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1. Introduction

Let X be a 4-dimensional, oriented, smooth, Riemannian manifold and let Q — X be a Spin-structure. A spinor bundle over
X is a vector bundle associated to Q, with typical fibre H. The idea for generalisation is to replace the spinor representation
with a hyperKdhler manifold (M, gy, I1, I, I3) equipped with an isometric action of Sp(1) (or SO(3)) which permutes the
complex structures on M. We will often refer to M as the target hyperKdhler manifold. The sections of the non-linear fibre-
bundle now play the role of spinors. The interplay between the Sp(1) (or SO(3)) action and the quaternionic structure on M
allows one to define the Clifford multiplication. Composing the Clifford multiplication with the covariant derivative gives
the generalised Dirac operator, which we denote by D.

In order to define a generalisation of the Seiberg-Witten equations, we need additionally a twisting principal G-bundle
Pc — X, with a tri-Hamiltonian action of G on M. The action gives rise to a hyperKdhler moment map u : M — sp(1)* ® g*.
For a connection A on P; and a spinor u, the 4-dimensional generalised Seiberg-Witten equations on X are the following
system of equations

Dau=0
{F;’—,uou:O (1)

where D, is a twisted Dirac operator for a connection A on Pg.
This non-linear generalisation of the Dirac operator is well-known to physicists and has been used in the study of
gauged, non-linear o-models [1]. The 3-dimensional version of Egs. (1) was studied by Taubes [2] (see also [3]). The
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4-dimensional generalisation was considered by Pidstrygach [4], Schumacher [5] and Haydys [6]. The moduli spaces of
solutions to (1) makes for an interesting study, especially because of its application to gauge theories on manifolds with
special holonomies (cf. [7,8]). Many well-known gauge-theoretic equations like the PU(2)-monopole equations [9], the Vafa-
Witten equations [10], Pin(2)-monopole equations [11], the non-Abelian monopole equations [12], etc. can be treated as
special cases of this generalisation.

It is possible to obtain the target hyperKadhler manifold with requisite symmetries from Swann’s construction [13,14].
Starting with a quaternionic Kdhler manifold N of positive scalar curvature, Swann constructs a fibration 4(N) — N, whose
total space admits a hyperKahler structure. Such manifolds are characterised by the existence of a hyperKahler potential.
Alternatively, the permuting Sp(1)-action extends to a homothetic action of H*. The bundle construction commutes with
the hyperKdhler quotient construction of Hitchin, Karlhede, Lindstrém and Rocek [ 15] and the quaternionic Kdhler quotient
construction of Galicki and Lawson [16]. As a result, many examples of (finite dimensional) hyperKdhler manifolds with
homothetic H*-action can be obtained via hyperKdhler reduction of H".

With M = U(N), we derive a transformation formula for the generalised Dirac operator, under the conformal change of
metric on the base manifold. Since Z/(N) admits a natural homothetic action of R, this setting allows one to make sense of
“weighted spinors".

Let 71 : Pcogay — X be the bundle of conformal frames with respect to the conformal class [gx] and P — X be a principal
G-bundle over X. Assume that the action of G on M is tri-Hamiltonian. Let 7 : Q — X denote the conformal Spin®(4)-bundle,
which is a double cover of Pcgs) xx Po.

Theorem 1.1. Let f be a smooth, real-valued function on X and let u be a (generalised) spinor Consider the metric gy := =e¥ g, in
the conformal class [gx] and let ¢’ and ¢ be the Levi-Civita connections associated to gx and gy respectively. Fora ﬁxed connectlon
A on P, denote by A, and A, the corresponding lifts to Q Then, the associated generalised Dirac operators Dy, and Dy , are
related as

D (2u) = 22(de*/21 Dy (&2 w) ) o)

where,  is the lift of the automorphism B : Pcoay —> Pcoa), given by p — e~/ p, and de=>/>"1/ is the action of e=>/>"i/ by
differential on TM.

For M = H, the result was proved by Hitchin [17].

Assume that M = U(N) is a 4-dimensional hyperKahler manifold. Using the above theorem, we show that away
from a singular set, the generalised Seiberg-Witten equations can be interpreted in terms of almost-complex geometry
of the underlying 4-manifold, as equations for a compatible almost-complex structure and a real-valued function which is
associated to a conformal factor. Recall that on a Riemannian 4-manifold (X, gy ), the compatible almost-complex structures
on X are parameterized by sections of the twistor bundle 2, which is a sphere bundle in A*. Thus the almost-complex
structures can be thought of as self-dual, 2-forms £2 with |£2| = 1. An almost-complex structure gives a splitting of A™ into
the direct sum of the trivial bundle spanned by £2 and its orthogonal complement K, where K is a complex line bundle. Since
|§2] = 1, its covariant derivative is a section of T*X ®g K. Using the almost-complex structure, we get the isomorphism

T*X @z K = T*X ®c K ® T*X ®c K.
Moreover, the wedge product gives a complex, bi-linear map
T*X x T*X — A’T*X =K.
using which, we can identify TX & T*X ®c K. Thus V£ has two components: the first component in T*X ®c K is the
Nijenhuis tensor and the second one in TX is dS2. Let (-, -) denote the obvious K-valued pairing between TX and T*X ® K.
Let G = U(1) and M = U(N) be 4-dimensional hyperKahler manifold, which is total space of a Swann bundle, equipped

with a tri-Hamiltonian action of U(1) that commutes with the permuting Sp(1)-action. We will call such an action a
permuting action of U(2) = Sp(1) x+ U(1).

