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a b s t r a c t

In this article, we study a generalisation of the Seiberg–Witten equations, replacing the
spinor representation with a hyperKähler manifold equipped with certain symmetries.
Central to this is the construction of a (non-linear) Dirac operator acting on the sections of
the non-linear fibre-bundle. For hyperKähler manifolds admitting a hyperKähler potential,
we derive a transformation formula for the Dirac operator under the conformal change of
metric on the base manifold.

As an application, we show that when the hyperKähler manifold is of dimension four,
then, away from a singular set, the equations can be expressed as a second order PDE
in terms of almost-complex structure on the base manifold, and a conformal factor. This
extends a result of Donaldson to generalised Seiberg–Witten equations.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

LetX be a 4-dimensional, oriented, smooth, Riemannianmanifold and letQ → X be a Spin-structure. A spinor bundle over
X is a vector bundle associated to Q , with typical fibre H. The idea for generalisation is to replace the spinor representation
with a hyperKähler manifold (M, gM, I1, I2, I3) equipped with an isometric action of Sp(1) (or SO(3)) which permutes the
complex structures on M . We will often refer to M as the target hyperKähler manifold. The sections of the non-linear fibre-
bundle now play the role of spinors. The interplay between the Sp(1) (or SO(3)) action and the quaternionic structure on M
allows one to define the Clifford multiplication. Composing the Clifford multiplication with the covariant derivative gives
the generalised Dirac operator, which we denote by D.

In order to define a generalisation of the Seiberg–Witten equations, we need additionally a twisting principal G-bundle
PG → X , with a tri-Hamiltonian action of G onM . The action gives rise to a hyperKähler momentmapµ : M −→ sp(1)∗ ⊗g∗.
For a connection A on PG and a spinor u, the 4-dimensional generalised Seiberg–Witten equations on X are the following
system of equations{

DAu = 0
F+

A − µ ◦ u = 0 (1)

where DA is a twisted Dirac operator for a connection A on PG.
This non-linear generalisation of the Dirac operator is well-known to physicists and has been used in the study of

gauged, non-linear σ -models [1]. The 3-dimensional version of Eqs. (1) was studied by Taubes [2] (see also [3]). The
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4-dimensional generalisation was considered by Pidstrygach [4], Schumacher [5] and Haydys [6]. The moduli spaces of
solutions to (1) makes for an interesting study, especially because of its application to gauge theories on manifolds with
special holonomies (cf. [7,8]). Manywell-known gauge-theoretic equations like the PU(2)-monopole equations [9], the Vafa–
Witten equations [10], Pin(2)-monopole equations [11], the non-Abelian monopole equations [12], etc. can be treated as
special cases of this generalisation.

It is possible to obtain the target hyperKähler manifold with requisite symmetries from Swann’s construction [13,14].
Starting with a quaternionic Kähler manifold N of positive scalar curvature, Swann constructs a fibration U(N) → N , whose
total space admits a hyperKähler structure. Such manifolds are characterised by the existence of a hyperKähler potential.
Alternatively, the permuting Sp(1)-action extends to a homothetic action of H∗. The bundle construction commutes with
the hyperKähler quotient construction of Hitchin, Karlhede, Lindström and Roček [15] and the quaternionic Kähler quotient
construction of Galicki and Lawson [16]. As a result, many examples of (finite dimensional) hyperKähler manifolds with
homothetic H∗-action can be obtained via hyperKähler reduction of Hn.

With M = U(N), we derive a transformation formula for the generalised Dirac operator, under the conformal change of
metric on the base manifold. Since U(N) admits a natural homothetic action of R+, this setting allows one to make sense of
‘‘weighted spinors".

Let π1 : PCO(4) → X be the bundle of conformal frames with respect to the conformal class [gX ] and PG → X be a principal
G-bundle over X . Assume that the action of G onM is tri-Hamiltonian. Let π̃ : Q̃ → X denote the conformal SpinG(4)-bundle,
which is a double cover of PCO(4) ×X PG.

Theorem 1.1. Let f be a smooth, real-valued function on X and let u be a (generalised) spinor. Consider the metric g ′
X := e2f gX in

the conformal class [gX ] and let ϕ′ and ϕ be the Levi-Civita connections associated to gX and g ′
X respectively. For a fixed connection

A on PG, denote by Aϕ and Aϕ′ the corresponding lifts to Q̃ . Then, the associated generalised Dirac operators DAϕ and DAϕ′ are
related as

DAϕ′ (Bu) = B

(
de−5/2π∗

1 fDAϕ (e
3/2π∗

1 f u)
)

(2)

where, B is the lift of the automorphism B : PCO(4) −→ PCO(4), given by p ↦−→ e−f p, and de−5/2π∗
1 f is the action of e−5/2π∗

1 f by
differential on TM.

ForM = H, the result was proved by Hitchin [17].
Assume that M = U(N) is a 4-dimensional hyperKähler manifold. Using the above theorem, we show that away

from a singular set, the generalised Seiberg–Witten equations can be interpreted in terms of almost-complex geometry
of the underlying 4-manifold, as equations for a compatible almost-complex structure and a real-valued function which is
associated to a conformal factor. Recall that on a Riemannian 4-manifold (X, gX ), the compatible almost-complex structures
on X are parameterized by sections of the twistor bundle Z , which is a sphere bundle in Λ+. Thus the almost-complex
structures can be thought of as self-dual, 2-forms Ω with |Ω| = 1. An almost-complex structure gives a splitting of Λ+ into
the direct sum of the trivial bundle spanned byΩ and its orthogonal complement K , where K is a complex line bundle. Since
|Ω| = 1, its covariant derivative is a section of T ∗X ⊗R K . Using the almost-complex structure, we get the isomorphism

T ∗X ⊗R K ∼= T ∗X ⊗C K ⊕ T ∗X ⊗C K .

Moreover, the wedge product gives a complex, bi-linear map

T ∗X × T ∗X −→ Λ2T ∗X = K .

using which, we can identify TX ∼= T ∗X ⊗C K . Thus ∇Ω has two components: the first component in T ∗X ⊗C K is the
Nijenhuis tensor and the second one in TX is dΩ . Let ⟨·, ·⟩ denote the obvious K -valued pairing between TX and T ∗X ⊗ K .

Let G = U(1) and M = U(N) be 4-dimensional hyperKähler manifold, which is total space of a Swann bundle, equipped
with a tri-Hamiltonian action of U(1) that commutes with the permuting Sp(1)-action. We will call such an action a
permuting action of U(2) ∼= Sp(1) ×± U(1).

