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a b s t r a c t

This paper provides a construction of a quantumstatisticalmechanical systemassociated to
knots in the 3-sphere and cyclic branched coverings of the 3-sphere, which is an analog, in
the sense of arithmetic topology, of the Bost–Connes system, with knots replacing primes,
and cyclic branched coverings of the 3-sphere replacing abelian extensions of the field of
rational numbers. The operator algebraic properties of this system differ significantly from
the Bost–Connes case, due to the properties of the action of the semigroup of knots on
a direct limit of knot groups. The resulting algebra of observables is a noncommutative
Bernoulli product. We describe the main properties of the associated quantum statistical
mechanical system and of the relevant partition functions, which are obtained from simple
knot invariants like genus and crossing number.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

This paper addresses a question asked to the first author by Masanori Morishita, on the possibility of adapting to
3-manifolds the Bost–Connes construction [1] of a quantum statistical mechanical system associated to the abelian
extensions ofQ, and its generalizations to number fields [2–5], along the lines of the general ‘‘arithmetic topology’’ program.
The latter can be seen as a broad dictionary of analogies between the geometry of knots and 3-manifolds and the arithmetic
of number fields, with knots as analogs of primes and 3-manifolds, seen as branched coverings of the 3-sphere, viewed as
analogs of number fields. In this paper we answer Morishita’s question by providing explicit constructions of quantum
statistical mechanical systems associated to (alternating) knots, to knot groups, and to cyclic branched covers of the
3-sphere, with the latter providing our analog of the abelian extensions of Q in the Bost–Connes construction. The structure
of the resulting quantum statistical mechanical systems is different from the Bost–Connes case and it leads to an algebra
of observables that can be expressed in the form of a Bernoulli crossed product, of the type studied in noncommutative
Bernoulli actions in the theory of factors. We relate the geometry and dynamics of our system to known invariants of knots
and 3-manifolds.

1.1. The principle of arithmetic topology

Arithmetic topology originates from insights by John Tate and Michael Artin on topological interpretations of class field
theory. The analogy between primes and knots, which is the founding principle of Arithmetic Topology, was first observed
by Barry Mazur, David Mumford, and Yuri Manin. The subject developed over the years, with various contributions, such as
[6–13], as a powerful guiding principle outlining parallel results and analogies between the arithmetic of number fields and
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the topology of 3-manifolds. The basic analogy sees number fields as analogs of compact oriented 3-manifolds, with Q play-
ing the role of the 3-sphere S3. Here the main idea is that, while number fields are finite extensions of Q, ramified at a finite
set of primes, all compact oriented 3-manifolds can be described as branched coverings of the 3-sphere, branched along a
link. Amajor point where this analogy does not carry over is the fact that, while the description of a number field as ramified
covering of Q is unique, there are many inequivalent ways of describing 3-manifolds as branched covers of the 3-sphere,
branched along knots or links (or more generally embedded graph). While this lack of uniqueness for 3-manifolds can be
used to make the construction dynamical, see [14], the same dynamics does not apply to number fields. However, the cor-
responding analogy between knots and primes, that results from this first analogy between number fields and 3-manifolds,
has been very fruitful, leading to many new results, ranging from arithmetic analogs for higher linking numbers [9,10], to
arithmetic Chern–Simons theory [8].

Over the past two decades, the connection between number theory and quantum statistical mechanics was also widely
explored, starting with early constructions of statistical systems associated to the primes, [15,16], the more refined
Bost–Connes system [1] which also involves the Galois theory of abelian extensions of Q, and subsequent generalizations
of this construction to arbitrary number fields, obtained in [4] and further studied in [3,17,5,18]. The purpose of the present
paper is to recast the Bost–Connes construction in the setting of arithmetic topology, with the semigroup of knots with the
connecting sum operation replacing the multiplicative semigroup of positive integers, and the cyclic branched coverings of
the 3-spheres replacing the abelian extensions of Q.

1.2. Bost–Connes system

We recall briefly the construction of the Bost–Connes algebra and quantum statistical mechanical system from [1] (see
also [19] and §3 of [20]). Consider the group ring Q[Q/Z]with generators e(r)with r ∈ Q/Z. The maps {σn}n∈N given by

σn(e(r)) := e(nr) (1.1)

determine an action of the semigroup N by endomorphisms of the group ring Q[Q/Z]. These endomorphisms have partial
inverses αn : Q[Q/Z] → Q[Q/Z],

αn(e(r)) =
1
n


s: ns=r

e(s) (1.2)

with σn ◦ αn(e(r)) = e(r) and αn ◦ σn(e(r)) = en · e(r), with en = n−1


s: ns=0 e(s) an idempotent in Q[Q/Z]. Thus, one can
define the semigroup crossed product. This is the (rational) Bost–Connes algebra ABC,Q = Q[Q/Z] o N with generators µn
and e(r) and relations

µ∗nµn = 1, µnµ
∗

n = en, µnµm = µnm, µnµ
∗

m = µ
∗

mµn for (n,m) = 1, (1.3)

µne(r)µ∗n = αn(e(r)), µ∗ne(r)µn = σn(e(r)). (1.4)

The complexification ABC,C = ABC,Q⊗Q C has a C∗-algebra completion given by the semigroup crossed product ABC =

C∗(Q/Z) × N, with the same generators and relations. The time evolution of the Bost–Connes system is defined by
σt(µn) = nitµn and σt(e(r)) = e(r). The algebra ABC has representations on the Hilbert space ℓ2(N), parameterized by
the choice of an element u ∈ Ẑ∗, of the form

πu(e(r))ϵm = u(r)m ϵm, πu(µn)ϵm = ϵnm, (1.5)

where u(r) is a root of unity in C determined by the embedding of Q/Z ↩→ C specified by the choice of u ∈ Ẑ∗, where we
identify Ẑ = Hom(Q/Z,Q/Z).

Given a pair (A, σ ) of a C∗-algebra and a time evolution σ : R→ Aut(A), a KMSβ state for (A, σ ) is a continuous linear
functional ϕβ : A→ C satisfying normalization ϕβ(1) = 1 and positivity ϕβ(a∗a) ≥ 0 (that is, a state on A) such that, for
all a, b ∈ A there is a function Fa,b(z) that is holomorphic on the strip Iβ = {z ∈ C : 0 < ℑ(z) < β} and continuous on
the boundary ∂Iβ of the strip, such that

Fa,b(t) = ϕβ(aσt(b)), Fa,b(t + iβ) = ϕ(σt(b)a). (1.6)

In other words, the failure of a KMSβ to be a trace is measured by interpolation by a holomorphic function.
The KMS states of the Bost–Connes system (ABC , σ ) are completely classified and given by the following list of cases

(see [1]):

• for every 0 < β ≤ 1 there is a unique KMSβ state ϕβ determined by

ϕβ


e
a
b


=

f−β+1(b)
f1(b)

where fk(b) =


d|b µ(d)(b/d)
k, with µ the Möbius function;
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• for every β > 1, the extremal KMSβ states are given by Gibbs states determined by

ϕβ,u(e(r)) =
Liβ(u(r))
ζ (β)

, (1.7)

where Liβ is the polylogarithm function, u(r) is a root of unity, for a given u ∈ Ẑ∗, and ζ (β) is the Riemann zeta function;
• for β = ∞ the extremal KMSβ states are determined by ϕ∞,u(e(r)) = u(r).

The Bost–Connes system is related to the arithmetic of Q and the Galois theory of its abelian extensions. Generalizations
of this quantum statistical mechanical system were constructed for arbitrary number fields in [4,5,18], and further studied
in [3,17,21].

1.3. Structure of the paper

In Section 2 we develop a quantum statistical mechanics of knots. There is a natural semigroup structure on knots. It
is given by the operation of connected sum defined on equivalence classes of oriented knots. This operation gives rise to
an abelian semigroup (K,#), which is infinitely generated, with generators the prime knots. Each knot has a unique prime
decomposition K = K1# · · ·#Km for somem, with Kj prime knots.We focus on knot invariants that behavewell with respect
to the connected sum operation. In particular, we focus on simple invariants such as the genus and the crossing number. In
the latter case, it is at present an open conjecture whether the invariant is additive over connected sums for all knots, but
the result is known to hold for alternating knots. Therefore, in the paper we often restrict our attention to alternating knots,
purely for the purposes of using these results about the crossing number. Conditionally to the above mentioned conjecture,
one can reformulate them in terms of the larger semigroup of knots.We construct aHamiltonian based on genus and crossing
number and we estimate in Theorem 2.3 the range of convergence of the partition function using results of [22,23] on the
rate of growth of multiplicities. We show the uniqueness of KMS states for this system of knots without interaction in
Proposition 2.6 and we discuss the type III nature of the high temperature state in Proposition 2.6 and Theorem 2.9.

In Section 2.3 we return to the original system without interaction of [15] and [1], with prime numbers contributing
independent oscillators (in the form of Toeplitz operators) and we discuss how one can try to extend it from the
multiplicative semigroup N of positive integer to the group Q∗

+
of positive rational numbers. We show that the Hamiltonian

can be extended so that the corresponding partition function is again expressible in terms of the Riemann zeta function.
We show in Section 2.4 that the same construction extends to the case of the Grothendieck group of the semigroup of
(alternating) knots with the connected sum. Again, this result relies on estimates of [22,23] on the number of alternating
knots with fixed genus and crossing number. However, at the level of the algebra of observables of the system, this
generalization of the Hamiltonian requires an extension of the algebra by the spectral projections of the Hamiltonian, in
order to remain invariant under the time evolution. This extension has the effect of making the time evolution inner, which
is not desirable from the operator algebra perspective. We bypass this problem by considering more general systems with
interaction involving both knots and 3-manifolds.

In Section 3, we introduce cyclic branched coverings of S3, branched along a knot.We discuss the behavior of knot groups
under connected sums of knots, and we construct a directed system of knot groups over the semigroup of knots ordered
by ‘‘divisibility’’ with respect to the connected sum operation. We interpret the resulting direct limit as the knot group of a
wild knot. We also consider a projective limit, related to changing the order of the cyclic branched cover.

In Section 4 we construct a more refined system, which is more similar in nature to the Bost–Connes system and which
involves not only knots but also the cyclic branched covers of S3. We begin by investigating the action of the semigroup of
knots with connected sum on the group algebra of the direct limit of the system of knot groups considered in the previous
section. We show that, unlike the Bost–Connes case, the endomorphisms σK are injective and not surjective. The resulting
crossed product system is then more similar to the generalization of the Bost–Connes considered in [24], in relation to the
Habiro ring. In particular, we show that the resulting crossed product algebra is in fact a noncommutative Bernoulli shift

g∈GK

C∗r (π) o GK ,

where GK is the Grothendieck group of the semigroup of knots (K,#) and π = lim
−→K

πK is the direct limit of the system
of knot groups. The action of GK is the Bernoulli action that permutes the terms in the crossed product⊗g C∗r (π). We then
include the datum of the branched covers, in the form of a group homomorphism ρ : π → Q/Z. We construct a projective
limit of groups π̂K ,n and π̂n, which correspond to adding nth roots of the generators of the knot group. This construction is
modeled on the construction of roots of Tatemotives in [25]. This construction allows us to replace the algebra C∗r (π), which
encodes the information about the knot groups, but not about the coverings, with the more refined C∗r (π̂ρ)oα Nρ , where
π̂ρ is the projective limit of the system of the πn and Nρ is a subsemigroup of N, given by those integers that are relatively
prime to nρ , which is the order of the root of unity that is the image under the morphism ρ of the generators of the group
π . The semigroup action of Nρ on C∗r (π̂ρ) is modeled on the Bost–Connes action, by viewing π̂ρ as a fibered product inside
π × Q/Z.

We then construct time evolutions, first on the algebra C∗r (π̂ρ)oα Nρ , induced by the Bost–Connes time evolution on
C∗(Q/Z) o N, and then on the tensor product ⊗g Bg , with g ∈ GK and Bg = C∗r (π̂ρ)oα Nρ . In this tensor product case,
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we take on each factor a version σt,g of the Bost–Connes time evolution, with the Hamiltonian HBC scaled by a factor f (g),
for a function f : GK → N. In Proposition 4.26, we identify a summability condition on the function f (g) that guarantees
that the Hamiltonian has a well defined partition function, which is convergent for β > 1. Here the trace of the operator
e−βH in the partition function is a combination of the operator trace on ℓ2(Nρ) and the von Neumann trace on the group
algebra of π̂ρ . We also show how the KMS states of the Bost–Connes determine KMS states for the system (⊗g Bg ,⊗g σt,g).
In particular the low temperature states give rise to KMS statesΨβ,f for this system that are Gibbs states with respect to the
partition function and the trace described in Proposition 4.26. We then consider the crossed product (⊗g Bg)o GK and we
show that the KMS states Ψβ,f transform, under the action αh of h ∈ GK as Ψβ,f ◦ αh = Ψβ,αh−1 (f )

.
Restricting to the subsemigroup Ka of alternating knots, we show that the same estimates of [22,23] on the number of

alternating knots with fixed genus and crossing number that we used in Section 2.4, and the result of Theorem 2.3, imply
that a function satisfying the desired convergence properties can be constructed using the crossing number and the genus
of knots.

2. Quantum statistical mechanics of knots

Consider the semigroup (K,#) or ambient isotopy classes of oriented knots with the connected sum operation. The
primary decomposition of knots states that every K ∈ K can be decomposed into a direct sum of prime knots. There
are infinitely many prime knots, hence the semigroup K is a countably generated free abelian semigroup. A choice of an
enumeration of the prime knots gives a (non-canonical) semigroup isomorphism of (K,#) with (N, ·) by mapping prime
knots to the prime numbers. The identification is non-canonical as prime knots, unlike prime numbers, have no natural
ordering. However, this identification suggests that the quantum statistical mechanics of creation–annihilation operators
constructed out of the primary decomposition in N (see [15,16], and §2 of [1]) can be directly adapted to the semigroup of
knots.

Let PK denote the set of prime knots. As in the case of the semigroup N, we can identify ℓ2(K) with the bosonic Fock
space ℓ2(K) = ⊕∞n=1 S

nℓ2(PK), where SnH is the nth symmetric power of a Hilbert space H , see §2 of [1]. The C∗-algebra
C∗(K) is generated by isometries µK , for K ∈ PK , with µ∗KµK = 1, and such that, for K = K1# · · ·#Kn, µK = µK1 · · ·µKn .
The C∗-algebra C∗(K) is an infinite tensor product of Toeplitz algebras C∗(K) = ⊗K∈PK τK .

Let λ : K → N be a knot invariant that behaves multiplicatively under connected sums, λ(K1#K2) = λ(K1)λ(K2). Any
such invariant determines a semigroup homomorphism λ : (K,#)→ (N, ·).

Example 2.1. The Alexander polynomial ∆K (t) ∈ Z[t, t−1] of a knot K is multiplicative under connected sums. Thus, for
instance, setting λ(K) to be the absolute value of the coefficient of the top degree term of∆K (t) provides an example of such
a semigroup homomorphism λ : K → N.

Simpler examples can be obtained by considering additive invariants. Let κ : K → Z+ be a non-negative integer
invariant of knots satisfying κ(K1#K2) = κ(K1) + κ(K2). For a choice of a positive integer q ∈ N (for example, q = 2), the
invariant λ(K) = qκ(K) satisfies the multiplicative property as above.

Example 2.2. There are several examples of knot invariants with values in non-negative integers that behave additively
under connected sums: for example, the knot genus g(K) satisfies additivity g(K1#K2) = g(K1)+ g(K2).