Theorem 1.2. Fix a metric gx on X and let [gx] be its conformal class. Assume that M is obtained as a quotient of a flat, quaternionic
space and equipped with a residual permuting action of U(2) from the flat space. Then, there exists a bijective correspondence
between the following:

e pairs consisting of a metric g, € [gx] and a solution (u, A) to the generalised Seiberg-Witten equations, such that the image
of u does not contain a fixed point of the U(1) action on M
e pairs consisting of a metric g, € [gx] and a self-dual 2-form 2 satisfying
1
(V*'VR)" +2(d2,Ng) =0, |Ng| + > |drz| + 5 5x(g) <0 (3)

where sx(g, ) denotes the scalar curvature with respect to the metric gy
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Theorem 1.2 was proved by Donaldson [ 18] for the usual Seiberg-Witten equations.
Notice that first equation in the second bullet of Theorem 1.2 is nothing but a perturbation of the Euler-Lagrange equation

for the energy functional
[ver. 4)
X

The functional was studied by Wood [ 19]. Critical points of the functional correspond to a choice of “optimal” almost-complex
structures, amongst all possible almost-complex structures on X.

2. Preliminaries and definitions
2.1. HyperKdhler manifolds

A 4n-dimensional Riemannian manifold (M, gy) is hyperKdhler if it admits a triple of almost-complex structures I; €
End(TM)i = 1,2, 3, which are covariantly constant with respect to the Levi-Civita connection and satisfy quaternionic
relations Iilj = 5ijk1k-

Let Sp(1) denote the group of unit quaternions and sp(1) denote its Lie algebra. The quaternionic structure on M induces
a covariantly constant endomorphism of TM with values in sp(1)* = (Jm(H))*.

I e F(M, End(TM) ®5p(1)*), Ig = 5111 + 5212 + 5313, 5 € 5p(1) (5)

Observe that for every £ € S? C Jm(H), the endomorphism I¢ is a complex structure. In other words, M has an entire family
of Kihler structures parameterized by S?. Define the 2-form

w e A’M®sp(1)*, we(-, ) = gulls(-), -).

If& € S?, then ws is just the Kahler 2-form associated to I;.

Definition 1. An isometric action of Sp(1) on M is said to be permuting if the induced action on the 2-sphere of complex
structures is the standard action of SO(3) = Sp(1)/+1 on S%:

dqle dq" = I, for g € Sp(1), & e sp(1), lI€)* = 1.

Definition 2. An isometric action of a Lie group G on M is tri-holomorphic or hyperKdhler, if it preserves the hyperKdhler
structure

i =1Ime i=1,2,3, neG.

In particular, G fixes the 2-sphere of complex structures on M. The action is tri-Hamiltonian (or hyperHamiltonian) if it is
Hamiltonian with respect to each w;. The three moment maps can be combined together to define a single, G-equivariant
map hyperKédhler moment map v : M — sp(1)* ® g*, which satisfies

d({u. & ® n)) =y @i, n € g, & € sp(1) is the basis

and K,’]"’ denotes the fundamental vector-field due to the infinitesimal action of .

Definition 3. A hyperKihler potential is a smooth function f : M — R* which is simultaneously a Kihler potential for all
the three complex structures Iy, I, Is.

2.2. Target hyperKdhler manifold

Suppose that M is a hyperKahler manifold with a permuting action of Sp(1) and a tri-Hamiltonian action of a compact Lie
group G which commutes with the Sp(1)-action. Let ¢ € G be a central element of order two. Let Z/27Z C Sp(1) x G denote
the normal subgroup of order two, generated by the element (—1, ¢). Assume that Z/2Z acts trivially on M so that the action
of Sp(1) x G descends to an action of Spin®(3) = Sp(1) x z,22.G. We will refer to this action as a permuting action of Spin®(3).
An action of Spin®(4) := (Sp(1)4 x Sp(1)_) x 7,2z G is said to be permuting if the action is induced by a permuting action of
Sp(1) = Spin(3) via the homomorphism

p : Spin®(4) — Spin®(4)/Sp(1)_ = Spin®(3).
Note that Sp(1)_ acts trivially on M.
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2.3. Spin®(4)structure

From the definition of the group Spin®(4), we have the following exact sequence
0 — 7/27 — Spin°(4) AN SO(4) x (G/{1,€¢}) — 0. (6)

For simplicity, put G = G/{1, €}. Let P54y denote the frame-bundle of X and P — X be a principal G-bundle over X. A
Spin®(4)-structure over X is a principal Spin®(4)-bundle = : Q — X, which is an equivariant double cover of the bundle
Psoay xx P, with respect to the map y as defined in (6). We refer to [12] for details.

2.4. Generalised Dirac operator

We define the space of generalised spinors to be the space of smooth, equivariant maps
5 = CF(Q M = I(X,Q Xgycia M).

The Levi-Civita connection ¢ on Psg(4) and a connection a on the principal P together determine a unique connection on Q.
Let 7 denote the space of all connections on Q, which are the lifts of the Levi-Civita connection. We define the covariant
derivative of a spinor u € S, with respect to a connection A € o7 by

. e
Da : C°(Q, M)™™@ s Hom(TQ, TM)"™ ™ Dyu = du + KV, (7)

hor

where KL"’|U: TQ — u*TM is an equivariant bundle homomorphism defined by Kﬁ/’|u(v) = K,Q/(’U)|u(p) for v e T,Q. Denote by
7so : Q —> Pso4) the projection to the frame bundle. Then, alternatively, one can view the covariant derivative as

Da: C(Q, M)™"°® s c(Q, (R*)* ® TM)™™“™)_ (Dau(q), w) = du(q)(iD) (8)

where, w € R*, W denotes the horizontal lift of so(q)(w) € T gX.

