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a b s t r a c t

Wigner rotations are transformations that affect spinning particles and cause the observ-
able phenomenon of Thomas precession. Here we study these rotations for arbitrary sym-
metry groupswith a semi-direct product structure. In particular we establish a general link
betweenWigner rotations and Thomas precession by relating the latter to the holonomies
of a certain Berry connection on amomentum orbit. Along the way we derive a formula for
infinitesimal, Lie-algebraic transformations of one-particle states.
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1. Introduction

Our understanding of particle physics relies to a great extent on the properties of the Poincaré group— the isometry group
of Minkowski space–time, comprising Lorentz transformations and space–time translations. In that context, irreducible
unitary representations of Poincaré are interpreted as relativistic particles. They can be classified according to their mass
and spin, as shown long ago by Wigner [1]. However, recent insights in high-energy physics and general relativity hint
that the Poincaré group is not that fundamental after all. Indeed, about fifty years ago, Bondi, van der Burg, Metzner and
Sachs found that Poincaré symmetry is obsolete in space–times with a gravitational field, and gets enhanced to an infinite-
dimensional asymptotic symmetry now known as the BMS group [2]. Shortly thereafter, it was suggested that one could
define a corresponding generalized notion of particles, and their classification was performed by McCarthy [3]. The last few
years have witnessed a resurgence of interest in BMS symmetry, as it was argued that it can be extended even further [4],
that it reproduces various soft theorems in quantum field theory [5], and that it might account for black hole entropy [6].

The structure of the BMS group is similar to that of Poincaré: it is a semi-direct product containing a non-Abelian
group of Lorentz transformations or ‘superrotations’ acting on a vector group of ‘supertranslations’. This constrains all
unitary representations of BMS [7,8], which in turn constrains all quantum-mechanical systems with BMS symmetry. It
is therefore of interest to study how various group-theoretic observables change when enhancing Poincaré to BMS. The
present work originates from an attempt to describe one such observable, namely Thomas precession [9], in the BMS context.
While investigating this topic, it turned out that many of the required tools were not readily available in the literature.
Indeed, it is widely known that Thomas precession follows from the presence ofWigner rotations in the transformation law
of one-particle states, but most references on this subject in the physics literature only treat it for the very special case
of Poincaré symmetry; see e.g. [10, sec. 2.5], [11, sec. 11.8] or the papers [12–14]. On the other hand, the mathematics
literature mostly seems to focus on abstract structures rather than the concrete computations needed by physicists; see e.g.
[15, sec. V.5] or [16]. (Wigner rotations are also responsible for entanglement between spin and momentum [17], but we
will not investigate this here.)

The purpose of this paper is to fill this gap and describe, in full generality, various aspects of Wigner rotations in unitary
representations of semi-direct products. In short, the question we wish to address is the following: given any semi-direct
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product group, are the corresponding particles subject to Thomas precession? And if yes, what is the precession rate? We
shall formulate the answer in terms of a Berry connection (4.22) related to the Maurer–Cartan form of the symmetry group.
Along the way we will derive Eq. (3.10) for unitary Lie algebra representations of semi-direct sums; surprisingly, we were
unable to find this formula in the literature, sowehope it can beuseful in a broader context than that of thiswork. Throughout
the paper,we illustrate our resultswith the Poincaré group (which does display Thomas precession) and the Bargmann group
(which does not). The BMS group will be treated in a separate publication [18].

The plan is as follows. We start in Section 2 by recalling the Wigner–Mackey construction of irreducible unitary
representations of semi-direct products, with particular emphasis on Wigner rotations and their cohomological properties;
we also illustrate this method with massive representations of the Poincaré group (relativistic particles) and the Bargmann
group (non-relativistic particles). Section 3 is devoted to the Lie algebra representations obtained by differentiating the
Wigner–Mackey formula; these are then used in Section 4 to describe Thomas precession as a Berry phase in a Hilbert space
with a continuous energy spectrum. Finally, in Section 5 we apply these results to the Poincaré and Bargmann groups and
briefly discuss other potential applications.

A disclaimermay be called for before we start. The present work was originally meant as a technical appendix to [18], but
it eventually turned out that the resulting structureswere interesting enough by themselves (at least in the author’s opinion)
to deserve a paper of their own. We hope that the reader will not be put off by the abstractness of our presentation. This
being said, note that our approach will not be mathematically rigorous, so all necessary smoothness or regularity conditions
are tacitly assumed to hold.

2. Wigner rotations

Here we review the description of one-particle states as induced representations of semi-direct products, based on the
notions of orbits and little groups. For spinning particles, this involves Wigner rotations that we describe in detail. We refer
e.g. to [19, chap. 16–17] or [20, chap. 4] for an introduction to these matters with a milder learning curve.

2.1. Orbits, little groups and standard boosts

Consider a Lie group G, generally non-Abelian, whose elements we write as f , g , etc. Let also A be a vector space with
elements α, β , etc.; one can think of A as an Abelian group with respect to vector addition. Finally, let σ be a representation
of G in A, so that for each f ∈ Gwe have a linear operator σf acting on A. Then the semi-direct product of G and A is the group
G ⋉ Awhose elements are pairs (f , α), with a group operation

(f , α) · (g, β) =
(
fg, α + σf β

)
. (2.1)

Many interesting groups in physics are semi-direct products. Examples include the Poincaré groups, the Galilei groups (and
their central extensions, the Bargmann groups), as well as the BMS groups. In all these cases, the space A is interpreted as a
group of translations while G consists of rotations or boosts that act on A.

Given a semi-direct product G⋉ A, let A∗ be the dual vector space of A. In keeping with the interpretation of A as a group
of translations, we shall think of A∗ as ‘momentum space’ and denote its elements as p, q, etc. Each momentum p is a linear
form on A, ⟨p, ·⟩ : A → R : α ↦→ ⟨p, α⟩. The action σ of G on A gives rise to its dual action on momenta: for each f ∈ G and
any p ∈ A∗, we define f · p ∈ A∗ by

⟨f · p, α⟩ ≡ ⟨p, σf−1α⟩ ∀α ∈ A. (2.2)

Choosing a momentum vector p, we define its orbit under G as

Op ≡
{
f · p

⏐⏐ f ∈ G
}
. (2.3)

It is the set of all momenta that can be reached by acting on pwith G. Not all elements of G act non-trivially on p; those that
leave it fixed span the little group of p,

Gp =
{
f ∈ G

⏐⏐ f · p = p
}
. (2.4)

For the Poincaré group, the dot action given by (2.2) is just the transformation law of energy–momentum vectors under the
Lorentz group and each orbit (2.3) is a hyperboloid specified by an equation of the type qµqµ = −M2 [1]. For the BMS3
group, the action of G on (super)momenta is that of (chiral) conformal transformations on CFT stress tensors and each orbit
is a coadjoint orbit of the Virasoro group [7,8].

Let us now pick one particular momentum orbit Op. By construction, the action of G on the orbit is transitive, so Op is
diffeomorphic to the quotient space G/Gp and for any q ∈ Op we can find a group element gq such that

gq · p = q. (2.5)
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We shall assume that the gq’s are chosen so as to depend smoothly on q over the entire orbit,1 and refer to them as a family
of standard boosts. They can be seen as a map

g : Op → G : q ↦→ gq (2.6)

which is in fact a section of the Gp-bundle G → Op by virtue of Eq. (2.5). Note that standard boosts are not uniquely defined:
given some gq’s satisfying (2.5), we can always multiply them from the right by any family of little group elements hq ∈ Gp
without affecting the requirement (2.5). One can think of the mapping

gq ↦→ gqhq (2.7)

as a gauge transformation on the orbit, with gauge group Gp.

2.2. Wigner rotations and one-particle states

The notions of orbits, little groups and standard boosts are at the core of the irreducible representations of semi-direct
products built by Wigner and Mackey [1,21]. The construction goes as follows: pick an orbit Op and let S be an irreducible
unitary representation of Gp. The choice of Op will eventually determine the allowed momenta of one-particle states (in
Poincaré it fixes the value of the mass parameter), while S determines their spin. We shall refer to the carrier space of S as
the ‘spin space’ and denote it by h. Then any wavefunction Ψ representing a one-particle state is a map

Ψ : Op → h : q ↦→ Ψ (q). (2.8)

One can think of it as a wavefunction in the momentum picture of quantum mechanics. All wavefunctions are required to
be square-integrable and their scalar products read⟨

Φ
⏐⏐Ψ ⟩

=

∫
Op

dµ(q)
(
Φ(q)

⏐⏐Ψ (q)
)

(2.9)

where µ is a measure on Op while (·|·) denotes the scalar product in the spin space h. Thus the Hilbert space of one-particle
states is H = L2(Op) ⊗ h. The choice of µ is mostly irrelevant, but for simplicity we shall assume that it is invariant under
G so that dµ(f · q) = dµ(q) for any f ∈ G.2 The action U of G ⋉ A on any wavefunction (2.8) is(

U[(f , α)] · Ψ
)
(q) = ei⟨q,α⟩S[g−1

q fgf−1·q] · Ψ (f −1
· q) (2.10)

where the gq’s are standard boosts. One can show that U is an irreducible, unitary representation of G⋉ A, and also that any
such representation takes the form (2.10) for some unique choice ofOp and S [23]. In this sense, the one-particle states of any
semi-direct product are always uniquely labelled by their ‘mass’ Op and ‘spin’ S. In what follows we refer to this statement
as theWigner–Mackey theorem.

In Eq. (2.10), the exponential ei⟨q,α⟩ represents the usual action of translations on wavefunctions in momentum space,
while the argument f −1

· q of Ψ on the right-hand side accounts for the transformation law of scalar wavefunctions under
boosts and rotations. But the term involving S is more intriguing: it is aWigner rotation3

Wq[f ] ≡ S
[
g−1
q f gf−1·q

]
(2.11)

that contains a carefully crafted combination of group elements, designed in just the right way to belong to the little group
(2.4). Indeed, using the defining property (2.5) of standard boosts, one finds that the combination leaves p invariant:

g−1
q fgf−1·q · p = g−1

q f · f −1
· q = g−1

q · q = p.

