, P st is non-empty
since we have the extension (1.4) in Remark 1.5 defining a point on P st . Therefore, we obtain a map θE : P st

→ Ms
X (n, d), the

classifying map. Note that θE (P st ) is the set of stable vector bundles of rank n and degree dwith a subbundle F of rankm and
degree δ as considered above.
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Corollary 1.6. Let F, G, R and S be as above. Let H ′ ⊂ R×S be the open subscheme defined as

H ′ = {(r, s) ∈ R×S | Fs, Gr are stable}.

Then θE (P st
|H ′ ) is dense in θE (P st ).

Proof. Because there are no non-zero homomorphisms between two stable bundles if the first bundle has higher slope
than the second it follows that H ′ ⊂ H . Therefore, we can restrict the projective bundle P st on H to H ′. Furthermore, H ′ is
non-empty by construction of R and S. In addition, as H ′ is non-empty and S, R are irreducible, H ′ is also irreducible and
dense in R×S. Therefore, P st

|H ′ is dense in P st and the Corollary follows (see also [3, Proposition 6.7]). □

Remark 1.7. Note that if E is a stable vector bundles of rk(E) = n and deg(E) = d and if we suppose that F is a subbundle of
E of rk(F ) = m and deg(F ) = δ, then Corollary 1.6 implies that the exact sequence

0→ F → E → E/F → 0

determines a point q ∈ θE (P st ) and such a point is in the closure θE (P st
|H ′ ).

The following theorem gives conditions on the general existence of (k, l)-stable vector bundles and under which
conditions (k, l)-stability implies stability (see also [5]).

Theorem 1.8. Let X be a non-singular projective curve of genus g ≥ 2 and let k, l, n be integers. Then:

(1) If

k(n− 1)+ l < (n− 1)(g − 1), (1.5)

and

k+ l(n− 1) < (n− 1)(g − 1), (1.6)

then there exist (k, l)-stable vector bundles of rank n and degree d over X.
(2) If

k(n− 1)+ l ≥ (n− 1)g, (1.7)

or

k+ l(n− 1) ≥ (n− 1)g, (1.8)

then there do not exist (k, l)-stable vector bundles of rank n and degree d over X.

Proof. (1) Assuming the inequalities for k and l, we will prove that there exist stable vector bundles that are (k, l)-stable.
Let E be a stable vector bundle of rank n and degree d, which is not (k, l)-stable. Thus, by Remark 1.5 there exists a proper
subbundle F ⊂ E of rankm and degree δ, such that

µk−l(E) ≤ µk(F ). (1.9)

Considering the extension 0 → F → E → E/F → 0, we can assume by Corollary 1.6 that F and E/F are stable (see
also [3, Proposition 2.6] and [4, Proposition 5.4]). Using [3, Proposition 2.4], as dim Ms

X (n, d) = n2(g − 1) + 1, it follows
that the number of such extensions is bounded by m2(g − 1) + 1 + (n − m)2(g − 1) + 1 + h1 ((E/F )∗ ⊗ F) − 1 =
(n2
−mn+m2)(g−1)+1+dm−nδ.Wewill show now that this number is actually less than n2(g−1)+1. First, by (1.5) and

(1.6) we have that k(n−m)+ml < m(n−m)(g−1) and by (1.9) dm−nδ ≤ k(n−m)+ml. Thus, dm−nδ < m(n−m)(g−1),
which implies (n2

−mn+m2)(g−1)+1+ dm−nδ < n2(g−1)+1, i.e., the dimension of the locus of stable vector bundles
satisfying (1.9) is less than dimMs

X (n, d). Allowingm to vary with values 1 ≤ m ≤ n− 1, we conclude that the dimension of
the locus of non-(k, l)-stable vector bundles is also less than dimMs

X (n, d).
(2) Assuming that a pair of integers (k0, l0) satisfies condition (1.7), we will prove that there is no vector bundle which is

(k0, l0)-stable. Let E be a vector bundle of rank n and degree d and let L0 ⊂ E be a line subbundle of maximal degree. By (1.2)
and (1.7) we obtain that d − n · deg(L0) = s1(E) ≤ (n − 1)g ≤ k0(n − 1) + l0. This implies that µk0 (L0) ≥ µk0−l0 (E), and
therefore E is a non-(k0, l0)-stable vector bundle. Now suppose that the pair of integers (k0, l0) satisfies condition (1.8), then
we consider a subbundle F ⊂ E of rank n− 1 and maximal degree and the rest of the proof goes just as before. □

Finally, we give a necessary and sufficient general condition for the existence of (k, l)-stable vector bundles over an
algebraic curve X .
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Proposition 1.9. Let X be a non-singular projective curve of genus g ≥ 2, n be a positive integer and (k, l) be any pair of integers.
Then there exist (k, l)-stable vector bundles of rank n and degree d if and only if the pair (k, l) satisfies the inequality

k(n−m)+ml < m(n−m)(g − 1)+ δm, (1.10)

for all integers m with 1 ≤ m ≤ n− 1.

Proof. Suppose that E is a (k, l)-stable vector bundle of rank n and degree d. Combining (1.1) and (1.3), we obtain that

k(n−m)+ml < sm(E) ≤ m(n−m)(g − 1)+ δm

for allm and this implies (1.10).
Conversely, let the pair (k, l) satisfy the inequality (1.10), for all m with 1 ≤ m ≤ n− 1. Then by (1.3) the general vector

bundle E has an m-Segre invariant given by sm(E) = m(n−m)(g − 1)+ δm for all m (see [11]). It follows therefore that E is
(k, l)-stable by using (1.10) and (1.1). This completes the proof. □

Let X be a non-singular projective curve of genus g ≥ 2, n be a positive integer and (k, l) be any pair of integers.
Furthermore, let

0 ≤ k(n− 1)+ l < (n− 1)(g − 1), (1.11)

0 ≤ k+ l(n− 1) < (n− 1)(g − 1). (1.12)

Under these conditions, if E is (k, l)-stable, then the left parts 0 ≤ k(n−1)+ l and 0 ≤ k+ l(n−1) of the above inequalities
imply that E is in fact stable.

Hence there always exist (k, l)-stable vector bundles over X , which are also stable. Thus, if the pair of integers (k, l)
satisfies the above inequalities, then (k, l)-stability determines an open subschemeMk,l

X (n, d) parameterising the (k, l)-stable
vector bundles inside the moduli space Ms

X (n, d) of stable vector bundles over X as (k, l)-stability is an open property. The
codimension of this locus can be determined as follows.

Theorem 1.10. Let k, l be integers such that 0 ≤ k(n− 1)+ l ≤ (n− 1)(g − 1) and 0 ≤ k+ l(n− 1) ≤ (n− 1)(g − 1). Then,

codim (Ms
X (n, d) \M

k,l
X (n, d)) ≥ min

{
(n− 1)(g − 1)− k(n− 1)− l,
(n− 1)(g − 1)− k− l(n− 1)

}
.