Theorem1.2. Fix ametric gX on X and let [gX ] be its conformal class. Assume thatM is obtained as a quotient of a flat, quaternionic
space and equipped with a residual permuting action of U(2) from the flat space. Then, there exists a bijective correspondence
between the following:

• pairs consisting of a metric g ′
X ∈ [gX ] and a solution (u,A) to the generalised Seiberg–Witten equations, such that the image

of u does not contain a fixed point of the U(1) action on M
• pairs consisting of a metric g ′′

X ∈ [gX ] and a self-dual 2-form Ω satisfying

(∇∗
∇Ω)⊥ + 2 ⟨dΩ,NΩ⟩ = 0,

3
2

|NΩ |
2
+

1
2

|dΩ|
2
+

1
2
sX (g ′′

X ) < 0 (3)

where sX (g ′′
X ) denotes the scalar curvature with respect to the metric g ′′

X .
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Theorem 1.2 was proved by Donaldson [18] for the usual Seiberg–Witten equations.
Notice that first equation in the second bullet of Theorem1.2 is nothing but a perturbation of the Euler–Lagrange equation

for the energy functional ∫
X
|∇Ω|

2 . (4)

The functionalwas studiedbyWood [19]. Critical points of the functional correspond to a choice of ‘‘optimal" almost-complex
structures, amongst all possible almost-complex structures on X .

2. Preliminaries and definitions

2.1. HyperKähler manifolds

A 4n-dimensional Riemannian manifold (M, gM) is hyperKähler if it admits a triple of almost-complex structures Ii ∈

End(TM) i = 1, 2, 3 , which are covariantly constant with respect to the Levi-Civita connection and satisfy quaternionic
relations IiIj = δijkIk.

Let Sp(1) denote the group of unit quaternions and sp(1) denote its Lie algebra. The quaternionic structure onM induces
a covariantly constant endomorphism of TM with values in sp(1)∗ = (Im(H))∗.

I ∈ Γ (M, End(TM) ⊗ sp(1)∗), Iξ := ξ1I1 + ξ2I2 + ξ3I3, ξ ∈ sp(1). (5)

Observe that for every ξ ∈ S2 ⊂ Im(H), the endomorphism Iξ is a complex structure. In other words,M has an entire family
of Kähler structures parameterized by S2. Define the 2-form

ω ∈ Λ2M ⊗ sp(1)∗, ωξ (·, ·) = gM(Iξ (·), ·).

If ξ ∈ S2, then ωξ is just the Kähler 2-form associated to Iξ .

Definition 1. An isometric action of Sp(1) on M is said to be permuting if the induced action on the 2-sphere of complex
structures is the standard action of SO(3) = Sp(1)/±1 on S2:

dq Iξ dq−1
= Iqξ q̄, for q ∈ Sp(1), ξ ∈ sp(1), ∥ξ∥

2
= 1.

Definition 2. An isometric action of a Lie group G on M is tri-holomorphic or hyperKähler, if it preserves the hyperKähler
structure

η∗Ii = Iiη∗ i = 1, 2, 3, η ∈ G.

In particular, G fixes the 2-sphere of complex structures on M . The action is tri-Hamiltonian (or hyperHamiltonian) if it is
Hamiltonian with respect to each ωi. The three moment maps can be combined together to define a single, G-equivariant
map hyperKähler moment map µ : M −→ sp(1)∗ ⊗ g∗, which satisfies

d(⟨µ, ξi ⊗ η⟩) = ιKMη ωi, η ∈ g, ξi ∈ sp(1) is the basis

and KM
η denotes the fundamental vector-field due to the infinitesimal action of η.

Definition 3. A hyperKähler potential is a smooth function f : M −→ R+ which is simultaneously a Kähler potential for all
the three complex structures I1, I2, I3.

2.2. Target hyperKähler manifold

Suppose thatM is a hyperKähler manifold with a permuting action of Sp(1) and a tri-Hamiltonian action of a compact Lie
group G which commutes with the Sp(1)-action. Let ε ∈ G be a central element of order two. Let Z/2Z ⊂ Sp(1) × G denote
the normal subgroup of order two, generated by the element (−1, ε). Assume that Z/2Z acts trivially onM so that the action
of Sp(1)×G descends to an action of SpinG(3) := Sp(1)×Z/2ZG. Wewill refer to this action as a permuting action of SpinG(3).
An action of SpinG(4) := (Sp(1)+ × Sp(1)−) ×Z/2Z G is said to be permuting if the action is induced by a permuting action of
Sp(1) ∼= Spin(3) via the homomorphism

ρ : SpinG(4) −→ SpinG(4)/Sp(1)− ∼= SpinG(3).

Note that Sp(1)− acts trivially onM .
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2.3. SpinG(4)structure

From the definition of the group SpinG(4), we have the following exact sequence

0 −→ Z/2Z −→ SpinG(4)
γ

−→ SO(4) × (G/{1, ϵ}) −→ 0. (6)

For simplicity, put G = G/{1, ϵ}. Let PSO(4) denote the frame-bundle of X and P → X be a principal G-bundle over X . A
SpinG(4)-structure over X is a principal SpinG(4)-bundle π : Q → X , which is an equivariant double cover of the bundle
PSO(4) ×X P , with respect to the map γ as defined in (6). We refer to [12] for details.

2.4. Generalised Dirac operator

We define the space of generalised spinors to be the space of smooth, equivariant maps

S := C∞(Q ,M)Spin
G(4) ∼= Γ (X,Q ×SpinG(4) M).

The Levi-Civita connection ϕ on PSO(4) and a connection a on the principal P together determine a unique connection on Q .
Let A denote the space of all connections on Q , which are the lifts of the Levi-Civita connection. We define the covariant
derivative of a spinor u ∈ S , with respect to a connection A ∈ A by1

DA : C∞(Q ,M)Spin
G(4)

−→ Hom(TQ , TM)Spin
G(4)

hor , DAu = du + KM
A |u (7)

where KM
A |u: TQ → u∗TM is an equivariant bundle homomorphism defined by KM

A |u(v) = KM
A(v)|u(p) for v ∈ TpQ . Denote by

πSO : Q −→ PSO(4) the projection to the frame bundle. Then, alternatively, one can view the covariant derivative as

DA : C∞(Q ,M)Spin
G(4)

−→ C∞(Q , (R4)∗ ⊗ TM)Spin
G(4), ⟨DAu(q), w⟩ = du(q)(w̃) (8)

where, w ∈ R4, w̃ denotes the horizontal lift of πSO(q)(w) ∈ Tπ (q)X .

Clifford multiplication

The second ingredientwe need to define the Dirac operator is Cliffordmultiplication. From (5), we can construct an action
of Cl04 ∼= Cl3 on TM as

R3 ∼= Im(H) −→ End(TM), h ↦→ Ih.

The map extends to a SpinG(4)-equivariant map Cl3 −→ End(TM). Thus TM is naturally a Cl04 module. Now consider
W := Cl4 ⊗Cl04

E, where E = (TM, I1). Since W is a Cl04-module, we get a Z2-graded Cl4-module

W = W+
⊕ W−, W+

= Cl04 ⊗Cl04
E, W−

= Cl14 ⊗Cl04
E.