Intuitively, the Wigner rotation operator (2.11) represents the action of the transformation f on the spin of a particle with
momentum f −1

· q.

2.3. Gauge invariance and cohomology

Wigner rotations satisfy several important properties. First, they are not invariant under gauge transformations (2.7),
since mapping gq on gqhq transforms the operator (2.11) as

Wq[f ] ↦→ S[hq]
−1

· Wq[f ] · S[hf−1·q]. (2.12)

1 This assumption is tantamount to the triviality of the Gp-bundle G → Op . It is not satisfied in general, but it will hold for all massive Poincaré or
Bargmann orbits considered below.

2 This assumption can be relaxed by allowing µ to be quasi-invariant under G (see e.g. [22]), but this complication affects the resulting representations
only mildly so we do not include it here.

3 TheWigner rotations introduced here should not be confusedwith the ‘Wigner rotationmatrices’ or ‘Wigner D-matrices’ appearing in representations
of SU(2), as these notions are completely unrelated.
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Thus, different choices of standard boosts give different Wigner rotations, which is to say that the representation (2.1)
depends on the gq’s. Nevertheless, two such representations with identical orbit and spin but different standard boosts
are unitarily equivalent, as the change (2.12) leaves the representation (2.10) invariant provided one rewrites it in terms of
S[hq]Ψ (q) rather than Ψ (q). In this sense the choice of gq’s is merely a gauge choice.

The gauge-dependence ofWigner rotations implies that they cannot be observed directly in any experiment. This naively
suggests that they may be removed altogether, i.e. that the transformation (2.10) could just as well be written without
explicit reference to S. But this cannot be true, since it would lead to the absurd conclusion that any particle with spin S is
equivalent to a collection of dim(S) scalar particles. So in fact, Wigner rotations cannot be bluntly removed, and the problem
becomes to extract gauge-invariant observables out of gauge-dependentWigner rotations. How can that be done? As it turns
out, the answer will be provided by Thomas precession.

Wigner rotations are also amenable to cohomological considerations. Indeed, one can think of them as maps that send
a point q ∈ Op on an operator Wq[f ] ∈ End(h) given by Eq. (2.11). If we denote the space of all such (smooth) maps by
C∞

(
Op, End(h)

)
, then Wigner rotations define an assignment

W : G → C∞
(
Op, End(h)

)
: f ↦→ W[f ] (2.13)

where W[f ] is an End(h)-valued function on Op whose value at q is Wq[f ]. Now note that, for f , g ∈ G, the definition (2.11)
implies4

Wq[fg] = Wq[f ] · Wf−1·q[g]. (2.14)

In cohomological terms, this states that the map (2.13) is a one-cocycle on G [15, sec. V.5]. This is most manifest when the
spin space h = C is one-dimensional; then any Wigner rotation is an exponential

Wq[f ] = eiWq[f ] (2.15)

with a real phaseWq[f ], and Eq. (2.14) means thatWq[fg] = Wq[f ]+Wf−1·q[g]. HereW[f ] is a function that maps q ∈ Op on
the numberWq[f ]. The groupG acts on any such functionφ as

(
f ·φ

)
(q) = φ(f −1

·q), so one canwriteW[fg] = W[f ]+f ·W[g],
which precisely says that the map W : f ↦→ W[f ] is a one-cocycle on G. Furthermore, if this cocycle is trivial so that
Wq[f ] = φ(f −1

· q) − φ(q) for some function φ, then the representation (2.10) can be rewritten as(
U[(f , α)] · eiφΨ

)
(q) = ei⟨q,α⟩

(
eiφΨ

)
(f −1

· q),

which is to say that the exponential (2.15) can be absorbed by a redefinition of Ψ . This also applies when the spin space is
not one-dimensional: in that case one would say that Wigner rotations are cohomologically trivial if they can be written as
Wq[f ] = Ω(q)−1

· Ω(f −1
· q) for some function Ω on Op valued in GL(h). Such Wigner rotations can be removed from the

representation (2.10) by expressing it in terms ofΩ · Ψ rather than Ψ .
Thus, representations ofG⋉Awith cohomologically trivialWigner rotations are scalar representations in disguise. Butwe

stress that, by construction, the actual Wigner rotation (2.11) is never trivial (at least as long as S is non-trivial). Indeed, the
whole point of theWigner–Mackey construction (2.10) is that different spins automatically specify inequivalent irreducible
representations; if the Wigner rotations (2.11) were trivial for some irreducible choice of S , then the corresponding
representations would be reducible, which would contradict theWigner–Mackey theorem. In a way, the theorem is a recipe
for building the only possible non-trivial cocycles of this type: all of them are given by (2.11) for some choice of spin. Note
also that in cohomological language, Eq. (2.12) states thatWigner rotations change by a coboundarywhen changing standard
boosts; in particular, the cohomology class of Wigner rotations is invariant under the gauge transformations (2.7). So group
cohomology provides an answer to the question raised above, namely whether the gauge-dependence of Wigner rotations
allows us to remove them altogether: as long as S is not the identity, the combination (2.11) automatically has a non-trivial
cohomology class and cannot be removed from the transformation law (2.10). Since gauge transformations (2.12) change
Wigner rotations only by a coboundary, gauge-invariant observables are quantities that only depend on that cohomology
class. In Section 4 we shall argue that Thomas precession provides such gauge-invariant observables.

2.4. Example: Poincaré and Bargmann

Here we illustrate the construction of the previous pages with the Poincaré and Bargmann groups. We focus on massive
representations and work in arbitrary space–time dimension D+1. We refer again to [20, chap. 4] for a gentler introduction
to these matters.

4 Abstractly, (2.14) says that Wigner rotations provide a representation of the action groupoid G ⋉ Op .
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Poincaré. The (connected) Poincaré group is the isometry group of (D + 1)-dimensional Minkowski space–time; it is the
semi-direct product of the (proper, orthochronous) Lorentz group SO(D, 1)↑ with the groupRD+1 of space–time translations:

ISO(D, 1)↑ = SO(D, 1)↑ ⋉ RD+1.

Since this is a semi-direct product, its irreducible unitary representations are given by the Wigner–Mackey method and
are classified by orbits of energy–momenta under Lorentz transformations. Each orbit consists of vectors q such that
qµqµ = −M2 for some mass squared M2. We focus on a massive particle with positive energy, for which every energy–
momentum q on the orbit is a column vector

q =

(√
M2 + q2

q

)
where q ∈ RD is arbitrary. In the rest frame, the energy–momentum of the particle is just p = (M, 0)t . The corresponding
little group is SO(D), consisting of spatial rotations, and the orbit is a hyperbolic space SO(D, 1)↑/SO(D) diffeomorphic to RD.
We choose a (generally projective) representation S of SO(D) to specify the particle’s spin. At this point, the only ingredient
still lacking for (2.10) is a family of standard boosts. A convenient choice mapping a particle at rest on a particle with
momentum q is

gq =

⎛⎝√
1 + q2/M2 qt/M

q/M I +
(√

1 + q2/M2 − 1
)qqt

q2

⎞⎠ . (2.16)

Here it is understood that q is a column vector so that qqt is a symmetric D × D matrix (with entries qiqj), while q2
= qtq

and I is the D-dimensional identity matrix.
The data just described is enough to explicitly write down the Wigner–Mackey representation (2.10) for the states of a

massive relativistic particle. In keeping with the subject of this paper, we will not describe any of this in detail, except for
the Wigner rotations (2.11). Specifically, let the group element f coincide with a standard boost gk; using (2.16) and letting
x ≡ q/M , y ≡ k/M , one can show (after a lengthy but straightforward calculation) that the Wigner rotation Wq[gk] is
given by

g−1
q gkgg−1

k ·q =

⎛⎜⎝1 0t

0 I −

xyt − yxt +
(√

1 + x2
√
1 + y2 − 1

)( xxt
x2 +

yyt

y2 − 2 x(x·y)yt

x2y2

)
√
1 + x2

√
1 + y2 − x · y + 1

⎞⎟⎠ . (2.17)

This is, as it should, a rotation matrix. In the language of Lorentz symmetry, it embodies the fact that the composition of
non-collinear pure boosts does not results in yet another pure boost, but rather contains an extra rotation. For a particle with
spin S , this rotation becomes an operator Wq[gk] = S[g−1

q gkgg−1
k ·q] acting on the spin space. This geometric phenomenon is

ultimately responsible for Thomas precession, as we shall see in Sections 4 and 5. For further details on the computation of
Wigner rotations, we refer e.g. to [12].5

Bargmann. We now describe the non-relativistic counterpart of the previous example. In D spatial dimensions, the
(connected) Galilei group is a nested semi-direct product

Γ (D) ≡
(
SO(D) ⋉ RD) ⋉ (

RD
× R

)
(2.18)

whose elements are quadruples (f , v,α, t) where f ∈ O(D) is a rotation matrix, v ∈ RD is a velocity vector representing a
boost, and (α, t) ∈ RD

× R is a space–time translation. The group operation is

(f , v,α, s) · (g,w,β, t) =
(
f · g, v + f · w,α + f · β + vt, s + t

)
(2.19)

where f · g denotes matrix multiplication while f ·w and f · β involve the action of a matrix on a column vector. In contrast
to Poincaré, space and time, as well as rotations and boosts, live on very different footings. To describe massive particles
one needs to add a central extension to (2.18); thus the Bargmann group is Γ̂ (D) = Γ (D) × R, whose elements are 5-tuples
(f , v,α, t, λ) with λ ∈ R, subject to the group operation

(f , v,α, s, λ) · (g,w,β, t, µ) =

(
(f , v,α, s) · (g,w,β, t), λ+ µ+ v · f · β +

v2t
2

)
where the first entry on the right-hand side is a quadruple given by (2.19) while v · β = viβ i denotes the Euclidean scalar
product and v2 = vivi.