Proof. Let E ∈ Ms
X (n, d) \ M

k,l
X (n, d) be a vector bundle such that there exists a subbundle F ⊂ E of rank m and degree δ

which satisfiesµk−l(E) ≤ µk(F ). We have, as in the proof of Theorem 1.8, that the dimension of such stable vector bundles is
(n2
−nm+m2)(g−1)+1+dm−nδ. Moreover, this number is bounded above by (n2

−nm+m2)(g−1)+1+ (n−m)k+ml.
Thus, dimM(n, d)− dim(Ms

X (n, d) \M
k,l
X (n, d)) ≥ (nm−m2)(g − 1)− (n−m)k−ml. Consideringm as a parameter variable,

we can see that themaximum of (nm−m2)(g−1)− (n−m)k+ml is obtained wheneverm = 1 orm = n−1. Consequently,
the codimension ofMs

X (n, d)\M
k,l
X (n, d) is bounded below bymin{(n−1)(g−1)−k(n−1)− l, (n−1)(g−1)−k− l(n−1)}.

This gives the desired conclusion. □

2. Moduli spaces of (k, l)-stable vector bundles over an algebraic curve

In this sectionwewill study themoduli problem and the associatedmoduli functor for (k, l)-stable vector bundles over an
algebraic curve. Though this moduli problem is similar to the moduli problem of stable vector bundles we get a refinement
and filtration as we can vary the pair (k, l) of integers.

First, we will need to introduce the notion of families of (k, l)-stable vector bundles over an algebraic curve and an
adequate equivalence relation among them.

Definition 2.1. Let X be a smooth projective algebraic curve and let T be a scheme over Spec(F). A family of (k, l)-stable
vector bundles of rank n and degree d over X parametrised by T is a vector bundle E over X×T such that for each point t of T ,
the restriction Et is a (k, l)-stable vector bundle of rank n and degree d over X .

We define an equivalence relation for families of (k, l)-stable vector bundle over X as follows: Two families E and E ′ of
(k, l)-stable vector bundles parametrised by the scheme T are equivalent, denoted by E ∼ E ′, if there exists a line bundle over
T such that E ⊗ p∗2L and E ′ are isomorphic, where p∗2L is the pullback of L along the projection morphism p2 : X×T → T .

Observe that, when (k, l) = (0, 0) this is precisely the equivalence relation normally considered for stable vector bundles
over algebraic curves.

Let us now consider the moduli functor for (k, l)-stable vector bundles over X

Mk,l
X (n, d) : (Sch/Spec(F))op → Sets,

which associates to any scheme T the setMk,l
X (n, d)(T ) of equivalence classes of families of (k, l)-stable vector bundles and to

anymorphism of schemes f : T ′ → T themap of sets f ∗ :Mk,l
X (n, d)(T )→Mk,l

X (n, d)(T ′) induced via the pullback operation.
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Wewill study the representability and corepresentability of themoduli functor Mk,l
X (n, d), or in otherwords the existence

of a fine or coarse moduli space for (k, l)-stable vector bundles over X . This will depend on the rank n and degree d as in the
case of stable vector bundles, but in addition also on the particular pair (k, l) of integers. We have to consider two general
cases. In the first case we will assume that the pair (k, l) of integers satisfies the inequalities (1.11) and (1.12). In the second
case we consider a more general situation, namely when for the pair (k, l) of integers we have that k(n − 1) + l < 0 or
k+ l(n− 1) < 0.

In the first case, the representability or corepresentability of the moduli functor is basically a consequence of the
representability or corepresentability of the moduli functor for stable vector bundles over the algebraic curve X . For this,
remember that the moduli functor for stable vector bundles over X

Ms
X (n, d) : (Sch/Spec(F))

op
→ Sets

is representable if and only if n and d are coprime (see [12,13]). So if Ms
X (n, d) is representable, then there exists a scheme

Ms
X (n, d), which represents the moduli functor Ms

X (n, d) and therefore we get also a universal family U of stable vector
bundles parametrised by the scheme Ms

X (n, d). Now, if the pair of integers (k, l) satisfies (1.11) and (1.12), then as we
saw before (k, l)-stability implies stability. Moreover, as (k, l)-stability is an open condition, there exists a non-empty open
subscheme Mk,l

X (n, d) ⊂ Ms
X (n, d) which represents the moduli functor Mk,l

X (n, d) and the restriction of the universal family
for stable bundles U|Mk,l

X (n,d) to this subscheme is a universal family for (k, l)-stable bundles. On the other hand, if n and d are
not coprime, thenMs

X (n, d) is universally corepresentable by a schemeMs
X (n, d) (see [14, Definition 2.2.1] and [14, Theorem

4.3.4]). Therefore the open subschemeMk,l
X (n, d) corepresents the moduli functor Mk,l

X (n, d).
In contrast, considering now the second case,where for the pair (k, l) of integerswehave k(n−1)+l < 0 or k+l(n−1) < 0,

then there exist semistable vector bundles which are (k, l)-stable. Moreover, if k and l happen to be negative enough, then
there are in fact unstable vector bundles which are (k, l)-stable. This follows because for any vector bundle E the slopes of
its subbundles are always bounded above [15, Lemma 2]. Let us give two concrete examples to illustrate this.

Example 2.2. Let E be an unstable vector bundle over X of rank rk(E) = 2 and degree deg(E) = d. Let L ⊂ E be a line
subbundle of maximal degree. As deg(L) is bounded above, it follows that deg(E) − 2deg(L) is bounded below. Hence if the
pair (k, l) is such that deg(E)− 2deg(L) > k+ l, then E is (k, l)-stable.

Example 2.3. Consider an unstable vector bundle E over X of rank rk(E) = 3. Let F ⊂ E be a subbundle of rank
rk(F ) = 2 and maximal degree and let L ⊂ E be a line subbundle of maximal degree. Suppose that the pair (k, l) satisfies
2 deg(E)− 3 deg(F ) > k+ 2l and deg(E)+ 3 deg(L) > 2k+ l. Then E is an unstable and (k, l)-stable vector bundle.

These last two examples can be extended to any rank, because if E is a vector bundle of rank n then if k and l are
negative enough, there exist unstable vector bundles of rank n and degree d, which are (k, l)-stable. For this just take an
unstable vector bundle E of rank rk(E) = n, a line subbundle L ⊂ E and a subbundle F ⊂ E of rank rk(F ) = n − 1 with
(n − 1) deg(E) − n deg(F ) > k + (n − 1)l and deg(E) + n deg(L) > (n − 1)k + l. Therefore it follows that there are unstable
vector bundles of rank n and degree d over an algebraic curve X , which are (k, l)-stable as soon as the integers k and l are
negative enough.

Moreover, if k(n− 1)+ l < 0 or k+ l(n− 1) < 0 and the integers n and d are not coprime, then the functor Mk,l
X (n, d) is

not corepresentable. The reason for this is that under these conditions there do exist semistable vector bundle of rank n and
degree d which are also (k, l)-stable.

Proposition 2.4. If (k, l) is a pair of integers such that k(n − 1) + l < 0 or k + l(n − 1) < 0 and the integers n and d are not
coprime then the moduli functor Mk,l

X (n, d) : (Sch/Spec(F))op → Sets is not corepresentable.