More precisely, W+ is the SpinG(4)-equivariant bundle TM with an action induced by ρ, whereas W− is the SpinG(4)-
equivariant vector bundle TM equipped with the left-action:

[q+, q−, g] · w− = Iq−
Iq̄+

dq+dg w−.

Identify R4 with H by mapping the standard, oriented basis (e1, e2, e3, e4) of R4, to (1, ī, j̄, k̄). The SpinG(4)-action on H is
given by [q+, q−, g] · h = q−hq̄+. Clifford multiplication is the SpinG(4)-equivariant map

• : (R4)∗ ∼= H −→ End(W+
⊕ W−), gR4 (h, ·) ↦−→

[
0 −Ih̄
Ih 0

]
. (9)

Since h • h = −gR4 (h, h) · idW+⊕W− , by universality property, the map • extends to a map of algebras • : Cl4 −→

End(W+
⊕ W−). Composing • with the covariant derivative, we get the generalised Dirac operator:

DAu ∈ C∞(Q , u∗W−)Spin
G(4), DAu =

3∑
i=0

ei • DAu(ẽi) (10)

where the latter expression follows from Eq. (8).

1 The subscript hor implies that DAu vanishes on vertical vector fields.
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Generalised Seiberg–Witten equations

Let µ be a hyperKähler moment map for the G-action on M and a be a connection on P . Then generalised Seiberg–Witten
equations for a pair (u,A) ∈ S × A , in dimension four, are{

DAu = 0
F+
a − Φ(µ ◦ u) = 0 (11)

where F+
a ∈ Map(Q , Λ2

+
(R4)∗)Spin

G(4) is the self-dual part of the curvature of a and Φ : sp(1)∗ −→ Λ2
+
(R4)∗ is the

isomorphism, mapping the basis elements ξl ↦→ βl, l = 1, 2, 3, where

β0 = dx0 ∧ dx1 + dx2 ∧ dx3, β1 = dx0 ∧ dx2 + dx3 ∧ dx1, β3 = dx0 ∧ dx3 + dx1 ∧ dx2. (12)

We will suppress the isomorphism henceforth.

3. Conformal transformation of generalised Dirac operator

This section is divided into three parts. In the first part, Section 3.1, we study metric connections for metrics in the
conformal class of gX . Namely, given the Levi-Civita connection of gX and a metric g ′

X ∈ [gX ], we explicitly construct the
Levi-Civita connection for g ′

X . In the second part, Section 3.2, we give a quick review of Swann’s construction. In the third
part, Section 3.3, we use the results from Section 3.1 to obtain a formula for conformal transformation of the generalised
Dirac operator when the target hyperKähler manifold is obtained via Swann’s construction. For details on ideas used in this
section, we refer the interested reader to [20].

3.1. Metric connections on conformal bundle

Fix a metric gX on X and let [gX ] denote its conformal class. Let π1 : PCO(4) −→ X denote the bundle of all conformal
frames on (X, [gX ]). A point p ∈ PCO(4) is a CO(4)-equivariant, linear isomorphism p : R4

−→ Tπ1(p)X . Consider the canonical
one-form θ : PCO(4) −→ R4 defined as

θp(v) = p−1 ((π1)∗(v)) , p ∈ PCO(4), v ∈ TpPCO(4).

A metric on X is a section gX ∈ Γ (X, S2(T ∗X)), which can viewed as an equivariant map in C∞(PCO(4), S2(R4)∗)CO(4)

π∗

1 gX (·, ·) = gR4
(
θp(·), θp(·)

)
.

For a smooth, real-valued function f on X , consider the metric g ′
X = e2(π

∗
1 f )gX in the conformal class of gX . The metrics gX and

g ′
X determine two isomorphic SO(4) bundles:

PSO(4) = {p ∈ PCO(4) | gR4 (θp, θp) = π∗

1 gX (·, ·)}

P ′

SO(4) = {p ∈ PCO(4) | gR4 (θp, θp) = e2(π
∗
1 f )π∗

1 gX (·, ·)}

where, gR4 (·, ·) is the standard metric on R4. Let ϕ be a connection on PCO(4). Then ϕ + θ define a 1-form with values in
co(4) ⊕ R4. We can extend the bracket on the Lie algebra co(4) to co(4) ⊕ R4 as

[A, x] = −[x, A] = Ax, [x, y] = 0, for x, y ∈ R4 and A ∈ co(4).

This defines an affine Lie algebra which is best identified with the frame bundle of R4. The failure of the 1-form ϕ + θ to
conform with the associated Maurer–Cartan form is measured by

d(ϕ + θ ) + [ϕ + θ, ϕ + θ ] = R(ϕ) + T (ϕ)

where

R(ϕ) = dϕ +
1
2
[ϕ, ϕ], T (ϕ) = dθ + [ϕ, θ].

Here the entities R and T are horizontal 2-forms on the conformal frame bundle, which are nothing but the curvature and
the torsion tensors, respectively and the Lie bracket operations are carried out simultaneously with wedging of 1-forms.

Suppose that ϕ is a connection on PCO(4) satisfying

(d + ϕ) gX = 0 and (d + ϕ) θ = 0. (13)

Then ϕ is just the Levi-Civita connection for the metric gX . Let ϕ′ denote the Levi-Civita connection for the metric g ′
X . The

difference of the 2-connections is a horizontal 1-form on PCO(4) and therefore can be written as contraction of θ with an
equivariant function ξ ∈ Hom(R4, co(4)) ∼= (R4)∗ ⊗ co(4). More precisely,⟨

θp, ξ
⟩
(Y ) =

⟨
θp(Y ), ξ

⟩
, Y ∈ TpPCO(4).
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Therefore we may write

ϕ′
− ϕ = ⟨θ, ξ ⟩ for some ξ ∈ (R4)∗ ⊗ co(4). (14)

Throughout, we will suppress the pairing with θ and simply write ϕ′
− ϕ = ξ . Consider the covariant derivative of g ′

X with
respect to ϕ

(d + ϕ) (g ′

X ) = −e2(π
∗
1 f ) 2 (π∗

1 df ) gX . (15)

The right hand side of the equation can be understood as follows. Define

fi(p) = π∗

1 df (p̃(ei)),

where, ei ∈ R4 is the standard basis element of R4 and p̃(ei) is the horizontal lift of p(ei) to PCO(4) with respect to ϕ. We can
write

π∗

1 df (p) =

⟨
4∑

i=1

fi(p) ei, θp

⟩
,

4∑
i=1

fi(p) ei ∈ (R4)∗ ↪→ (R4)∗ ⊗ co(4)

where ei are the basis for (R4)∗. So the action of π∗

1 df is just the (left) action of
∑4

i=1 fi e
i
∈ End(R4).

Remark 1. The negative sign in Eq. (15) is due to the left action of Aut(R4) ↷ S2(R4)∗, which is given by

S2(R4)∗ ∋ gX ↦−→ b · gX (·, ·) := gX (b−1, b−1),

where b ∈ Aut(R4).