Just as Poincaré, Bargmann is a semi-direct product with an Abelian normal subgroup of space–time translations, so its
irreducible unitary representations are specified by orbits of energy–momentum–mass vectors under rotations and boosts.

5 Wigner rotations also exist formassless spinning particles: see e.g. [24].
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The classification is somewhat harder than in the relativistic case due to the intricate group structure; see e.g. [25] or [20,
sec. 4.4.2]. Here we focus on massive particles, for which the spatial momentum q and mass M determine the energy
according to E = q2/2M . In the rest frame, q = 0. The corresponding little group SO(D) consists of rotations and the orbit is
(SO(D) ⋉ RD)/SO(D) ∼= RD; spin is a representation S of SO(D). As for boosts, they are much simpler than in the relativistic
case: to map a particle at rest on a particle with momentum q, just apply a boost with velocity v = q/M:

gq = (I, q/M) ∈ SO(D) ⋉ RD. (2.20)

At this point we have all the information needed to write the non-relativistic version of theWigner–Mackey formula (2.10).
As beforewe only focus onWigner rotations. In the present casewe let f ∈ SO(D) be an arbitrary rotation, v ∈ RD an arbitrary
boost, and investigate the corresponding combination (2.11) at momentum q:

g−1
q · (f , v) · g(f ,v)−1·q = g−1

q · (f , v) · gf−1·q−Mf−1·v
(2.19)
= (f , 0).

The last equality is a remarkable fact: it says that Wigner rotations project (f , v) on the rotation f alone, for any momentum
of a non-relativistic particle. It is a radically different conclusion than the one of the relativistic case. In particular, the non-
relativistic Wigner rotations associated with pure boosts always vanish,

g−1
q · gk · gg−1

k ·q = (I, 0), (2.21)

in contrast to the non-trivial relativistic rotation (2.17). In Sections 4 and 5 we shall relate these statements to Thomas
precession and Berry phases on momentum orbits.

3. Infinitesimal Wigner rotations

As a preliminary step towards Berry phases and Thomas precession, in this section we differentiate the Wigner–Mackey
formula (2.10) to obtain unitary representations of the Lie algebra of G ⋉ A. Surprisingly, we were unable to find this
computation in the literature. For our purposes, the most important result will be a Lie-algebraic analogue of the Wigner
rotation (2.11), which we will study in detail.

3.1. Differentiating Wigner–Mackey

The Lie algebra of G⋉ A is a semi-direct sum g A Awhere g is the Lie algebra of G, and its elements are pairs (X, α) where
X ∈ g and α ∈ A.6 We wish to differentiate the group representation (2.10); explicitly, for any (X, α) ∈ g A A we define

u[(X, α)] ≡
d
dt

⏐⏐⏐⏐
t=0

U[(etX , tα)] (3.1)

where eX ∈ G is the exponential of X ∈ g. Since U is unitary, u[(X, α)] is an anti-Hermitian operator acting on the Hilbert
space of h-valued wavefunctions on Op. To obtain u we need to differentiate Eq. (2.10) with respect to f and α; we do this
by treating one by one the three terms on the right-hand side of that formula.

Scalar contribution. First, the differential of the exponential term is just ∂t |0ei⟨q,tα⟩
= i⟨q, α⟩. Secondly, let us take f = etX

and differentiate the term Ψ (f −1
· q):

d
dt

⏐⏐⏐⏐
0
Ψ (e−tX

· q) = dΨq

( d
dt

⏐⏐⏐⏐
0
(e−tX

· q)
)
. (3.2)

Here we are assuming that Ψ is differentiable and write dΨq for its differential (pushforward) at q ∈ Op.7 The argument
of dΨq is a vector tangent to Op at q. In fact, it is the fundamental vector field ξX generating the action of G on Op, evaluated
at q8:

(ξX )q ≡
d
dt

⏐⏐⏐⏐
t=0

(
etX · q

)
. (3.3)

With this notation we can rewrite (3.2) as ∂t |0Ψ (e−tX
· q) = −dΨq(ξX )q = −

(
ξX ·Ψ

)
(q). All in all, the contribution to (3.1) of

the spin-independent terms of (2.10) is

d
dt

⏐⏐⏐⏐
0

[
ei⟨q,tα⟩Ψ (e−tX

· q)
]

= i⟨q, α⟩Ψ (q) −
(
ξX · Ψ

)
(q). (3.4)

In a scalar representation (no spin), this would be the end of the story.

6 Since A is a vector group, its Lie algebra is the vector space A endowed with a trivial Lie bracket.
7 The set of smooth functions is dense in L2(Op), so this assumption entails no loss of generality.
8 We are defining ξX with an exponential path etX , but in fact any curve γ (t) in G such that γ (0) = e and γ̇ (0) = X would do the job; this is important

for some of the computations below.
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At this point a fewwords are in order regarding the fundamental vector field (3.3). For genericX ∈ g and q ∈ Op, the vector
(ξX )q does not vanish because etX does not leave q fixed. However, by construction, any point on the orbit has a non-trivial
stabilizer, which for p is the little group Gp. Accordingly, from now on we refer to the Lie algebra of the little group as the
little algebra, denoted gp; it consists of those Lie algebra elements X ∈ g such that (ξX )p = 0.

Wigner generators. To complete the computation of (3.1), it remains to differentiate the Wigner rotation (2.11). Letting
f = etX as before, we have

d
dt

⏐⏐⏐⏐
0
S
[
g−1
q etXge−tX ·q

]
= s

[
d
dt

⏐⏐⏐⏐
0

(
g−1
q etXgq

)
+

d
dt

⏐⏐⏐⏐
0

(
g−1
q ge−tX ·q

)]
(3.5)

where s is the representation of the little algebra obtained by differentiating S. Note that the two terms in the argument of s
do not separately belong to the little algebra, so one cannot split the right-hand side of (3.5) as a sum of two operators s[...].
The first term is

d
dt

⏐⏐⏐⏐
0
g−1
q etXgq = Adg−1

q
X (3.6)

where Ad is the adjoint representation of G. To deal with the second term, recall that the (left) Maurer–Cartan form on G is
defined as the g-valued one-formΘ given by

Θf ≡ d
(
Lf−1

)
f ∀f ∈ G, (3.7)

where Lf−1 denotes left multiplication by f −1 and d(Lf−1 ) is its differential (pushforward). When G is a matrix group, the
matrix entries define local coordinates on G and the Maurer–Cartan form is typically written asΘ = f −1df ; but for the sake
of generality, let us use the abstract notation (3.7). In these terms the second piece of (3.5) is

d
dt

⏐⏐⏐⏐
0

(
g−1
q ge−tX ·q

)
= −Θgqdgq(ξX )q (3.8)

where ξX is the fundamental vector field (3.3) and dgq is the differential at q ∈ Op of the family of standard boosts (2.6),
which we assume to be smooth. In fact, Eq. (3.8) contains the pullback of the Maurer–Cartan form (3.7) by these standard
boosts: Θgq ◦ dgq = (g∗Θ)q. (This is often written as a pure gauge field configuration g−1

q dgq.) With this notation we can
combine Eqs. (3.8) and (3.6) to write (3.5) as

d
dt

⏐⏐⏐⏐
0
Wq[etX ] = s

[
Adg−1

q
X − (g∗Θ)q(ξX )q

]
≡ wq[X], (3.9)

where we stress once more that the two terms in the argument of s do not separately belong to the little algebra, though
their combination does. From now on we refer to wq[X] as an infinitesimal Wigner rotation, orWigner generator for short.

By now we can evaluate the Lie algebra representation (3.1). Putting together (3.4) and (3.9), the differential of the
transformation law (2.10) at the identity is(

u[(X, α)] · Ψ
)
(q) =

(
i⟨q, α⟩ + s

[
Adg−1

q
X − (g∗Θ)q(ξX )q

])
Ψ (q) − (ξXΨ )(q).

To rewrite this more compactly, we remove the argument q so that

u[(X, α)] · Ψ =

(
i⟨·, α⟩ + s

[
Adg−1X − g∗Θ(ξX )

]
− ξX

)
Ψ (3.10)

where ⟨·, α⟩ is the real function on Op that maps q on the number ⟨q, α⟩.
Formula (3.10) is our first key result. It says that infinitesimal translations act by multiplication on wavefunctions in

momentum space, while rotations or boosts act as translations on a momentum orbit (due to the differential operator ξX )
and rotate wavefunctions in their internal (spin) space with the Wigner generator (3.9); the latter will be studied in detail
in the upcoming pages. To the best of our knowledge, Eq. (3.10) does not appear in the literature, though there should be at
least one other way to derive it. Indeed, most Wigner–Mackey representations can be obtained by geometric quantization
of the coadjoint orbits of G ⋉ A. (See [26,27] for mathematical aspects and [28] for examples and further references.) For
example, the scalar transformation law (3.4) directly follows from the action of g A A on polarized sections on T ∗Op (see
e.g. [20, sec. 5.4.4]). It should be possible to similarly prove the more general formula (3.10) from geometric quantization,
but we are not aware of any reference that exhibits this computation.