Proof. Suppose that the pair of integers (k, l) is such that k(n−1)+ l < 0. Let E be a strictly semistable and indecomposable
vector bundle. Furthermore, assume E is such that the Jordan–Hölder filtration of E is 0 ⊂ L ⊂ E. Then the associated graded
Gr(E) of E is given as Gr(E) = L⊕ F and E ̸≃ L⊕ F , with F = E/L. Then E is (k, l)-stable. Moreover, we can construct a family
E → X×A1 such that E|X×{0} = L⊕F and E|X×{t} = E with t ̸= 0 (see [16, Lemma 16]). This gives rise to a jump phenomenon
and determines the non-corepresentability of the moduli functor. In the case that k + l(n − 1) < 0, consider a strictly
semistable and indecomposable vector bundle E ′, such that its Jordan–Hölder filtration is equal to 0 ⊂ F ′ ⊂ E ′, where F ′ is a
rank n−1 subbundle of E. Hence E ′ is a (k, l)-stable vector bundle such that Gr(E ′) = F ′⊕ L′, where L′ = E/F is a line bundle.
Moreover as before there exists a family E ′ → X×A1 such that E ′|X×{0} = L′ ⊕ F ′ and E ′|X×{t} = E ′ with t ̸= 0. □

We can now also give a description of the moduli spaces Mk,l
X (n, d) of (k, l)-stable vector bundles of rank n and degree

d over X in terms of Geometric Invariant Theory, always under the condition that the pair (k, l) satisfies both inequalities
(1.11) and (1.12). This description will be needed later for comparison with the respective moduli stacks. Recall that if the
inequalities (1.11) and (1.12) hold for a pair of integers (k, l), then (k, l)-stability implies stability and hence the moduli
functor for (k, l)-stable vector bundles and its representability by schemes follows in a natural way from the construction of
the moduli space of stable bundles over X . The construction of the moduli spacesMk,l

X (n, d) of (k, l)-stable vector bundles of
rank n and degree d over X is then a standard procedure using methods from Geometric Invariant Theory (see [13,14]). We
will reproduce the construction here for the convenience of the reader as we will later need this explicit description of the
moduli spaces to compare them with the respective moduli stacks of (k, l)-stable vector bundles.
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Theorem 2.5. Assume that the pair (k, l) of integers satisfies the conditions that 0 ≤ k(n − 1) + l < (n − 1)(g − 1) and
0 ≤ k + l(n − 1) < (n− 1)(g − 1). Then the moduli space Mk,l

X (n, d) of (k, l)-stable vector bundles of rank n and degree d over
X exists and is an open subscheme of the moduli space Ms

X (n, d) of stable vector bundles of rank n and degree d.

Proof. Let OX (1) be an ample line bundle over X . There exist integers t and N such that for any sheaf E over X of rank n and
degree d, E(t) := E ⊗ OX (t) is generated by sections and h0(X, E(t)) = N . We define V := ON

X and H := V ⊗ OX (−t). Thus,
the surjection H→ E → 0 determines a closed point in the respective Quot-scheme Quotn,dH .

We now consider the open subscheme Rk,l
⊂ Quotn,dH given as follows: The quotient sheaves H→ F → 0 parametrised

by Rk,l are locally free, (k, l)-stable and such that V = H0(H(t)) ∼= H0(F (t)). The scheme Rk,l therefore parametrises all
(k, l)-stable vector bundles together with a choice of a base for the vector space H0(X, E(t)).

Hence Rk,l parametrises all (k, l)-stable vector bundles of rank n and degree d over X . The general linear group GL(N) acts
on Quotn,dH and Rk,l is invariant under this action. Moreover, this action factors through PGL(N). Therefore, themoduli scheme
of (k, l)-stable vector bundles exists and is given by the GIT quotientMk,l

X (n, d) = Rk,l//PGL(N). □

3. Geometry of the moduli spaces Ak,l
X (n, d)

In the last sectionwe studied themoduli problem for (k, l)-stable vector bundles over an algebraic curveX in the particular
case when the pair (k, l) meets the conditions (1.11) and (1.12). Nowwewill analyse what happens in the more general case
when (k, l) is any pair of integers. As we mentioned in Example 2.2 there exist (k, l)-stable vector bundles which are not
necessarily stable. Moreover, as we saw in the last section the moduli functorMk,l

X (n, d) is not always even corepresentable.
For this reason we will later consider a more general approach to the classification problem using the language of algebraic
stacks. But before let us make the following general observations concerning (k, l)-stable vector bundles over an algebraic
curve X for any pair (k, l) of integers.

Let Ak,l
X (n, d) denote the set of isomorphism classes of (k, l)-stable vector bundles of rank n and degree d over X for any

given pair (k, l) of integers. By the definition of (k, l)-stable vector bundles we readily get the following filtrations of sets:

· · · ⊂ Ak−4,l
X (n, d) ⊂ Ak−3,l

X (n, d) ⊂ Ak−2,l
X (n, d) ⊂ Ak−1,l

X (n, d) ⊂ Ak,l
X (n, d) ⊂ · · ·

· · · ⊂ Ak,l−4
X (n, d) ⊂ Ak,l−3

X (n, d) ⊂ Ak,l−2
X (n, d) ⊂ Ak,l−1

X (n, d) ⊂ Ak,l
X (n, d) ⊂ · · · .

Furthermore, if (k, l) = (0, 0) then there is a bijection between A0,0
X (n, d) and the rational points of the scheme Ms

X (n, d).
More generally, if (k, l) meets the conditions (1.11) and (1.12), then Ak,l

X (n, d) is in bijection with the rational points of the
moduli scheme Mk,l

X (n, d) as defined in the last section. This induces a geometrical structure on Ak,l
X (n, d) making it into a

scheme and in this case the geometry of the moduli space is given as discussed in the last section.
Now we will in contrast discuss how to induce a geometric structure on the sets Ak,l

X (n, d), in the complementary cases,
when the inequalities (1.11) and (1.12) do not hold for the pair (k, l) of integers.

By definition of (k, l)-stability, if the pair of integers (k, l) does not satisfy 0 ≤ k(n−1)+l or 0 ≤ k+l(n−1) (see conditions
(1.11) and (1.12)), then any stable vector bundle over the algebraic curve X is also (k, l)-stable i.e., as setswe have an inclusion
Ms

X (n, d) ⊂ Ak,l
X (n, d). However, if k and l are both negative enough, then there are semistable and unstable vector bundles

which are also (k, l)-stable. The following results present some of the structure that appears in these complementary cases.

Lemma 3.1. If E is an element of A−1,1X (n, nt), then E is semistable.

Proof. Suppose that there exists a subbundle F ⊂ E, such that µ(F ) > µ(E). By the (−1, 1)-stability of E we have that
µ−2(E) > µ−1(F ) and therefore

0 > t − µ(F ) >
2
n
−

1
m
.

But this would imply 0 > tm− d(F ) > −1+ 2m
n ,which is impossible. □

By Lemma 3.1 we therefore have a map

A−1,1X (n, nt)→ Mss
X (n, nt),

whereMss
X (n, nt) is the moduli space of semistable vector bundles over X , and this map sends the isomorphism class of E at

its S-equivalence class.

Example 3.2. Let t ∈ Z be any integer and let E ∈ A−1,1X (3, 3t) be a strictly semistable vector bundle. Hence for any subbundle
F of rank 2, we have that

µ(E)− µ(F ) > 0.