It follows that ϕ + π∗

1 df is a metric connection for g ′
X . But it has a non-zero torsion. Indeed

(
d + ϕ + π∗

1 df
)

θ =

⟨
4∑

i=1

fi ei, θ

⟩
∧ θ. (16)

Point-wise, the torsion tensor is a map

T (ϕ)(p) : Λ2Dp ∼= Λ2R4 dθ
−→ R4.

For the connections ϕ and ϕ′ on PCO(4), the difference between their torsion tensors is

T (ϕ′)p (x ∧ y) − T (ϕ)p (x ∧ y) =
1
2
(ξp(x) y − ξp(y) x), x, y ∈ R4,

In terms of the CO(4)-equivariant homomorphism:

δ : (R4)∗ ⊗ co(4) ↪→ (R4)∗ ⊗ (R4)∗ ⊗ R4
↦→ Λ2(R4)∗ ⊗ R4 ∼= Λ2(R4)∗ ⊗ (R4)∗

where, the first map is the inclusion and the second one is the anti-symmeterization, we can write T (ϕ′)p − T (ϕ)p = −δξ .
Therefore, it follows from (16) that⟨

4∑
i=1

fi(p) ei, θ

⟩
∧ θ = −δ

(
4∑

i=1

fi(p) ei
)

.

Identify so(4) ∼= Λ2 by associating the skew-symmetric endomorphism, to a pair of vectors v, w ∈ Rn,

v ∧ w = ⟨v, ·⟩w − ⟨w, ·⟩v. (17)

Lemma 3.1 ([20], Prop. 2.1). The restriction

δ|so(4): (R4)∗ ⊗ Λ2(R4)∗ ↦→ Λ2(R4)∗ ⊗ (R4)∗

that maps the difference of two connections to the difference of their torsions is an isomorphism.

Proof. Let aijk ∈ (R4)∗ ⊗ Λ2(R4)∗ denote the difference of Christoffel symbols of the two connections. Then, δ(aijk) =
1
2 (aijk − ajik). It is easily seen that if aijk ∈ ker(δ), then aijk = 0 and hence δ|so(4) is an isomorphism. □

Suppose that A is the Levi-Civita connection and B is a metric connection on PCO(4). Then using the isomorphism δ|so(4), we
obtain the expression for A in terms of B. Let B′

= B− α where α = δ|−1
so(4)(δ(ξ )). Then a straightforward computation shows

that T (B′) = 0. This is the strategy we are going to employ to express ϕ′ in terms of ϕ and correction terms.
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Pointwise, we can view
∑4

i=1 fi e
i as a 1-form with values in (R4)∗ ⊗ co(4), by writing

4∑
i=1

fi ei =

∑
i,j

fi ei ⊗ ej ⊗ ej ∈ (R4)∗ ⊗ (R4)∗ ⊗ R4.

Using the isomorphism R4 ∼= (R4)∗, we can write the right hand side as
∑

i,j fi e
i
⊗ ej ⊗ ej. So,

δ

⎛⎝∑
i,j

fi ei ⊗ ej ⊗ ej

⎞⎠ =
1
2

∑
i,j

fi
(
ei ⊗ ej ⊗ ej − ej ⊗ ei ⊗ ej

)
and therefore

δ|−1
so(4)

⎡⎣δ

⎛⎝∑
i,j

fi ei ⊗ ej ⊗ ej

⎞⎠⎤⎦ =

∑
i,j

fi (ej ⊗ ej ⊗ ei − ej ⊗ ei ⊗ ej) = −

∑
i,j

fi ej ⊗ (ei ∧ ej).

It is now easily verified that the torsion

T

(
ϕ + π∗

1 df − δ|−1
so(4)

(
δ

(
−

4∑
i=1

fi ei
)))

= −δ

(
4∑

i=1

fi ei
)

− δ

(
−

4∑
i=1

fi ei
)

= 0.

In conclusion, this is nothing but the Levi-Civita connection for the metric g ′
X and therefore

ϕ′
= ϕ + π∗

1 df +

⟨∑
i,j

fiej ⊗ (ei ∧ ej), θ

⟩
.

For simplicity, put α = π∗

1 df +
⟨∑

i,j fie
j
⊗ (ei ∧ ej), θ

⟩
.

Proposition 3.2 ([21] Prop. 6.2, Chap. I). The adjoint representation induces the Lie algebra isomorphism ζ : spin(n) −→ so(n) is
given by:

ζ (eiej) = 2ei ∧ ej,

where, {eiej}i<j are the basis elements of spin(n). Consequently for v, w ∈ Rn,

ζ−1(v ∧ w) =
1
4
[v, w].

Under this isomorphism, α gets mapped to
∑4

i=1 fi e
i
+

1
4

∑
i,j fie

j
⊗ (eiej − ejei). We denote this again by α.

3.2. A review of Swann’s construction

A quaternionic Kähler manifold is a 4n dimensional manifold, whose holonomy is contained in Sp(n)Sp(1) := (Sp(n) ×

Sp(1))/±1. LetN be a quaternionic Kählermanifold of positive scalar curvature and F be the Sp(n)Sp(1) reduction of the frame
bundle PSO(4n) of N . Then S(N) := F/Sp(n) is a principal SO(3)-bundle, which is the frame bundle of the 3-dimensional vector
sub-bundle of skew symmetric endomorphisms of TN . The Sp(1)-action, by left multiplication, descends to an isometric
action of SO(3) on H∗/Z2. Swann bundle over N is the principal H∗/Z2

U(N) := S(N) ×SO(3) (H∗/Z2) −→ N

Theorem3.3 ([13]). ThemanifoldU(N) is a hyperKählermanifold with a free, permuting action of SO(3) and admits a hyperKähler
potential given by ρ0 =

1
2 r

2. The vector field X0 = −IξKM
ξ is independent of ξ ∈ sp(1) and grad ρ0 = X0. Moreover, if a Lie group

G acts on N, preserving the quaternionic Kähler structure, then the action can be lifted to a tri-Hamiltonian action of G on U(N).

The Riemannian metric on the total space U(N) is given by gU(N) = gH∗/Z2 + r2gN where r is the radial co-ordinate on
H∗/Z2 and gH∗/Z2 is the quotient metric obtained from H. Alternatively, one can write

U(N) = (0, ∞) × S(N)

with metric gU(N) = dr2 + r2(gN + gRP3 ), where gRP3 is the quotient metric on RP3 derived from its double cover S3. Thus,
U(N) is a metric cone over S(N). The manifold U(N) is equipped with a natural left action of H∗ ∼= R+

× Sp(1)(
(λ, q) (r, s)

)
↦−→ (λ · r, q · s). (18)
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3.3. Generalised Dirac operators for conformally related metrics

Henceforth, fix an M = U(N), for some quaternionic Kähler manifold N of positive scalar curvature and an action of G
that preserves the quaternionic Kähler structure on N . By Theorem 3.3, the action lifts to a tri-Hamiltonian action of G on
U(N). ThereforeM carries a permuting action of SpinG(4).