2.1. Alternating knots, crossing number, and genus

A more interesting example is the crossing number Cr(K), the minimum number of crossings over all planar diagrams
D(K). While it is clear that Cr(K1#K2) ≤ Cr(K1)+Cr(K2), it is an open conjecture that the crossing number is in fact additive,
Cr(K1#K2) = Cr(K1) + Cr(K2). It is known that additivity is satisfied for alternating knots [26], and for certain classes of
knots, like connected sums of torus knots. A larger class of knots on which additivity is satisfied is identified in [27]. Thus,
we can either use Cr(K) on the entire semigroup K , conditionally, or restrict to a subsemigroup Ka of alternating knots, or
Kt generated by those prime knots that are torus knots, or one corresponding to the subclass of [27].

Theorem 2.3. Let PK,a ⊂ PK be the set of prime knots that are alternating, and consider the bosonic Fock space ℓ2(Ka) =
⊕n Snℓ2(PK,a). The C∗-algebra C∗(Ka) = ⊗K∈PK,a τK acts by bounded operators on the Hilbert space ℓ2(Ka), with µKϵK ′ =

ϵK#K ′ . For a fixed q ∈ N, with q ≥ 2, and for all t ∈ R, setting σt(µK ) = qit(Cr(K)+g(K))µK defines a time evolution
σ : R→ Aut(C∗(Ka)), with Hamiltonian HϵK = (Cr(K)+ g(K)) log(q) ϵK . The partition function is given by the series

Za(β) = Tr(e−βH) =

K∈Ka

q−β(Cr(K)+g(K)) (2.1)

and converges in the range β ≥ β+ = log 220

36
− 6 log log 2 and diverges for β < β−, where β = β− is the unique solution of

β − 6 log


q−β

1− q−β


= 2 log(20)− 6 log log 2,

with β− = β−(q) ≤ 1.9391 · · · for all q ∈ N with q ≥ 2.
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Proof. The adjoint µ∗K acts as µ∗KϵK ′ = 0 if K does not divide K ′ in the semigroup (Ka,#) and µ∗KϵK ′ = ϵK ′′ if K
′
= K#K ′′ in

Ka. These satisfy the relation µ∗KµK = 1, while µKµ
∗

K is the orthogonal projection on the subspace of ℓ2(Ka) generated by
all K ′ that are divisible by K in (Ka,#). Thus, setting µKϵK ′ = ϵK#K ′ determines a representation of C∗(Ka) on ℓ2(Ka).
For K = K1#K2, we have µK = µK1µK2 in C∗(Ka) and the time evolution satisfies σt(µK ) = qit(Cr(K)+g(K))µK =

qit(Cr(K1)+g(K1))qit(Cr(K2)+g(K2))µK1µK2 = σt(µK1)σt(µK2), since both Cr and the genus are additive on connected sums of
alternating knots. It also clearly satisfies σt+s(X) = σt(σs(X)) for X ∈ C∗(Ka) and for all t, s ∈ R. Thus, the time evolution is
indeed a 1-parameter family of automorphisms of the algebra, that is, a group homomorphism σ : R→ Aut(C∗(Ka)). The
Hamiltonian H is determined (up to an arbitrary additive constant) by the covariance relation R(σt(X)) = eitHR(X)e−itH , for
all X ∈ C∗(Ka) and all t ∈ R, where R : C∗(Ka)→ B(ℓ2(Ka)) is the representation described above. The densely defined
self-adjoint unbounded operator defined by HϵK = (Cr(K)+ g(K)) log(q) ϵK satisfies

eitHR(µK )e−itHϵK ′ = q−it(Cr(K
′)+g(K ′))eitHϵK#K ′

= q−it(Cr(K
′)+g(K ′))q−it(Cr(K#K

′)+g(K#K ′))ϵK#K ′

= qit(Cr(K)+g(K))R(µK )ϵK ′

= R(σt(µK ))ϵK ′ .

We have

Tr(e−βH) =

K∈Ka

⟨ϵK , e−βHϵK ⟩ =

K∈Ka

q−β(Cr(K)+g(K))

=

∞
n=0

∞
g=0

Nn,g q−β(n+g),

where Nn,g is the number of alternating knots K with Cr(K) = n and g(K) = g . It was shown in Corollary 3.1 of [28] that

Nn,g = O(npg ), for n→∞,

for some pg ∈ N. A more precise estimate is given in Theorem 1.2 of [22] and in Theorem 1.1 of [23], which show that

Nn,g ∼ Cg n6g−4 for n→∞,

where the an ∼ bn means that an/bn → 1 for n→∞. The behavior of Cg when g →∞ can be estimated from below and
above by expressions of the form Cg

(6g)! , for constants C > 0, see Theorem 1.1 of [23] for a more precise statement. We first
consider the summation in the crossing number Cr(K) = n, for a fixed genus g(K) = g , that is, the series

1+
∞
n=1

Nn,g q−βn.

Using the estimate above, the behavior of this series is controlled by that of the polylogarithm series

Li4−6g(q−β) =
∞
n=1

n6g−4q−βn,

which converges for all β > 0.We then consider the summation in the genus g(K) = g . The polylogarithm function satisfies

Li−m(z) =

z
∂

∂z

m z
1− z

=

m
k=0

k! S(m+ 1, k+ 1)


z
1− z

k+1

=
1

(1− z)m+1

m−1
k=0


m
k


zm−k,

where S(a, b) are the Stirling numbers of the second kind

S(a, b) =
1
b!

b
j=0

(−1)b−j

b
j


ja,

while 
m
k


=

k+1
j=0

(−1)j

m+ 1

j


(k− j+ 1)m
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are the Eulerian numbers. The Stirling numbers of the second kind have upper and lower bounds of the form [29]

1
2
(b2 + b+ 2)ba−b−1 − 1 ≤ S(a, b) ≤

1
2


a
b


ba−b,

and, for fixed b, the asymptotic behavior of S(a, b) for a → ∞ is of the form S(a, b) ∼ ba/b!. Moreover, the ordered Bell
numbers ba =

a
b=0 b!S(a, b) behave for a→∞ like [30]

ba ∼
a!

2(log(2))a+1
.

When q−β ≤ 1/2, that is, when β > log 2
log q , we have q−β ≤ (1− q−β), hence

q−β

1− q−β

6g−3

≤


q−β

1− q−β

k+1

≤
q−β

1− q−β
,

for all k = 0, . . . , 6g − 4. Thus, the result of the first summation in n = Cr(K) can be approximated, for large g = g(K), by
upper and lower bounds of the form

Li4−6g(q−β) ≤ b6g−4
q−β

1− q−β
∼

(6g − 4)!
2(log 2)6g−4

q−β

1− q−β

(6g − 4)!
2(log 2)6g−4


q−β

1− q−β

6g−3

∼ b6g−4


q−β

1− q−β

6g−3

≤ Li4−6g(q−β).

Then, in this range of values of β , the series defining the partition function Z(β) =


K e−βHK , with HK = ⟨ϵK ,HϵK ⟩, is
controlled from above by the behavior of

∞
g=1

Cg
(6g − 4)!

2(log 2)6g−4
q−βg .

Using Cg ∼
Cg

(6g)! we obtain

Cg
(6g − 4)!

2(log 2)6g−4
q−βg ∼

(log 2)4

2
eg(log C−β−6 log log 2)

(6g − 3)(6g − 2)(6g − 1)6g
. (2.2)

When β ≥ log C − 6 log log 2 the above series converges, with convergence in the case β = log C − 6 log log 2 ensured by
the polynomial in the denominator. Thus, in the range β ≥ log 2

log q , the partition function Z(β) = Tr(e−βH) converges for all

β ≥ max

log 2
log q

, log C − 6 log log 2

.

On the other hand, in this same range, the series defining the partition function is controlled from below by a series of the
form

∞
g=1

Cg
(6g − 4)!

2(log 2)6g−4
λ
6g−3
β q−βg ,

where λβ = q−β/(1− q−β). In this case we have

Cg
(6g − 4)!

2(log 2)6g−4
λ
6g−3
β q−βg ∼

(log 2)4

2λ3β

eg(log C−β−6 log log 2+6 log λβ )

(6g − 3)(6g − 2)(6g − 1)6g
. (2.3)

The corresponding series converges for β−6 log λβ ≥ log C−6 log log 2 and diverges for β−6 log λβ < log C−6 log log 2.
Notice that, since in this range we have λβ ≤ 1, the convergence condition β ≥ log C − 6 log log 2 for the upper bound also
implies this convergence, as it should, while the divergence condition β − 6 log λβ < log C − 6 log log 2 gives a range of
divergence for the series defining the partition function Z(β): we have divergence for

log 2
log q

≤ β < 6 log λβ + log C − 6 log log 2.

Consider then the case where β < log 2
log q . In this case we have q−β > (1−q−β), that is, λβ > 1, and, for all k = 0, . . . , 6g−4,

q−β

1− q−β
≤


q−β

1− q−β

k+1

≤


q−β

1− q−β

6g−3

.
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In this case, the result of the first summation can be approximated from above, for large g = g(K), with

Li4−6g(q−β) ≤ b6g−4 λ
6g−3
β ∼

(6g − 4)!
2(log 2)6g−4

λ
6g−3
β ,

and from below with
(6g − 4)!

2(log 2)6g−4
λβ ∼ b6g−4 λβ ≤ Li4−6g(q−β).

Thus, in this case, the series that determines the partition function is controlled from above by the behavior of the series
∞
g=1

Cg
(6g − 4)!

2(log 2)6g−4
λ
6g−3
β .

As above, we can estimate this with (2.3). Again, the resulting series converges for β − 6 log λβ ≥ log C − 6 log log 2. Here
λβ > 1, so this inequality also implies the inequality β ≥ log C − 6 log log 2, which in this case gives the convergence of
the lower bound, here of the form (2.2). The divergence of the lower bound happens for β < log C − 6 log log 2. Thus, in the
range β < log 2

log q we have convergence when

6 log λβ + log C − 6 log log 2 ≤ β <
log 2
log q

,

and divergence for

β < min

log 2
log q

, log C − 6 log log 2

.

As in Theorem 1.1 of [23], we can take the constant C to be C = 400 for the lower bound on Cg and C = 220/36
∼ 1438.38

for the upper bound on Cg . Using these valueswe can estimate that the series Z(β) =


K ⟨ϵK , e
−βHϵK ⟩ defining the partition

function converges for

β ≥ max

log 2
log q

, log
220

36
− 6 log log 2


and for

β − 6 log λβ ≥ log
220

36
− 6 log log 2 and β <

log 2
log q

while it diverges for

β < min

log 2
log q

, 2 log(20)− 6 log log 2


and for

β − 6 log λβ < 2 log(20)− 6 log log 2 and β ≥
log 2
log q

.

Consider the condition that the integer q ∈ N satisfies

log 2
log q

< 2 log 20− 6 log log 2.

We have log 2 = (2 log 20 − 6 log log 2) log(x) for x ∼ 1.0883, hence for all q ∈ N with q ≥ 2 the condition above
is satisfied. Then the convergence range above reduces to just the first condition β ≥ log 220

36
− 6 log log 2, since in the

second case the conditions β <
log 2
log q and β ≥ β − 6 log λβ ≥ log 220

36
− 6 log log 2 cannot be simultaneously realized

since log 2
log q < log 220

36
− 6 log log 2. Let β+ := log 220

36
− 6 log log 2. Similarly, the estimate of the range of divergence gives

β <
log 2
log q or log 2

log q ≤ β < 6 log λβ + 2 log 20 − 6 log log 2. Note that, in the range β ≥ log 2
log q , the function β − 6 log λβ is

non-negative and monotonically increasing, with a zero at β = log 2
log q . Let β− be the unique value of β where β − 6 log λβ =

2 log 20−6 log log 2 ∼ 8.1905. The dependence on q ofβ− = β−(q) ismonotonically decreasing, withβ−(q = 2) ∼ 1.9391,
and with for example λ−(q = 102) ∼ 0.3362 and λ−(q = 103) ∼ 0.2262. Then we obtain that the series defining the
partition function is divergent in the rangeβ < β−. Note that the function F(q) = β+−6 log λβ+(q)−(2 log 20−6 log log 2)
is monotonically increasing in the variable q, with F(2) ∼ 40.6574, hence β− < β+. Summarizing, we conclude that, for
any choice of q ∈ N with q ≥ 2, the series defining the partition function Z(β) is convergent for β ≥ β+ and divergent for
β < β−. �
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Remark 2.4. The approximation method we used here, based on the estimates of [23], does not give information on the
behavior of the series defining the partition function in the range β− ≤ β < β+, but it is reasonable to expect that there
will be a point βc ∈ [β−, β+] where a phase transition occurs, so that the series defining the partition function converges
for all β > βc and diverges for all β < βc .

Lemma 2.5. In the rangeβ ≥ β+, where the series (2.1) is convergent, the partition function Z(β) has an Euler product expansion

Za(β) =


K∈PK,a

(1− q−β(Cr(K)+g(K)))−1. (2.4)

Proof. This is a general fact about bosonic Fock spaces and the trace and determinant of operators. As in §2 of [1], we
identify ℓ2(Ka) = Sℓ2(PK,a) := ⊕

∞

n=0 S
nℓ2(PK,a), the bosonic Fock space given by the sum of the symmetric powers

of ℓ2(PK,a). Let T be the densely defined operator on ℓ2(PK,a) with TϵK = q−β(Cr(K)+g(K))ϵK , and let ST be the induced
densely defined operator on the Fock space ℓ2(Ka). On a basis element ϵK1#···#Km = ϵK1 · · · ϵKm , this satisfies STϵK1#···#Km =
q−β(Cr(K1)+g(K1)) · · · q−β(Cr(Km)+g(Km))ϵK1#···#Km . Thus, when the trace of ST is finite it satisfies

Tr(ST ) =
1

det(1− T )
.

By direct inspection, we see that ST = e−βH and that 1/ det(1− T ) is the Euler product of (2.4). �

2.2. Statistical mechanics of knots without interaction

We then have, for the C∗-dynamical system (C∗(Ka), σt) described above, the analog of Proposition 8 of [1].

Proposition 2.6. For every β > 0 there is a unique KMSβ state for (C∗(Ka), σt), which is the infinite tensor product of unique
KMSβ states φβ,K for K ∈ PK,a, on the Toeplitz algebra τK with the induced time evolution, with eigenvalue list

Σ(φβ,K ) = {(1− q−β(Cr(K)+g(K)))q−βn(Cr(K)+g(K))}n∈N. (2.5)

For β ≥ β+ the KMS state is a Gibbs state of the form

φβ(X) =
1

Z(β)
Tr(Xe−βH), ∀X ∈ C∗(Ka),

while for β < β− the KMS state is of type III.

Proof. On the Toeplitz algebra τK , for some K ∈ PK,a, the induced time evolution is determined by σt(µK ) =
qit(Cr(K)+g(K))µK . A KMSβ state on (τK , σt)will necessarily vanish on all eigenvectors of the time evolution with σt(X) = λitX
where λ ≠ 1, while by the KMS condition it will satisfy

ϕβ,K (µKµ
∗

K ) = ϕβ,K (µ
∗

Kσiβ(µK )) = q−β(Cr(K)+g(K))ϕβ,K (µ∗KµK )

= q−β(Cr(K)+g(K))ϕβ,K (1) = q−β(Cr(K)+g(K)).