Furthermore, the Harder–Narasimhan filtration of E is simply given as 0 ⊂ L ⊂ E and the associated graded is Gr(E) =
(E/L)⊕ L, which determines the S-equivalence class.
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We will now discuss in detail how to induce a geometric structure on the sets Ak,l
X (n, d), when (k, l) satisfies the

inequalities

k(n− 1)+ l < 0, (3.1)

k+ l(n− 1) < 0. (3.2)

Again by the definition of (k, l)-stability, if the pair of integers (k, l) satisfies the conditions (3.1) and (3.2), then any stable
vector bundle over X is also (k, l)-stable i.e., as sets we have an inclusionMs

X (n, d) ⊂ Ak,l
X (n, d). And if k and l are both negative

enough, then there exists again semistable and unstable vector bundles which are also (k, l)-stable as we have seen before.
Recall also that any morphism of vector bundles can be factorised by a morphism of maximal rank (see [17, §4]), i.e., if

f : E → F is a morphism of vector bundles, then we have the following diagram

E

f

↓↓

→→E1
g

↓↓

→→0

F F1←← 0,←←

where g is of maximal rank. The subbundle F1 of F is called the subbundle determined by the image of f and rk(f ) is defined
as the rank rk(F1).

Lemma 3.3. Let E, F be two (k, l)-stable vector bundles over X. If f : E → F is a morphism of vector bundles, then we have:

µk−l(E) < µk−l(F )−
k+ l
rk(f )

.

Proof. With the notations introduced above we readily see that

µk−l(E) < µ−l(E1) ≤ µ−l(F1) = µk(F1)− (k+ l)/rk(F1) < µk−l(F )− (k+ l)/rk(F1),

which proves our assertion. □

From this it follows immediately:

Corollary 3.4. Let E, F be two (k, l)-stable vector bundles over X, which both have the same rank and degree. If k + l ≥ 0 and
Hom(E, F ) ̸= 0, then E ∼= F . In particular, if E is (k, l)-stable then E is simple.

Lemma 3.5. If E is an element of Ak,l
X (n, d) such that d > 2n(g − 1− l)+ l− k, then H1(E) = 0.

Proof. Suppose thatH1(E) ̸= 0, then by Serre dualityH0(E∗⊗ωX ) ̸= 0. Hence h : E → ωX givesµk−l(E) ≤ µk−l(ωX )−k− l =
2g − 2− 2l, i.e., µk−l(E) ≤ 2(g − 1− l) and d ≤ 2n(g − 1− l)+ l− k, which is a contradiction. □

Lemma 3.6. If E ∈ Ak,l
X (n, d), such that d > (2g − 2l− 1)n+ l− k, then E is generated by sections.

Proof. Consider the exact sequence

0→ E(−x)→ E → Ex → 0,

and the associated long exact sequence in cohomology

0→ H0(E(−x))→ H0(E)→ H0(Ex)→ H1(E(−x))→ · · ·

and observe that deg(E(−x)) = d− n.
Now, if H1(E(−x)) ̸= 0 then Lemma 3.5 implies d− n ≤ 2n(g − 1− l)+ l− k, i.e., d ≤ (2g − 2l− 1)n+ l− k, which is a

contradiction. Therefore, H1(E(−x)) = 0 and hence E is generated by sections. □

Lemma 3.7. Let k ≤ l and let E be a (k, l)-stable vector bundle of X of slope µ. Suppose that F ⊂ E is a subbundle of slope µ.
Then E/F is (k, l)-stable and µ(E/F ) = µ.

Proof. Suppose that E/F is not a (k, l)-stable vector bundle. Then there exists a subbundle G ⊂ E/F such that

0→ G→ E/F → H → 0

and µk(G) ≥ µk−l(E/F ) ≥ µ−l(H). This implies

µ(E/F )+
k− l
n−m

≥ µ−l(H) > µk−l(E) = µ(E)+
k− l
n
= µ(E/F )+

k− l
n
,

wherem is the rank of F . But this holds if and only if k− l > 0, which gives a contradiction. □
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4. Moduli stacks of (k, l)-stable vector bundles over an algebraic curve

Wewill now consider themoduli stackBunk,l
X (n, d) of (k, l)-stable vector bundles of rank n and degree d over the algebraic

curve X for any pair (k, l) of integers. We will show that this moduli stack is an Artin algebraic stack, which is locally of finite
type, reduced and irreducible. As (k, l)-stability is an open condition, the moduli stack Bunk,l

X (n, d) will in fact be an open
substack of the moduli stack BunX (n, d) of all vector bundles of rank n and degree d over X and will govern a good part of
its geometry.

For any pair of integers (k, l), and any scheme T , we define the groupoid of sections Bunk,l
X (n, d)(T ) as follows: An object

E of Bunk,l
X (n, d)(T ) is a flat family of (k, l)-stable vector bundles of rank n and degree d over X parametrised by T . The

morphisms of Bunk,l
X (n, d)(T ) are the isomorphisms of these families. Equivalently, E is an object of Bunk,l

X (n, d)(T ), if E is a
vector bundle over X×T such that for each point t ∈ T the restriction Et is a (k, l)-stable vector bundle of rank n and degree
d over X .

Observe that (k, l)-stability is a property, which is stable under arbitrary base change, i.e., if f : T ′ → T is a morphism of
schemes and E is an object of the groupoid Bunk,l

X (n, d)(T ), then f ∗E is an object of the groupoid Bunk,l
X (n, d)(T ′). Hence we

get a lax 2-functor or pseudo-functor, i.e. a prestack of the form

Bunk,l
X (n, d) : (Sch/Spec(F))op → Gpds

from the category of schemes over Spec(F) to the 2-category of groupoids, which associates to each scheme T the groupoid
Bunk,l

X (n, d)(T ) and to each morphism of schemes f : T ′ → T the functor f ∗ : Bunk,l
X (n, d)(T ′)→ Bunk,l

X (n, d)(T ) induced by
the pullback operation on vector bundles. In addition, we have a natural isomorphism between the pullback functors, i.e., for
each two composablemorphisms T ′′

g
→ T ′

f
→ T wehave a natural isomorphismbetween the functors ϵf ,g : g∗◦f ∗ ∼= (f ◦g)∗.

It follows that the necessary descent conditions hold with respect to the étale topology on Sch/Spec(F) and therefore
Bunk,l

X (n, d) is a stack (see [18, Exposé VIII, Thm 1.1, Prop. 1.10]). In fact it is an Artin algebraic stack, which is an open
substack of the moduli stack BunX (n, d) of all rank n and degree d vector bundles over X as our main theorem shows:

Theorem 4.1. The moduli stack Bunk,l
X (n, d) of (k, l)-stable vector bundles of rank n and degree d over an algebraic curve X is a

smooth Artin algebraic stack, which is locally of finite type. Moreover, the forgetful morphism θ k,l : Bunk,l
X (n, d)→ BunX (n, d) is

a representable open embedding.

This theoremwill be a consequence of a more general result stated below. For this we will need the following definition:

Definition 4.2. A property P of vector bundles over X is an open property, if for any family of vector bundles over X
parametrised by a scheme T the set TP

:= {t ∈ T | EX×{t} has propertyP} is a Zariski open subset of T .