3.2. Comments on Wigner generators

Until the end of this sectionwe focus on the operator (3.9); in particular our goal is to investigate the Lie-algebraic version
of the properties listed in Section 2.3.
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Projectors. Consider the argument of s in (3.9), which is an element of the little algebra:

Adg−1
q

X − (g∗Θ)q(ξX )q ∈ gp (3.11)

Asmentioned before, the two terms of this expression do not separately belong to gp and the role of the second term in (3.11)
is to set to zero all the components of Adg−1

q
X that are not along gp. In fact, the map sending Adg−1

q
X on (3.11) is a projection:

Lemma. Let
{
gq

⏐⏐q ∈ Op
}
be a set of standard boosts. Then, for any q ∈ Op, the map

πq : g → g : X ↦→ X − (g∗Θ)q
(
ξAdgqX

)
q (3.12)

is a linear projection operator in the sense that (πq)2 = πq.

Proof. Let X ∈ g; let q ∈ Op and Y ≡ AdgqX . One then finds by brute force that

π2
q (X) = πq

(
X − (g∗Θ)q

(
ξY

)
q

)
= πq(X) − (g∗Θ)q

[
(ξY )q −

(
ξAdgq (g∗Θ)q(ξY )q

)
q

]
. (3.13)

In the very last term we have Adgq (g
∗Θ)q(ξY )q = ∂t |0

[
getY ·qg−1

q

]
, so that(

ξAdgq (g∗Θ)q(ξY )q

)
q =

(
ξ d

dt

⏐⏐⏐
0
(getY ·qg

−1
q )

)
q

(3.3)
=

d
dt

⏐⏐⏐⏐
0

[
getY ·qg

−1
q · q

]
=

d
dt

⏐⏐⏐⏐
0

[
getY ·q · p

]
(2.5)
= (ξY )q.

Using (3.13) this implies that π2
q (X) = πq(X) − (g∗Θ)q

[
(ξY )q − (ξY )q

]
= πq(X). Furthermore the definition (3.12) ensures

that πq is linear, so it is indeed a projector. ■

This lemma demystifies the seemingly awkward combination of terms in (3.9) and (3.11): it allows us to write Wigner
generators as

wq[X] = s
[
πq

(
AdgqX

)]
,

i.e. as operators in spin space obtained by projecting AdgqX to the little algebra in amomentum-dependent way. Note that in
general, the projection (3.12) genuinely depends on momentum in the sense that πq ̸= πk when q ̸= k; this can be verified
by fixing X ∈ g and evaluating the differential of the map Op → g : q ↦→ πq(X).

Gauge invariance and cohomology. We now study the gauge-theoretic properties of Wigner generators. Consider a change
of standard boosts (‘gauge transformation’) as in (2.7); how does it affect (3.9)? To answer this we return to (3.5) and find

d
dt

⏐⏐⏐⏐
0
S
[
h−1
q g−1

q etXge−tX ·qhe−tX ·q

]
= wq[Adh−1

q
X] − s[θhq ](dh)q(ξX )q

where θ is the Maurer–Cartan form of the little group Gp. We can rewrite this more compactly by recognizing s[θ ]dh as
the pullback of s[θ ] by the section h : Op → Gp : q ↦→ hq; removing the argument q, we conclude that under gauge
transformations (2.7) the infinitesimal Wigner rotation (3.9) changes as w ↦→ w̃, with

w̃[X] = S[h]−1w[X]S[h] − s[h∗θ ]ξX . (3.14)

This is the Lie-algebraic version of Eq. (2.12). It confirms that Wigner generators are not gauge-invariant, though their
transformation law is somewhat similar to that of a gauge field. We will return to this in Section 4.2, where we shall build a
Berry gauge connection based on the Wigner generator (3.9).

Just as their group-theoretic cousins, theWigner generators (3.9) have interesting cohomological properties. Namely, for
each X ∈ g one can think ofw[X] as a function that sends q ∈ Op on the operatorwq[X] ∈ End(h) given by (3.9). This provides
a map

w : g → C∞
(
Op, End(h)

)
: X ↦→ w[X] (3.15)

which is the Lie-algebraic counterpart of (2.13). Using the cocycle property (2.14), one finds that Wigner generators are
compatible with the Lie bracket of g in the sense that

w
[
[X, Y ]

]
=

[
w[X],w[Y ]

]
− ξX · w[Y ] + ξY · w[X]. (3.16)

Here the bracket on the right-hand side is the commutator in End(h), while ξX · w[Y ] denotes the action of the vector field
ξX on the End(h)-valued functionw[Y ](q) = wq[Y ]. Eq. (3.16) says that the map (3.15) is a one-cocycle on g taking its values
in a space of operator-valued functions.9 One can again verify that the representation (3.10) is equivalent to a scalar one if
and only if the corresponding Wigner generators are cohomologically trivial, i.e. if wq[X] = −Ω(q)−1

·
(
ξX ·Ω

)
(q) for some

functionΩ : Op → GL(h). In that language, the Wigner–Mackey theorem implies that, by construction, the operators (3.9)
define a non-trivial cocycle whenever the spin representation s is non-trivial.

9 More abstractly, Wigner generators provide a representation of the action Lie algebroid g ⋉ Op .
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3.3. Splitting Wigner generators

So far our observations were independent of the choice of standard boosts on the orbit: all our statements were covariant
under the ‘gauge transformations’ (2.7). But nowwe shall impose a specific partial gauge-fixing condition in order to uncover
further properties ofWigner rotations. Themotivation stems from the sum of terms in (3.11): the first term depends directly
on X , whereas the second only depends on it through the vector field ξX . From a gauge-theoretic perspective it is tempting
to split that sum in two pieces, each belonging to the little algebra, with one piece depending on X ∈ g only through ξX . To
perform that splitting, let us require that standard boosts reduce to the identity at p:

gp = e. (3.17)

This condition is satisfied by the standard boosts (2.16) and (2.20) chosen above for Poincaré and Bargmann, respectively.
Any other family of standard boosts can be brought into such a form with a gauge transformation (2.7): it suffices to choose
hp = g−1

p .When (3.17) holds, the standard boosts define a section (2.6)whose differential at p is a linearmap dgp : TpOp → g.
Keeping inmind the Lie algebra element (3.11), wewould like to actwith thismap on a vector (ξX )q at q; since the differential
is taken at p, we first translate (ξX )q to p using the action (2.2) of G on Op, which gives a vector

d(g−1
q ·)q(ξX )q =

(
ξAd

g−1
q

X
)
p ∈ TpOp (3.18)

where, for any f ∈ G, the notation d(f ·)k means ‘the differential at k of the map q ↦→ f · q.’ (To prove the equality in (3.18)
we used the definition (3.3) of ξX .) The key observation now is that dgp acting on (3.18) produces a Lie algebra element that
can be combined with the two pieces of (3.11) in such a way that they separately belong to the little algebra:

Lemma. The Lie algebra elements

Adg−1
q

X − dgpd(g−1
q ·)q(ξX )q and

(
(g∗Θ)q − dgpd(g−1

q ·)q
)
(ξX )q (3.19)

both belong to the little algebra gp, for any X ∈ g and any q ∈ Op.

Proof. The difference of the two expressions in (3.19) coincides with (3.11), which belongs to the little algebra. As the latter
is a vector space, if we prove that one of the two quantities in (3.19) belongs to gp, then so does the other. Accordingly, it
suffices to prove that the first expression in (3.19) belongs to the little algebra, i.e. that the corresponding fundamental vector
field (3.3) vanishes at p. To see this we first compute(

ξAd
g−1
q

X
)
p

(3.3)
=

d
dt

⏐⏐⏐⏐
0

(
exp[tAdg−1

q
X] · p

)
=

d
dt

⏐⏐⏐⏐
0

(
g−1
q etXgq · p

)
=

d
dt

⏐⏐⏐⏐
0

(
g−1
q etX · q

)
. (3.20)

On the other hand, using (3.18) one finds(
ξdgpd(g−1

q ·)q(ξX )q

)
p

=
d
dt

⏐⏐⏐⏐
0

[
exp

[
tdgp(ξAd

g−1
q

X )p
]
· p

]
=

d
dt

⏐⏐⏐⏐
0

[
gexp[tAd

g−1
q

X]·p · p
]

which coincideswith (3.20). Thus the fundamental vector field associatedwith the first Lie algebra element in (3.19) vanishes
at p, as was to be proved. ■

This lemma allows us to split infinitesimal Wigner rotations (3.9) as

wq[X] = s
[
Adg−1

q
X − dgpd(g−1

q ·)q(ξX )q
]
− s

[
(g∗Θ)q(ξX )q − dgpd(g−1

q ·)q(ξX )q
]

where the right-hand side is well-defined since both arguments of s belong to the little algebra. The last term, in particular,
only depends on X through the vector field ξX , so it is tempting to interpret it as arising froma gp-valued connection one-form

A = s
[
g∗Θ − dgpd(g−1

·)
]
. (3.21)

In fact we shall see in Section 4.2 that the Berry connection associated with adiabatic changes of reference frames takes
precisely the same form. For now, we simply think of (3.21) as a convenient tool to studyWigner rotations. Onemaywonder,
for instance, if there are situations where (3.21) vanishes identically; the answer is as follows:

Lemma. The one-form (3.21) vanishes if and only if the Wigner rotations (2.11) associated with standard boosts are trivial, i.e. if

S[g−1
q gk gg−1

k ·q] = I ∀ k, q ∈ Op. (3.22)

Proof. If S is trivial, then (3.22) certainly holds and (3.21) vanishes; so let us focus on the more interesting case where S is
a non-trivial representation of Gp. The trick will be to rewrite (3.21) in a way that explicitly relates it to a derivative of S. Let
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γ (t) be a path on the orbit Op; it defines a tangent vector γ̇ (t) that we can pair with (3.21):

s
[
(g∗Θ)γ (t)γ̇ (t) − dgpd(g−1

γ (t)·)γ (t)γ̇ (t)
] (3.7)

= s
[ d
dτ

⏐⏐⏐⏐
τ=t

(
g−1
γ (t)gγ (τ )

)
−

d
dτ

⏐⏐⏐⏐
τ=t

(
gg−1
γ (t)·γ (τ )

)]
= −

d
dτ

⏐⏐⏐⏐
τ=t

S
[
g−1
γ (τ )gγ (t)gg−1

γ (t)·γ (τ )

]
. (3.23)

The last line is the derivative of a finite (as opposed to infinitesimal) Wigner rotation, which allows us to relate the vanishing
of (3.21) to the triviality (3.22) of Wigner rotations. Indeed, saying that (3.21) vanishes means that it gives zero when paired
with any tangent vector onOp, i.e. it is equivalent to the vanishing of the time derivative (3.23) for any choice of path γ . Since
γ is arbitrary, (3.23) vanishes if and only if the operator S[g−1

q gkgg−1
k ·q] is independent of k and q, i.e. if it takes a constant

value on the orbit. But standard boosts are continuous by assumption and the gauge condition (3.17) requires gp = e, so
the vanishing of (3.23) implies Eq. (3.22). Conversely, if Wigner rotations are trivial as in (3.22), then Eq. (3.23) ensures that
(3.21) vanishes. ■

Note thatWigner rotations of standard boosts are precisely thosewe evaluated in Section 2.4 for Poincaré and Bargmann:
in the former casewe found in (2.17) that these rotations are non-trivial, while in the latter we saw in (2.21) that they always
vanish.