The complementary projection 1 − µKµ
∗

K then has ϕβ,K (1 − µKµ
∗

K ) = 1 − q−β(Cr(K)+g(K)). On powers µn
K (µ

∗

K )
m the KMS

state vanishes unless n = m, in which case ϕβ,K (µn
K (µ

∗

K )
n) = q−βn(Cr(K)+g(K)), by the same argument. Note that, since we

are working with alternating knots n(Cr(K) + g(K)) = Cr(K# · · ·#K) + g(K# · · ·#K), with the connected sum taken n
times. The same argument used in Proposition 8 of [1] then shows that this determines uniquely the KMSβ state φβ,K , and
the fact that this implies the uniqueness of the KMSβ state on the tensor product C∗-algebra C∗(Ka) = ⊗K∈PK,a τK . As in
case (b) of Proposition 8 of [1] the finiteness of Z(β) = Tr(e−βH) for β ≥ β+ shows that the KMSβ state is of the Gibbs form
(by uniqueness, since the Gibbs state is clearly a KMSβ state). In the range β < β− where the series defining the partition
function is divergent, one uses the same argument used in [1], based on the result of [31]. Namely, as in Lemma 2.14 of [31],
if {λν,i} is the eigenvalue list of an infinite tensor product M = ⊗ν Mν of type I factors, then M is of type I if and only if

ν |1− λν1| <∞; of type II if and only if nν <∞ for all ν and


ν,i |n
−1/2
ν − λ

1/2
νi |

2 <∞; and, when λν,1 ≥ δ for some δ
for all ν,M is of type III if and only if

ν,i

λν,i inf

λν1λνi − 1
2 , C


= ∞

for some (hence all) C > 0. In our case, with the eigenvalue list (2.5), we have λν,1 = 1 − q−β(Cr(K)+g(K)) hence
|1−λν,1| = q−β(Cr(K)+g(K)). In the rangeβ < β− the series


K q−β(Cr(K)+g(K)) is divergent, hence type I is excluded. Similarly,
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type II is excluded because nν = ∞. For a fixed β , the condition λν,1 ≥ δ is satisfied with δ = 1− q−β , and we have
ν,j

λν,j inf

λν1λνj − 1
2 , C


∼


K ,j

(1− q−β(Cr(K)+g(K)))q−βj(Cr(K)+g(K)) = ∞

hence the factor is type III. �

Remark 2.7. Notice that, since we do not have in this case a complete analysis of the behavior of the partition function in
the intermediate range β− ≤ β < β+, we do not have in this case the direct analog of case (c) of Proposition 8 of [1].

Lemma 2.8. For a fixed q ∈ N, q ≥ 2, there is a unique solution β̃− = β̃−(q), with β̃− >
log 2
log q , to the equation

β − 6 log λβ + 6 logβ = log C − 6 log log q, (2.6)

where C = 400 and

λβ =
q−β

1− q−β
.

The value β̃−(q) satisfies β̃−(q) < β−(q), where β−(q) is, as in Theorem 2.3, the unique solution of β − 6 log λβ =
log C − 6 log log 2.

Proof. For β = log 2/ log q we have (β − 6 log λβ)|β= log 2
log q
=

log 2
log q hence

(β − 6 log λβ + 6 logβ)|
β=

log 2
log q
=

log 2
log q

+ 6 log log 2− 6 log log q < log C − 6 log log q,

since we have seen in Theorem 2.3 that, for all q ∈ N with q ≥ 2,

log 2
log q

< log C − 6 log log 2. (2.7)

For β ≥ log 2/ log q the function f (β, q) := β − 6 log λβ + 6 logβ is monotonically increasing and unbounded for β →∞
(see the plot in Fig. 1), hence there will be a unique β̃− = β̃−(q) where (2.6) holds. Finally, we see that at β = β−(q) we
have

(β − 6 log λβ + 6 logβ)|β=β−(q) = log C − 6 log log 2+ 6 logβ−(q).

Notice that we have β−(q) > log 2/ log q because of (2.7), hence we find β− − 6 log λβ− + 6 logβ− > log C − 6 log log q,
hence β−(q) > β̃−(q). �

Thus, the range β < β̃−(q) is contained in the range of divergence of the series defining the partition function, as we
have seen in Theorem 2.3.

Theorem 2.9. Let β̃− = β̃−(q) be as in Lemma 2.8. For β < β̃−(q), the unique KMSβ state is of type IIIq−β .

Proof. The argument is similar to Lemma 4.5.1 of [32] and Lemma 2.4 of [18]. We need to show that q−β belongs to the
asymptotic ratio set, see Definition 3.2 and Lemma 3.6 of [31]. As in Lemma 4.5.1 of [32], for given β , let N ∈ N be chosen
so that βN > β+ and, for a chosen K ∈ PK,a, consider the projector eK = 1− µN

K (µ
∗

K )
N in the Toeplitz algebra τK , and the

projection e =


K∈PK,a
eK , as weak limit of projections in the tensor product von Neumann algebra. Since βN > β+ we

have, using the Euler product of Lemma 2.5,

φβ(e) =


K∈PK,a

(1− q−βN(Cr(K)+g(K))) = Z(βN)−1 ≠ 0,

hence e ≠ 0. Setting φ̃β,e(X) = φβ(X)/φβ(e) determines a KMS state on the compression of the algebra with the projection
e. For each prime knot K ∈ PK,a we similarly have φ̃β,e,K (X) = φβ,K (X)(1− q−βN(Cr(K)+g(K)))−1. The eigenvalue list of φ̃β,e,K
is then

Σ(φ̃β,e,K ) =


(1− q−β(Cr(K)+g(K)))q−βn(Cr(K)+g(K))

(1− q−βN(Cr(K)+g(K)))


n∈N

.

By the results of [23], the number of knots K in Ka with a given value Cr(K)+ g(K) = n is given by

N(n) = #{K ∈ Ka | Cr(K)+ g(K) = n} ∼
n

g=1

Cg

(6g)!
(n− g + 1)6g−4. (2.8)
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Fig. 1. The function f (β, q) for β > log 2
log q and q = 11.

Thus,wehaveN(n) knotsK1, . . . , KN(n) forwhich qβ(Cr(Ki)+g(Ki)) = q−βn. Consider twodisjoint setsX1(n) = {K1, . . . , KN(2n)},
the set of knots with qβ(Cr(Ki)+g(Ki)) = q−β2n and a subset X2(n) = {K ′1, . . . , K

′

N(2n)} of the same cardinality of the set of
knots with qβ(Cr(Ki)+g(Ki)) = q−β(2n+1). Consider the set Fn of functions from the set X(n) = X1(n) ∪ X2(n) to the set
N = {0, . . . , ,N − 1}, namely Fn = F (X(n),N). In this set, consider the delta functions δKi and δK ′i for i = 1, . . . ,N(2n).
Setting

µ(f ) =
N(2n)
i=1

λKi,f (Ki)λK ′i ,f (K
′
i )
,

where

λKi,j =
(1− q2nβ)
(1− q−2nNβ)

q−β2nj,

defines a measure on the set Fn. This satisfies

µ(δKi) = µ(δK1) =


(1− q2nβ)
(1− q−2nNβ)

N(2n)

·


(1− q(2n+1)β)
(1− q−(2n+1)Nβ)

N(2n)

· q−β2n =: µ(n).

The measure of the set {δKi} is equal to µ({δKi}) = N(2n)µ(n).
By (2.8), the behavior of the series


n N(2n)µ(n) can be estimated in terms of the behavior of

n

N(2n)q−β2n =

n


k+g=2n

Nk,gq−β(k+g),

where Nk,g is the number of alternating knots with Cr(K) = k and g(K) = g . Note that this is a subseries of the series
g


k Nk,gq−β(k+g), whose behavior we analyzed in Theorem 2.3. In particular, we know that for β < β− the series
g


k Nk,gq−β(k+g) diverges.We now need to checkwhether the subseries corresponding to the termswith k+g even also
diverges. We first show that we can express this series in terms of the Lerch transcendents, replacing the polylogarithms
used in the case of the full series in Theorem 2.3.

LetΦ(z, s, α) be the Lerch transcendent

Φ(z, s, α) =

ℓ≥0

zℓ

(α + ℓ)s
. (2.9)

We can then write the series above as
k,g≥0 : k+g even

Nk,gq−β(k+g) ∼

g≥0

q−2βg
Cg

(6g)!


ℓ≥0

q−2βℓ(g + 2ℓ)6g−4

=


g≥0

Cg26g−4q−2βg

(6g)!
Φ


q−2β , 4− 6g,

g
2


. (2.10)
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Fig. 2. The function H(q) for q ≥ 2.

The Lerch transcendentΦ(z, s, α) has a Taylor expansion

Φ(z, s, α) = z−α

Γ (1− s)(− log(z))s−1 +


j≥0

ζ (s− j, α)
logj(z)

j!


, (2.11)

which is valid for |log(z)| < 2π , s ∉ N and α ∉ Z≤0. In our setting we have z = q−2β , hence |log(z)| = 2β log(q). One can
check that the function

H(q) := (β − 6 log λβ + 6 logβ)|β= π
log q
− (log C − 6 log log q)

is positive for q ≥ 2 (see the plot in Fig. 2), hence π
log q > β̃−(q). Thus, in the range β < β̃−(q) the Taylor expansion above

applies.
Then we have

Φ


q−2β , 4− 6g,

g
2


= qβg


(6g − 4)!

(2β log(q))6g−3
+


j≥0

ζ

4− 6g − j,

g
2

 (−2β log(q))j

j!


.

Thus, the general term of series above has a leading contribution of the form

Cgq−βg

(6g)(6g − 1)(6g − 2)(6g − 3)
·

26g−4

(2β log(q))6g−3
. (2.12)

Notice that this is the analog of the leading term of the form

Cgq−βg

(6g)(6g − 1)(6g − 2)(6g − 3)
·

1
2(log 2)6g−4

for the full series, as in (2.2) of Theorem 2.3. Arguing in a similar way, we then see that the series
g

Cgq−βg

(6g)(6g − 1)(6g − 2)(6g − 3)2(β log(q))6g−3

is divergent in the range β < β̃−(q), hence so is the series (2.10). Thus, we obtain the divergence result
n≥n0

N(2n)µ(n) = ∞.



164 M. Marcolli, Y. Xu / Journal of Geometry and Physics 114 (2017) 153–183

We then proceed in the same way as in Lemma 4.5.1 of [32]. The bijection Ψn : X1(n)→ X2(n) determines a bijection
of the set of delta functions, and we have

µ(Ψn(δKi))

µ(δKi)
=
λKi,0λK ′i ,1

λKi,1λK ′i ,0
=

q−β(2n+1)

q−β2n
= q−β ,

which shows that q−β is in the asymptotic ratio set. �

2.3. Intermezzo: statistical physics of Q∗
+

In preparation for the construction we will illustrate in the following section, we discuss here a toy model, based on the
multiplicative group Q∗

+
and its reduced group algebra C∗r (Q

∗
+
) acting on the Hilbert space ℓ2(Q∗

+
). Here we regard Q∗

+
as

the discrete infinitely generated abelian group, generated by the primes, Q∗
+
=


p∈P pZ. We want to construct a quantum
statistical mechanical system whose algebra of observables contains C∗r (Q

∗
+
), with Hilbert space of states ℓ2(Q∗

+
) and with

a Hamiltonian generator densely defined on ℓ2(Q∗
+
), so that the partition function Z(β) = Tr(e−βH) is finite for sufficiently

large β > 0.
It is easy to construct such a system for the multiplicative semigroup N and the C∗-algebra C∗r (N) acting on ℓ2(N). For

instance by considering the ‘‘system without interaction’’ of [1] with time evolution σt(µn) = nitµn and with Hϵn =
log(n)ϵn. However, the natural extension of this system from the semigroup N to the group Q∗

+
by σt(µa/b) = (a/b)itµa/b

will no longer satisfy the condition Tr(e−βH) <∞ for large β .
We proceed in a slightly different way, motivated by the analogies between quantum statistical mechanical systems and

spectral triples discussed in [33]. We consider first the case of a single prime p and the group pZ
≃ Z, and then the case of

the group Q∗
+
.

Recall that a spectral triple (A,H,D) is the datumof an involutive algebraA, a representation ofA by bounded operators
on H and a self-adjoint operator D, densely defined on H , with compact resolvent (D2

+ 1)−1/2 ∈ K and such that the
commutators [D, a]with all a ∈ A are bounded operators on H , see [34].

Lemma 2.10. Consider the algebraC[pZ
] ⊂ C∗(pZ) ≃ C(S1), acting on ℓ2(pZ), and the operator defined byDpϵpn = n log(p)ϵpn .

The datum (C[pZ
], ℓ2(pZ),Dp) is a spectral triple.

Proof. It is easy to check that all properties are satisfied. We check explicitly the bounded commutator condition. Let δpm
be the operator on ℓ2(pZ) corresponding to the delta function δpm ∈ C[pZ

]. It acts by δpmϵpn = ϵpn+m . Thus, we have

(Dpδpm − δpmDp)ϵpn = ((m+ n) log(p)− n log(p))ϵpm+n = m log(p)ϵpm+n ,

hence the bounded commutator condition is satisfied for all elements of the dense subalgebra C[pZ
] of C∗r (p

Z). �

Remark 2.11. Notice that, in the case of the group Q∗
+
, the operator D acting on a basis element ϵr of ℓ2(Q∗

+
) as D ϵr =

(n1 log(p1) + · · · + nk log(pk))ϵr , for r = pn11 · · · p
nk
k ∈ Q∗

+
, with ni ∈ Z has bounded commutators with elements of the

dense subalgebra C[Q∗
+
] of C∗r (Q

∗
+
), by the same argument of Lemma 2.10. However, D does not have compact resolvent,

since the set {
k

i=1 ni log(pi) | ni ∈ Z, pi ∈ P , k ∈ N} is dense in R, hence D does not determine a spectral triple for
C∗r (Q

∗
+
).

We now modify the operator above, using the polar decomposition of the Dirac operator Dp = |Dp| F , with F the sign
operator.

Lemma 2.12. Consider the operator Hp = |Dp| acting on a basis ϵpn of ℓ2(pZ) as

Hp ϵpn = |n| log(p)ϵpn . (2.13)

The operator e−βHp is trace class for all β > 0 with

Tr(e−βHp) = 1+ 2

n∈N

p−βn =
(1− p−2β)
(1− p−β)2

. (2.14)

Proof. For all β > 0, we have

Tr(e−βHp) =

n∈Z

⟨ϵpn , e−βHpϵpn⟩ = 1+ 2

n∈N

p−βn = 1+
2p−β

(1− p−β)

=
1

1− p−β
+

p−β

1− p−β
=

1+ p−β

1− p−β
=
(1− p−2β)
(1− p−β)2

where the first term corresponds to Ker(Hp) = Cϵ1. �
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This in turn determines an operator H on ℓ2(Q∗
+
)with the following properties.

Lemma 2.13. Consider the operator H acting on the basis elements ϵr of ℓ2(Q∗+), for r = pn11 · · · p
nk
k ∈ Q∗

+
, with ni ∈ Z, as

H ϵr = (|n1| log(p1)+ · · · + |nk| log(pk))ϵr . (2.15)

Then for β > 1 the operator e−βH is trace class with

Tr(e−βH) =
ζ 2(β)

ζ (2β)
, (2.16)

where ζ (β) is the Riemann zeta function.