Given an open propertyP of vector bundles over X we can define again a prestack of the form

BunPX (n, d) : (Sch/Spec(F))
op
→ Gpds

from the category of schemes over Spec(F) to the 2-category of groupoids, which associates to each scheme T the groupoid
BunPX (n, d)(T ) of families of vector bundles of rank n and degree d over X having property P and to each morphism of
schemes f : T ′ → T the functor f ∗ : BunPX (n, d)(T

′)→ BunPX (n, d)(T ) induced via pullbacks.
The following fundamental theorem shows that this prestack BunPX (n, d) is in fact an algebraic stack, the moduli stack of

vector bundles of rank n and degree d over X having propertyP.

Theorem 4.3. Let P be an open property of vector bundles of rank n and degree d over an algebraic curve X. Then the following
holds:

(1) The prestack BunPX (n, d) defined byP is a substack of the moduli stack BunX (n, d).
(2) The forgetful morphism f: BunPX (n, d)→ BunX (n, d) is representable by schemes.
(3) The moduli stack BunPX (n, d) is an open algebraic substack of the moduli stack BunX (n, d).

Proof. (1) This follows again from the descent properties [18, Exposé VIII, Théorème 1.1, Proposition 1.10].
(2) Consider a scheme Y and a morphism of stacks g : Y → BunX (n, d). By the 2-Yoneda lemma, g corresponds to a

family E → X×Y and we have the following 2-cartesian diagram

Y ×BunX (n,d) BunPX (n, d)
p1 →→

p2
↓↓

Y

g

↓↓
BunPX (n, d) f

→→BunX (n, d).

(4.1)

We denote by YP the Zariski open subset in Y defined as

YP
:= {y ∈ Y | EX×{y} has propertyP}.
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Now for any scheme T over Spec(F), the groupoid (BunPX (n, d)×BunX (n,d)Y )(T ) is defined as follows:

(i) Elements of Obj(BunPX (n, d)×BunX (n,d)Y )(T ), are triples (β, F , ψ) such that β : T → Y is a morphism of schemes,
F → X×T is a family of vector bundles of rank n and degree d over X having property P and ψ : F → (idX×β)∗E
is an isomorphism of vector bundles. Observe that the existence of ψ implies that β factorises through YP, i.e.,
β : T → YP ↪→ Y .

(ii) Elements of Mor(BunPX (n, d)×BunX (n,d)Y )(T ) are by definition given as pairs (α, α′) : (β, F , ψ) → (β ′, F ′, ψ ′) such
that α : β → β ′ and α′ : F → F ′ are morphisms in Y (T ) and BunX (n, d)(T ) respectively and such that the following
diagram commutes:

f (F )
f (α′) →→

ψ

↓↓

f (F ′)

ψ ′

↓↓
g(β)

g(α)
→→g(β ′).

(4.2)

However, α is the identity map, hence β = β ′, g(α) = idg(β) and g(β ′) = g(β) = (idX×β)∗E. Moreover, f (α′) = α′ =

(ψ ′)−1 ◦ ψ. Therefore, the morphisms are (idβ , (ψ ′)−1 ◦ ψ) : (β, F , ψ)→ (β, F ′, ψ ′) and this implies that the objects in the
groupoid (BunPX (n, d)×BunX (n,d)Y )(T ) do not have non-trivial automorphisms.

(3) The stack YP is isomorphic to the fibre product of stacks Y×BunX (n,d)BunPX (n, d). Hence by (2) the claim follows. □

Now similar as in the proof of the algebraicity for the moduli stack BunX (n, d) of vector bundles of rank n and degree d
over X (see for example [19, Theorem 2.67], [20, Proposition]), we get the following:

Lemma 4.4. The diagonal∆ of BunPX (n, d) is representable by a scheme, quasi-compact and separated.

Proof. Let T and T ′ be two schemes and let E → X×T , E ′ → X×T ′ be two families of vector bundles. Then we have the
following 2-cartesian diagram:

Isom(T × T ′, pr1E, pr2E ′) →→

h

↓↓

BunPX (n, d)

∆

↓↓
T × T ′

(E,E′)
→→BunPX (n, d)×BunPX (n, d).

(4.3)

And it follows that the sheaf Isom(T×T ′, pr1E, pr2E ′) is a subscheme of the fibre bundle Hom(pr1E, pr2E ′) on T×T ′.
Moreover, the morphism

h : Hom(pr1E, pr2E ′)→ T×T ′

is affine and therefore the result follows. □

Finally from this we now get the desired result:

Theorem 4.5. The moduli stack BunPX (n, d) is a smooth Artin algebraic stack, which is locally of finite type.

Proof.
Consider an atlas U of BunX (n, d) and a smooth surjective morphism U → BunX (n, d). By (3) of Theorem 4.3, the 2-fibre

product U×BunX (n,d)BunPX (n, d) is representable by a scheme. Now we will prove that UP
:= U×BunX (n,d)BunPX (n, d) is an

atlas and UP
→ BunPX (n, d) is representable, smooth and locally of finite type. For this, we consider a scheme T , a morphism

h : T → BunPX (n, d) and the following diagram:

UP

↓↓

→→U

↓↓

T ×
BunPX (n,d) U

P

↓↓

→→ →→

BunPX (n, d)
f →→BunX (n, d)

T

h
→→

f ◦h

→→
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Hence T×
BunPX (n,d)U

P
→ T is smooth and locally of finite type because the atlas U → BunX (n, d) is. This implies that

UP
→ BunPX (n, d) is representable, smooth and locally of finite type. The quasi-separateness of the diagonal∆ ofBunPX (n, d)

is a consequence of Lemma 4.4. □

Proof of Theorem 4.1. Observe that the proof is simply a direct consequence of Theorem 4.5 and (2) in Theorem 4.3 as
(k, l)-stability is an open property. □

The above considerations also imply immediately the following:

Corollary 4.6. For any pair (k, l) of integers, themoduli stacksBunk−1,l
X (n, d) andBunk,l−1

X (n, d) are open substacks of themoduli
stack Bunk,l

X (n, d).

Thus, we get a filtration of the moduli stack BunX (n, d) of all vector bundles over X of rank n and degree d by open
substacks in the following way:

· · · ⊂ Bunk−3,l
X (n, d) ⊂ Bunk−2,l

X (n, d) ⊂ Bunk−1,l
X (n, d) ⊂ Bunk,l

X (n, d) ⊂ · · ·

· · · ⊂ Bunk,l−3
X (n, d) ⊂ Bunk,l−2

X (n, d) ⊂ Bunk,l−1
X (n, d) ⊂ Bunk,l

X (n, d) ⊂ · · · .

Wewill now give also an explicit construction of an atlas for the moduli stack Bunk,l
X (n, d), which will be used later and is of

interest in its own right.
The diagonal∆ of Bunk,l

X (n, d) is quasi-compact by Lemma 4.4. Hence it is enough to prove that Bunk,l
X (n, d) has a smooth

atlas in order to prove the smoothness of Bunk,l
X (n, d). For this, consider the following explicit construction of an atlas. For

vector bundles of rank n and degree d consider the Hilbert polynomial Pn,d(x) := nx+ d+ n(1− g) and denote by P(m) the
number P(m) = Pn,d(m) for a given integerm.