Clifford multiplication
The second ingredient we need to define the Dirac operator is Clifford multiplication. From (5), we can construct an action
ofcl} =cl;onTM as
R® = Jm(H) —> End(TM), h > I.

The map extends to a Spin®(4)-equivariant map Cl; —> End(TM). Thus TM is naturally a ¢l module. Now consider
W :=<cly ®c12 E, where E = (TM, I;). Since W is a Clg—module, we get a Z,-graded Cly-module

W=WreWw ", Wh=cli®E W~ =cl®E.

More precisely, W+ is the Spin®(4)-equivariant bundle TM with an action induced by p, whereas W~ is the Spin®(4)-
equivariant vector bundle TM equipped with the left-action:

[9+.9-,8] - w_ =1y Iz, dq dg w_.

Identify R* with H by mapping the standard, oriented basis (e1, e, es, e4) of R4, to (1, 1, j, k). The Spin®(4)-action on H is
given by [q4, g_, g] - h = q_hq... Clifford multiplication is the Spin®(4)-equivariant map

o (RY"=ZH — EndW™ @W~), gga(h, )r— |:I(Z _OI’_I:| . (9)
Since h @« h = —gga(h, h) - idy+gw-, by universality property, the map e extends to a map of algebras e : Cly —>

End(W™ @ W™). Composing e with the covariant derivative, we get the generalised Dirac operator:

3
Datt € C(Q uW PP @ D= 3"e 0 Dau(@) (10)
i=0

where the latter expression follows from Eq. (8).

1 The subscript hor implies that Dau vanishes on vertical vector fields.
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Generalised Seiberg-Witten equations
Let u be a hyperKdhler moment map for the G-action on M and a be a connection on P. Then generalised Seiberg-Witten

equations for a pair (u, A) € S X «, in dimension four, are

{ DAUZO

Ff—®(uou)=0 (11)

where F7 € Map(Q, Ai(]R“)*)SPi“G(“) is the self-dual part of the curvature of a and @ : sp(1)* —> A%(R*)* is the
isomorphism, mapping the basis elements & — B;, [ = 1, 2, 3, where
ﬂo =dxg A dxq + dxy A dx3, ,31 = dxg A dxp + dx3 A dxq, ﬂ3 = dxg A dx3 + dx1 A dx;. (12)

We will suppress the isomorphism henceforth.
3. Conformal transformation of generalised Dirac operator

This section is divided into three parts. In the first part, Section 3.1, we study metric connections for metrics in the
conformal class of gx. Namely, given the Levi-Civita connection of gx and a metric g; € [gx], we explicitly construct the
Levi-Civita connection for g;. In the second part, Section 3.2, we give a quick review of Swann’s construction. In the third
part, Section 3.3, we use the results from Section 3.1 to obtain a formula for conformal transformation of the generalised
Dirac operator when the target hyperKdhler manifold is obtained via Swann’s construction. For details on ideas used in this
section, we refer the interested reader to [20].

3.1. Metric connections on conformal bundle

Fix a metric g on X and let [gx] denote its conformal class. Let 7y : Pcoisy —> X denote the bundle of all conformal
frames on (X, [gx]). A point p € Pco4) is a CO(4)-equivariant, linear isomorphism p : R* — T, (»X. Consider the canonical
one-form 6 : Pcoqy —> R* defined as

Op(v) = p~' ((m1):(v)), P € Pcoay, v € TyPoga).
A metric on X is a section gx € I'(X, S*(T*X)), which can viewed as an equivariant map in C*°(Pco(4), S?(R*)
”Tgx ('a ) = g]R4 (917()7 ep()) .

For a smooth, real-valued function f on X, consider the metricgy = e
g, determine two isomorphic SO(4) bundles:

*)C0(4)

27ifg. in the conformal class of . The metrics gy and
Psowa) = {p € Pcoway | 8ra(0p, 0p) = migx(-, )}
Ps,o(4) = {p € Pcos) | &ra(6p, 6p) = ez(ﬂlf)fﬁ*gx('y )

where, gga(-, -) is the standard metric on R*. Let ¢ be a connection on Pcoq). Then ¢ + @ define a 1-form with values in
co(4) @ R* We can extend the bracket on the Lie algebra co(4) to co(4) ® R* as

[A,x] = —[x,A] = Ax, [x,y] =0, forx,y € R*and A € co(4).

This defines an affine Lie algebra which is best identified with the frame bundle of R*. The failure of the 1-form ¢ + 6 to
conform with the associated Maurer-Cartan form is measured by

dlg +0)+[p+0.9+0]=R(p)+T(p)

where

1

Here the entities R and T are horizontal 2-forms on the conformal frame bundle, which are nothing but the curvature and
the torsion tensors, respectively and the Lie bracket operations are carried out simultaneously with wedging of 1-forms.
Suppose that ¢ is a connection on Pco(4) satisfying

(d+¢)g =0 and (d+¢)0 = 0. (13)

Then ¢ is just the Levi-Civita connection for the metric gx. Let ¢’ denote the Levi-Civita connection for the metric g;. The
difference of the 2-connections is a horizontal 1-form on Pco4) and therefore can be written as contraction of  with an
equivariant function & € Hom(R*, c0(4)) = (R*)* ® co(4). More precisely,

<0p, §_>(Y) = <0P(Y)’ §>, Y e TpPCO(4)-
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Therefore we may write
¢ —¢ = (9, &) forsome & € (R*)* @ co(4). (14)