Proof. We have Ker(H) = Cϵ1, with ϵ1 the basis vector of ℓ2(Q∗
+
) corresponding to the unit in Q∗

+
. The spectrum of H is

given by Spec(H) = {log(n) | n ∈ N}. The trace is then computed by

Tr(e−βH) =

r∈Q∗
+

⟨ϵr , e−βHϵr⟩ =


λ∈Spec(H)

mλe−βλ,

where mλ is the multiplicity. For λ = n1 log(p1) + · · · + nk log(pk) = log(n) with ni ∈ N and pi ∈ P , and n = pn11 · · · p
nk
k ,

the multiplicity is mλ = 2k, with k the number of distinct prime factors in r = p±n11 · · · p±nkk , since for each ni we have two
choices of±ni ∈ Z. Thus, we can rewrite the series computing the partition function as

Tr(e−βH) =

n∈N

2ω(n)

n−β
,

where ω(n) is the number of distinct prime factors of n ∈ N. It is known by Theorem 301, p. 335 of [35] that this series
converges for β > 1 with sum

n∈N

2ω(n)

n−β
=
ζ 2(β)

ζ (2β)
,

with ζ (β) =


n∈N n−β the Riemann zeta function. This can be seen easily by the form (2.14) of the Euler factors, since we
have

ζ 2(β)

ζ (2β)
=


p

(1− p−2β)
(1− p−β)2

=


p

(1+ 2

k∈N

p−βk) =

n≥1

2ω(n) n−β . �

Consider the algebra of bounded operators B(ℓ2(Q∗
+
)). The operator H described above determines a time evolution of

the form

σt(T ) = eitHTe−itH , ∀t ∈ R, ∀T ∈ B(ℓ2(Q∗
+
)), (2.17)

with partition function as in (2.16)

Z(β) = Tr(e−βH) =
ζ 2(β)

ζ (2β)
.

The subalgebra C∗r (Q
∗
+
) ⊂ B(ℓ2(Q∗

+
)) is not preserved by the time evolution (2.17). We have the following result, which

is analogous to Lemma 5.7 of [33].

Proposition 2.14. The smallest C∗-subalgebra A ⊂ B(ℓ2(Q∗
+
)) that contains C∗r (Q

∗
+
) and that is invariant under the time

evolution (2.17) is generated by C∗r (Q
∗
+
) and by projections

Π(k,ℓ)ϵa/b =


ϵa/b k|a and ℓ|b
0 otherwise.

The time evolution (2.17) acts on the algebra A by inner automorphisms.

Proof. Consider a generator δr , for r ∈ Q∗
+
, of the algebra C∗r (Q

∗
+
). The operator eitHδre−itH acts on a basis element ϵr ′ as

eitHδre−itHϵr ′ = n(rr ′)itn(r ′)−itδrϵr ′ ,

where for r = pn11 · · · p
nk
k in Q∗

+
, with ni ∈ Z, we have n(r) = p|n1|1 · · · p

|nk|
k in N. If r ′ = a/b, with a, b ∈ N with (a, b) = 1,

and r = u/v with u, v ∈ N with (u, v) = 1, then

n(r ′r)
n(r ′)

= n(r) · (b, u) · (a, v).
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Thus, for r = u/v, we can rewrite the operator above as

eitHδre−itH =

k|u


ℓ|v

n(r)itkitℓitδrΠ(k,ℓ),

where Π(k,ℓ)ϵr ′ = ϵr ′ if k|a and ℓ|b and zero otherwise, where r ′ = a/b. The term of the sum with k = 1 and ℓ = 1
corresponds to the operator n(r)itδr . Thus, this shows that the smallest C∗-subalgebraA ⊂ B(ℓ2(Q∗

+
)) that contains C∗r (Q

∗
+
)

and that is invariant under the time evolution (2.17) is the C∗-subalgebra A ⊂ B(ℓ2(Q∗
+
)) generated by the δr and by the

projectionsΠ(k,ℓ). LetΠn be the spectral projections of the operator H corresponding to the eigenvalues log(n)with n ∈ N.
We see that these are in the algebraA generated by the δr and theΠ(k,ℓ). Indeedwe haveΠnϵr = ϵr when n = n(r) and zero
otherwise, so that we haveΠn =


k,ℓ : kℓ=nΠ(k,ℓ). The unitary operator eitH is a bounded operator that is in the C∗-algebra

generated by the spectral projections ofH . Thus, the time evolution (2.17) acts on the algebraAby inner automorphisms. �

2.4. Semigroup and Grothendieck group

We will see later in the paper that, in addition to the abelian semigroup (K,#) of oriented knots with the connected
sum operation, we also need to consider the associated Grothendieck group.

LetGK denote the universal enveloping abelian group (Grothendieck group) of the semigroup (K,#). The decomposition
into prime knots shows that (K,#) is a free abelian semigroup on a countable set of generators given by the prime
knots. Thus, (K,#) is non-canonically isomorphic to the semigroup (N, ·), and its enveloping group GK is non-canonically
isomorphic to the multiplicative group Q∗

+
. The universal enveloping abelian group GK of (K,#) can be identified with

pairs (K , K ′), up to the equivalence relation (K , K ′) ∼ (K#K ′′, K ′#K ′′) for all K ′′ ∈ K . We write the equivalence classes of
pairs as formal differences, denoted by K ⊖ K ′.

In the case of the semigroup Ka of alternating knots with the connected sum operation, freely generated by the set PK,a
of alternating prime knots, we similarly construct the enveloping abelian group GK,a. It is also non-canonically isomorphic
to Q∗

+
.

2.5. Statistical physics of the group GK,a

We show that the construction presented above of a quantum statistical mechanical system for Q∗
+

with partition
function ζ 2(β)/ζ (2β), with ζ (β) the Riemann zeta function, can be generalized to the case of the group GK,a.

Let K ⊖ K ′ = (a1K1# · · ·#ajKj) ⊖ (b1K ′1# · · ·#bℓK
′

ℓ) be an element of GK,a with primary decompositions K =
a1K1# · · ·#amKm and K ′ = b1K ′1# · · ·#bℓK

′

ℓ, where the Ki and K ′j are all distinct prime knots, with multiplicities ai and
bj. Let ϵK⊖K ′ be the corresponding basis element of ℓ2(GK,a). For a knot K , let ω(K) denote the number of distinct prime
knots in its primary decomposition, namely ω(K) = m for K = a1K1# · · ·#amKm with the Ki prime.

Proposition 2.15. Consider the operator H acting on ℓ2(GK,a), which acts on basis elements as

H ϵK⊖K ′ =


m
i=1


ai(Cr(Ki)+ g(Ki))+

ℓ
j=1

bj(Cr(K ′j )+ g(K ′j ))


log(q) ϵK⊖K ′ . (2.18)

This is an unbounded densely defined operator, such that e−βH is trace class for all β ≥ β+, satisfying

ZGK,a(β) := Tr(e−βH) =
Z2
a (β)

Za(2β)
, (2.19)

where Za(β) is the partition function of Theorem 2.3.

Proof. The argument is very similar to the case of Q∗
+
discussed above. By Lemma 2.5, we can write

Z2
a (β)

Za(2β)
=


K∈PK,a

1− q−2β(Cr(K)+g(K))

(1− q−β(Cr(K)+g(K)))2
.

We then write this as
K∈PK,a

1+ q−β(Cr(K)+g(K))

1− q−β(Cr(K)+g(K))
=


K∈PK,a


1

1− q−β(Cr(K)+g(K))
+

q−β(Cr(K)+g(K))

1− q−β(Cr(K)+g(K))



=


K∈PK,a


1+ 2


n≥1

q−βn(Cr(K)+g(K))

.
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On the other hand, we have

Tr(e−βH) =


K⊖K ′∈GK,a

⟨ϵK⊖K ′ , e−βHϵK⊖K ′⟩ =


λ∈Spec(H)

mλe−βλ,

where mλ are the multiplicities. By (2.18) the operator is diagonal on the basis ϵK⊖K ′ with eigenvalues
q−β(Cr(K)+g(K))+(Cr(K

′)+g(K ′)). The multiplicities are 2m+ℓ for K = a1K1# · · ·#amKm and K ′ = b1K ′1# · · ·#bℓK
′

ℓ, since all the
other basis vectors in the same eigenspace are obtained by moving some of the Ki and K ′j factors to the other side of ⊖,
hence for each primary term in the decomposition there are two choices. Thus, we obtain

Tr(e−βH) =

K∈Ka

2ω(K) q−β(Cr(K)+g(K)).

We then see by rewriting this in the Euler product form that the identity (2.19) holds. �

We have the analog of Proposition 2.14, which is proved by the same argument.

Proposition 2.16. The smallest C∗-subalgebra A ⊂ B(ℓ2(GK,a)) that contains C∗r (GK,a) and is invariant under the time
evolution

σt(T ) = eitHTe−itH , T ∈ B(ℓ2(GK,a)), (2.20)

with H as in (2.18), is generated by C∗r (GK,a) and by projections

Π(K1,K2)ϵK⊖K ′ =


ϵK⊖K ′ K1|K and K2|K ′

0 otherwise.

The time evolution (2.20) acts on the algebra A by inner automorphisms.

The fact that this time evolution is inner is undesirable from the operator-algebraic point of view.Wewill return to discuss
this problem in the following sections. A first step towards improving the system described in this section is to introduce
interaction terms in the quantumstatisticalmechanical system, as one does in the case of the Bost–Connes systembypassing
from the algebra C∗r (N) to the crossed product algebra C∗r (Q/Z)o N. In our setting the analogous step will consist in passing
from a quantum statistical mechanical system associated to knots to one associated to 3-manifolds.

3. Knot groups, 3-manifolds, and cyclic branched covers

3.1. Cyclic branched coverings of the 3-sphere

Let K denote the set of ambient isotopy classes of (oriented) knots in S3. For simplicity of notation, in the following we
will write K for a knot and also for its equivalence class up to ambient isotopy.

It is well known, [36–38], that every smooth oriented closed 3-manifold can be realized (non-uniquely) as a branched
cover of the 3-sphere, branched along a knot. Moreover, it is also well known that an n-fold branched covering of the
3-sphere, branched along a knot K , is entirely determined by the datum of a representation

ρ : π1(S3 r K)→ Sn, (3.1)

where π1(S3 r K) is the fundamental group of the knot complement, and Sn is the symmetric group of permutations of n
elements, [36].

An n-fold branched covering of the 3-sphere S3, branched along a knot K , is said to be cyclic or abelian if the corresponding
homomorphism (3.1) factors through the abelianization π1(S3 r K)ab = H1(S3 r K ,Z) = Z, as a homomorphism
ρ : H1(S3 r K ,Z)→ Z/nZ with values in the subgroup of cyclic permutations Z/nZ ⊂ Sn. In particular, for a given knot K ,
there is a unique connected cyclic branched covering Yn(K). We write πK ,n : Yn(K)→ S3 for the corresponding projection
map. The remaining elements in Hom(H1(S3 r K ,Z),Z/nZ) correspond to coverings that have multiple components.

It is known, [39,40], that, if one knows the cyclic coverings Yp(K) for three distinct primes p, this uniquely identifies the
knot K . In other words, given a knot K , there are at most two distinct primes p ≠ p′ for which there exist some inequivalent
knot K ′ with homeomorphic branched cyclic coverings, Yp(K) ≃ Yp(K ′) and Yp′(K) ≃ Yp′(K ′).

To the purpose of building an analog of the Bost–Connes system in the setting of arithmetic topology, we think of cyclic
branched coverings of the 3-sphere S3 as an analog of abelian extensions of Q.

3.2. Knots semigroup

For the purpose of our construction, we will consider a semigroup

S = K × N, (3.2)
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where K = (K,#) is the semigroup of oriented knots with the direct sum operation, as in the previous section, and N is
the multiplicative semigroup of positive integers. The idea behind this choice is that an element (K , n) ∈ S specifies the
branch locus and the order of a cyclic branched covering of S3. The semigroup S is generated by the pairs (K , p)where K is
a prime knot and p is a prime number.

The quantum statistical mechanical model we discussed in the previous section for the semigroup Ka and its group
completion GK,a extend to the product Ka × N as follows.

Lemma 3.1. Let N : Ka × N → R∗
+
be a semigroup homomorphism. Then setting σt(µK ,n) = N(n, K)itµK ,n defines a time

evolution of C∗r (Ka × N). In particular, taking

N(K , n) = n q(Cr(K)+g(K))

determines a time evolution with partition function ζ (β)Za(β), where ζ (β) is the Riemann zeta function and Za(β) is as
in Theorem 2.3, for β > max{β+(q), 1}.

Proof. The argument is analogous to Theorem 2.3. The time evolution σt(µK ,n) = N(n, K)itµK ,n with N(K , n) =
n q(Cr(K)+g(K)) is implemented by a Hamiltonian of the form

HϵK ,n = ((Cr(K)+ g(K)) log(q)+ log(n))ϵK ,n

on the canonical basis of ℓ2(Ka × N), with partition function

ZKa×N(β) = Tr(e−βH) =

K ,n

⟨ϵK ,n, e−βHϵK ,n⟩ =

K ,n

q−β(Cr(K)+g(K))n−β = Za(β) · ζ (β),

where Za(β) is the partition function of Theorem 2.3 and ζ (β) is the Riemann zeta function. The operator e−βH is trace class
in the range β > max{β+(q), 1}. �

3.3. Wirtinger presentations and connected sums

The fundamental group π1(S3 r K) of a knot complement has an explicit presentation, associated to the choice of a
planar diagram D(K) representing the knot K . It is given by the Wirtinger presentation W(D(K)). Let ND be the number of
crossings in the planar diagramD = D(K). Then in the presentationW(D(K)) there areN generators ai, identifiedwith loops
circling around the oriented arcs given by the two parts of the lower branch at each crossing (drawn as two arcs in the planar
diagram). At each crossing one imposes a relation, which is either of the form aia−1j a−1i+1aj = 1 or aiaja−1i+1a

−1
j = 1, depending

on the orientations at the crossing, see §4.2.3 of [41] for more details. The following fact is well known.We reproduce it here
for the reader’s convenience.

Lemma 3.2. Let K = K1#K2 be a connected sum. Then the fundamental groups satisfy

π1(S3 \ (K1#K2)) = π1(S3 \ K1) ∗Z π1(S3 \ K2). (3.3)

Proof. Choose planar diagrams D1 = D(K1) and D2 = D(K2). Let Ni be the number of crossings in Di. In these diagrams,
let us number the arcs so that a1 and b1 are, respectively, the arcs where the connected sum operation is performed. Let
D = D(K1#K2) be the resulting planar diagram for the connected sum knot. Let W(D1) = ⟨a1, . . . , aN1 | r1, . . . , rN1⟩ and
W(D2) = ⟨b1, . . . , bN2 | s1, . . . , sN2⟩ be the Wirtinger presentations of π1(S3 r Ki) associated to these planar diagrams. Let
fi : Z→ π1(S3 rKi) denote the homomorphisms that map the generators of Z to the generators, in the respectiveWirtinger
presentations as above, given by the arcs chosen for the connected sum: f1(1) = a1 and f2(1) = b1. The amalgamated
product in (3.3) is the resulting pushout diagram of groups

(3.4)

where π1(S3 \ K1) ∗Z π1(S3 \ K2) has a presentation of the form

⟨a1, . . . , aN1 , b1, . . . , bN2 | r1, . . . , rn, s1, . . . , sm, a1b
−1
1 ⟩,

which agrees with the Wirtinger presentation W(D) of D = D(K1#K2), hence the pushout group is isomorphic to
π1(S3 \ (K1#K2)). �
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Corollary 3.3. The groups π1(S3 r K) form a direct system, with respect to the directed set K , partially ordered by divisibility
with respect to the direct sum operation, with maps

ϕK ′,K : π1(S3 r K ′)→ π1(S3 r K). for K ′|K , (3.5)

Proof. A knot K ′ divides a knot K in the semigroup (K,#) if there is some other knot K ′′ such that K = K ′#K ′′. Defining a
partial order by setting K ′ ≤ K if K ′ divides K makes K into a directed set. As in the previous lemma, we then have a group
homomorphism ϕK ′,K : π1(S3 r K ′) → π1(S3 r K) given by the corresponding map in the pushout diagram (3.4). These
morphisms satisfy ϕK ,K = 1 and ϕK2,K3 ◦ ϕK1,K2 = ϕK1,K3 when K1|K2 and K2|K3, hence the groups π1(S3 r K) form a direct
system. �

We can then consider the direct limit of this direct system,

π := lim
−→
K∈K

π1(S3 r K) = lim
−→
K∈K

πK , (3.6)

where we use the shorthand notation πK := π1(S3 r K). The direct limit π is given by equivalence classes of elements
γK ∈ πK , under the relation γK ∼ γK ′ if there is some K ′′ in K such that K |K ′′ and K ′|K ′′ with ϕK ,K ′′(γK ) = ϕK ′,K ′′(γK ′).
Setting [γK ] · [γK ′ ] := ϕK ,K#K ′(γK ) · ϕK ′,K#K ′(γK ′), with the product in πK#K ′ determines a product on π that is independent
of representatives.