4. Thomas precession as a Berry phase

In this section we study the main observable consequence ofWigner rotations –Thomas precession –, which we describe
as a Berry phase associated with Wigner–Mackey representations. Accordingly, we start by recalling in general terms how
unitary group representations lead to Berry phases, before applying that approach to semi-direct products.

Incidentally, the literature already contains many references that treat Thomas precession as a holonomy [29,30], or
equivalently a Berry phase [31,32]. However, it seems that none of them use theWigner–Mackey description of one-particle
states; instead,most focus on the special case of Poincaré symmetry and rely on spin-specific tools such as theDirac equation.
Our approach, by contrast, will not only hold for any spin, but will in fact allow us to describe Thomas precession for any
symmetry group with a semi-direct product structure. In Section 5 wewill apply this method to the Poincaré and Bargmann
groups; the BMS group will be treated in a separate paper [18].

4.1. Berry phases in group representations

As a preparation for Thomas precession, our goal here is to exhibit certain Berry holonomies that appear in unitary
representations of Lie groups [33,34]. In order to leave room for non-trivial spin spaces, we will deal with generally
degenerate eigenvalues of the Hamiltonian. This will require the non-Abelian generalization of Berry phases first described
in [35]; the non-degenerate, Abelian version of the argument can be found e.g. in [36]. In contrast to the rest of this paper,
in this section we use the Dirac notation.

Berry phases. Consider a (connected, simply connected) Lie group G and a unitary representation U thereof. Think of G as
a symmetry group consisting of ‘changes of reference frames’ and assume that it contains a one-parameter subgroup of
transformations that can be interpreted as time translations. Each such transformation corresponds to a group element etX0
for some fixed X0 belonging to the Lie algebra g of G. From that perspective, X0 ∈ g is the generator of time translations and
the evolution operator is

U[etX0 ] = etu[X0] (4.1)

where u is the Lie algebra representation corresponding to U by differentiation. This is to say that the Hamiltonian is
H = iu[X0]. Crucially however, the latter statement relies on an arbitrary choice of reference frame: if f ∈ G relates two
observers A and B, and if A sees an evolution operator (4.1), then Bwill observe a generally different one,

U[f ]U[etX0 ]U[f ]−1
= U[etAdf X0 ] = etu[Adf X0], (4.2)

corresponding to a different Hamiltonian H ′
= iu[Adf X0] = U[f ]H U[f ]−1. Thus, given the representation U , one obtains

a family of Hamiltonian operators labelled by f ∈ G. One can then think of G as a space of parameters whose adiabatic
variations generally lead to geometric phases picked along time evolution by any wavefunction. In particular, closed paths
in parameter space lead to Berry phases [33].

Concretely, let E be an N-fold degenerate eigenvalue of H = iu[X0], and let |φ1⟩, . . . , |φN⟩ be normalized, mutually
orthogonal eigenvectors of H for this eigenvalue. For definiteness we assume that the latter is isolated, though this
assumptionwill fail to hold for semi-direct products. Now suppose that the system is initially in a state |ψ(0)⟩ = U[f (0)]|φi⟩

for some f (0) ∈ G, and evolves according to the time-dependent Schrödinger equation

i∂t |ψ(t)⟩ = U[f (t)]H U[f (t)]−1
|ψ(t)⟩ (4.3)
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where the path f (t) in G represents time-dependent changes of reference frames. Provided f (t) varies sufficiently slowly,
the adiabatic theorem [37,38] ensures that

|ψ(t)⟩ ∼ e−iEt Ωji(t)U[f (t)]|φj⟩ (in the adiabatic limit) (4.4)

with an implicit sum over j = 1, . . . ,N . Here (Ωij(t)) is a time-dependent unitaryN×N matrix; on account of (4.3) it satisfies
the differential equation

∂tΩik(t)
(
Ω(t)−1)

kj = −⟨φi|U[f (t)]−1∂t U[f (t)]|φj⟩. (4.5)

At this point we introduce the (non-Abelian) anti-Hermitian Berry connection

Af ≡ ⟨φ⃗|
(
U[·]

−1dU[·]
)
f |φ⃗⟩

t
= ⟨φ⃗|u[Θf ]|φ⃗⟩

t
(4.6)

where |φ⃗⟩ is a column vector whose entries are |φ1⟩, . . . , |φN⟩, while d is the exterior derivative on G andΘ is the Maurer–
Cartan form (3.7). In these terms Eq. (4.5) reads ∂tΩ ·Ω−1

= −Af (ḟ ) and its solution is a Wilson line

Ω(t) = P exp
[
−

∫
f
A
]
. (4.7)

The integral over f is evaluated between the times 0 and t . For closed paths, i.e. when f (T ) = f (0) for some time T > 0, the
matrix (4.7) becomes a Berry holonomy

Ω(T ) ≡ Bφ⃗[f ] = P exp
[
−

∮
f
A
]

(4.6)
= P exp

[
−

∮
f
⟨φ⃗|u[Θ]|φ⃗⟩

t
]

(4.8)

whose eigenvalues are complex numbers with unit norm; their phases are Berry phases.

Remarks. Various comments are in order regarding formula (4.8). As a prerequisite, we define the stabilizer of the states
|φ1⟩, . . . , |φN⟩

10:

Gφ⃗ ≡

{
h ∈ G

⏐⏐⏐ U[h]|φi⟩ = Λij|φj⟩ ∀ i = 1, . . . ,N, (Λij) unitary
}
. (4.9)

It is the subgroup of Gwhose elements rotate the vectors |φi⟩ among themselves. Note that, since U is unitary, the matrices
Sij[h] ≡ ⟨φi|U[h]|φj⟩ provide an N-dimensional unitary representation S of Gφ⃗ . One can think of it as an analogue of the spin
representation that appears in the Wigner–Mackey construction, which is why we call it S.

Now consider the state vector (4.4), which solves the Schrödinger equation (4.3) in the adiabatic limit. In writing that
vector we have arbitrarily declared that it is a linear combination of states U[f (t)]|φj⟩, while we could just as well have used
U[f (t) · h(t)]|φj⟩ for any path h(t) contained in the stabilizer (4.9). With this different convention, Eq. (4.5) governing the
time-dependence ofΩ(t) would have been replaced by

∂tΩ ·Ω−1
= −S[h(t)]−1

⟨φ⃗|U[f (t)]−1∂t U[f (t)]|φ⃗⟩
t
S[h(t)] − S[h(t)]−1

· ∂tS[h(t)].

This amounts to transforming the Berry connection (4.6) as

Af ↦→ Ãf ·h = S[h]−1Af S[h] + S[h]−1
· dS[h],

so the replacement of f (t) by f (t) · h(t) is akin to a gauge transformation with gauge group Gφ⃗ . From that perspective
the connection (4.6) is a gauge field valued in the Lie algebra of the stabilizer (more precisely, in the space of operators
representing that algebra through S). As for theWilson line (4.7), it is not invariant under such transformations; this remains
true even if the curves f (t) and h(t) are both closed, so the holonomy (4.8) is not directly observable, though its eigenvalues
(hence their Berry phases) are.

From a gauge-theoretic standpoint one may wonder if the holonomies (4.8) have any chance of being non-trivial at all.
Indeed, the gauge connection (4.6) is essentially theMaurer–Cartan form sandwiched between two |φi⟩’s. Since theMaurer–
Cartan form is ‘pure gauge’ (Θf = f −1df ), it is flat in the sense that for any two vector fields ξ, ζ on G,(

dΘ
)
(ξ, ζ ) +

[
Θ(ξ ),Θ(ζ )

]
= 0 (4.10)

where d is the exterior derivative on G and [·, ·] is the Lie bracket of g. As a result, one might think that the curvature of
(4.6) similarly vanishes, which would imply that the holonomy (4.8) is trivial. But this naive expectation is misguided: while
the gauge connection (4.6) does contain theMaurer–Cartan form, it also crucially contains the sandwiching within ⟨φi|...|φj⟩

whose effect is to project theMaurer–Cartan form on the Lie algebra of the stabilizer; this projected formdoes not, in general,
have a vanishing curvature. We shall confirm this explicitly in Section 5 with the example of the Poincaré group.