Throughout, we will suppress the pairing with 6 and simply write ¢’ — ¢ = £. Consider the covariant derivative of g; with
respect to ¢

(d+9)(g) = =) 2(x1df)gx. (15)
The right hand side of the equation can be understood as follows. Define
fi(p) = 7 df (p(e),

where, e; € R* is the standard basis element of R* and ;7(35 is the horizontal lift of p(e;) to Pco4y with respect to ¢. We can
write
4

4
7rdf(p) = <Zﬁ-(p) e, ep>, > fip)e € (RY — (R*)" @ co(4)
i=1

i=1
where e’ are the basis for (R*)*. So the action of 7 df is just the (left) action of Z?:] fiel € End(R?).
Remark 1. The negative sign in Eq. (15) is due to the left action of Aut(R*) ~ S%(R*)*, which is given by
SHRY) > gx > b-gul(, ) = gi(b™, b7,
where b € Aut(R*).
It follows that ¢ + s}df is a metric connection for gy. But it has a non-zero torsion. Indeed
4
(d+<p+n1*df)9:<2f,-e', 9>/\0. (16)
i=1
Point-wise, the torsion tensor is a map
T(g)p): A2D, = A’R* & R,

For the connections ¢ and ¢’ on Pcq4), the difference between their torsion tensors is

, 1
T(e)p (x AY) —T(@)p (x AY) = E(SP(X).V —&50)x), xyeRY,
In terms of the CO(4)-equivariant homomorphism:
5 (RY* @ co(4) = (RY)* @ (RY)* @ R* > AY(RY)* @ R* = A2(RY)* @ (RY)*

where, the first map is the inclusion and the second one is the anti-symmeterization, we can write T(¢’), — T(¢), = —8&.
Therefore, it follows from (16) that

4 4
<Zﬁ(p)e", e> nO = =8 <Zﬁ<p)ef) :
i=1 i=1

Identify so(4) = A? by associating the skew-symmetric endomorphism, to a pair of vectors v, w € R",

vAW = (v, Yw — (w, )v. (17)

Lemma 3.1 ([20], Prop. 2.1). The restriction
Slaotay: (R ® A*(RY)" 1> A*(RY)" © (R
that maps the difference of two connections to the difference of their torsions is an isomorphism.

Proof. Let g, € (R*)* ® A%(R*)* denote the difference of Christoffel symbols of the two connections. Then, S(ap) =
%(aijk — ajik). It is easily seen that if a; € ker(8), then a;x = 0 and hence §],,(4) is an isomorphism. O

Suppose that A is the Levi-Civita connection and B is a metric connection on Pcq(4). Then using the isomorphism 8],,4), we
obtain the expression for A in terms of B. Let B = B — o where « = § |;024)(8(z§ )). Then a straightforward computation shows
that T(B’) = 0. This is the strategy we are going to employ to express ¢’ in terms of ¢ and correction terms.
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Pointwise, we can view Z?Zlf;‘ e' as a 1-form with values in (R*)* ® co(4), by writing

Zf,e_Zfle@e’@ej (R*)* ® (R*)* @ R*.

Using the isomorphism R* = (R*)*, we can write the right hand sideas ), ;e ® ¢ ® €. So,
Zﬁe’@e’@e’ =EZﬁ(e’®e’®e’—e’®e’®e’)
Lj ij
and therefore

Slug| 8D fidwded] | =) fildodeed-dreéad)=-) fidaEnd)
ij

ij ij

It is now easily verified that the torsion

s ) () o)

In conclusion, this is nothing but the Levi-Civita connection for the metric g; and therefore

¢ —§0+7r1df+<2f,e’® e nel), >

LJ

For simplicity, put @ = 7jdf + (3, fiel ® (¢! A €), 6).

Proposition 3.2 ([21] Prop. 6.2, Chap. I). The adjoint representation induces the Lie algebra isomorphism ¢ : spin(n) —> so(n) is
given by:

C(E,’E’j) =26 A €j,

where, {e;ej}i; are the basis elements of spin(n). Consequently for v, w € R",
1 1
T (vAaw) = —[v, wl.
4
Under this isomorphism, « gets mapped to &, fi el + 12..fi¢ ® (elé — éle'). We denote this again by «.
3.2. Areview of Swann’s construction

A quaternionic Kdhler manifold is a 4n dimensional manifold, whose holonomy is contained in Sp(n)Sp(1) := (Sp(n) x
Sp(1))/+£1.Let N be a quaternionic Kdhler manifold of positive scalar curvature and F be the Sp(n)Sp(1) reduction of the frame
bundle Psp(4n) of N. Then S(N) := F/Sp(n) is a principal SO(3)-bundle, which is the frame bundle of the 3-dimensional vector
sub-bundle of skew symmetric endomorphisms of TN. The Sp(1)-action, by left multiplication, descends to an isometric
action of SO(3) on H*/Z,. Swann bundle over N is the principal H*/Z,

U(N) = S(N) XSO(3) (H*/Zz) —> N
Theorem 3.3 ([13]). The manifold /(N ) is a hyperKéhler manifold with a free, permuting action of SO(3) and admits a hyperKéhler

potential given by py = %rz. The vector field Xy = —IgKéV’ is independent of £ € sp(1) and grad po = Xy. Moreover, if a Lie group
G acts on N, preserving the quaternionic Kdhler structure, then the action can be lifted to a tri-Hamiltonian action of G on U(N).