In addition to considering the direct limit π of the directed system of the groups πK with the homomorphisms ϕK ,K#K ′ ,
it will be convenient for our purposes to also consider the direct product

π̃ :=

K∈K

π1(S3 r K) =

K∈K

πK , (3.7)

without imposing the equivalence relations of the direct limit. There are then induced morphisms

ϕK ′ : π̃ → π̃ , ϕK ′ = (ϕK ,K#K ′)K∈K (3.8)

given coordinatewise by the morphisms γK → ϕK ,K#K ′(γK ) of the direct system.

3.4. Wild knots and fundamental groups

Wilder knots are a class of wild knots with a single wild point, obtained as infinite connected sums of a sequence Kn of
tame knots. It is well known (see [42,43]) that such Wilder knots have knot group isomorphic to the infinite amalgamated
product π∞ := π1(S3 r K∞) = πK1 ∗Z πK2 ∗Z πK3 · · · ∗Z πKN ∗Z · · · . More generally wild knots have knot groups that are
obtained as direct limits of knot groups of tame knots, [42]. The direct limit π = lim

−→K
πK described above has a similar

interpretation.

Lemma 3.4. The direct limit π = lim
−→K

πK is the knot group π = π1(S3 rK∞) of a wild knot K∞ with a Cantor set of wild points.

Proof. The construction of the wild knot K∞ is modeled on the direct system of groups πK under the order relation in
the semigroup K given by divisibility. Choose an enumeration of the prime knots. Any such choice determines a bijection
between the set of prime knots and the set of prime numbers, and a corresponding isomorphisms of semigroups (K,#) ≃
(N, ·). We write the chosen enumeration of the prime knots as {Kp} where p ranges over prime numbers. Starting with the
unknot in S3, construct a Wilder knot given by the infinite connected sum of all the prime knots Kp. This has a single wild
point lying on the initial unknot. At the successive step repeat the procedure in each of the prime knots of the previous
level, namely insert in each the full sequence of prime knots Kp, with a single tame point for each knot of the previous level,
which we locate at the intersection of those knots with the original unknot. In the limit the resulting wild knot K∞ has set
of wild points that is compact, totally disconnected, with each wild point an accumulation point of other wild points. The
fundamental group of the knot complement of K∞ is then obtained as in [42] as the direct limit π . �

Remark 3.5. In a rooted tree, we say that a vertex has level N if it is connected to the root by a path of N edges. Let T be
the non-locally-finite labeled rooted tree with root vertex labeled by the unknot. The root vertex (level zero) is connected
to a countable infinity of vertices labeled by the prime knots (level one). In turn each of these vertices is connected to
another countable set of vertices labeled by the prime knots (level two), and so on, with each vertex at level N connected to
a countable set of vertices at level N+1, labeled by the prime knots. The number of vertices at a given level N is a countable
union of countable sets, hence countable. Let ET be the resulting infinite set of edges. The wild knot K∞ of Lemma 3.4 can
be described as obtained by performing a connected sum along each of the edges of the tree T .
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3.5. Projective limits and cyclic coverings

For an arbitrary knot K , the abelianization of the fundamental group πK = π1(S3 r K) is always just the infinite cyclic
group generated by the meridian

π1(S3 r K)ab = H1(S3 r K) = Z. (3.9)

In particular, by the form of the relations in the Wirtinger presentation, one sees that any representation of the group πK
into an abelian group H will necessarily map all the generators of πK to a same element of H .

Let us consider again the representation ρ = ρK ,n : π1(S3 rK)→ Z/nZ that corresponds to the unique connected cyclic
branched cover Yn(K) of S3, branched along K . This representation sends all the generators of πK to a primitive nth root of
unity, and it corresponds to the quotient homomorphism ρK ,n : Z = π1(S3 r K)ab → Z/nZ.

Consider again the maps σm : Z/nmZ→ Z/nZ that raise to the mth power and determine the projective system of the
Z/nZ, with the indices n ∈ N ordered by divisibility, with limit the profinite completion of Z,

lim
←−
n∈N

Z/nZ = Ẑ.

We have the simple compatibility condition of the maps ρK ,n,

(3.10)

The induced map to the projective limit is just the canonical map ρ : Z→ Ẑ of the integers to their pro-finite completion.
Using the identification Ẑ = Hom(Q/Z,Q/Z), we can think of the resultingmapρ : Z = H1(S3\K ,Z)→ Ẑ as describing

a locally trivial fibration over S3 rK with fiber the set of all roots of unities, identified with Q/Z, extended to S3 with branch
locus K . This space can be regarded as a limit, in the category of topological spaces, of the cyclic branched coverings Yn(K).
We denote it by YẐ(K).

When we consider simultaneously the inverse limit of the fibers, and direct limit of the branch loci knots, we obtain
a space YẐ(K∞), which is a branched cover of S3 branched along the wild knot K∞ with fiber the set of roots of unity. The
covering is specified by a representation of the direct limit groupπ to Ẑ. The space YẐ(K∞) is the geometric object underlying
the construction of the quantum statistical mechanical system that we describe in the coming section.

4. Quantum statistical mechanics of 3-manifolds

In this section we combine the constructions of the previous section with the quantum statistical mechanics of knots, to
construct an analog of the Bost–Connes system associated to cyclic branched coverings of the 3-sphere. We show that the
properties of the resulting quantum statistical mechanical system are significantly different from the Bost–Connes case and
are related to noncommutative Bernoulli crossed products.

4.1. Group rings

Thus, in order to construct a replacement for the algebra C∗(Q/Z) = C(Ẑ) of the Bost–Connes system,whichwill account
for all the possible choices of a knot K and a cyclic branched cover of some order n, we need to introduce appropriate
group rings. We first deal with the part of the information that concerns the knot complements and the knot groups
πK = π1(S3 r K) and then, in Section 4.6, we combine this part of the construction with the information on the choice
of the cyclic branched coverings coming from the Ẑ datum.

We consider group rings Q[πK ], for each knot group πK = π1(S3 r K), and also the group ring Q[π̃ ], with π̃ the direct
product of the πK as in (3.7), and the group ring Q[π ], with π the direct limit of the πK .

Note that, unlike the group ring Q[Q/Z] of the Bost–Connes system, the group rings Q[πK ], Q[π̃ ] and Q[π ] are
noncommutative, hence the corresponding C∗-algebra completions, which wewill discuss later, can no longer be written as
algebras of continuous function on a dual group. If one considers the abelianization π ab, all the maps of the direct system of
the groups πK induce the identity on the homology groups, hence π ab

= Z, and one would simply obtain the commutative
group ring Q[π ab

] = Q[Z] = Q[t, t−1].

4.2. Semigroup action and crossed product

In the following, we consider the semigroup K acting as endomorphisms of Q[π̃ ] via the morphisms

σK : γK ′ → ϕK ′,K#K ′(γK ′), (4.1)

for γK ′ in πK ′ ⊂ π̃ .
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As we have seen in Corollary 3.3, the maps ϕK ,K#K ′ satisfy ϕK#K ′,K#K ′#K ′′ ◦ϕK ,K#K ′ = ϕK ,K#K ′#K ′′ . Thus, the homomorphism
σK : π̃ → π̃ defined by (4.1) is indeed a semigroup action, since we have

σK1#K2(γK ′) = ϕK ′,K1#K2#K ′(γK ′)

= ϕK1#K ′,K1#K2#K ′(ϕK ′,K1#K ′(γK ′)) = σK2(σK1(γK ′)).

We use the same notation for the induced morphism of the group ring σK : Q[π̃ ] → Q[π̃ ].
By direct inspection of the respective Wirtinger presentations, as in Lemma 3.2, we see that the generators

{a, a2, . . . , aN1 , b2, . . . , bN2} of πK1#K2 satisfy a = ϕK1,K1#K2(a1) = ϕK2,K1#K2(b1). The remaining generators ai = ϕK1,K1#K2(ai)
have a preimage in πK1 but no preimage in πK2 , and vice versa for the bi. Thus, an element γK1#K2 ∈ πK1#K2 has either one
preimage or none in πK1 and πK2 . Let RK denote the range of the homomorphism σK acting on Q[π̃ ]. As a subring of Q[π̃ ],
RK is generated by all the elements γK#K ′ in some πK#K ′ ⊂ π̃ that are in the range of ϕK ′,K#K ′ . Then, by the observation
above, there is a ring homomorphism ηK : RK → Q[π̃ ] given by ηK (γK#K ′) = γK ′ for γK#K ′ = ϕK ′,K#K ′(γK ′), satisfying
σK ◦ ηK = id|RK and ηK ◦ σK = id|Q[π̃ ].

Remark 4.1. The behavior of the endomorphismsσK here is significantly different from the case of the endomorphismsσn of
the Bost–Connes system. Indeed, the σK are injective, while the σn are surjective. The case we are looking at here resembles
closely the adaptation of the Bost–Connes system to the Habiro ring considered in [24], where a similar injectivity condition
is satisfied by the σn. Our construction here follows closely the setting of [24] and of §4.7 of [44].

Let GK denote the universal enveloping abelian group (Grothendieck group) of the semigroup (K,#), as in Section 2.4.

Lemma 4.2. The direct limit of the ring homomorphisms σK : Q[π̃ ] → Q[π̃ ] satisfies

lim
−→
K∈K

(σK : Q[π̃ ] → Q[π̃ ]) ∼=

h∈GK

Q[π ]. (4.2)

Proof. First note that, since π is the direct limit of the groups πK , the group ring Q[π ] is the direct limit of the group rings
Q[πK ]. Moreover, because π̃ is the direct product of the groups πK , the group ring is a tensor product Q[π̃ ] = ⊗K∈K Q[πK ].
LetψK : πK → π be the maps to the direct limit determined by the direct system. They satisfyψK#K ′ ◦ ϕK ,K#K ′ = ψK , for all
K , K ′ ∈ K . We denote by the same symbol the resulting morphisms on the group rings. We have commutative diagrams

(4.3)

where on the right hand side the morphism σ̂K ′ : ⊗K Q[π ] → ⊗K Q[π ] shifts the indices, mapping the copy of Q[π ] in the
K th position to the copy in the K#K ′th position. Since the maps ψK are the maps to the direct limit of the system of the πK ,
the direct limit of the system on the left column reduces to that of the right column, or equivalently, the induced morphism
between the direct limits is an isomorphism

ψ : lim
−→
K ′∈K

(σK ′ : Q[π̃ ] → Q[π̃ ])
∼=
−→ lim

−→
K ′∈K


σ̂K ′ : ⊗K Q[π ] → ⊗K Q[π ]


.

Elements in the limit on the right hand side are rational combinations of equivalence classes of elements gK ,K ′ ∈ π with
K , K ′ ∈ K under the equivalence relation induced by the maps σ̂K ′′ , given by the shifting of indices gK ,K ′ ∼ gK#K ′′,K ′#K ′′ ,
where (K , K ′) ∼ (K#K ′′, K ′#K ′′) is the relation that defines the elements h = K ⊖ K ′ in the Grothendieck group GK of the
abelian semigroup K . Thus, we can identify

lim
−→
K ′∈K


σ̂K ′ : ⊗K Q[π ] → ⊗K Q[π ]


= ⊗h∈GK Q[π ]. �

We now consider a crossed product construction analogous to the version of the Bost–Connes construction given in [24].

Definition 4.3. LetAπ̃ ,K be theQ-algebra generated byQ[π̃ ] and generatorsµK ,µ∗K forK ∈ K with the relationsµ∗KµK = 1
and

µKσK (γK ′) = γK ′µK , µ∗KγK ′ = σK (γK ′)µ
∗

K . (4.4)

Remark 4.4. Unlike what happens with the Bost–Connes algebra, the elements eK = µKµ
∗

K do not belong to the algebra
Q[π̃ ]. However, as we see below, these elements belong to the direct limit lim

−→K∈K
(σK : Q[π̃ ] → Q[π̃ ]) described above.
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Let AK be the rings generated by all the elements of the form µKγK ′µ
∗

K with γK ′ ∈ π̃ . When K is the unknot we just
have Q[π̃ ]. A direct analog of Lemma 2.2 of [24] shows that the endomorphisms σK : Q[π̃ ] → Q[π̃ ] extend to morphisms
σK : AK ′ → AK ′ when K - K ′ and to morphism σK : AK ′ → AK ′′ when K |K ′ with K ′ = K#K ′′. Setting αK (a) = µKaµ∗K gives
homomorphisms (since µ∗KµK = 1) mapping αK : AK ′ → AK#K ′ satisfying

αK (σK (a)) = eKaeK , σK (αK (a)) = a,

where the idempotents eK = µKµ
∗

K map Q[π̃ ] by γK ′ → eKγK ′eK to the subring eKRK eK ⊂ AK , with RK the range of σK as
above. All this can be seen easily by essentially the same argument as in Lemma 2.2 of [24]. Moreover, as in Lemma 2.3 of
[24] we then have the following identification.

Lemma 4.5. The algebra Aπ̃ ,K described above is the direct limit lim
−→K∈K

(σK : Q[π̃ ] → Q[π̃ ]).

Proof. There are homomorphisms AK ↩→ AK ′ whenever K ′ = K#K ′′ in K , determined by identifying µKaµ∗K =
µK ′σK ′′(a)µ∗K ′ . Thus, we can identify the algebra Aπ̃ ,K with the direct limit

Aπ̃ ,K = lim
−→
K∈K

AK = ∪K∈K AK .

The morphisms σK and αK described above are compatible with the direct system of the AK and determine an invertible
morphism between the direct limits, hence giving the identification

lim
−→
K∈K

AK ∼= lim
−→
K∈K

(σK : Q[π̃ ] → Q[π̃ ]) . �

In particular, as in Lemma 2.3 of [24] we see that the morphisms induced by the σK on the direct limit become invertible.

Lemma 4.6. The maps induced on the direct limit ⊗GK Q[π ] by the σK : Q[π̃ ] → Q[π̃ ] are isomorphisms.