A final comment concerns the space of parameters leading to the Berry holonomies (4.8), which we originally introduced
by considering closed paths in G. However, this point of view is somewhat too restrictive: since the states |φ1⟩, . . . ,|φ1⟩ have a

10 This definition fails for semi-direct products — more on that in Section 4.4.
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non-trivial stabilizer (4.9), one is free to consider a path f (t) inGwhich only closes up to some element ofGφ⃗ , i.e. f (T ) = f (0)h
with h ∈ Gφ⃗ . Its projection on the quotient space G/Gφ⃗ is closed and this is enough to ensure that the corresponding Berry
phases are well-defined. Concretely, let us assume that the stabilizer is connected; then, for any open path f (t) such that
f (T ) = f (0)h with h ∈ Gφ⃗ , we define a closed path

f̄ (t) =

{
f (t) for 0 ≤ t ≤ T
f (T )h(t) for T ≤ t ≤ T ′ (4.11)

where h(t) is a curve in Gφ⃗ such that h(T ) = e and h(T ′) = f (T )−1f (0). Formula (4.8) applies to the path f̄ , whose Berry
holonomy factorizes as

Bφ⃗[f̄ ] = P exp
[
−

∫
h
⟨φ⃗|u[Θ]|φ⃗⟩

t
]

· P exp
[
−

∫
f
⟨φ⃗|u[Θ]|φ⃗⟩

t
]
.

Here the first term, due to the stabilizer path h(t), only depends on its endpoints and does not depend on the choice of h(t).
Accordingly, we define the Berry holonomy of a (generally open) path f (t) such that f (T )−1f (0) ∈ Gφ⃗ as follows:

Bφ⃗[f ] ≡ ⟨φ⃗|U[f (T )−1f (0)]|φ⃗⟩
t
P exp

[
−

∫
f
⟨φ⃗|u[Θ]|φ⃗⟩

t
]
. (4.12)

This says that the actual space of parameters is the coset space G/Gφ⃗ . It implies that, given a path f (t), it can have non-
zero Berry phases only if its projection on G/Gφ⃗ is closed and contains more than one point. This is consistent with the
‘orbit method’ for building group representations [39], where geometric quantization of a coadjoint orbit G/Gφ⃗ produces a
unitary representation of G; from that perspective, Berry phases associated with loops in G coincide with symplectic fluxes
on G/Gφ⃗ [40]. We will encounter similar observations below for semi-direct products.

4.2. Wigner–Berry phases

Having reviewed some aspects of Berry phases, we now return to the original setting of this paper and consider a semi-
direct product G ⋉ A; we also let U be a Wigner–Mackey representation (2.10) specified by a momentum orbit Op and a
spin representation S . As before we can see G⋉A as a group of transformations relating various reference frames: G consists
of rotations and boosts, while A consists of translations. We assume that A contains a one-parameter subgroup of time
translations, as is indeed the case for Poincaré, Bargmann and BMS groups. Then, if the system is prepared in an eigenstate
of the Hamiltonian and if the reference frame changes adiabatically and returns to its initial configuration after some time,
the final state vector should contain Berry phase factors. Our goal is to understand how those phases can be evaluated
by adapting Eq. (4.12) to semi-direct products; the result will crucially involve Wigner rotations. Along the way we will
encounter several technical complications, some of which we will not address rigorously. To streamline the presentation,
a more detailed discussion of some of these issues is postponed to Section 4.4. Accordingly, one can think of the next few
pages as an intuitive motivation for the construction of the connection one-form of Eq. (4.22); this one-form can be studied
in its own right, irrespective of its representation-theoretic origin, and we will indeed see in Section 4.3 that it has many
interesting properties.

Energy eigenstates. At the outset, one should understand what is meant by ‘time translations’: we are assuming that, in a
certain reference frame, a vector α0 ∈ A generates time translations in the sense that a time translation by t ∈ R is a group
element (e, tα0) ∈ G⋉A, where e is the identity in G. In another frame, related to the original one by a ‘boost’ f say, the same
translation would be seen as (f , 0) · (e, tα0) · (f , 0)−1

= (e, tσf α0). This is a semi-direct product analogue of the statement
surrounding Eq. (4.2).

In this language, an energy eigenstate (in the original frame) is awavefunctionΨ in the Hilbert space of U that transforms
under time translations as U[(e, tα0)]Ψ = e−iEt Ψ . Given such a wavefunction, the boosted state U[(f , 0)]Ψ has energy E
with respect to time translations generated by σf α0. Since U is given by theWigner–Mackey formula (2.10), this means that
Ψ must have at least one definite component of momentum — its energy. In particular, one may consider wavefunctions
with definite momentum k ∈ Op,

Ψ (q) = δk(q)v ≡ Ψk,v(q), (4.13)

where v ∈ h is a spin vector while δk is the Dirac distribution at k ∈ Op associated with the measure µ of (2.9). Such plane
waves are energy eigenstates by construction, for any k and any v. Accordingly, from now on we assume that energy (with
respect to α0) is bounded from below on the orbit Op and that its minimum is reached at p, as is indeed the case for the
massive particles described in Section 2.4. One can then think of p as the energy–momentum vector of a particle in the rest
frame, so plane waves Ψp,v given by (4.13) describe the possible states of a particle at rest. There are in general many such
rest-frame states, since the particle may have a non-trivial spin space h.

At this point we must face a first technical subtlety: if the energy function on the orbit is non-constant, wavefunctions
with definite energy must contain a delta function in momentum space, which implies that they are not square-integrable
and do not belong to the Hilbert space. When it comes to Berry phases, this means that the treatment of Section 4.1 does
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not apply; instead we must consider superpositions of energy eigenstates, whose Berry phases are not sharply defined but
satisfy a certain probability distribution [41]. But for the sake of simplicity (and at the expense of rigour), we will adopt
a somewhat heuristic viewpoint and consider normalized linear combinations of plane waves whose spread can be made
arbitrarily small, in such a way that they formally approach energy eigenstates in the limit of zero spread. One can typically
choose such smeared wavefunctions to be Gaussian coherent states. This point of view allows us to think of any normalized
plane waveΦk,v with momentum k (and unit spin vector v ∈ h) as a limit

Φk,v = lim
λ→0

Φλ
k,v (4.14)

whereΦλ
k,v is a normalized wavefunction peaked at kwith spread λ in momentum space. Note that the resulting plane wave

Φk,v is not of the form (4.13) because the Dirac delta function is not normalized. Instead, the relation between the normalized
plane wave (4.14) and the non-normalized one (4.13) is formally Φk,v = Ψk,v/

√
δk(k), where δk(k) is an infrared-divergent

delta function evaluated at zero momentum. In Poincaré one would find δk(k) ∝ δ(D)(0) where δ(D) is the standard Dirac
distribution on RD; in a large volume V , δk(k) ∝ V . With this prescription for regulating infrared divergences, one has scalar
products such as ⟨Φk,v|Φk,w⟩ = (v|w). In particular, writing dim(h) = N and letting v1, v2, . . . , vN be an orthonormal basis
of h, we get N linearly independent vectors

Φp,i = vi
δp√
δp(p)

such that ⟨Φp,i|Φp,j⟩ = δij. (4.15)

One can think of theΦp,i’s as analogues of the states |φi⟩ introduced above (4.3), i.e. as ‘highest-weight states’; boosted vectors
such as U[(f , α)]Φp,i can then be seen as ‘descendant states’. Even though the energy spectrum is generally continuous (think
e.g. of the relativistic energy

√
M2 + k2), the adiabatic theorem applies [38] and the considerations of Section 4.1 suggest

that loops in G ⋉ A lead to Berry phases.

Berry phases and Maurer–Cartan form. Consider a closed path (f (t), α(t)) of reference frame transformations in G ⋉ A. Let
U[(f (0), α(0))]Φp,i be the initial state vector of the system and let it evolve according to the time-dependent Schrödinger
equation (4.3):

i∂tΨ = U
[(
f (t), α(t)

)]
iu[(0, α0)] U

[(
f (t), α(t)

)]−1
· Ψ .

If the path (f (t), α(t)) is traced very slowly, the adiabatic theorem [38] ensures that the wavefunctionΨ (t) at time t is given
by an expression similar to Eq. (4.4). Once the path (f (t), α(t)) closes, say at t = T , the wavefunction Ψ (T ) differs from
U[(f (0), α(0))]Φp,i by a Berry holonomy (4.8) that now takes the form

BΦ⃗p

[(
f (t), α(t)

)]
= P exp

[
−

∮
(f ,α)

⟨
Φ⃗p

⏐⏐u[ϑ]Φ⃗ t
p

⟩]
(4.16)

where Φ⃗p denotes the column vector ofwavefunctions
(
Φp,1,Φp,2, . . . ,Φp,N

)t while u is the Lie algebra representation (3.10)
and ϑ is the Maurer–Cartan form of G ⋉ A. To compute the latter, consider a path (g(t), β(t)) in G ⋉ A such that g(0) = f ,
β(0) = α. This defines a tangent vector (ġ(0), β̇(0)) ∈ T(f ,α)

(
G ⋉ A

)
∼= Tf G ⊕ A. The Maurer–Cartan form at (f , α) acting on

that tangent vector is
d
dt

⏐⏐⏐⏐
0

[
(f , α)−1

·
(
g(t), β(t)

)] (2.1)
=

( d
dt

⏐⏐⏐⏐
0

(
f −1

· g(t)
)
, σf−1 β̇(0)

)
.

Here the first entry is the Maurer–Cartan form of G acting on ġ(0) ∈ Tf G. Thus the Maurer–Cartan form of G ⋉ A
is ϑ(f ,α) =

(
Θf , σ

−1
f

)
, where the two entries respectively act on Tf G and TαA = A.11 It follows that (4.16) can be

written as

BΦ⃗p

[(
f (t), α(t)

)]
= P exp

[
−

∮
(f ,α)

⟨
Φ⃗p

⏐⏐u[(Θ, σ−1)]Φ⃗ t
p

⟩]
(4.17)

and it remains to put this in a simpler form by massaging the Berry connection in the argument of the exponential. To do
this we treat separately the ‘rotational piece’Θ and the ‘translational piece’ σ−1.