Define the conformal SpinG(4) group CSpinG(4) := R+
× SpinG(4), which is a double cover of CO(4) × G

0 −→ Z/2Z −→ CSpinG(4)
γ

−→ CO(4) × G −→ 0. (19)

Definition 4. A CSpinG(4)-structure over X is a principal CSpinG(4)-bundle π̃ : Q̃ → X , which is an equivariant double cover
of bundle PCO(4) ×X P , with respect to the map γ .

Let ϕ and ϕ′ denote the Levi-Civita connections for metrics gX and g ′
X ∈ [gX ] respectively. Fix a G-connection A on P . Then

A uniquely determines the connections Aϕ and Aϕ′ , which are lifts of ϕ and ϕ′ to Q̃ . Then, as shown in Section 3.1,

Aϕ′ − Aϕ = α ∈ C∞(Q̃ , (R4)∗ ⊗ g)Spin
G(4).

Consequently, the covariant derivative of u, with respect to Aϕ′ is

DAϕ′ u = DAϕu + KM
α |u∈ C∞

(
Q̃ , (R4)∗ ⊗ u∗TM

)CSpinG(4)
. (20)

Recall that U(N) admits a hyperkähler potential ρ0 and X0 = grad ρ0. For λ ∈ R \ {0},

ρ0(eλx) =
1
2
gM (X0|eλx,X0|eλx) =

1
2
e2λgM (X0|x,X0|x) = e2λρ0(x).

Therefore
d
dt

ρ0(e2tλx)|t=0= dρ0(
d
dt

(e2tλx)) = 2dρ0(K
M,R+

λ )|x= gM (X0|x, K
M,R+

λ |x).

On the other hand
d
dt

ρ0(e2tλx)|t=0=
d
dt

(e2tλ)ρ0(x) = 2λρ0(x) = gM (X0|x,X0|x),

which implies that KM,R+

λ = λX0.
We are now in a position to give the proof of Theorem 1.1. But first, we need the following Lemma:

Lemma 3.4. For f ∈ C∞(X,R), we have

DA(e−π∗
1 f u) = de−π∗

1 f DAu − π∗

1 df • X0 ◦ u, (21)

where de−π∗
1 f denotes the differential of the action of e−π∗

1 f on TM.

Proof. Let p ∈ Q̃ and v ∈ TpQ̃ . Let γ : [0, 1] −→ Q̃ be a curve in Q̃ such that γ (0) = p and γ̇ (0) = v. Evaluating the
covariant derivative of e−π∗

1 f u for v:

DA(e−π∗
1 f u)(v) = d(e−π∗

1 f u) (v) + KM
A(v)|e−π∗

1 f (p)u(p)
.

The first term of the above expression is

d(e−π∗
1 f u)(v) =

d
dt

(
e−π∗

1 f u
)
(γ (t))|t=0

=
d
dt

(
e−π∗

1 f (γ (t))u(γ (t))
)
|t=0

= de−π∗
1 f (p)du(v) + KM

(−π∗
1 df (v))

|u(p)

= de−π∗
1 f (p) du(v) −

⟨ 4∑
i=1

fi ei, θ (v)
⟩
X0|u(p)

and the second term is

KM
A(v)|e−π∗

1 f (p)u(p)
= de−π∗

1 f (p) KM
A(v)|u(p).

In conclusion,

DA(e−π∗
1 f u) = de−π∗

1 f DAu −
⟨ 4∑
i=1

fi ei, θ
⟩
⊗ X0 ◦ u.

Applying Clifford multiplication, proves the statement of the Lemma. □
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Proof of Theorem 1.1. With respect to the metric e2π
∗f gX , the Clifford multiplication is given by •

′
= de−π∗

1 f •. Substituting
for α in (20) and applying the Clifford multiplication we get:

DAϕ′ u = de−π∗
1 f

⎛⎝DAϕu + π∗

1 df • X0 ◦ u +
1
4
⟨

∑
i<j

fiej, θ⟩ • KM
(eiej−ejei)|u

⎞⎠ (22)

Note that in using the identification (R4)∗ ∼= H, the element (eiej − ejei) belongs to the Lie algebra sp(1) ∼= Im(H) and has
norm 1. Now recall from Theorem 3.3 the vector field X0 = −IξKM

ξ is independent of ξ ∈ sp(1). In particular when |ξ | = 1,
we get IξX0 = KM

ξ . Therefore,

KM
(eiej−ejei)|u= I(eiej−ejei)X0 ◦ u = (eiej − ejei) • X0 ◦ u.

Substituting this in (22), we get

DAϕ′ u = de−π∗
1 f

⎛⎝DAϕu + π∗

1 df • X0 ◦ u +
1
4
⟨

∑
i<j

fiej, θ⟩ • (eiej − ejei) • X0 ◦ u

⎞⎠
= de−π∗

1 f
(
DAϕu + π∗

1 df • X0 ◦ u +
1
4

⟨4
∑

i

fiei − 2
∑
i,j

fiejδi,j + 4
∑

i

fiei, θ⟩ • X0 ◦ u
)

= de−π∗
1 f
(
DAϕu + π∗

1 df • X0 ◦ u +
3
2

π∗

1 df • X0 ◦ u
)
.

Now observe that

DAϕ′ (e
−π∗

1 f u) = de−π∗
1 f
(
de−π∗

1 f DAϕu +
3
2
de−π∗

1 f π∗

1 df • X0 ◦ u
)

= de−π∗
1 f
(
de−

5
2 π∗

1 f DAϕ (e
3
2 π∗

1 f u)
)

.

Thus, in conclusion

DAϕ′ (Bu) = B

(
de−5/2π∗

1 f DAϕ (e3/2π
∗
1 f u)

)
. □ (23)

4. Almost Hermitian geometry and generalised Seiberg–Witten

In this section, we give the proof of Theorem 1.2. Let the target hyperKähler manifold M be as in Section 3.3, but with
G = U(1), so thatM now carries a permuting action of Spinc(4). Moreover, let dimM = 4. Fix a Spinc(4)-structure Q → X . In
this section we restrict our attention to those U(N) which can be obtained by a hyperKähler reduction of a flat, quaternionic
space. Examples include nilpotent co-adjoint, orbits of complex semi-simple Lie groups, the moduli spaces of instantons on
4-manifolds, etc. We describe this set-up below.