Now let us consider the Quot scheme Quot(OP(m)
X , P(x+m)).

For every integerm we have an open subscheme Rk,l
m given by the following conditions:

(1) Every point in Rk,l
m determines a quotient (k, l)-stable vector bundle of OP(m)

X .
(2) If E is a family of quotients of OP(m)

X parametrised by a scheme T , then R1
pr2∗E = 0 and we have an isomorphism

OP(m)
X
∼= R0

pr2∗E.

With these conditions we see that the universal family Euniv of the Quot scheme determines a family parametrised by Rk,l
m

and therefore a morphism

rk,lm : R
k,l
m → Quot(OP(m)

X , P(x+m)).

Take a point of Rk,l
m represented by the exact sequence

0→ H → OP(m)
X → E → 0

with E a quotient (k, l)-stable vector bundle and H the kernel. Then we have that H1(E ⊗ H∗) = 0, where H∗ is the dual
vector bundle of H and this implies that rk,lm is smooth. So we get that rk,l :=

∐
rk,lm is a smooth morphism.

Finally it follows from the previous constructions that Bunk,l
X (n, d) is a smooth algebraic stack via a similar line of

arguments as in [19,21].

5. Gerbes and coarse moduli spaces of (k, l)-stable vector bundles

We can relate the moduli stacks of (k, l)-stable vector bundles Bunk,l
X (n, d) and the moduli spaces Mk,l

X (n, d), whenever
the last ones exist. It turns out that they are actually coarse moduli spaces for the moduli stacks. This is very similar to the
relation betweenmoduli stacks andmoduli spaces of stable bundles, whichwewill recall now in somedetails. LetBuns

X (n, d)
be the moduli stack of stable vector bundles of rank n and degree d over X andMs

X (n, d) be the moduli space of stable vector
bundles of rank n and degree d over X as we discussed before. By construction we have Buns

X (n, d) = [R
s/GLN ] as a quotient

stack andMs
X (n, d) = Rs//PGLN as a GIT-quotient, where Rs is an open subscheme as defined in [14] (see also [20,21]). There

is also an associated morphism of stacks Buns
X (n, d) → Ms

X (n, d), such that all the fibres are isomorphic to the classifying
stack BGm of all line bundles. Here Gm is the multiplicative group over Spec(F), which in case we work over Spec(C) is just
C∗. In fact more is true, the associated morphism is actually a gerbe (see [21, Example 3.9] and also [22,23] for the general
definition of a gerbe).

Lemma 5.1. The morphismΦ : Buns
X (n, d)→ Ms

X (n, d) is a Gm-gerbe.

In addition, we have that Ms
X (n, d) is a coarse moduli space for the algebraic stack Buns

X (n, d) (see [20,21]) and for the
convenience of the reader we will present a proof here in order to obtain a similar result for the moduli stack of (k, l)-stable
vector bundles.
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Proposition 5.2. Let Φ : Buns
X (n, d) → Ms

X (n, d) be as before. Then Ms
X (n, d) is a coarse moduli space for the moduli stack

Buns
X (n, d).

Proof. To simplify the notation for this proof, we will write Buns
n,d instead of Buns

X (n, d). We will now prove that Ms
X (n, d)

is a coarse moduli space for the algebraic stack Buns
n,d. First, observe that for any algebraically closed field F, the morphism

ΦSpec(F) : Buns
n,d(Spec(F))→ Ms

X (n, d)(Spec(F)) is a bijection using the definitions and following the same line of arguments
as in [21, Example 3.7] (see also [19]). Let now Y be any scheme and Ψ : Buns

n,d → Y be a morphism of stacks. We will
construct a morphism of stacksΘ : Ms

X (n, d)→ Y , such that the following diagram commutes:

Buns
n,d

Φ

↓↓

Ψ

↙↙Y Ms
X (n, d).Θ

←←

So for any scheme T we denote byΦT : Buns
n,d(T )→ Ms

X (n, d)(T ) the corresponding morphism of groupoids.
Hence if T = Ms

X (n, d), there exists an object β ∈ Obj(Buns
n,d(M

s
X (n, d))), such that ΦMs

X (n,d)
(β) = IdMs

X (n,d)
. We let

Θ : Ms
X (n, d) → Y be the morphism obtained as the image of β under Ψ , i.e., we set Θ := Ψ (β). We will prove that Θ

does not depend of the choice of β . Suppose that β and β ′ are such thatΦMs
X (n,d)

(β) = ΦMs
X (n,d)

(β ′) = IdMs
X (n,d)

. By Lemma 5.1,
β and β ′ are locally isomorphic, i.e., there exist a line bundle L over Ms

X (n, d) such that β ∼= β ′ ⊗ p∗Ms
X (n,d)

L. Thus, there is a
cover {Ui}i∈I ofMs

X (n, d) with the following property for all i ∈ I:

β|Ui
∼= β

′
|Ui
.

Hence for all i ∈ I we get now:

ΨMs
X (n,d)

(β)|Ui
= ΨMs

X (n,d)
(β|Ui

) = ΨMs
X (n,d)

(β ′|Ui
) = ΨMs

X (n,d)
(β ′)|Ui

.

Therefore, ΨMs
X (n,d)

(β) = ΨMs
X (n,d)

(β ′) and this proves independence of the choice of β .
Now for any scheme T , we need to prove commutativity of the diagram

Buns
n,d(T )

ΦT

↓↓

ΨT

↙↙
Y (T ) Ms

X (n, d)(T ).ΘT

←←

To do this, we consider α ∈ Buns
n,d(T ) and ΦT (α) ∈ Ms

X (n, d)(T ) which determines a morphism ΦT (α) : T → Ms
X (n, d).

Hence we have the diagram

Buns
n,d(M

s
X (n, d))

ΦMs
X (n,d)

↓↓

ΨMs
X (n,d)

↙↙

Bunsn,d(ΦT (α)) →→Buns
n,d(T )

ΦT

↓↓
ΨT

↙↙

Ms
X (n, d)(M

s
X (n, d))

ΘMs
X (n,d)←←

Ms
X (n,d)(ΦT (α)) →→Ms

X (n, d)(T )

ΘT↙↙
Y (Ms

X (n, d))
Y (ΦT (α)) →→Y (T )

where every square commutes.
Furthermore, there is a β ∈ Buns

n,d(M
s
X (n, d)) such thatΦM (β) = idMs

X (n,d)
and Buns

n,d(ΦT (α))(β) = α.
Now, as ΨMs

X (n,d)
(β) = (ΘMs

X (n,d)
◦ΦMs

X (n,d)
)(β), commutativity implies that ΨT (β) = (ΘT ◦ΦT )(β).

Finally, suppose that there exists a morphism Γ : Ms
X (n, d)→ Y such that the following diagram commutes:

Buns
X (n, d)

Φ

↓↓

Ψ

↙↙Y Ms
X (n, d).Γ

←←

Then, Γ = ΓMs
X (n,d)

(IdMs
X (n,d)

) = Γ ◦ IdMs
X (n,d)
= ΨMs

X (n,d)
(β) = Θ ◦ IdMs

X (n,d)
= Θ , which finishes the proof. □

Now we get as consequences of the constructions of moduli spaces of (k, l)-stable vector bundles the following:



66 O. Mata-Gutiérrez, F. Neumann / Journal of Geometry and Physics 111 (2017) 54–70

Corollary 5.3. Let (k, l) be a pair of integers satisfying the conditions (1.11) and (1.12). Then the morphism Bunk,l
X (n, d) →

Mk,l
X (n, d) is a Gm-gerbe and Mk,l

X (n, d) is a coarse moduli space for the moduli stack Bunk,l
X (n, d).