Translational piece. Consider the contribution of the translational Berry phase, due to the term involving α in the represen-
tation (3.10). From Eq. (4.17) and the scalar product (4.15) we find that this term contributes an overall (Abelian) phase

Btransl.
Φ⃗p

[
(f , α)

]
= P exp

[
−

∮
(f ,α)

⟨
Φ⃗p

⏐⏐u[(0, σ−1)]Φ⃗ t
p

⟩] (3.10)
= exp

[
−i

∮ T

0
dt ⟨p, σ−1

f (t)α̇(t)⟩
]

(4.18)

where we neglect to write an identity operator I ∈ End(h) on the right-hand side. Using the definition (2.2) of the action of
G on momenta, this can be rewritten as

Btransl.
Φ⃗p

[
(f , α)

]
= exp

[
−i

∮ T

0
dt ⟨f (t) · p, α̇(t)⟩

]
. (4.19)

11 The same Maurer–Cartan form recently appeared in [42] in the context of BMS3 symmetry.
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This overall phase vanishes whenever the path α(t) is constant or when f (t) is contained in the little group. But in general
it produces a non-zero contribution to the total Berry holonomy (4.17), albeit one that is insensitive to spin; in particular,
it also affects scalar particles. One can think of it as a symplectic flux on the cotangent bundle T ∗Op, when the latter is
endowed with its usual symplectic form; indeed f (t) · p = q(t) is a closed path on Op (‘momentum space’) while α(t)
is a closed curve in position space, and the exponent of (4.19) can be seen as the integral of the Liouville one-form (the
symplectic potential) on T ∗Op along the path

(
q(t), α(t)

)
. This is consistent with the results of [40] and also with the general

relation between holonomies on homogeneous spaces and symplectic fluxes (see e.g. [43]), although we are not aware of
any reference that mentions these observations for semi-direct products. In the context of Thomas precession, the phase
(4.19) is generally neglected, precisely because it is blind to spin; for the same reason, from now on we let the translational
path α(t) be constant (α̇ = 0) so that the only non-zero contribution to the Berry holonomy (4.17) comes from its rotational
piece.

Rotational piece. When α(t) is constant, the Berry phases of (4.17) are entirely due to the path f (t) ∈ G, whose contribution
to the integrand in the exponent of (4.17) is⟨

Φ⃗p
⏐⏐u[(Θf , 0)]Φ⃗ t

p

⟩ (3.10)
=

⟨
Φ⃗p

⏐⏐⏐(s[Adg−1
p
Θf − (g∗Θ)p(ξΘf )p

]
−

(
ξΘf

)
p

)
Φ⃗ t

p

⟩
. (4.20)

To simplify this expression we use Eq. (4.15) for the states Φp,i. In particular, the vector field outside the argument of s in
(4.20) is blind to the spin vector vi of Φp,i and contributes a term ⟨Φ⃗p|(ξΘf )pΦ⃗

t
p⟩, which is proportional to ⟨δp|(ξΘf )pδp⟩. This

is the expectation value of a boost generator in a state at rest, and therefore vanishes; intuitively, the boosted state ξXΦp is
orthogonal to Φp because it has a different value of angular momentum [44]. Thus the only non-zero piece of (4.20) comes
from the Wigner generator s[...]; the latter is only sensitive to the spin ofΦp,i, and the scalar product (4.15) yields⟨

Φ⃗p

⏐⏐⏐s[Ad−1
gp Θf − (g∗Θ)p

(
ξΘf

)
p

]
Φ⃗ t

p

⟩
= s

[
Ad−1

gp Θf − (g∗Θ)p
(
ξΘf

)
p

]
(4.21)

where we identify the operator s[...] with its matrix in the basis v1, . . . , vN of h. This is the simplification we were looking
for; we now analyse it in detail.

4.3. Thomas precession

Formula (4.21) is the main result of this paper. It is a Wigner generator (3.9) that coincides with the Berry connection
associated to adiabatic boosts and rotations,

A = s
[
Ad−1

gp Θ − (g∗Θ)p
(
ξΘ

)
p

]
(3.9)
= wp[Θ], (4.22)

and itmay be seen as (the representation s of) the projection of theMaurer–Cartan formΘ on the little algebra.We shall refer
to it as a Wigner–Berry connection. It can be simplified by choosing a gauge for standard boosts; specifically, let us assume
that gp = e is the identity as in Section 3.3. Then Adg−1

p
Θ = Θ and the pullback of the Maurer–Cartan form by g boils down

to (g∗Θ)p = Θgpdgp = dgp. As a result (4.22) becomes

A = s
[
Θ − dgp(ξΘ )p

]
(for gp = e). (4.23)

We will see below that this is essentially the connection one-form anticipated in (3.21).
The observations of the last few pages show that Wigner rotations, Thomas precession and Berry phases are one and

the same thing when it comes to Wigner–Mackey representations. Indeed, the Berry holonomy (4.17) of (4.23) along a loop
f (t) is

BΦ⃗p
[f (t)] = P exp

[
−

∮
f
s
[
Θ − dgp(ξΘ )p

]]
(for gp = e). (4.24)

This is typically a rotationmatrix thatmay be interpreted as the net precession of a particle’s spin obtained by superimposing
a sequence of infinitesimal Wigner rotations. Similar statements have already appeared in the literature [29–32], but to
the best of our knowledge, all of them only deal with the Poincaré group. By contrast, our goal here was to draw general
conclusions for arbitrary semi-direct products. In particular, we now know that Thomas precession occurs if and only if the
curvature of the connection (4.22) does not vanish identically. As argued around Eq. (4.10), this curvature need not vanish
thanks to the fact that it is a projection of the Maurer–Cartan form down to the stabilizer.

A comment is in order about the parameter space on which the connection (4.23) lives. Indeed, note that for any path
f (t) entirely contained in Gp, the Berry holonomy (4.24) is trivial; this is because in that case the vector field ξΘf (ḟ ) vanishes
at p and the remaining connection wp[Θ]

⏐⏐
Gp

= s[θ ] is flat due to the Maurer–Cartan equation (4.10). One can thus think of
the parameter space of the system as being not the group manifold G, but the coset space G/Gp ∼= Op, and the only thing
that truly matters is the projection of f (t) on Op, i.e. the path γ (t) = f (t) · p in momentum space. When that projection is a
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closed curve that contains more than one point, the Berry holonomy (4.24) is generally non-zero. (We encountered a similar
observation around Eq. (4.11).) Furthermore, for any such path f (t), whenever f (T ) = f (0) ·h for some group element h ∈ Gp,
one can define a holonomy (4.12) even though the path f is not closed.

This implies that curves which only consist of standard boosts contain all the information about the Berry phases
associated with paths in G. In other words, as far as Thomas precession is concerned we are free to consider without loss of
generality only paths of the form f (t) = gq(t), where q(t) is some closed curve in Op. Any such path can be interpreted as
the momentum-space trajectory q(t) of a particle. Its ‘acceleration’ (or rather the force acting on the particle) is the tangent
vector q̇(t), and the pullback A = g∗A of the Berry connection (4.23) acting on that vector is

Aq(t)(q̇(t)) = s
[
Θgq(t)dgq(t)q̇(t) − dgp

(
ξΘgq(t)dgq(t) q̇(t)

)
p

]
= s

[
g∗Θ − dgpd(g−1

·)
]
q(t)(q̇(t)). (4.25)

Here we recognize the one-form (3.21), so the lemma surrounding (3.22) applies. Thus, if all Wigner rotations associated
with standard boosts are trivial (i.e. if condition (3.22) holds), then the Berry connection A in (4.25) vanishes identically. In
particular, the triviality ofWigner rotations associatedwith standard boosts implies the absence of Berry phases and Thomas
precession. Conversely, if some Berry holonomies (4.23) are non-trivial, then someWigner rotations of standard boostsmust
also be non-trivial.

4.4. Technical remarks

Here we discuss some of the technical issues encountered in Section 4.2. A first remark concerns the Berry phase (4.18)
associated with non-constant translations. Namely, if the complete parameter space of the system truly was G/Gp = Op, as
is the case for pure Thomas precession, then translations would not contribute toWigner–Berry phases. But one should keep
in mind that Op is only the parameter space that incorporates the effects of pure boosts and rotations; by contrast, the full
parameter space of the system is actually a coadjoint orbit of G⋉A, and is always larger thanOp. For scalar particles this orbit
is a cotangent bundle T ∗Op in which Op is the parameter space for rotations and boosts, while the cotangent piece forms a
parameter space for translations. For spinning particles the situation is similar, but the coadjoint orbit has a more intricate
structure: it is a bundle of little group coadjoint orbits over T ∗Op — see [26] for the original derivation and [8] or [20, sec. 5.4]
for more recent presentations. This is why the symplectic form of T ∗Op appears in (4.19), and it explains why translations
can lead to non-vanishing Berry phases despite being blind to spin. It is also consistent with our remark below (4.12) on the
relation between Berry phases in group representations and coadjoint orbits.

Note that this conclusion, though correct, is at odds with our arguments at the end of Section 4.1 based on the stabilizer
(4.9). Indeed, the stabilizer of the rest-frame states (4.15) in the sense of (4.9) is the entire groupGp⋉A, which naively predicts
that the parameter space is (G⋉A)/(Gp⋉A) ∼= Op. By contrast, the stabilizer of a coadjoint orbit of G⋉A is Gp⋉Ap, where Ap is
a strict subspace of A. (For example, formassive particles Ap ∼= R typically consists of pure time translations.) This distinction
between A and Ap is crucial, as it accounts for the cotangent piece of scalar coadjoint orbits (G ⋉ A)/(Gp ⋉ Ap) ∼= T ∗Op, and
thus leaves room for translational Berry phases (4.19). So the stabilizer (4.9) misses a key restriction on translations when it
is bluntly applied to Wigner–Mackey representations. The reason for this failure is that the rest-frame states (4.15) do not,
strictly speaking, belong to the Hilbert space, hence cannot be used as harmlessly as the states |φi⟩ of Section 4.1.