Let V be a finite-dimensional, Hermitian vector space and H := V ⊕V ∗. Then H is a flat-hyperKähler manifold. Identifying
HwithHn, for some n, it is easy to see that H carries a natural permuting action of Sp(1) given bymultiplication by conjugate
on the right. Consider the left action of U(1) on H

z · (v, w) = (z · v, z−1
· w). (24)

The action is tri-Hamiltonian, with a moment map

µR(v, w) =
1
2
(∥v∥

2
− ∥w∥

2), µC(v, w) = ⟨v, w⟩ (25)

Therefore, H admits a permuting action of U(2). Suppose that another compact Lie group G ⊂ U(n) ↪→ Sp(n) has a
tri-Hamiltonian action on H that commutes with the U(2)-action. Assume zero is a regular value of the G-moment map
µg : H → sp(1)∗ ⊗ g∗. Then, U(2) preserves the zero level set of µg and therefore descends to a permuting action on the
quotientM := µ−1

g (0)/G. Put Ĝ := Spinc(4) × G.

Remark 2. More generally, we can consider H =
∑k

i=1 Vi ⊕ V ∗

i , where each Vi is a complex representation of U(2) × G,
equipped with the tri-holomorphic action of U(1) by (weighted) left multiplication, so that it may happen that U(1) acts
non-trivially on the first {Vl}

m
l=1, 1 < m < k and trivially on the rest. However, we require that the image of the spinor be

devoid of fixed points of the U(1)-action. Therefore, we stick to the case where H = V ⊕ V ∗ and U(1) ↪→ Sp(n) ↷ H.
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4.1. Modified Seiberg–Witten equations

By assumption µ−1
g (0)/G = M . Let P := µ−1

g (0) denote the Spinc-equivariant principal G-bundle overM .

Q M

Q̂ P ⊂ H

X

π

u

π1 π2

û

Consider a Ĝ-bundle Q̂ → X , as in the diagram. Given a smooth, equivariant map û : Q̂ −→ H, such that µg ◦ û = 0,
define u : Q → M by u(q) = π2 (̂u(p)), q ∈ Q , p ∈ π−1

1 (q). Clearly then, u is a Spinc(4)-equivariant map and the diagram
commutes. On the other hand, given a smooth spinor u : Q −→ M , it defines a principal Ĝ-bundle over X , via pull-back of P
and canonically defines û, making the diagram commutative. In summary,

Lemma 4.1. There is a bijective correspondence between

{u ∈ C∞(Q , M)Spin
c
} ⇐⇒ {̂u ∈ C∞(Q̂ , H)̂G | µg ◦ û = 0}.

Fix a connection A on Q . This is uniquely determined by the Levi-Civita connection on X and a connection b on the
determinant bundle PU(1). The bundle P → M is a Riemannian submersion and therefore carries a canonical connection
a. This is defined as follows. For p ∈ P , let K P,G

η |p denote the fundamental vector field at p due to η ∈ g. For v ∈ TpP , define
ap(v) ∈ g be the unique element such that

K P,G
a |p(v) = K P,G

a(v)|p= − projim KP,G
(v)

where projim KP,G
denotes the orthogonal projection to the vertical sub-bundle, which is nothing but the image of the map

K P,G
: g → TP, η ↦−→ K P,G(η)|p= K P,G

η |p.

The pull-back of this connection by û, along with the connection A on Q , uniquely determine a connection Â on Q̂ (see [4])

Â = π∗A ⊕ Âg ∈ Λ1 (Q̂ , ĝ
)Ĝ

, Âg = û∗a − ⟨π∗

1A, ιspinc û∗a⟩. (26)

We can define a twisted Dirac operator DÂ acting on maps û.

Proposition 4.2. Then, there is a bijective correspondence between

{(̂u, Â) | DÂ̂u = 0, µg ◦ û = 0} and {(u,A) | DAu = 0}. (27)

Whenever DÂ̂u = 0, µg ◦ û = 0 and projg Â = Âg as in (26) and therefore, Â is uniquely determined by a U(1)-connection a
on PU(1).

Proof. For h ∈ P such that µg(h) = 0, defineHh := ker dµg(h) ∩ (Im K P,G)⊥. This is just the horizontal subspace over hwith
respect to the canonical connection a.

We will prove the proposition in two steps. In what follows, we shall denote the G and Spinc-components of Â by Âg and
A respectively.

Step 1: In the first step we will prove that IξDÂ̂u(v) ∈ Hû for every ξ ∈ sp(1) and v ∈ HÂ ⊂ T Q̂ . Indeed, if µg ◦ û = 0,
then d̂u(v) ∈ ker dµg (̂u(p)). Also, K

P,G
Âg

|̂u ∈ ker dµg (̂u(p)) and K P,Spinc

Â
|̂u ∈ ker dµg (̂u(p)). Therefore, DÂ̂u(v) ∈ ker dµg (̂u(p)).

Consequently

0 = ⟨dµg(DÂ̂u(v)), ξ ⊗ η⟩ = ⟨IξK P,G
η |̂u(p),DÂ̂u(v)⟩ = −⟨K P,G

η |̂u(p), IξDÂ̂u(v)⟩
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for ξ ∈ sp(1), η ∈ g and so IξDÂ̂u(v) ∈ (Im K P,G)⊥ for all ξ ∈ sp(1). For ξ ′
∈ sp(1),

⟨dµg(IξDÂ̂u(v)), ξ
′
⊗ η⟩ = ⟨dµg(DÂ̂u(v)), [ξ, ξ ′

] ⊗ η⟩ = 0

which implies IξDÂ̂u(v) ∈ ker dµG (̂u(p)) for all ξ ∈ sp(1). Thus, IξDÂ̂u(v) ∈ Hû.
Step 2: In this step, we prove the equivalence (27). If DÂ̂u = 0, then from (10), we have

0 = DÂ̂u(ẽ0) −

3∑
i=1

IiDÂ̂u(ẽi)

FromStep1,DÂ̂u(ẽ0) ∈ Hû. It follows thatDÂ̂u(ẽi) ∈ Hû for all i = 1, 2, 3. Consequently, for any v ∈ HÂ, projIm KP,G
DÂ̂u(v)

= 0 and we get K P,G
Âg(v)

= − projIm KP,G
d̂u(v). In other words, the g-connection component of Â is just the pull-back of the

canonical connection on P . Since the diagram commutes, dπ2(DÂ̂u) = DAu. Also, as DÂ̂u(ẽi) ∈ Hû for all i = 0, 1, 2, 3, we
have ι∗Ii = π∗

2 Ĩi and so,

0 = dπ2(DÂ̂u) = dπ2

(
DÂ̂u(ẽ0) −

3∑
i=1

ι∗Ii DÂ̂u(ẽi)

)
= DAu

Thus, DÂ̂u = 0 implies DAu = 0. On the other hand if K P,G
Âg(v)

= − projIm KP,G
d̂u(v) then DÂ̂u ∈ Hû and so dπ2(DÂ̂u) = DAu.

Therefore, if DAu = 0, it implies that DÂ̂u ∈ Im K P,G. But since,

DÂ̂u = DÂ̂u(ẽ0) −

3∑
i=1

π∗

2 Ĩi DÂ̂u(ẽi) ∈ Hû

it follows that DÂ̂u ∈ (Im K P,G)⊥ and so DÂ̂u = 0. This proves the statement. □

With this observation, it is now easy to construct a ‘‘lift" of the equations as follows.