The Riemannian metric on the total space #/(N) is given by g, = Zu+/z, + r2gy where r is the radial co-ordinate on
H*/Z, and gy 7, is the quotient metric obtained from H. Alternatively, one can write

U(N) = (0, 00) x S(N)

with metric gyn) = dr? + r2(gy + ggp3), where g3 is the quotient metric on RPP? derived from its double cover S3. Thus,
U(N) is a metric cone over S(N). The manifold /(N) is equipped with a natural left action of H* = R™ x Sp(1)

((h q)(r,8)) —> (AT, q-5). (18)
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3.3. Generalised Dirac operators for conformally related metrics

Henceforth, fix an M = u(N), for some quaternionic Kdhler manifold N of positive scalar curvature and an action of G
that preserves the quaternionic Kdhler structure on N. By Theorem 3.3, the action lifts to a tri-Hamiltonian action of G on
U(N). Therefore M carries a permuting action of Spin®(4).

Define the conformal Spin®(4) group CSpin®(4) := Rt x Spin®(4), which is a double cover of CO(4) x G

0 —> 7/27 —> CSpin®(4) > CO(4) x G —> 0. (19)
Definition 4. A CSpin®(4)-structure over X is a principal CSpin®(4)-bundle 7 : a — X, which is an equivariant double cover
of bundle Pco4) xx P, with respect to the map y.

Let ¢ and ¢’ denote the Levi-Civita connections for metrics gy and g; € [gy] respectively. Fix a G-connection A on P. Then
Auniquely determines the connections A, and A,/, which are lifts of ¢ and ¢’ to Q. Then, as shown in Section 3.1,
Ay — A, =a € C¥(Q, (RY ® g,

Consequently, the covariant derivative of u, with respect to A, is

~ inG,
Dy, u = Dy u+ Kl |ue C(Q, (R @ u'Tm) " @ (20)
Recall that 4(N) admits a hyperkdhler potential py and Xy = grad py. For A € R \ {0},
1 1
po(e*x) = EgM(XO|e)‘xv Aplery) = 3 e g (Xg|x, Xolx) = €% po(x).
Therefore
d 20 d 26 M.,RT M MR
a/’o(e X)|e=0= dpo(a(e X)) = 2dpo(K;" " )lx=g" (Xolx. K37 1.
On the other hand
d d
apo(emx)h:o: E(em)l)o(x) = 2 po(x) = gm(Xolx, Xolx)s
which implies that Kf”w = A X.
We are now in a position to give the proof of Theorem 1.1. But first, we need the following Lemma:
Lemma 3.4. Forf € C*(X, R), we have
Dale™ u) = de™™ Dyu — n¥df o X ou, (21)

where de™™1 denotes the differential of the action ofe’”ff on TM.

Proof. Letp € a and v € Tpa. Lety : [0,1] — (5 be a curve in a such that (0) = p and y(0) = v. Evaluating the
covariant derivative of e 1/ u for v:

Dae™™ T u)(v) = d(e™™/u) (v) + Ky | —xis0,

The first term of the above expression is

* d *
de™ 1 u)(v) = E(e—”lfu)(y(t))h:o
d,. .
= & ey ()

= de ™V Pdu(v) + K ey i

4
= de—™1/® du(v) — <Zfz eiy 9(”)>X0|u(p)
i=1

and the second term is

M —n¥ M
Katw)l =100, )= de O G lup)-

In conclusion,
4
DA(e*”Tfu) = deinff Dju — (Zfl ei, 9> ® Xpou.
i=1

Applying Clifford multiplication, proves the statement of the Lemma. O
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Proof of Theorem 1.1. With respect to the metric e/ gy, the Clifford multiplication is given by o’ = de™ "’ e, Substituting
for « in (20) and applying the Clifford multiplication we get:

) 1 ,
Dy, u=de™ | Dy u+midf @ Xpou+ Z(Zﬁe’, 0) o KM (22)

(eiej_ejei)|u
i<j

Note that in using the identification (R*)* = H, the element (e'é/ — ele’) belongs to the Lie algebra sp(1) = Jm(H) and has

norm 1. Now recall from Theorem 3.3 the vector field Xy = —IEKM is independent of £ € sp(1). In particular when || = 1,

we get I Xo = K} Therefore,

K([Z{e} elef)|“: Liiei—eieiyXo 0 U = (el — ele’) @ Xy o .

Substituting this in (22), we get

DA,u—de”f Da, U+ midf @ Xpou+ — Zfe’e (el — del) e Xy ou

i<j

- DA¢u+n1dfoXoou+ 4Zfe —2Zf,e'5,]+42f,e 0) oXoou)

3
—defﬂf<DA u—i-n]*dfOXoOudl-iﬂ]*df'XOOU)-

4

Now observe that
* * * 3 *
DAW/(e’”lfu) = de ™1/ (de’”lf Dau+ 5 de ™/ w¥df @ Xxpo u)
— —nif *iﬂ*f 37'[*f
=de ™ (de 2711 Dy, (€271 u)).
Thus, in conclusion

Dy, (1) = (de*‘/zﬂlf Da (3/2”i‘fu)). 0 (23)

4. Almost Hermitian geometry and generalised Seiberg-Witten

In this section, we give the proof of Theorem 1.2. Let the target hyperKdhler manifold M be as in Section 3.3, but with
G = U(1), so that M now carries a permuting action of Spin(4). Moreover, let dim M = 4. Fix a Spin(4)-structure Q — X.In
this section we restrict our attention to those ¢/(N) which can be obtained by a hyperKdhler reduction of a flat, quaternionic
space. Examples include nilpotent co-adjoint, orbits of complex semi-simple Lie groups, the moduli spaces of instantons on
4-manifolds, etc. We describe this set-up below.