Finally, note that inwriting (4.16)we relied on the adiabatic theorem for systemswithout gap in the energy spectrum [38].
This is indeed needed for Wigner–Mackey representations since they generally have continuous energy, but in practice one
may not have to address this subtlety at all. Indeed, any particle that undergoes periodic changes of reference frames (e.g. an
electron bound to an atomic nucleus) is actually located in an attractive potential, so that its possible energy levels are
discrete after all. Of course, this discreteness becomes visible onlywith a dynamical analysis that goes beyond the kinematical
treatment of this paper.

To conclude we shouldmention one alternative point of view that might justify our derivation of (4.22) without invoking
coherent or bound states. As mentioned earlier, most Wigner–Mackey representations of semi-direct products can be
obtained by quantizing their coadjoint orbits [26,27]. In that context the classification of these representations in terms
of orbits and spins can be seen as a quantum version of the classification of coadjoint orbits. Each orbit is the phase space of a
(generally spinning) particle. Furthermore, since by assumption the symmetry group contains time translations, the system
comes equippedwith awhole family of Hamiltonian functions that are related to one another by changes of reference frames.
(This statement is the classical counterpart of Eq. (4.2).) One can thus think of the set of inequivalent reference frames of
the particle as a space of parameters, and look for the Hannay angles [45] that appear when these parameters are slowly
varied in a cyclic way. Since they are purely classical objects, these angles are not plagued by the difficulties listed above: as
there are no ‘wavefunctions’, there are no issues with the normalizability of quantum states or the adiabatic theorem. Our
expectation is that the Berry connection (4.22) is a quantum analogue of a classical Hannay connection on phase space, but
we will not attempt to verify this here.

5. Applications and outlook

In this short and last section, we illustrate the results of Section 4 with the Poincaré and Bargmann groups and briefly
discuss other cases where similar tools apply.
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5.1. Thomas precession for relativistic particles

Relativistic and non-relativistic particles are irreducible unitary representations of the Poincaré and Bargmann groups,
respectively. As in Section 2.4 we only consider massive representations in D + 1 dimensions. Let us start with the non-
relativistic case — the Bargmann group. As we showed in (2.21), the Wigner rotations associated with standard boosts are
trivial, so the discussion below (4.25) implies that there is no Thomas precession. This can be confirmed by directly evaluating
the Berry connection (4.23), or rather its pullback (4.25), for the Bargmann group: since standard boosts are given by (2.20),
they pullback the Maurer–Cartan form according to (g∗Θ)q = g−1

q dgq = (0, dq/M), where dq is an RD-valued one-form on
RD, while the entire one-form g∗Θ takes its values in the Euclidean Lie algebra so(D) A RD. The second one-form appearing
in (4.25) is also dgpd(g−1

·)q = (0, dq/M), so the Berry gauge field of (4.25) indeed vanishes.
Relativistic particles are much more interesting in that respect. Consider a particle with spin S , the latter being some

irreducible unitary representation of the little group SO(D). Standard boosts are given by (2.16), and their Wigner rotations
are (2.17). They are non-trivial, so one may expect relativistic spinning particles to be subject to Thomas precession. To
confirm this, consider the argument of the Berry connection (4.25),

Aq ≡ g−1
q dgq − dgpd(g−1

q ·)q. (5.1)

The first term of this expression is just the pullback of the Maurer–Cartan form of the Lorentz group by the standard boosts
(2.16), while the second projects the Maurer–Cartan form down to the little algebra. Indeed, using (2.16) we explicitly find

g−1
q dgq =

⎛⎜⎜⎝ 0
dqt

M
−

(
1 −

1√
1 + q2/M2

)qtdq
q2

qt

M
dq
M

−

(
1 −

1√
1 + q2/M2

)qtdq
q2

q
M

(√
1 + q2/M2 − 1

)(dqqt
− qdqt

q2

)
⎞⎟⎟⎠ , (5.2)

which is valued in the Lorentz algebra as it should. Its purely spatial components (i, j) span a matrix in so(D), while its
first row and first column generate boosts. Crucially, that boost piece does not appear in the connection (5.1) because it is
cancelled by

dgpd(g−1
q ·)q =

⎛⎜⎜⎝ 0
dqt

M
−

(
1 −

1√
1 + q2/M2

)qtdq
q2

qt

M
dq
M

−

(
1 −

1√
1 + q2/M2

)qtdq
q2

q
M

0

⎞⎟⎟⎠ .

As a result one finds that the connection (5.1) is just the rotational piece of (5.2),

Aq =

⎛⎝0 0

0
(√

1 + q2/M2 − 1
)(dqqt

− qdqt

q2

)⎞⎠ . (5.3)

It is non-zero, consistently with the fact that the Wigner rotations (2.17) are non-trivial. To prove that Thomas precession
exists, it remains to verify that the connection (5.3) is not flat. We do this by choosing a basis of the little algebra so(D): for
1 ≤ i < j ≤ D we define a D × D matrix Tij having an entry 1 in the jth row and ith column, (−1) in the ith row and jth
column, and zero elsewhere; in components, (Tij)kl = δilδjk − δikδjl. There are D(D − 1)/2 such matrices generating the so(D)
algebra, and their commutators read

[Tij, Tkl] = δikTjl − δilTjk − δjkTil + δjlTik, (5.4)

where Tji ≡ −Tij if i < j. We can then write the connection (5.3) and its curvature F as A = AijTij and F = FijTij, with
implicit summation over i < j. Using (5.4) one finds

(Fij)q = d(Aij)q + [Aq,Aq]ij =
1
2
dqi ∧ dqj

M2 −
1

2M4

qkdqk ∧ q[idqj]
1 + q2/M2 +

√
1 + q2/M2

(5.5)

where q[idqj] ≡ qidqj − qjdqi. This does not vanish, so the Berry curvature associated with changes of reference frames in
(massive) representations of the Poincaré group is non-zero: relativistic particles with non-zero spin are subject to Thomas
precession.

It is worth comparing (5.3) and (5.5) with the expressions for Thomas precession that can be found in the literature (see
e.g. [11, sec. 11.8] or [13]). For instance, the Berry connection (5.3) is essentially a higher-dimensional cross product,(√

1 + q2/M2 − 1
)dq × q

q2 , (5.6)

and may be seen as the infinitesimal rotation that results from a boost with rapidity dq/M applied to a particle with
momentum q. In terms of the velocity v such that q = Mv/

√
1 − v2/c2, the rotation generator (5.6) is(

1√
1 − v2/c2

− 1
)
dv × v

v2
v/c→0

∼
1
2

dv × v
c2
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where we reinstate the speed of light c for convenience. The right-hand side here is the first term of the non-relativistic
expansion of the exact result, and contains the notorious ‘Thomas half’ [9] that reconciled the observations of Uhlenbeck
and Goudsmit [46] with the predictions of quantum mechanics. In that context the differential form dv is interpreted as a
small variation of a particle’s velocity due to its acceleration — for instance the centripetal acceleration of an electron bound
to an atomic nucleus.

Of course, any statement based solely on the connection (5.3) is bound to be gauge-dependent, hence unobservable;
for instance, we would have obtained a different expression for the rotation generator (5.6) if we had used different
standard boosts. The only truly observable quantities are gauge-invariant; those are typically the Berry phases that can be
extracted from the holonomies of the connection (5.3) and thatmay be interpreted as rotations corresponding to the Thomas
precession of a spinning particle. Note that in general (for D ≥ 3) even the curvature (5.5) is not directly observable; the
only exception occurs in three space–time dimensions (D = 2), where the little group SO(2) is Abelian so that the curvature
(5.5) is gauge-invariant and reduces to

F =
1

2M2

dq1 ∧ dq2√
1 + q2/M2

(
0 −1
1 0

)
.

The two-form in front of the matrix may be interpreted as the volume form of a hyperbolic plane embedded in energy–
momentum space, so that the net angle of rotation undergone by a particle that follows a closed path in rapidity space is the
hyperbolic area of the enclosed surface (times the particle’s spin) [30].

The Berry connection (5.3) and its curvature (5.5) have a number of interesting properties andmay for instance be seen as
solitonic configurations of a non-Abelian gauge field [29,31].Wewill refrain frompursuing this line of thought here. Ourmain
purpose in this work was indeed to point out that such a rich gauge-theoretic structure arises in the unitary representations
of any semi-direct product.

5.2. Dressed particles and other stories

In this paperwe have shown that a notion of ‘Thomas precession’ exists for essentially all semi-direct product groups. This
applies of course to Poincaré, but our approach is independent of the details of the group structure and thus allows us to be
more general. A notable example is the BMS group, whose unitary representations are expected to describe particles dressed
with soft gravitons. In that context it is natural to wonder if gravitational dressing contributes to Thomas precession, and if
so, whether this contribution can actually be measured. We recently addressed a similar question in [36] for the Virasoro
group (see also [47] for related considerations in the gauge-theoretic realm); as for BMS representations, we intend to turn
to them in a separate publication [18].

While theBMSgroups are undoubtedly interesting examples of groupswhose representations display Thomasprecession,
they are by no means the only uncharted territory. For instance, the symmetry group of any two-dimensional conformal
field theory with conserved currents is a semi-direct product between the Virasoro group and a Kac–Moody group, so the
corresponding unitary representations may contain some sort of Thomas precession. (If the Kac–Moody algebra is non-
Abelian the treatment of this paper does not apply, but this does not prevent the existence of Berry phases similar to those
of Section 4.1.) In that context an example that is both rich and tractable is the warped Virasoro group [48], which spans
the symmetries of warped conformal field theories. We intend to investigate some of these questions in the future and hope
that the present work can be useful for such considerations.
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