Proposition 4.3. Fix a connection a on PU(1). There is a bijective correspondence between the following systems of equations⎧⎨⎩ DÂ̂u = 0
F+

b − µ ◦ û = 0
µg ◦ û = 0

and
{

DAu = 0
F+

b − µ ◦ u = 0 (28)

where µ : H → iR denotes the moment map for U(1)-action on H.

Since the tri-Hamiltonian action of U(1) descends to M , we denote the U(1)-moment map by µ itself. The above
correspondence was independently obtained by Pidstrygach [22] and also by Haydys [23] (Prop. 4.5 and Thm. 4.6).

4.2. Almost-complex geometry and generalised Seiberg–Witten

In this subsection, we give a proof of Theorem 1.2. It exploits the equivalence (28) and Theorem 1.1. Firstly, note that
the generalised Seiberg–Witten are not conformally invariant. On the other hand, from Theorem 1.1, we know that the
space of harmonic, generalised spinors is conformally invariant. It follows that there is bijective correspondence between
the solutions (̂u′, Â′) of the system (28) with respect to the metric g ′

X ∈ [gX ], such that image of û does not contain a fixed

point of the U(1)-action on H, and the triples (g ′′
X , û′′, Â′′) such that

⏐⏐µ ◦ û′′
⏐⏐ = 1 and (̂u′′, Â′′) satisfy the equations⎧⎨⎩ DÂ′′ û′′

= 0
F+

b − λµ ◦ û′′
= 0

µg ◦ û′′
= 0

(29)

where λ is a strictly positive function given by λ = |µ ◦ u|−1. To see the correspondence, choose g ′′
X =

⏐⏐µ ◦ û′
⏐⏐−4/3 g ′

X . Then
u′′

=
⏐⏐µ ◦ û′

⏐⏐−1/2 u′. By virtue of Theorem 1.1, u′′ is harmonic and the third equation of (28) remains invariant under the
conformal scaling. Moreover, λµ ◦ û′′

= µ ◦ û′. The said correspondence follows from the map (u′,A′) ↦→ (u′′,A′).
Suppose we are given a triple (g ′′

X , û, Â) satisfying (29) and |µ ◦ û| = 1. Then Ω = Φ(µ◦ û) is a non-degenerate, self-dual
2-form on X , where Φ : sp(1)∗ −→ Λ2

+
(R4)∗ is the isomorphism, and defines an almost-complex structure on X .

Lemma 4.4. Suppose that the target hyperKähler manifold M is 4-dimensional. Let A0 be a fiducial connection on Q and u be a
spinor such that the range of u does not contain a fixed point of the U(1)-action on M. Then there exists a unique 1-form a0 on X
such that DAu = 0, where A = A0 + ia0.
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Proof. Observe that DAu = DA0u +
∑3

i=0 e
i
• KM

ia0(ẽi)
|u. At a point q ∈ Q ,

KM
ia0 (ẽi(q)) |u(q) =

d
dt

exp ( i t a0 (̃ei(q))) u(q)|t=0 = (a0 (̃ei(q))) KM
i |u(q).

Therefore

DAu(q) = DA0u(q) +

3∑
i=0

(
a0 (̃ei(q))ei

)
• KM

i |u(q)

= DA0u(q) + a0(q) • KM
i |u(q).

Suppose that DAu = 0. Then, we need to solve the equation

−DA0u = a0 • KM
i |u.

Point-wise, we can choose identification of Tu(q)M and R4 with quaternions, such that the Clifford multiplication is just the
usual quaternionic multiplication. Since the image of u does not contain a fixed point of the U(1) action on M , KM

i |u is a
non-vanishing, equivariant section of u∗TM → Q . The statement of the Lemma follows. □

In essence, this translates to saying that given a non-vanishing spinor û such that µg ◦ û = 0, then there exists a unique
1-form a0 on X such thatDÂ̂u = 0. Therefore, the connection Â is entirely determined by û and hence by the almost complex
structure Ω = Φ(µ ◦ û).

Let B : H × H −→ sp(1) denote the symmetric (real) bi-linear form associated to the U(1)-moment map and B̃ denote
the induced map on (T ∗X ⊗ H) × (T ∗X ⊗ H), obtained using contraction furnished by the Riemannian metric on X . Then,
Ω = B(̂u, û) and so

∇
∗
∇Ω = 2

(
B(D∗

ÂDÂ̂u, û) − B̃(DÂ̂u, DÂ̂u)
)

Applying the Weitzenböck formula

D∗

ÂDÂ̂u = D∗

ÂDÂ̂u +
sX (g ′′

X )
4

û + F+

b • û + F+

Âg
• û (30)

gives

∇
∗
∇Ω = −

sX (g ′′
X )

2
Ω − B(F+

Âg
• û, û) − B(F+

b • û, û) − 2̃B(DÂ̂u,DÂ̂u)

We claim that the term B(F+

Âg
• û, û) vanishes. This follows from the following Lemma:

Lemma 4.5. Assume that µg(h) = 0 and let ξ ∈ sp(1) and η ∈ g. Then

B(̂u, η û ξ ) = 0

Proof. This follows from the fact that the U(1)-moment map is G-invariant. For η ∈ g, computing d
dt B

(
u, exp(tη) u ξ

)
|t=0

proves the statement of the Lemma. □

It follows that B(F+

Âg
• û, û) = 0. Therefore,

∇
∗
∇Ω = −

(
sX (g ′′

X )
2

+ λ

)
Ω − 2̃B(DÂ̂u,DÂ̂u) (31)

We are now in a position to give the proof of Theorem 1.2. The arguments of the proof are essentially the same as those of
Donaldson’s [18]. Nonetheless, for the sake of completeness, we present them here once again.

Proof of Theorem 1.2. Observe that since |Ω| = 1,

0 = ∆ |Ω| = 2
⟨
∇

∗
∇Ω, Ω

⟩
− 2 |∇Ω|

2 .

Using (31), we get

2λ = −sX (g ′′

X ) − 2 |∇Ω|
2
− 2

⟨̃
B(DÂ̂u,DÂ̂u), Ω

⟩
.

Therefore, re-arranging, we have

|∇Ω|
2
+

1
2
sX (g ′′

X ) +
⟨̃
B(DÂ̂u,DÂ̂u), Ω

⟩
< 0. (32)

Also, from (31) we have that (∇∗
∇Ω)⊥Ω + B̃(DÂ̂u,DÂ̂u)⊥Ω = 0. Thus comparing with the identities (3) of Theorem 1.2, to

complete our proof, we merely need to show that

B̃(DÂ̂u,DÂ̂u)
⊥Ω = 2 ⟨dΩ,NΩ⟩ ,

⟨̃
B(DÂ̂u,DÂ̂u), Ω

⟩
=

1
4

(
|NΩ |

2
− |dΩ|

2) . (33)
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The key issue here is to identify the map B̃ on kernel of the Clifford multiplication. In order to do this, it suffices to restrict
to the standard model when X = R4 and the connection Â is trivial. This is because at any point x ∈ X , there exists a
trivialisation in which the connection matrix Â vanishes at the point x.