Let V be a finite-dimensional, Hermitian vector space and H := V @ V*. Then H is a flat-hyperKéhler manifold. Identifying
H with H", for some n, it is easy to see that H carries a natural permuting action of Sp(1) given by multiplication by conjugate
on the right. Consider the left action of U(1) on H

1

z-(v,w)=(z-v,27" - w). (24)

The action is tri-Hamiltonian, with a moment map

1
pr(v, w) = i(llvll2 — wl?), pe(v, w) = (v, w) (25)

Therefore, H admits a permuting action of U(2). Suppose that another compact Lie group G C U(n) < Sp(n) has a
tri-Hamiltonian action on H that commutes with the U(2)-action. Assume zero is a regular value of the G-moment map
Mg : H = sp(1)* ® g*. Then, U(2) preserves the zero level set of 11, and therefore descends to a permuting action on the
quotient M := u'(0)/G. Put G := Spin°(4) x G.

Remark 2. More generally, we can consider H = fo:] V; @ V;*, where each V; is a complex representation of U(2) x G,
equipped with the tri-holomorphic action of U(1) by (weighted) left multiplication, so that it may happen that U(1) acts
non-trivially on the first {Vj};”;, 1 < m < k and trivially on the rest. However, we require that the image of the spinor be
devoid of fixed points of the U(1)-action. Therefore, we stick to the case whereH =V & V* and U(1) < Sp(n) ~ H
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4.1. Modified Seiberg—-Witten equations

By assumption ;Lg‘l(O)/G =M. LetP = ug‘l(O) denote the Spin“-equivariant principal G-bundle over M.
~ u
Q————PCH

T T2

Consider a G-bundle a — X, as in the diagram. Given a smooth, equivariant map 1 : a —> H, such that p, oU = 0,
defineu : Q — Mbyu(q) = mU(p)), qeQ, pe nf‘(q). Clearly then, uis a Spinc(4);equivariant map and the diagram
commutes. On the other hand, given a smooth spinor u : Q —> M, it defines a principal G-bundle over X, via pull-back of P
and canonically defines 7, making the diagram commutative. In summary,

Lemma 4.1. There is a bijective correspondence between
1€ CX(Q. M} = (@ e C¥(Q. H)F | py ol =0).

Fix a connection A on Q. This is uniquely determined by the Levi-Civita connection on X and a connection b on the
determinant bundle Py(y. The bundle P — M is a Riemannian submersion and therefore carries a canonical connection
a. This is defined as follows. For p € P, let K,’]”Glp denote the fundamental vector field at p due to n € g. For v € T,P, define
ap(v) € g be the unique element such that

KECy(0) = KBS l,= — proj™ <" (v)
where proj™ K" denotes the orthogonal projection to the vertical sub-bundle, which is nothing but the image of the map
KPC g — TP, 5+ KP(n)lp= K|,
The pull-back of this connection by 1, along with the connection A on Q, uniquely determine a connection A on Q (see [4])
A=T'A®A, € A (a, ﬁ)a, A, =1U'a — (A, lyincll™a). (26)
We can define a twisted Dirac operator Dz acting on maps 1.
Proposition 4.2. Then, there is a bijective correspondence between
(@A) | DAU =0, uyolU=0} and {(u,A)| Dau=0}. (27)

Whenever Datl = 0, p,0U = 0and proj, A= Kg as in (26) and therefore, Als uniquely determined by a U(1)-connection a
on Pu(1).

Proof. For h € P such that py(h) = 0, define H; = kerduy(h) N (Im KP:¢yL. This is just the horizontal subspace over h with
respect to the canonical connection a.

We will prove the proposition in two steps. In what follows, we shall denote the G and Spin‘-components of A by Kg and
A respectively.

Step 1: In the first step we will prove that I; Du(v) € Hg for every £ € sp(1)and v € Hz C TQ. Indeed, if Ugol =0,
then dii(v) € ker dpu,(t(p)). Also, Kgcb € kerdu,(t(p)) and K£’Spm la € kerduy(u(p)). Therefore, Dau(v) € ker du,(U(p)).
Consequently

0 = (dyuy(DRU(V)). £ ® n) = (K} “fagp). DAUW)) = — (K} fagp). I DAT(v))
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for & € sp(1), n € gand so I:DzU(v) € (ImKP-C)L for all & € sp(1). For &’ € sp(1),
(dpg(I:DRU(V)), &' @ ) = (dug(Datl(v)), [£,£'1®n) =0

which implies I DaU(v) € ker duug(t(p)) for all € € sp(1). Thus, I: DRU(v) € Ha.
Step 2: In this step, we prove the equivalence (27). If Dzu = 0, then from (10), we have

3
0 = Dil(éy) — ) LDATI(E)
i=1

From Step 1, DA'LT(e})) € Ha. It follows that D;1i(&) € g foralli = 1, 2, 3.Consequently, forany v € #z, proj™K ¢ Diii(v)

= 0 and we get K pl‘O]ImK du(v). In other words, the g-connection component of A is just the pull-back of the

canonical connectlon on P. Since the diagram commutes, drr,(Dxl) = Dau. Also, as Di1i(é;) € Hg foralli = 0, 1,2, 3, we
have (*I; = I, and so,

0= dﬂz('Dﬁﬁ) =dm, (D"u €o0) ZL I; DAu(e ) = Dal

Thus, Dztl = 0 implies Dau = 0. On the other hand 1fKA( ; projlmKP’G du(v) then Dz1i € Hg and so dmy(DilU) = Dall.
9
Therefore, if Dau = 0, it implies that D1l € Im K™-¢. But since,

Dall = DRU(6y) — Zn2l, DiU(€;) € My
i=1

it follows that Dzt € (Im K”-¢)* and so DsU = 0. This proves the statement. O

With this observation, it is now easy to construct a “lift" of the equations as follows.