Proof. In terms of the algebra Aπ̃ ,K , the elements eK = µKµ
∗

K are idempotents, hence we can write them as eK = 1 − pK
for some projection pK . Using the relations (4.4) we see that these satisfy σK (pK ) = µ∗K (1−µKµ

∗

K )µK = 0. By the injectivity
of the σK this gives eK = 1. Thus, the µK satisfy both µ∗KµK = 1 and µKµ

∗

K = 1 are therefore unitaries, not just isometries.
The σK are then automorphisms with inverses αK . Equivalently, in terms of the direct system σK : Q[π̃ ] → Q[π̃ ], elements
in the direct limit are sequences gK⊖K ′ , with formal differences K ⊖ K ′ ∈ GK , where gK⊖K ′#K ′′ = σ̂K ′′(gK⊖K ′), hence in the
direct limit the maps induced by the σK are surjective as well as injective. �

Thus, the resulting crossed product algebra is a group crossed product, which is just given by the Bernoulli action that
shifts the tensor factors indices,

h∈GK

Q[π ] o GK . (4.5)

4.3. Operator algebras: von Neumann algebra

Given a discrete group Γ , one can consider the action by bounded operators on the Hilbert space ℓ2(Γ ) given by the left
(or right) action of the group on itself. This determines a representation of the algebra C[Γ ] = Q[Γ ]⊗Q C on ℓ2(Γ ). We
drop the explicit labeling of the left/right regular representation, and simply write R : C[Γ ] → B(ℓ2(Γ )). The reduced
group C∗-algebra C∗r (Γ ) is the norm completion of R(C[Γ ]) in B(ℓ2(Γ )) and the von Neumann algebra N (Γ ) is the double
commutant R(C[Γ ])′′. The group von Neumann algebra N (Γ ) has a finite trace given by τ(R(γ )) = 1 if γ = 1 and
τ(R(γ )) = 0 otherwise. Every vonNeumann algebra can be decomposed as a direct integral of factors. A group vonNeumann
algebra N (Γ ) is a factor if and only if Γ has the infinite conjugacy classes (ICC) property, namely the conjugacy classes of
all nontrivial elements γ ≠ 1 in Γ are infinite.

The question ofwhether the knot groupsπK (in the non-torus case) satisfy the ICCpropertywas stated as an openproblem
(Problem 3) in [45]. It was then proved in Corollary 11.1 of [46] that indeed the knot groups πK are ICC if and only if the
knot K is not a torus knot. A direct product of groups is ICC if and only if each of its factors is, hence the group π̃ is not ICC
because the factors πK corresponding to torus knots are not ICC.

Lemma 4.7. The countably generated group π = lim
−→K

πK has the ICC property.

Proof. First observe that the groups πK , for any non-prime knot K , have the ICC property. This follows immediately from
the topological property that all torus knots are prime knots, hence by the characterization of Corollary 11.1 of [46] the knot
group of every non-prime knot is ICC. Moreover, by Proposition 5.1 of [46], if Γ = Γ1 ∗Γ0 Γ2 is an amalgamated product
of discrete groups, with respect to a common subgroup Γ0 that is not of index 2 (non-degenerate case), then Γ has the
ICC property if at least one of the two groups Γ1, Γ2 is ICC. (For a more general characterization of the ICC property for
amalgamated products see §5.6 of [47].) As in Lemma 3.4, we identify the direct limit π with the knot group π1(S3 r K∞)
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of a wild knot K∞ obtained from a tree of connected sums. As we have seen in Lemma 3.4, after choosing an enumeration
Kp of the prime knots, we can describe K∞ as the result of constructing a necklace given by the infinite connected sum
Kp1#Kp2# · · ·#Kpn# · · · of the prime knots in the chosen order, followed iteratively by repeatedly inserting by connected
sum similar necklaces into each of the knots at the previous stage, see Remark 3.5. Consider a finite subset Kpi , i = 1, . . . ,N
of prime knots and the tame knot obtained as their direct sum K = Kp1# · · ·#KpN . Let K̂i, i = 1, . . . ,N be the wild knots
consisting of all the successive iterative level to be inserted by connected sum into each of the Kpi , and let K̂ be the remaining
wild knot given by the infinite connected sum of the remaining prime knots K̂ = KpN+1#KpN+2# · · · and all the successive
iterative levels inserted into these. Thenwe can describe the resultingwild knot as K∞ = K#K̂#K̂1# · · ·#K̂N . By the previous
observations πK has the ICC property hence the amalgamated product πK#K̂ = πK ∗Z πK̂ also does, and the same applies to
the remaining connected sums with the K̂i. �

Remark 4.8. As mentioned above, the ICC property for a group Γ corresponds to N (Γ ) being a II1 factor. Moreover, it is
known [48] that if the group Γ is amenable then N (Γ ) is isomorphic to the hyperfinite type II1 factor R. However, knot
groups are non-amenable (see [49]), even though they are K -amenable (Theorem 5.18 of [50]).

After changing to C-coefficients, the crossed product (4.5) also has a von Neumann algebra completion
h∈GK

N (π) o GK , (4.6)

which is a special case of the class of Bernoulli crossed products first studied in [48], and more recently in [51,52]. For
simplicity of notation, here we just write ⊗ instead of the commonly used ⊗, for tensor products in the von Neumann
algebra context. The algebra (4.9) is represented on the Hilbert space L2(N (π), τ )⊗ℓ2(GK) or equivalently ℓ2(π)⊗ℓ2(GK).
Other representations can be constructed using a unitary representation V of π and replacing ℓ2(π) with ℓ2(π) ⊗ V . An
explicit example of how this twisting by a representation V can be obtained is discussed briefly in the following Section 4.4.

4.4. Twisting by de Rham representations

Because the abelianizations of the knot groups are all equal toπ ab
K = Z, one-dimensional representations ofπK by unitary

operators correspond to character homomorphisms

Hom(πK ,U(1)) = Hom(Z,U(1)) = U(1).

For each K ∈ K , consider then a choice of a phase θK ∈ R/Z. With the above identification, this determines a
homomorphism, which we still denote by θK : πK → U(1), which sends all the generators of πK to the same element
λK = exp(2π iθK ) ∈ U(1).

While the 1-dimensional representations of πK are only of this trivial nature, with all generators acting as the same
phase factor λK , it is well known that the knot groups πK have interesting higher dimensional representations. In particular,
already in the 2-dimensional case, one has an interesting family of representations, the so called de Rham representations.
In general, representations of πK are related to roots of the Alexander polynomial.

The de Rham representations of knot groups are homomorphisms πK → GL2(C). For each root rK of the Alexander
polynomial ∆K (t) of the knot K , there are, up to conjugation, 2kr de Rham representations of πK , where kr is the largest k
such that the kth order Alexander polynomial (that is, the greatest common divisor of the determinants of the (n− k+1)×
(n− k+ 1)minors of the Alexander matrix) satisfies∆k(r) ≠ 0, see [53]. In a de Rham representation associated to a root
r of the Alexander polynomial∆K (t) the generators of πK are represented as 2× 2-matrices of the form√r x

0
1
√
r

 .
In order to avoid the abelian representationswhere x is the same for all generators, one only considers based representations,
where one of the x, say for the first generator in a givenWirtinger presentation of K , is equal to zero, while all the others are
nonzero. The list of the elements x associated to a set of the remaining generators of πK gives a vector in the kernel of the
Alexander matrix AK (t) at t = r , see [54,53].

For a knot K let VK be the representation of πK given by the complex vector space VK = ⊕r VK ,r , where r ranges over
roots of the Alexander polynomial ∆K (t) and VK ,r is a 2-dimensional de Rham representation of πK , constructed as above.
We denote by RK = ⊕r RK ,r the resulting representation of πK on the vector space VK .

Lemma 4.9. For a connected sum K = K1#K2, the representation satisfies VK1#K2 = VK1 ⊕ VK2 with RK1#K2 = RK1 ⊕ RK2 .
Let ΦKi,K1#K2 , i = 1, 2, denote the inclusions of the direct factors VKi in VK1#K2 . Under the direct system of homomorphisms
ϕKi,K1#K2 : πKi → πK1#K2 , the representations satisfy the compatibility condition

ΦKi,K1#K2 ◦ RKi(γKi) = RK1#K2(ϕKi,K1#K2(γKi)) ◦ ΦK1,K1#K2 . (4.7)
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Proof. The Alexander polynomial is given by the determinant ∆K (t) = det(VK − tV τK ), where VK is a Seifert matrix of the
knot. For a connected sum K = K1#K2, given Seifert matrices VK1 and VK2 , the direct sum VK = VK1 ⊕ VK2 is a Seifert matrix
for K . Correspondingly, the Alexander matrix AK (t) = VK − tV τK also satisfies AK (t) = AK1(t) ⊕ AK2(t) for K = K1#K2.
Thus, the set of roots of ∆K1#K2(t) is the union of the sets of roots of ∆Ki , which implies that the vector space is a direct
sum VK = VK1 ⊕ VK2 . The vectors in the kernel of the Alexander matrix at a given root also correspond to those of AK1(t)
and AK2(t), depending on the root, hence the representations also split as RK = RK1 ⊕ RK2 . To check the compatibility
conditions, notice that we are working with based representations. We can always assume that the generator in the given
Wirtinger presentation of πK1 with x = 0 in the de Rham representation corresponds to the arc where the connected sum is
performed, which matches then with the action of the corresponding generator of πK2 , so that the resulting representation
given by RK1 ⊕ RK2 on VK is indeed a representation of the amalgamated product πK = πK1 ∗Z πK2 . �

Remark 4.10. If we want the elements of πK to be represented as unitary, rather than just as invertible operators, then we
should consider SU(2) representations of the knot group πK , as in [55], rather than GL2(C) representations as above. For
our purposes two-dimensional representations will suffice, but the construction we obtain can be generalized to the higher
dimensional representations obtained as in [56–58].

Corollary 4.11. The compatibility condition (4.7) satisfied by the de Rham representations VK implies that they induce a
representation of the direct limit π = lim

−→K
πK on the space V = lim

−→K
VK , obtained as the direct limit under the direct system of

morphismsΦK ,K#K ′ .

Proof. An element in V is an equivalence class of elements vK ∈ VK under the relation vK ∼ ΦK ,K#K ′(vK ). Defining the
action [γK ] ∈ π on [vK ] ∈ V as R([γK ])[vK ] := [RK (γK )vK ] is well defined, since the compatibility condition (4.7) implies
that

ΦK ,K#K ′(RK (γK )vK ) = RK#K ′(ϕK ,K#K ′(γK ))ΦK ,K#K ′vK . �

4.5. Operator algebras: C∗-algebra

We now consider the reduced C∗-algebras of the knot groups πK and of the direct limit π . For general facts about
pullbacks, pushforwards and crossed products for C∗-algebras, see [59] and [60].

Lemma 4.12. The reduced group C∗ algebra of the direct limit π = lim
−→K

πK satisfies

C∗r (π) = lim
−→
K∈K

C∗r (πK ) = ⋆C∗r (Z),T C∗r (πK ), (4.8)

where ⋆C∗r (Z),T C∗r (πK ) denotes the infinite amalgamated product of the reduced C∗-algebras C∗r (πK ) along the common
subalgebra C∗r (Z) = C(S1), performed as in the amalgamated products of groups, along the tree T , in Remark 3.5.

Proof. By Proposition 2.5 of [61], the reduced C∗-algebra of the direct limit π is an amalgamated product of C∗-algebras.
More precisely, by Lemma 3.4, we identify the direct limit π with the knot group π1(S3 r K∞) of the wild knot K∞ obtained
from a tree of connected sums obtained by successively inserting with connected sums in each of the knots of a necklace
given by the infinite connected sum of the prime knots additional necklaces of the same kind, and so on iteratively, see
Remark 3.5. Thus, the direct limit group can be identified as an infinite sequence of amalgamated products πK ∗Z πK ′ , over
a common subgroup Z, corresponding to each successive connected sum K#K ′. As shown in Proposition 2.5 of [61], the
reduced C∗-algebra of a countably infinite amalgamated product of discrete countable groups, all performed along a same
common subgroup, is an amalgamated product of C∗-algebras, C∗r (π) = ⋆C∗r (Z),T C∗r (πK ), where the amalgamated products
are performed in the same way as for the groups, using the notation π = ∗Z,T πK to indicate the infinite amalgamated
product as in Lemma 3.4 and Remark 3.5, with the connected sums performed along the edges of the tree T as in Remark 3.5.
The reduced amalgamated free product of reduced group C∗-algebras is taken with respect to the conditional expectations.
Namely, by Theorem 2.2 of [61], given a family of unital C∗-algebras Aj all containing a sub-C∗-algebra B with 1 ∈ B. If
there are conditional expectations Ej : Aj → B with faithful GNS representations, then there is a unique C∗-algebra A,
the amalgamated product of the Aj along B, with the properties that B ⊂ A with 1A ∈ B, with a conditional expectation
E : A→ B with a faithful GNS representation; with inclusions Aj ⊂ A extending the inclusion B ⊂ A, so that A is generated
as a C∗-algebra by the Aj, which form a free family of subalgebras, with the expectations given by restrictions E|Aj = Ej. The
freeness condition means that E(a1 · · · an) = 0 whenever ai ∈ Aji with ji ≠ ji+1 and all ai ∈ Ker(E). It is shown in Theorem
2.3 and Proposition 2.5 of [61] that these conditions hold in the case of amalgamated products of reduced group C∗-algebras
as above. Lemma 2.6 of [61], together with Lemma 3.4 above, also shows that C∗r (π) = lim

−→K∈K
C∗r (πK ). �

At the level of C∗-algebras, one can similarly consider the crossed product
h∈GK

C∗r (π) o GK , (4.9)
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acting on the same Hilbert space ℓ2(π)⊗ ℓ2(GK). As in the case of von Neumann algebras above, we simply write⊗ for the
completed tensor products in the operator algebra context.

4.6. The combined system

We now combine the previous construction, based on the direct system of the knot groups πK and the action of the
semigroup K , with the information on the choice of the cyclic branched cover, by combining the algebra constructed above
with the Bost–Connes algebra, via the representations ρK ,n : πK → Z/nZ that specify the unique connected cyclic branched
cover Yn(K) of S3 of order n, branched along K .

Let r∞ be the group of all roots of unity of arbitrary order, which we identify with r∞ ≃ Q/Z. For any n, let rn ≃ Z/nZ
be the group of roots of unity of order n, with rn ⊂ r∞.

Remark 4.13. Notational warning:we avoid themore standard notationµn andµ∞ for the groups of roots of unity, to avoid
a conflict with the Bost–Connes notation, that we follow below, where µn is used for the isometries in the crossed product
algebra.

Any group homomorphism ρK : πK → r∞ or ρ : π → r∞ factors through the abelianizations π ab
K = Z and π ab

= Z,
hence it maps all the generators to an element ζ ∈ r∞, of some order n. Thus, the homomorphisms ρK and ρ determine
representations ρK ,n : πK → Z/nZ and ρn : π → Z/nZ. Let R ⊂ Hom(π, r∞) and RK ⊂ Hom(πK , r∞) be the subsets of
homomorphisms such that the corresponding ρK ,n and ρn determine the unique connected cyclic branched cover.

Consider then the pullback diagrams of groups

(4.10)

and

(4.11)

where σn : r∞ → r∞ is the endomorphism σn : ζ → ζ n, that is, the homomorphism σn : Q/Z→ Q/Z mapping σn : r →
nr . The pullback groups are given by π̂K ,n = {(γ , ζ ) ∈ πK × r∞ | ρ(γ ) = ζ

n
} and π̂n = {(γ , ζ ) ∈ π × r∞ | ρ(γ ) = ζ

n
}.

Lemma 4.14. Let S ⊂ N be a subsemigroup, with the partial ordering defined by the divisibility relation. The groups π̂K ,n and π̂n
form projective systems with respect to n ∈ S, with epimorphisms σ̂n/m : π̂K ,n → π̂K ,m for m|n in S, and similarly for the π̂n, with
respective projective limits π̂K ,ρK ,S and π̂ρ,S , which depend both on the initial choice of the morphism ρK ∈ RK (respectively,
ρ ∈ R) and on the semigroup S.