Proof. This follows because Rk,l as constructed before is a subscheme of Rs and then by using Lemma 5.1 and Proposi-
tion 5.2. □

Following [21, Cor. 3.12] or [12,24] we can now reason as follows: Suppose that we are in the special case that
gcd(n, d) = 1, then there exists a universal family, a Poincaré family U over X×Ms

X (n, d). Moreover, if the pair (k, l) satisfies
the conditions (1.11) and (1.12), then Mk,l

X (n, d) is an open subscheme of Ms
X (n, d) and the restriction U|X×Mk,l

X (n,d) is the

universal family over X×Mk,l
X (n, d). Thus, the splitting of the gerbe Buns

X (n, d)→ Ms
X (n, d) implies the splitting of the gerbe

Bunk,l
X (n, d)→ Mk,l

X (n, d). On the other hand, for gcd(n, d) ̸= 1 it is well known that there is no open subset A ⊂ Ms
X (n, d),

such that there exists a Poincaré family over X×A. Hence we have in this case that the gerbe Bunk,l
X (n, d)→ Mk,l

X (n, d) does
not split. So summarising we have shown:

Corollary 5.4. Let (k, l) be a pair of integers satisfying the conditions (1.11) and (1.12). Then the Gm-gerbe Bunk,l
X (n, d) →

Mk,l
X (n, d) splits if and only if Buns

X (n, d)→ Ms
X (n, d) splits.

Let us finally also recall the following relations between moduli stacks and coarse moduli spaces of stable bundles over
X (see [25, Prop. 3.3]):

Proposition 5.5. Let Buns
X (n, d) be themoduli stack of stable vector bundles of rank n and degree d over X. There is a commutative

diagram of stacks

[Rs/GL(N)]
q →→

g ∼=
↓↓

[Rs/PGLN ]

h∼=

↓↓
Buns

X (n, d) ϕ
→→Ms

X (n, d)

where g and h are isomorphisms of stacks.

This now implies together with the above considerations readily the following relation between the moduli stacks and
moduli spaces of (k, l)-stable vector bundles over X .

Corollary 5.6. Let (k, l) be a pair of integers satisfying the conditions (1.11) and (1.12). Let Bunk,l
X (n, d) be the moduli stack of

(k, l)-stable vector bundles of rank n and degree d over X. There is a commutative diagram of stacks

[Rk,l/GL(N)]
q →→

g ∼=
↓↓

[Rk,l/PGLN ]

h∼=

↓↓
Bunk,l

X (n, d)
ϕ
→→Mk,l

X (n, d)

where g and h are isomorphisms of stacks.

6. Cohomological properties of Bunk,l
X (n, d) andMk,l

X (n, d)

Wewill nowderive some cohomological properties for themoduli stacks andmoduli spaces of (k, l)-stable vector bundles
over an algebraic curve. Let us start with some general remarks on the cohomology of algebraic stacks. Let X be an algebraic
stack, which is smooth and locally of finite type over Spec(F) where F is either the algebraic closure Fq of the field Fq or the
field C of complex numbers.

If F = Fq, we use l-adic cohomology of the stack X , where l is a prime different from p. The l-adic cohomology of X is
defined over the lisse-étale site Xlis-ét of X and is given as the limit of the cohomologies of all the open substacks U of finite
type of the given algebraic stack X (see [26]), i.e. we set

H∗(X ,Ql) = lim
U⊂X ,

open, finite type

H∗(U ,Ql).

If F = C, then we use rational cohomology H∗(X ,Q) of the stack X instead and all statements below hold if we replace
l-adic cohomology everywhere with rational cohomology.

As a general reference for cohomology of algebraic stacks we refer to [22] and especially for l-adic cohomology and its
main properties to the general formalism of cohomology functors as developed by Behrend [27,28], and in subsequent work
by Laszlo and Olsson [29,30]. Concerning in particular the cohomology of the moduli stack BunX (n, d) of all vector bundles
of rank n and degree d over an algebraic curve X we will also refer to [19,26,31].
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Let us assume throughout the rest of this section that the rank n and degree d of all of our vector bundles over the algebraic
curveX are coprime. Then themoduli space of stable vector bundlesMs

X (n, d) admits a universal family Euniv of vector bundles
of rank n and degree d. The existence of such a universal family means that the gerbeΦ : Buns

X (n, d)→ Ms
X (n, d) is neutral,

(see [21, Lemma 3.10]) i.e., we have a splitting

Buns
X (n, d) ∼= Ms

X (n, d)×BGm

where BGm is again the classifying stack of line bundles or principalGm-bundles. Now using Corollary 5.6, the restriction to
(k, l)-stable vector bundles under the condition that for the pair (k, l) of integers the inequalities (1.11) and (1.12) hold gives
a gerbe

Φk,l
: Bunk,l

X (n, d)→ Mk,l
X (n, d).

Moreover, we have that it splits, i.e.

Bunk,l
X (n, d) ∼= Mk,l

X (n, d)×BGm.

Hence, in this particular situation the cohomology of themoduli stack of (k, l)-stable vector bundles can be calculated directly
as follows:

Proposition 6.1. If the pair (k, l) of integers satisfies the conditions (1.11) and (1.12), then

H∗(Bunk,l
X (n, d),Ql) ∼= H∗(Mk,l

X (n, d),Ql)⊗ H∗(BGm,Ql).

However, in the rank two case, it is possible to compute the cohomology of themoduli stack of (k, l)-stable vector bundles
overX using the Semi-Purity Lemma (see [26, Lemma2.2.2]). For this it is necessary to compute the codimensionwith respect
to the moduli stack of stable vector bundles.

Lemma 6.2. Let (k, l) be a pair of integers such that 0 ≤ k+ l < g − 1, then we have the following statements:

(1) We have

codim(Buns
X (2, d) \Bunk,l

X (2, d)) = g − k− l− 1.

(2) If k = l, and 0 ≤ 3k ≤ 2g − 2, then

codim(Buns
X (3, d) \Bunk,l

X (3, d)) = 2g − 3k− 3.

Proof. This Lemma is a direct consequence of Corollary 5.6 and the computation of the codimension of the moduli space of
(k, l)-stable vector bundles with respect to the moduli space of stable bundles as given in Theorem 1.10. □

Using the Semi-Purity Lemma we then get:

Corollary 6.3. Let (k, l) be a pair of integers such that 0 ≤ k+ l < g − 1, then we have

H∗(Bunk,l
X (2, d),Ql) ∼= H∗(Buns

X (2, d),Ql)

for ∗ < 2(g − k− l− 1) if d is odd.