Proposition 4.3. Fix a connection a on Pyyy. There is a bijective correspondence between the following systems of equations

DRu=0 _
Ff —puoti=0 and { ?fll—_%u —0 (28)
UgolU=0 b T HOU=

where i : H — iR denotes the moment map for U(1)-action on H.

Since the tri-Hamiltonian action of U(1) descends to M, we denote the U(1)-moment map by u itself. The above
correspondence was independently obtained by Pidstrygach [22] and also by Haydys [23] (Prop. 4.5 and Thm. 4.6).

4.2. Almost-complex geometry and generalised Seiberg-Witten

In this subsection, we give a proof of Theorem 1.2. It exploits the equivalence (28) and Theorem 1.1. Firstly, note that
the generalised Seiberg-Witten are not conformally invariant. On the other hand, from Theorem 1.1, we know that the
space of harmonic, generalised spinors is conformally invariant. It follows that there is bijective correspondence between
the solutions (i, K/) of the system (28) with respect to the metric g/ € [gx], such that image of U does not contain a fixed

point of the U(1)-action on H, and the triples (g}, u”, A") such that |pL ol ’| = 1and (@', A") satisfy the equations
D’A*///l?/ = 0
Ff — Aol =0 (29)
l’LB Oilw =0

. . . . . _ —4/3
where A is a strictly positive function given by A = |u o u|~!. To see the correspondence, choose g = | % oﬁ| / gy. Then

u = |,u o'ii’|_]/2 u'. By virtue of Theorem 1.1, u” is harmonic and the third equation of (28) remains invariant under the
conformal scaling. Moreover, A o U’ = 1 o UW. The said correspondence follows from the map (v/, A') — (u”, A').

Suppose we are given a triple (g/, U, A) satisfying (29) and | o U] = 1. Then £2 = @(u o) is a non-degenerate, self-dual
2-form on X, where @ : sp(1)* —> Ai(R“)* is the isomorphism, and defines an almost-complex structure on X.

Lemma 4.4. Suppose that the target hyperKdhler manifold M is 4-dimensional. Let Aq be a fiducial connection on Q and u be a
spinor such that the range of u does not contain a fixed point of the U(1)-action on M. Then there exists a unique 1-form ag on X
such that Dau = 0, where A = Aq + iag.
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— 3 i M ;
Proof. Observe that Dau = Dagu + ), €' @ Kif v Ata pointq € Q,

d . ~
K @ lut@) = aexp(ltao(ei(q))) u(q)li=o = (a0(€i(q))) K" u(q)-

Therefore

3
Dau(q) = Dayu(q) + Y _ (a0(&(@))e’) © KM uq)
i=0
= Dpy(q) + ao(q) ® KiM|U(q)-
Suppose that Dyu = 0. Then, we need to solve the equation
—Dagt = ag & KM,

Point-wise, we can choose identification of T,M and R* with quaternions, such that the Clifford multiplication is just the
usual quaternionic multiplication. Since the image of u does not contain a fixed point of the U(1) action on M, KiM |y is a
non-vanishing, equivariant section of u*TM — Q. The statement of the Lemma follows. O

In essence, this translates to saying that given a non-vanishing spinor U such that u, o = 0, then there exists a unique
1-form ag on X such that Dsu = 0. Therefore, the connection A is entirely determined by 7 and hence by the almost complex
structure 2 = ®(u o ). _

Let B: H x H —> sp(1) denote the symmetric (real) bi-linear form associated to the U(1)-moment map and B denote
the induced map on (T*X ® H) x (T*X ® H), obtained using contraction furnished by the Riemannian metric on X. Then,
£ = B(u, 1) and so

V*V 2 = 2 (B(DD4ll, ©) — B(D&U, DAT))
Applying the Weitzenbock formula

e Sx(g )~ ~ ~
DDAl = DDAl + X(fx)u +F eU+Fy ol (30)
gives
* SX(g),(/) + A~ 4+ o~ ~ o~
V*VR = —T.Q — B(F{ o, ) — B(F, o, ) — 2B(Dl, Dal)
g

We claim that the term B(F{ 11, 1) vanishes. This follows from the following Lemma:
g

Lemma 4.5. Assume that juy(h) = 0 and let & € sp(1) and n € g. Then

B, nu&)=0
Proof. This follows from the fact that the U(1)-moment map is G-invariant. For n € g, computing d%B (u, exp(tn) u?) lt=0
proves the statement of the Lemma. O

It follows that B(F{ o1, 1) = 0. Therefore,
g

S 1 ~ R .
V'V = — ( X(fx) + ,\) 2 — 2B(Ds7, D:1) 31)

We are now in a position to give the proof of Theorem 1.2. The arguments of the proof are essentially the same as those of
Donaldson’s [ 18]. Nonetheless, for the sake of completeness, we present them here once again.

Proof of Theorem 1.2. Observe that since |2]| = 1,
0=A|2|=2(V'VR,2)-2|Ve|.
Using (31), we get
2h = —sy(g)) — 2|V$2|* — 2 (B(D&1, DaD), 2).
Therefore, re-arranging, we have
Ve + 5 si(g)) + (DR, Dsd), ) < 0. (32)

Also, from (31) we have that (V*V2)te + E(D{d, Dzu)*2 = 0. Thus comparing with the identities (3) of Theorem 1.2, to
complete our proof, we merely need to show that

(INol* = 1d221?) . (33)

D=

B(Dzul, DA)*? = 2(d2,No), (B(Dx, D)), 2) =
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The key issue here is to identify the map B on kernel of the Clifford multiplication. In order to do this, it suffices to restrict
to the standard model when X = R* and the connection A is trivial. This is because at any point x € X, there exists a
trivialisation in which the connection matrix A vanishes at the point x.