Proof. We illustrate the argument for πK ; the case of the direct limit π is analogous.Whenm|n in S we have a commutative
diagram

(4.12)

where the arrow σ̂n/m : π̂K ,n → π̂K ,m is determined by the universal property. We have σ̂n/m(γ , ζ ) = (γ , σn/m(ζ )),
with ρ(γ ) = ζ n

= (σn/m(ζ ))
m, hence we obtain a projective system of epimorphisms σ̂n/m : π̂K ,n � π̂K ,m for m|n.

The construction of these pullback diagrams and the groups π̂K ,n of the projective system depend on the initial choice of
the homomorphism ρK ∈ RK ⊂ Hom(πK , r∞) and on the semigroup S, hence the resulting projective limit π̂K ,ρK ,S =

lim
←−n∈S

π̂K ,n also depends on ρK and S. �

Asmentioned above, the representation and ρK ∈ RK map the generators ofπK to a single element ζ in the setP (nρK ) of
primitive roots of unity of some order nρK . An arbitrary element γ ∈ πK maps to some ρ(γ ) = ζ

nγ
nρK
∈ rnρK ⊂ r∞. Similarly

for ρ ∈ R.
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Definition 4.15. Given ρ ∈ R (respectively, ρK ∈ RK ), Let Nρ ⊂ N (respectively, NρK ⊂ N) be the subsemigroup of n ∈ N
with (n, nρ) = 1 (respectively, (n, nρK ) = 1), that is, the multiplicative semigroup generated by those primes p ∈ P that do
not occur in the primary decomposition of nρ (respectively, nρK ). We use the notation π̂ρ := π̂ρ,Nρ and π̂K ,ρK := π̂K ,ρK ,NρK
for the corresponding projective limits.

Remark 4.16. The effect of passing to the pullbacks π̂K ,n and π̂n is to introduce nth roots for the elements of the knot groups
πK and of their limit π . Indeed, for each element γ of πK , with ρ(γ ) = ζ

nγ
nρK

, there are n corresponding elements in π̂K ,n of
the form (γ , ζ )with ζ n

= ζ
nγ
nρK

. The projective limits π̂K ,ρK and π̂ρ contain roots of the elements of πK (or of π ) for arbitrary
order in NρK (respectively, Nρ).

Remark 4.17. The construction of the pullbacks π̂K ,n and π̂n and projective limits π̂K ,ρK and π̂ρ is analogous to the
construction of formal roots of Tate motives in §4.2 of [25].

Proposition 4.18. For all n ∈ Nρ , there are homomorphisms σn : π̂ρ → π̂ρ given by

σn(γ , ζ ) := (γ , ζ
n). (4.13)

The maps {σn}n∈Nρ of (4.13) determine an action of the semigroup Nρ by endomorphisms of the group ring Q[π̂ρ]. The
endomorphisms σn have partial inverses αn : Q[π̂ρ] → Q[π̂ρ],

αn(δ(γ ,ζ )) =
1
n


η : ηn=ζ

δ(γ ,η) (4.14)

satisfying σn ◦ αn(δ(γ ,ζ )) = δ(γ ,ζ ) and αn ◦ σn(δ(γ ,ζ )) = en · δ(γ ,ζ ), where en = n−1


ξ : ξn=1 δ(1,ξ) is an idempotent in Q[π̂ρ].
The case of π̂K ,ρK is analogous.

Proof. An element (γ , ζ ) belongs to π̂n when ρ(γ ) = ζ n, that is, ζ n
= ζ

nγ
nρ . An element (γ , ζ ) with γ ∈ π and ζ ∈ r∞

is in π̂ρ when there is some m ∈ Nρ such that ζm
= ζ

nγ
nρ . That is, ζ ∈ ∪m∈Nρ σ

−1
m (rnρ ). Suppose given (γ , ζ ) ∈ π̂ρ and

n ∈ Nρ . We need to check that the element σn(γ , ζ ) := (γ , ζ n) is also in π̂ρ . Let m ∈ Nρ be such that ζm
= ρ(γ ) = ζ

nγ
nρ .

We need to check whether there exists an N ∈ Nρ such that ζ nN
= ζ

nγ
nρ . Observe that, since (n, nρ) = 1, there is a unique

solution k to the congruence equation nk = 1 mod nρ . This is obtained by reducing modulo nρ the relation nk + nρℓ = 1,
which is satisfied by a pair of k, ℓ ∈ Z, because (n, nρ) = 1. Such k is unique modulo nρ , since if k′ is another solution,
n(k − k′) = 0 mod nρ implies nρ |(k − k′) since (n, nρ) = 1. Note that (k, nρ) divides nk + nρℓ, hence (k, nρ) = 1. Then
N = mk satisfies ζ nN

= ζm. For (γ , ζ ) ∈ π̂ρ , let δ(γ ,ζ ) be the corresponding generator of the group ring Q[π̂ρ]. The maps
(4.13) extend to endomorphisms of Q[π̂ρ] by σn(δ(γ ,ζ )) = δ(γ ,ζ n). Since we clearly have σn ◦ σm = σnm, the maps (4.13)
determine a semigroup action of Nρ by endomorphisms of Q[π̂ρ]. For the endomorphisms αn : Q[π̂ρ] → Q[π̂ρ] of (4.14)
we also need to check that, for (γ , ζ ) ∈ π̂ρ and n ∈ Nρ , if η ∈ r∞ is such that ηn = ζ , then (γ , η) is also in π̂ρ . This can be
seen immediately, since we know that there is somem ∈ Nρ , such that ζm

= ρ(γ ), hence we also have ηnm = ζm
= ρ(γ ),

hence (γ , η) ∈ π̂ρ . Thus, the αn of (4.14) are well defined. It is then also immediate to verify that we have

σn ◦ αn(δ(γ ,ζ )) =
1
n


η : ηn=ζ

σn(δ(γ ,η)) =
1
n


η : ηn=ζ

δ(γ ,ζ ) = δ(γ ,ζ ),

αn ◦ σn(δ(γ ,ζ )) =
1
n


η : ηn=ζ n

δ(γ ,η) =
1
n


ξ : ξn=1

δ(1,ξ) · δ(γ ,ζ ),

since solutions of ηn = ζ n are of the form ξζ . The element en = n−1


ξ : ξn=1 δ(1,ξ) is an idempotent since we have

en · en =
1
n


ξ1 : ξ

n
1=1

1
n


ξ2 : ξ

n
2=1

δ(1,ξ1ξ2) =
1
n


χ :χn=1

δ(1,χ) = en. �

Thus, we can form the semigroup crossed product algebra as in the Bost–Connes case, as a direct consequence of the
previous proposition.

Corollary 4.19. The semigroup crossed product algebra Aπ̂ρ ,Q := Q[π̂ρ]oα Nρ has generators unitaries δ(γ ,ζ ), for (γ , ζ ) ∈ π̂ρ ,
and isometries µn, for n ∈ Nρ , satisfying

µ∗nµn = 1, µnµ
∗

n = en, µnµm = µnm, µnµ
∗

m = µ
∗

mµn for (n,m) = 1,
µnδ(γ ,ζ )µ

∗

n = αn(δ(γ ,ζ )), µ∗nδ(γ ,ζ )µn = σn(δ(γ ,ζ )).

The C∗-algebra C∗r (π̂ρ)×α Nρ , with the same generators and relations, is a C∗-algebra completion of Aπ̂ρ ,Q⊗Q C.
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We can now combine this construction with the one described in the previous subsections and define the C∗-algebra of
observables of the combined system to be the following.

Definition 4.20. The C∗-algebra of observable of the quantum statistical mechanical system of cyclic branched coverings of
S3 and knots is given by the Bernoulli crossed product

g∈GK


C∗r (π̂ρ)oα Nρ


o GK . (4.15)

Remark 4.21. In the following we will refer to C∗r (π̂ρ)oα Nρ and its associated quantum statistical mechanics as ‘‘the inner
system’’, and to (4.15) as ‘‘the combined system’’ or the ‘‘total system’’.

4.7. Quantum statistical mechanics of the inner system

By Lemma 4.14 and Definition 4.15, we have π̂ρ ⊂ π × Q/Z and Nρ ⊂ N. In order to construct a quantum statistical
mechanical system on C∗r (π̂ρ)oα Nρ that incorporates the usual Bost–Connes dynamics, we start by considering the algebra

C∗r (π)⊗ C∗(Q/Z) o N, (4.16)

whereN acts on C∗(Q/Z)with the Bost–Connes endomorphisms (1.1), withABC = C∗(Q/Z)oN given in terms of generators
and relations as in (1.3), (1.4). On the algebra (4.16), we consider the time evolution σt(γ ⊗ a) = γ ⊗σt(a), with γ ∈ π and
a ∈ ABC , where σt(a) is the Bost–Connes time evolution. We consider then representations of (4.16) on the Hilbert space
H = L2(π, τ )⊗ℓ2(N), where τ is the von Neumann trace on the group von Neumann algebra, with τ(1) = 1 and τ(γ ) = 0,
for γ ≠ 1, given by

πu(γ ⊗ a) ξ(γ ′)⊗ ϵm = R(γ )ξ(γ ′)⊗ πu(a)ϵm, (4.17)

for ξ ∈ L2(π, τ ) and ϵm the standard basis of ℓ2(N), where R(γ ) is the right regular representation of C∗r (π) on L2(π, τ ) and
πu(a) is the Bost–Connes representation (1.5) of ABC on ℓ2(N).

Lemma 4.22. In the representation (4.17), the time evolution σt is implemented by the Hamiltonian H = 1⊗ HBC , where HBC is
the Hamiltonian of the Bost–Connes system.

Proof. For H ξ(γ ′)⊗ ϵm = log(m) ξ(γ ′)⊗ ϵm, we have

eitH πu(γ ⊗ a) e−itH = R(γ )⊗ eitHBC πu(a) e−itHBC = R(γ )⊗ πu(σt(a)) = πu(σt(γ ⊗ a)). �

Proposition 4.23. The functionalsψβ := τ⊗ϕβ , with τ the von Neumann trace and ϕβ a KMSβ state of the Bost–Connes system
are KMS states of (C∗r (π)⊗ABC , σ ). Indeed, all KMS states are of this form.

Proof. To see that the functionals ψβ = τ ⊗ ϕβ satisfy the KMSβ condition, consider elements X, Y ∈ C∗r (π)⊗ABC of the
form X = c ⊗ a and Y = c ′ ⊗ a′, with c, c ′ ∈ C∗r (π) and a, a′ ∈ ABC . Then set F̃X,Y (z) := τ(cc ′)Faa′(z), where Faa′(z) is
the holomorphic function expressing the KMSβ condition for the state ϕβ on the algebra ABC . The function F̃X,Y is clearly
holomorphic on Iβ and continuous on ∂Iβ because Faa′(z) is. Moreover, it satisfies

F̃X,Y (t) = τ(cc ′)ϕβ(aσt(a′)) = ψβ(Xσt(Y ))

F̃X,Y (t + iβ) = τ(cc ′)ϕβ(σt(a′)a) = τ(c ′c)ϕβ(σt(a′)a) = ψβ(σt(Y )X),

hence it expresses the KMSβ condition forψβ . Conversely, suppose given a KMSβ stateψβ for (C∗r (π)⊗ABC , σ ). It is known
(see for instance §5.3.1 of [62]), that the KMS condition expressed as above, in terms of interpolation of ψβ(Xσt(Y )) and
ψβ(σt(Y )X) by a holomorphic function FX,Y (z), is equivalent to the property that, for all X, Y in a dense involutive subalgebra
Aan of ‘‘analytic elements’’ (also called ‘‘entire elements’’) the state satisfies ψβ(XY ) = ψβ(Yσiβ(X)). In particular, for
elements in Aan of the form c ⊗ 1 and c ′ ⊗ 1, we have ψβ(cc ′ ⊗ 1) = ψβ(c ′c ⊗ 1). Indeed, since σt(c ⊗ 1) = c ⊗ 1
for t ∈ R, elements of the form c ⊗ 1 are always in Aan with the analytic extension of the time evolution still trivially given
by σz(c ⊗ 1) = c ⊗ 1. Thus, the KMS stateψβ restricted to elements of the form c ⊗ 1 has to be a trace, and therefore it has
to agree with the unique von Neumann trace τ . Consider then elements of Aan of the form X = 1⊗ a and Y = 1⊗ b, with
a, b ∈ ABC . Then σt(X) = 1⊗σt(a)with σt(a) the Bost–Connes time evolution. Thus, the analytic continuation is also of the
form σz(X) = 1⊗σz(a), that is, a ∈ Aan,BC is an analytic element of the Bost–Connes algebrawith the corresponding analytic
continuation of the time evolution. Thus, we have ψβ(1 ⊗ ab) = ψβ(1 ⊗ bσiβ(a)), which implies that, when restricted to
1 ⊗ ABC , the state satisfies ψβ(1 ⊗ a) = ϕβ(a) for some KMSβ state ϕβ of the Bost–Connes system. Thus, for elements of
the form c ⊗ a, with c ∈ C∗r (π) and a ∈ ABC one obtains ψβ(c ⊗ a) = τ(c)ϕβ(a). �

Remark 4.24. When restricted to C∗r (πρ)oα Nρ , the KMSβ states ψβ = τ ⊗ ϕβ of (C∗r (π) ⊗ ABC , σ ) define KMS states of
the system (C∗r (πρ)oα Nρ, σ )with the induced time evolution.
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4.8. Properties of the algebra of observables of the combined system

We consider here the C∗-algebra (4.15) and the corresponding von Neumann algebra
g∈GK


N (π̂ρ)oα Nρ


o GK , (4.18)

where N (π̂ρ) is the group von Neumann algebra of π̂ρ . This von Neumann algebra belongs to the class of noncommutative
Bernoulli crossed products [63].

4.8.1. Tensor product system
In order to construct a quantum statistical mechanical system for this algebra, compatible with the construction

considered above for the inner system, we first extend the construction of the inner system to the tensor product

⊗g∈GK C∗r (πρ)oα Nρ .

Let Bg = C∗r (πρ)oα Nρ denote the gth factor in the above tensor product algebra. An element g ∈ GK is an equivalence
class g = K ⊖ K ′ of pairs (K , K ′) of knots, up to the equivalence defining the Grothendieck group GK of the semigroup
(K,#).

On the algebraBK⊖K ′ we consider a time evolution similar to the one considered in Section 4.7, induced on C∗r (πρ)oα Nρ
from a time evolution σt(γ ⊗ a) = γ ⊗σt,K⊖K ′(a) on C∗r (π)⊗ABC , where for a ∈ ABC we now take σt,K⊖K ′(a) to be a scaled
version of the Bost–Connes time evolution of the form σt,K⊖K ′(e(r)) = e(r) and

σt,K⊖K ′(µn) = nit f (K⊖K ′) µn, (4.19)

where f : GK → R∗
+
is a function, whose properties we specify below. On the tensor product ⊗g∈GK Bg we consider the

time evolution σt = ⊗g σt,g .