It iswell known that ifZ→ X is an embedding of algebraic stacks of codimension c , then by the associatedGysin sequence
in cohomology we have the following isomorphism:

H i(Z,Ql) ∼= H i(Z \ X,Ql),

whenever i < 2c − 1 (see [26, Lemma 2.2.2]).
Now for rank two vector bundles of even degree over X , the filtration given by (k, l)-stability can be rewritten as:

· · · ⊇ Bun−2X (2, d) ⊇ Bun−1X (2, d) ⊇ Bun0
X (2, d) ⊇ Bun1

X (2, d) ⊇ · · · .

The moduli stack Bun−1X (2, d) corresponds to the moduli stack of semistable vector bundles and Bun0
X (2, d) corresponds to

the moduli stack of stable vector bundles. Hence Bunstss
X (2, d) := Bun−1X (2, d)\Bun0

X (2, d) is given by the strictly semistable
vector bundles and determines a closed substack of Bun−1X (2, d) and we get as a consequence:

Corollary 6.4. There is an isomorphism

H i(Bunstss
X (2, d),Ql) ∼= H i(Buns

X (2, d),Ql)

for all i < 2 codim(Bunstss
X (2, d))− 1.

We now describe some cohomological properties of the moduli stack Buns
X (2, d) using the Shatz polygon associated to

vector bundles [14,15] and the Harder–Narasimhan filtration.
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Consider a family E → X×T of vector bundles of rank 2 and degree d and denote by Et = E|X×{t} the corresponding
restriction. Then, if P = {(0, 0), (1, d1), (2, d)} denotes a Shatz polygon (see [15,32]), we define the following sets

FP (T ) = {t ∈ T |P(Et ) > P},
ΩP (T ) = T \ FP (T ),
SP (T ) = {t ∈ T |P(Et ) = P}.

We have the following general description:

Lemma 6.5. Let (k, l) a pair of integers and E be an unstable vector bundle of rank 2 and degree d. Then the following statements
are equivalent:

(1) E is (k, l)-stable.
(2) If P(E) = {(0, 0), (1, d1), (2, d)} is the Shatz polygon of E and 0 ⊂ L0 ⊂ E is the Harder–Narasimhan filtration HN(E) of

E, then 2d1 = 2d(L0) < d− k− l.

Proof. E is (k, l)-stable if and only if µ(E) − µ(L) > (k + l)/2 for any subbundle L ⊆ E, which is equivalent to having
µ(E)− µ(L) ≥ µ(E)− µ(L0) > (k+ l)/2 where L0 is the maximal subbundle of E. □

With E and (k, l) as in Lemma 6.5, we see that k+ l ≤ 0. Now we consider the Shatz polygon

Pk,l := {(0, 0), (1, d
k,l
1 ), (2, d)},

with dk,l1 defined as the biggest integer such that 2dk,l1 < d− k− l.
Then we have the following consequence:

Proposition 6.6. Let E → X×T be a family of vector bundles parametrised by a scheme T , then Et is (k, l)-stable if and only if
t ∈ ΩPk,l (T ).

Proof. If Et is (k, l)-stable and the Harder–Narasimhan filtration HN(Et ) is 0 ⊂ L0 ⊂ E, then by Lemma 6.5 we have:
2d(L0) < d− k− l, which implies that for the Shatz polygon we have: P(E) < Pk,l. The converse follows in a similar way. □

As a nice direct consequence we also get:

Corollary 6.7. If E is a complete family of vector bundles and T is a smooth scheme, then codim(T \ T k,l) = 2(2dk,l1 − d+ g − 1).

Proof. As a first step we observe that T \ T k,l
= SPk,l (T ). Hence we can apply [33, Corollary 15.4.3] and the result follows. □

From the above considerations we get a kind of approximation of the cohomology of the moduli stack of all rank two
vector bundles over the algebraic curve by the cohomologies of the different moduli stacks of (k, l)-stable bundles of rank
two, namely we have:

Theorem 6.8. lim←H i(Bunk,l
X (2, d),Ql) = H i(BunX (2, d),Ql).

Proof. Wewill prove that Bunk,l
X (n, d)→ BunX (n, d) is an isomorphism in cohomology of degree i if i < −2(k+ l− 3) and

k+l ≡ d mod 2 or i < −2(k+l−2) and k+l ̸≡ d mod 2. However if E → X×T is a complete family, then by Corollary 6.7 the
inclusion T k,l

→ T is an isomorphism in cohomology of degree i as above. Then the results follow again by a Gysin sequence
argument. □

With the results described above we can now also define a general Hecke correspondence for the moduli stacks
Bunk,l

X (n, d) of (k, l)-stable vector bundles. Hecke correspondence have been defined and used in many contexts (see,
[5,25,34,35]). In particular, Hoffmann in [6] described a Hecke correspondence for the moduli stack of all vector bundles
over an algebraic curve using the evaluation map transformation and he constructed a vector bundle over any given open
substack.

Consider the universal family Euniv of vector bundles over X×BunX (n, d) and denote by Euniv
k,l the restriction of the

universal bundle to the substack of (k, l)-stable vector bundles Bunk,l
X (n, d). Observe that Euniv

k,l has weight 1. Hence if
1 ≤ r ≤ n− 1, we can associate to Euniv

k,l the Grassmannian bundle Grr (Euniv
k,l ), which also has weight 1. Using Proposition 3.9

of [6] we therefore get the following:

Proposition 6.9. For any two pairs of integers (k1, l1) and (k2, l2) satisfying conditions (1.11) and (1.12), there exists a birational
linear map

Grj(Euniv
k1,l1

)
ρ →→ Grj(Euniv

k2,l2
)

over the moduli stack BunX (n, d). If in addition j is divisible by gcd(n, d), then the Grassmannian bundle ρ : Grj(Euniv
k,l ) →

BunX (n, d) is birational linear.
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Thus by Proposition 6.9 and Proposition A.6 in [6], we therefore obtain the following:

Proposition 6.10. Let m be an integer with 1 ≤ m ≤ n − 1, (k2, l2) be a pair of integers, such that (k2, l2 − m) satisfies the
conditions (1.11) and (1.12) and (k1, l1) be a pair of integers, such that (k1, l1)-stability implies (k2, l2)-stability. Then we have
the following diagram of moduli spaces:

Mk1,l1
X (n, d)

Ψ1 →→
↙ ↖

↓↓

Mk1,l1−m
X (n, d−m)↙ ↖

↓↓
Mk2,l2

X (n, d)
Ψ2

→→ Mk2,l2−m
X (n, d−m)

where Ψi is a birational linear map of schemes for each i = 1, 2.

Proposition 6.10 therefore determines the following diagram of algebraic stacks:

Grm(Euniv
k,l )

↙↙ ↘↘
Bunk1,l1

X (n, d) →→

↓↓

Bunk1,l1−m
X (n, d−m)

↓↓

Mk1,l1
X (n, d)

↙↙
Ψ1 →→

↓↓

Mk1,l1−m
X (n, d−m)

←←

↓↓

Bunk2,l2
X (n, d) →→ Bunk2,l2−m

X (n, d−m)

Mk2,l2
X (n, d)

Ψ2

→→
↙↙

Mk2,l2−m
X (n, d−m)

←←

This diagram shows that the Hecke correspondence as constructed above determines a birational linear map between
the moduli stacks of (k, l)-stable vector bundles as indicated by the uppermost dashed arrow.
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