Since U € ker p,, the derivative Du € Hz C kerdp,. At every point p € ker i, the horizontal subspace #, can be
identified with Ty, ;M. Since M is 4-dimensional, #,, is 4-dimensional and so #, = H.

Let (xo, X1, X2, X3) be the standard co-ordinates on R?. Let s1, sy, ... - 5o, denote the complex basis for the spinors and
write U as
n 2n
T:R*—H, U= Zﬁ si + Z gi_nsi where fi, g € C*®°(R* C).
i=1 i=n+1

By Step 2 of Proposition 4.2, D € Hy, which means that without loss of generality, at the origin, we can assume that
(fi; = (&) =0 for i=2,3,....n and j=0,1,2,3.

Consequently, in the decomposition (33), the only contributing terms are the 1-jets of f;, g at the origin. Therefore, without
loss of generality, we can assume that at the origin, f;, g; = 0 fori = 2, 3, ... - n. Let fo = f1(0) and go = g1(0). Then, at the
origin u = fy s, + g so. Moreover, since |2| = 1, |fy|> + |go|> = 1 and

o (Rl = lgol?
B(u,u) = — Bo + Re{fo, o) B1 + Im{fo, &o) B2

where g; are the basis of self-dual 2-forms on R*, given as in (12). The group Spin(4) acts on the base R* and also transitively
on unit positive spinors. In particular, for a suitable choice of an element in Spin(4), we may further assume that at the origin,
fo = 1and gg = 0. In particular, 2 = % Bo at the origin. Thus £2 defines the standard complex structure % Bo on R%. This
allows us to use the complex co-ordinates

Z =X +iX;, w =X+ ixs.

From the Dirac equation we have

fiz=8&w, fiw =8z (34)
Moreover, since f; = 1 at the origin, the derivatives of f; at the origin are purely imaginary. Therefore, at the origin,
fiz= —E and fi, = —E- (35)

Now, the component of B(DT, D@i) along 1 Bois

3

Z

—0
Using the identities (34) and (35), we get

Bf 1

ax,

||’

1
%, =16 ([f1z|2 + fizl? + ol + Uil — 1812 — 1812l — [g10]* — |g1w|2) .

~ 1 1 1
<B(Dﬁa D), 2,30> =16 (Ig1z” + lg1wl?) — 6 (Ig1zl” + lgrwl?) - (36)

The space orthogonal to % Bo is spanned by 8. = dz - dw and therefore the component of B(Du, Du) orthogonal to % Bo is

3 5 5
oo =3 | () 5|

=0
1 1
=12 (fi281z +fiz &z +fiw 8w 1w 819) Be = 2 (81281w + 81w &12) Be

where, once again, we have used the identities (34) and (35) in the penultimate step. Now £2 is a section of the twistor bundle
and therefore its covariant derivative at the origin is given by the derivative of f; g, which is nothing but the derivative
of g1. The holomorphic part (g;,, g1.,) corresponds to the Nijenhuis tensor N, whereas the anti-holomorphic component
(g1z, &1w) corresponds to ds2, due to the vanishing of the rest of the partial derivatives.

Recall that there is a natural K-valued pairing between TX and T*X ® K. Applying this to d§2 and Ng, the pairing
corresponds to (g1, 81w + &1w &1z) Bc. Therefore,

(B(DT, D)) = % x 4{d2,Ngo) = (dR2, No) (37)
<E(Dﬁ, D), %90> = =& x 4(INol? ~ 1d2P) = 7 (INal? — 1d2P%) (38)
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Substituting in Eq. (31), we have
. sx(gy) 1 2 2
ViVe ==+ Q+5(|d(2| — [Ng|?) 2 — 2(d$2, Ng) (39)
Also, observe that |[V§2|> = |d2|?> + |Ng|?. The statement of the theorem follows from Eq. (39) and Eq. (32). O

5. Some remarks

For the usual Seiberg-Witten equations, Donaldson remarks that for a fixed metric, the Seiberg-Witten equations are in
bijective correspondence with solutions to the following equations

v (S , 1 /1d$2)? 5
VYR == (5 +127) 2 2002 + 4121 No) 5 (oo~ el ) 2

1 5 2
+ - (d1R] 17 +2(d]2], %d2)) — (40)
2 1£2]

Many examples of hyperKdhler manifolds with requisite properties can be obtained via hyperKahler reduction of flat
space. Using Proposition 4.3 and applying Donaldson’s arguments, one can show that the Abelian, generalised Seiberg-
Witten equations, for a 4-dimensional target hyperKahler manifold, can be expressed as (40).

Note that the specification of an almost-complex structure I compatible with §2 imposes a topological constraint on X.
Namely, in terms of the Euler characteristic x and the signature t of X,

ci(l) =2x + 3¢

where L is the line-bundle associated to the determinant bundle Py(). For the usual Seiberg-Witten equations, this is
precisely the condition under which the expected dimension of the moduli space is zero. Therefore Theorem 1.2, in
combination with Donaldson’s result [ 18] delivers a potential candidate to get a compact moduli space.

The arguments in the latter half of the article can be extended for target hyperKdhler manifolds of higher dimensions,
using similar techniques. However, in this case, one obtains a map from the moduli space of generalised Seiberg-Witten to
the usual Seiberg-Witten equations, which may be neither injective nor surjective.
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