Since û ∈ kerµg, the derivative D̂u ∈ Hû ⊂ ker dµg. At every point p ∈ kerµg, the horizontal subspace Hp can be
identified with Tπ2(p)M . Since M is 4-dimensional, Hp is 4-dimensional and so Hp ∼= H.

Let (x0, x1, x2, x3) be the standard co-ordinates on R4. Let s1, s2, . . . · s2n denote the complex basis for the spinors and
write û as

û : R4
−→ H, û =

n∑
i=1

fi si +
2n∑

i=n+1

gi−n si where fi, gi ∈ C∞(R4,C).

By Step 2 of Proposition 4.2, D̂u ∈ Hû, which means that without loss of generality, at the origin, we can assume that

(fi)xj = (gi)xj = 0 for i = 2, 3, . . . , n and j = 0, 1, 2, 3.

Consequently, in the decomposition (33), the only contributing terms are the 1-jets of f1, g1 at the origin. Therefore, without
loss of generality, we can assume that at the origin, fi, gi = 0 for i = 2, 3, . . . · n. Let f0 = f1(0) and g0 = g1(0). Then, at the
origin u = f0 s1 + g0 s2. Moreover, since |Ω| = 1, |f0|2 + |g0|2 = 1 and

B(̂u, û) =

(
|f0|2 − |g0|2

2

)
β0 + Re ⟨f0, g0⟩ β1 + Im ⟨f0, g0⟩ β2

where βi are the basis of self-dual 2-forms onR4, given as in (12). The group Spin(4) acts on the baseR4 and also transitively
on unit positive spinors. In particular, for a suitable choice of an element in Spin(4), wemay further assume that at the origin,
f0 = 1 and g0 = 0. In particular, Ω =

1
2β0 at the origin. Thus Ω defines the standard complex structure 1

2 β0 on R4. This
allows us to use the complex co-ordinates

z = x0 + ix1, w = x2 + ix3.

From the Dirac equation we have

f1 z = g1w, f1w = −g1 z . (34)

Moreover, since f1 = 1 at the origin, the derivatives of f1 at the origin are purely imaginary. Therefore, at the origin,

f1 z = −f1 z and f1w = −f1w. (35)

Now, the component of B̃(D̂u, D̂u) along 1
2 β0 is

1
4

3∑
l=0

⏐⏐⏐⏐∂ f1∂xl

⏐⏐⏐⏐2 −

⏐⏐⏐⏐∂g1∂xl

⏐⏐⏐⏐2 =
1
16

(
|f1 z |

2
+ |f1 z |

2
+ |f1w|

2
+ |f1w|

2
− |g1 z |

2
− |g1 z |

2
− |g1w|

2
− |g1w|

2) .
Using the identities (34) and (35), we get⟨̃

B(D̂u, D̂u),
1
2
β0

⟩
=

1
16

(
|g1 z |

2
+ |g1w|

2)
−

1
16

(
|g1 z |

2
+ |g1w|

2) . (36)

The space orthogonal to 1
2 β0 is spanned by βc = dz · dw and therefore the component of B(D̂u, D̂u) orthogonal to 1

2 β0 is

(B(D̂u, D̂u))⊥β0 =

3∑
l=0

[(
∂ f1
∂xl

)†
∂g1
∂xl

]
βc

=
1
4

(f1 z g1 z + f1 z g1 z + f1w g1w + f1w g1w) βc =
1
4

(g1 z g1w + g1w g1 z) βc

where, once again, we have used the identities (34) and (35) in the penultimate step. NowΩ is a section of the twistor bundle
and therefore its covariant derivative at the origin is given by the derivative of f1 g1 which is nothing but the derivative
of g1. The holomorphic part (g1 z, g1w) corresponds to the Nijenhuis tensor NΩ whereas the anti-holomorphic component
(g1 z, g1w) corresponds to dΩ , due to the vanishing of the rest of the partial derivatives.

Recall that there is a natural K -valued pairing between TX and T ∗X ⊗ K . Applying this to dΩ and NΩ , the pairing
corresponds to (g1 z g1w + g1w g1 z) βc . Therefore,

(B(D̂u, D̂u))⊥Ω0 =
1
4

× 4 ⟨dΩ,NΩ⟩ = ⟨dΩ,NΩ⟩ (37)⟨̃
B(D̂u, D̂u),

1
2
Ω0

⟩
=

1
16

× 4
(
|NΩ |

2
− |dΩ|

2)
=

1
4

(
|NΩ |

2
− |dΩ|

2) (38)
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Substituting in Eq. (31), we have

∇
∗
∇Ω = −

(
sX (g ′′

X )
2

+ λ

)
Ω +

1
2

(
|dΩ|

2
− |NΩ |

2)Ω − 2 ⟨dΩ,NΩ⟩ (39)

Also, observe that |∇Ω|
2

= |dΩ|
2
+ |NΩ |

2. The statement of the theorem follows from Eq. (39) and Eq. (32). □

5. Some remarks

For the usual Seiberg–Witten equations, Donaldson remarks that for a fixed metric, the Seiberg–Witten equations are in
bijective correspondence with solutions to the following equations

∇
∗
∇Ω = −

( s
2

+ |Ω|
2
)

Ω − 2⟨dΩ + ∗d |Ω| ,NΩ⟩ +
1
2

(
|dΩ|

2

|Ω|
2 − |NΩ |

2
)

Ω

+
1
2

(
|d |Ω| |

2
+ 2⟨d |Ω| , ∗dΩ⟩

) Ω

|Ω|
2 (40)

Many examples of hyperKähler manifolds with requisite properties can be obtained via hyperKähler reduction of flat
space. Using Proposition 4.3 and applying Donaldson’s arguments, one can show that the Abelian, generalised Seiberg–
Witten equations, for a 4-dimensional target hyperKähler manifold, can be expressed as (40).

Note that the specification of an almost-complex structure I compatible with Ω imposes a topological constraint on X .
Namely, in terms of the Euler characteristic χ and the signature τ of X ,

c21 (L) = 2χ + 3 τ

where L is the line-bundle associated to the determinant bundle PU(1). For the usual Seiberg–Witten equations, this is
precisely the condition under which the expected dimension of the moduli space is zero. Therefore Theorem 1.2, in
combination with Donaldson’s result [18] delivers a potential candidate to get a compact moduli space.

The arguments in the latter half of the article can be extended for target hyperKähler manifolds of higher dimensions,
using similar techniques. However, in this case, one obtains a map from the moduli space of generalised Seiberg–Witten to
the usual Seiberg–Witten equations, which may be neither injective nor surjective.
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