Definition 4.25. For bounded linear operators on L2(π, τ ) ⊗ ℓ2(Nρ) of the form R(γ ) ⊗ T , we define Trτ (R(γ ) ⊗ T ) :=
τ(γ )Tr(T ), where Tr is the operator trace on B(ℓ2(Nρ)). The operator R(γ )⊗ T is Trτ -class if Trτ (R(γ )⊗ T ) is finite, that is,
if T is trace-class. In particular, for a Hamiltonian of the form 1⊗ H as in Lemma 4.22, we define the partition function as

Zτ (β) = Trτ (1⊗ e−βH). (4.20)

Proposition 4.26. Let H = ⊗g∈GK Hg be the Hilbert space with Hg = L2(π, τ )⊗ ℓ2(Nρ), with the algebra⊗g∈GK Bg acting
on H with the action πu,g of Bg on Hg as in (4.17). Let H be the Hamiltonian implementing the time evolution σt = ⊗g σt,g
in this representation. Consider a function f : GK → N with f (g) = 1 for g the class of the unknot and f (g) ≥ 2 for all other
g ∈ GK . Also assume that f satisfies

g∈GK

f (g)−1 <∞. (4.21)

Then the operator e−βH is Trτ -class if and only if β > 1 and the partition function of the system is given by

Zτ (β) =

g∈GK

ζnρ (f (g)β) <∞, (4.22)

where ζm(s) is the Riemann zeta function with the Euler factors of primes p with p|m removed.

Proof. For ⊗g∈GK Bg represented on H = ⊗g Hg by the representation ⊗g πu,g , the time evolution σt = ⊗g σt,g is
implemented on H by a Hamiltonian of the form H = ⊗g(1 ⊗ Hg), where Hgϵm = f (g) logm ϵm, on the standard
orthonormal basis {ϵm} of ℓ2(Nρ). Definition 4.25 extends to the case of a tensor product H = ⊗g Hg with each Hg =

L2(π, τ )⊗ ℓ2(Nρ) and a Hamiltonian of the form H = ⊗g(1⊗ Hg). For such an operator we write in shorthand notation

e−βH = ⊗g(1⊗ e−βHg ). (4.23)

The trace is then given by

Trτ (e−βH) =

g

Trτ (1⊗ e−βHg ) =

g

Tr(e−βHg ). (4.24)

On a given Hg the Hamiltonian Hg has

Tr(e−βHg ) =

n∈Nρ

n−f (g) β ,
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which converges for β > f (g)−1, since the sum is less than or equal to


n≥1 n
−f (g) β , which converges for β > f (g)−1 to

ζ (f (g)β)with ζ (s) the Riemann zeta function. Since the summation is only on Nρ instead of N, the sum of the series is equal
to 

n∈Nρ

n−f (g) β = ζnρ (f (g)β),

where

ζm(s) =

p|̸m

(1− p−s)−1 =


n∈N : (n,m)=1

n−s.

Thus, the operator 1⊗e−βHg is Trτ -class forβ > f (g)−1 and satisfies Trτ (1⊗e−βHg ) = ζ (f (g)β). Thus, the partition function
of the system is given by the infinite product

Trτ (e−βH) =

g

Trτ (1⊗ e−βHg ) =

g

ζnρ (f (g)β).

The convergence of this depends on each of the factors 1 ⊗ e−βHg being Trτ -class and on the convergence of the infinite
product


g ζnρ (f (g)β) in the range of β where the Trτ -class condition is satisfied. Since f (g) ≥ 1 for all g ∈ GK , and each

1⊗ e−βHg is Trτ -class for β > f (g)−1, then all these operators are simultaneously Trτ -class in the range β > 1. In particular,
sinceming f (g) = 1, then β > 1 is exactly the rangewhere Trτ -class condition holds.We then use the fact that the Riemann
zeta function satisfies

ζ (s) =

n≥1

n−s = 1+

n≥2

n−s ≤ 1+

∞

2

dx
x
= 1−

1
2(s− 1)

≤ 1.

This gives, for f (g) ≥ 1 and β > 1,

0 < ζnρ (f (g)β) ≤ ζ (f (g)β) ≤ 1−
1

2(f (g)β − 1)
.

Thus, the convergence of the infinite product


g ζ (f (g)β) is controlled by the convergence of the infinite product
g


1−

1
2(f (g)β − 1)


.

The convergence assumption (4.21) implies the convergence of


g(f (g)β − 1)−1. Recall that, for aℓ a sequence of complex
numbers with


ℓ |aℓ|

2 < ∞ the convergence of the infinite product

ℓ(1 + aℓ) is equivalent to the convergence of the

series


ℓ aℓ. Since f (g) ≥ 2 for all g except the unknot, forβ > 1we also have (f (g)β−1)−1 < 1 for all g except the unknot.
Thus, the convergence of


g(f (g)β − 1)−1 also implies the convergence of


g(f (g)β − 1)−2. Thus the convergence of the

series


g(f (g)β − 1)−1 is in fact equivalent to the convergence of the product


g(1 −
1
2 (f (g)β − 1)−1). Thus, under the

convergence assumption (4.21), we obtain that the operator e−βH of (4.23) is Trτ -class in the range β > 1 and the partition
function satisfies (4.22). �

We have seen in Proposition 4.23 how to obtain KMSβ states ψβ = τ ⊗ ϕβ on the algebra Bg = C∗r (π̂ρ)oα Nρ from
KMS states ϕβ of the Bost–Connes system and the von Neumann trace τ . We focus now in particular on the extremal low
temperature KMS states of the Bost–Connes system, ϕβ = ϕβ,u of (1.7), with u ∈ Ẑ∗. Let ϕβ,u,g denote an extremal low
temperature KMS state for the Bost–Connes system with Hamiltonian Hg = f (g)HBC , where HBC is the restriction to ℓ2(Nρ)
of the usual Bost–Connes Hamiltonian, acting on ℓ2(N) by HBCϵm = log(m)ϵm. Letψβ,u,g = τ ⊗ ϕβ,u,g be the corresponding
KMSβ state on the system (Bg , σt,g).

Given a function F : GK → B(H), for a fixed Hilbert space H , consider the operator⊗g∈GK F(g) acting on the product
⊗g∈GK Hg with Hg = H , for all g ∈ GK . In particular, we can write elements in the algebra ⊗g∈GK Bg in the form of
functions

F : GK → B(L2(π, τ )⊗ ℓ2(Nρ)).
Then Proposition 4.26 implies that we obtain a KMSβ state on the tensor product system (⊗g∈GK Bg , σt = ⊗g σt,g) as
follows.

Corollary 4.27. Let f : GK → N be a function satisfying the same hypotheses as in Proposition 4.26. Then Ψβ,u,f = ⊗g ψβ,u,g is
a KMSβ state on the crossed product system (⊗g∈GK Bg , σt = ⊗g σt,g). It is explicitly given in the Gibbs form

Ψβ,u,f (F) =
Trτ (e−β f HBC F)

Zτ (β)
, (4.25)

with Zτ (β) as in (4.22).
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Proof. As in Proposition 4.26, we have

Trτ (e−β f HBC F) =

g

Trτ ((1⊗ e−βHg )F(g)).

Moreover, for an element F(g) = 1 ⊗ ag , with ag ∈ ABC represented via the representation πu, the above is equal to
g Tr(e

−βHgπu(ag)) and one obtains
g

Tr(e−βHgπu(ag))
ζ (f (g)β)

=


g

ϕβ,u,g(ag). �

4.8.2. Bernoulli crossed product
As above, given a function F : GK → B(H), we consider the operator⊗g∈GK F(g) on⊗g∈GK Hg , with Hg = H , for all

g ∈ GK . Consider the action of the group GK on the set of functions F : GK → B(H) given by

αh(F)(g) := F(h−1g), for h, g ∈ GK . (4.26)

As above, we write elements in the algebra⊗g∈GK Bg in this way.

Proposition 4.28. The time evolution determined by (4.19) on the algebra ⊗g Bg extends to the crossed product algebra
(⊗g Bg) o GK by setting

σt(Uh) = eit(f−αh(f ))HBCUh, (4.27)

where Uh, for h ∈ GK are the unitaries implementing the crossed product action αh(F) = UhFU∗h for F = ⊗g F(g) ∈ ⊗g Bg .

Proof. Let H : GK → B(H) be the function H(g) = 1 ⊗ Hg = 1 ⊗ f (g)HBC , with HBC ∈ B(ℓ2(Nρ)) the Bost–Connes
Hamiltonian. We then write the time evolution on functions F : GK → B(H) as

σt(F)(g) = eitH(g)F(g)e−itH(g). (4.28)

For h ∈ GK , let Uh be the unitary operator on⊗g∈GK Hg , with Hg = L2(π, τ )⊗ ℓ2(Nρ), which acts as (Uhξ)g = ξhg , where
we write elements of⊗g∈GK Hg as ξ = ⊗g ξg , with ξg ∈ L2(π, τ ) ⊗ ℓ2(Nρ). We then have UhFU∗h ξ = αh(F)ξ . This action
satisfies

Uhσt(F)U∗h = UheitHFe−itHU∗h = αh(eitHFe−itH),

where (αh(eitHFe−itH)ξ)g = eitf (h
−1g)HBC F(h−1g)e−itf (h

−1g)HBC ξg . On the other hand, we have

σt(UhFU∗h ) = eitHUhFU∗h e
−itH
= eitHαh(F)e−itH,

where (eitHαh(F)e−itHξ)g = eitf (g)HBC F(h−1g)e−itf (g)HBC ξg . This implies that the action of GK transforms the time evolution
as σh,t := αh(σt)with

σh,t(F)(g) = eitαh(H)(g)F(g)e−itαh(H)(g). (4.29)

Moreover, we obtain (4.27), since

σt(Uh) = eitHUhe−itH = eitHe−itαh(H)Uh = eitf HBC e−itαh(f )HBCUh.

This determines how the time evolution extends to the crossed product (⊗g Bg) o GK . �

Let ψβ,g denote a KMSβ state, obtained as in Remark 4.24, for the system (Bg , σt,g), where σt,g is the time evolution
(4.19) with Hamiltonian H(g) = f (g)HBC , and the algebra is Bg = C∗r (π̂ρ)oα Nρ as above. We denote by Ψβ,u,f the KMSβ
state on the system (⊗g Bg ,⊗g σt,g) determined by the ψβ,u,g as in Corollary 4.27.

Lemma 4.29. Under the action αh of h ∈ GK , the KMSβ state Ψβ,u,f of Corollary 4.27 satisfies

Ψβ,u,f ◦ αh = Ψβ,u,αh−1 (f )
. (4.30)

Proof. We have

Ψβ,u,f (αh(F)) = Ψβ,u,f (UhFU∗h ) = Ψβ,u,f (σ−iβ(U
∗

h )UhF) = Ψβ,u,f (e−β(αh−1 (f )−f )HBC F).
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On the other hand, we also have

Ψβ,u,αh−1 (f )
(F) =

Trτ (e−βαh−1 (f )HBC F)
Zτ (β)

=
Trτ (e−β f HBC e−β(αh−1 (f )−f )HBC F)

Zτ (β)
= Ψβ,u,f (e−β(αh−1 (f )−f )HBC F). �

4.9. Knot invariants and the function f (g)

We now show how to construct a function f : GK → N that satisfies the hypotheses of Proposition 4.26 and
Corollary 4.27, using knot invariants. As in Section 2.5, we write elements of GK in terms of primary decomposition. Let
K ⊖ K ′ = (a1K1# · · ·#ajKj) ⊖ (b1K ′1# · · ·#bℓK

′

ℓ) be an element of GK with primary decompositions K = a1K1# · · ·#amKm
and K ′ = b1K ′1# · · ·#bℓK

′

ℓ, where the Ki and K ′j are all distinct prime knots, with multiplicities ai and bj. Since we eliminate
all possible common factors from the primary decomposition of K and K ′, this description of elements g = K ⊖ K ′ ∈ GK is
unique.We also use, as in Section 2.5, the notationω(K) for the number of distinct prime knots in its primary decomposition
of a knot K . It is then convenient to consider knot invariants that are additive under connected sums, and for which there is
a good estimate of the rate of growth of the multiplicities.

To this purpose, we proceed as in Section 2.5, and we restrict from the Grothendieck group GK of the semigroup (K,#)
of all knots with the connected sum operation, to the subsemigroup (Ka,#) of alternating knots and its Grothendieck group
GK,a, so that we can again use the genus and the crossing numbers as invariants. This means that, for the purpose of this
section, we will be restricting to the Bernoulli crossed product

(⊗g∈GK,a Bg) o GK,a, (4.31)

where, as before, Bg = C∗r (π̂ρ)oα Nρ .

Proposition 4.30. For K ⊖ K ′ ∈ GK,a, represented through its primary decomposition K ⊖ K ′ = (a1K1# · · ·#ajKj) ⊖
(b1K ′1# · · ·#bℓK

′

ℓ) with no common prime factors, the function

f (K ⊖ K ′) = q
⌈β+⌉


m
i=1

ai(Cr(Ki)+g(Ki))+
ℓ

j=1
bj(Cr(K ′j )+g(K

′
j ))


, (4.32)

with ⌈β+⌉ the smallest integer greater than or equal to the value β+ of Theorem 2.3, satisfies the hypotheses of
Proposition 4.26 and Corollary 4.27.

Proof. The function f (g) takes values in N, since q ≥ 2 is a fixed integer, and it takes value f (g) = 1 only when g
is the unknot, since only in that case the exponent is zero. Thus, we only need to check that the convergence property

g f (g)
−1 <∞ is satisfied. By Theorem 2.3 we know that

K∈Ka

f (K)−1 <∞,

where f (K) = q⌈β+⌉(Cr(K)+g(K)), while by (2.19) and Proposition 2.15 we see that also
K⊖K ′∈GK,a

f (K ⊖ K ′)−1 <∞. �

In particular, we can then seemore explicitly the action f → αh−1(f ) that determines the transformation property of the
KMSβ state Ψβ,u,f as in Lemma 4.29.

Corollary 4.31. For h = ±K in Pa, the action f (g) → αh−1(f )(g) raises or lowers by one the multiplicity of the prime factor K
in the primary decomposition of g = K ⊖ K ′ = (a1K1# · · ·#ajKj)⊖ (b1K ′1# · · ·#bℓK

′

ℓ).

Proof. It suffices to see the effect of the action of an element h ∈ GK,a given by a single prime knot K ∈ Pa with either a
positive or a negative exponent. This gives either

αK (f )(K1 ⊖ K2) = f (K1#K ⊖ K2),

or, respectively,

α−K (f )(K1 ⊖ K2) = f (K1 ⊖ K2#K).

Since the definition of the function f depends on the primary decomposition of K1⊖ K2 without common factors, the result
depends onwhether K is a prime factor of either K1 or K2. By analogy to the case of integers, for a knot K , we denote by (Ki, K)
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the connected sum of all the prime factors (with multiplicity) common to Ki and K and we denote by Ki/(Ki, K) the result of
removing (Ki, K) from the primary decomposition of Ki. Since K is a single prime knot, (Ki, K) = K if it is non-trivial, that
is, if K |Ki and it is the trivial knot otherwise. Similarly Ki/(Ki, K) = Ki/K in the first case and Ki/(Ki, K) = Ki in the second.
Note that, if K1 ⊖ K2 is represented in a primary decomposition without common factors, then K can divide either K1 or K2
or neither, but it cannot divide both. Thus, the result of α±K (f )(K1 ⊖ K2) is simply to lower or rise by one the power of K in
the primary decomposition. �

Remark 4.32. It would be interesting to see if the construction presented in this paper can be extended to incorporate
other, more sophisticated invariants of knots. For example, the type of (twisted) L2-Alexander-Conway invariants of knots
considered in [64,65] is naturally defined in terms of the von Neumann algebra N (πK ) of the knot group and appear to be
suitable for the quantum statistical mechanical setting considered here.
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