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Lightlike simultaneity, comoving observers and
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Dep. Matemáticas, Facultad de Ciencias, Universidad de Extremadura,
Avda. de Elvas s/n, 06071 Badajoz, Spain

Received 25 October 2004; received in revised form 1 April 2005; accepted 11 May 2005
Available online 21 June 2005

Abstract

We state a condition for an observer to be comoving with another observer in general relativity,
based on the concept of lightlike simultaneity. Taking into account this condition, we study relative
velocities, Doppler effect and light aberration. We obtain that comoving observers observe the same
light ray with the same frequency and direction, and so gravitational redshift effect is a particular case
of Doppler effect. We also define a distance between an observer and the events that it observes, called
lightlike distance, obtaining geometrical properties. We show that lightlike distance is a particular
case of radar distance in the Minkowski space-time and generalizes the proper radial distance in the
Schwarzschild space-time. Finally, we show that lightlike distance gives us a new concept of distance
in Robertson–Walker space-times, according to Hubble law.
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1. Introduction

In general relativity it is often difficult to interprete when an observerβ is comoving with
another observerβ′, in the sense thatβ moves “like” β′. For example, given a particular
coordinate system it is usual to suppose that stationary observers (i.e. with constant spatial
coordinates) are comoving each one with respect to the other. But this criterion is coordinate-
dependent: let us suppose that two observers are stationary using a particular coordinate
system; then they are comoving each one with respect to the other. On the other hand, we
can find another coordinate system in which one observer is stationary and the other one is
not stationary; then they are not comoving each one with respect to the other. Since we want
that the property “to be comoving with” was an intrinsic property of the observer (i.e. that
an observer was able to decide if it is comoving with another observer or not, independently
from the coordinate system), the “stationary criterion” is a bad criterion.

Given an observerβ, there is a general method to check if it is comoving with another
observerβ′, based on the concept of simultaneity. We have to build a simultaneity foliation
associated withβ [1], then parallelly transport the 4-velocity ofβ′ to β, along geodesics
joining β′ with β in the leaves of the foliation, and finally compare it with the 4-velocity of
β (seeFig. 1).

There are a lot of kinds of simultaneities, but we are going to consider only two kinds
of simultaneity foliations associated with a given observerβ [1]: the Landau foliationLβ,
whose leaves are Landau submanifolds[2] (spacelike); and the past-pointing horismos
foliation E−β , whose leaves are past-pointing horismos submanifolds[3] (lightlike). We
have to note that if we use Landau foliations, then the method to check if an observer
is comoving with another one is symmetric; on the other hand, if we use past-pointing

Fig. 1. How to check if an observerβ is comoving with another observerβ′, depending on the simultaneity foliation
that we are using. (Left) Landau foliationLβ (spacelike). (Right) Past-pointing horismos foliationE−

β
(lightlike).
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horismos foliations, then this method is not symmetric, i.e. one observerβ can be comoving
with another observerβ′, andβ′ being non-comoving withβ. But, since we are working in
relativity, the non-symmetry is an acceptable property. So, the problem is to decide which
simultaneity (spacelike or lightlike) is mathematically and physically more suitable for us:

(a) Mathematically: in a previous work[1] we proved that the Landau foliationLβ is not
always defined in every convex normal neighborhood because its leaves can intersect
themselves. For example, in a Minkowski space-time if the observerβ is not geodesic.
Moreover,Lβ is not necessarily spacelike at every point of a convex normal neighbor-
hood. On the other hand, the past-pointing horismos foliationE−β is always well defined
in every convex normal neighborhood and it is always lightlike.

(b) Physically: given an observer at an eventp with 4-velocityu, the events of its Landau
submanifoldLp,u do not affect the observer atp in any way, since both electromagnetic
and gravitational waves travel at the speed of light. On the other hand, the events of
its past-pointing horismos submanifoldE−

p are precisely the events that affect and are
observed by the observer atp, i.e. the events thatexist for the observer atp.

Therefore, we are going to work in the framework of lightlike simultaneity. So, given an
observer at an eventp, we will say that the events ofE−

p arelightlike-simultaneous for this
observer atp. In fact “to be lightlike-simultaneous for an observer” is the same as “to be
observed simultaneously by an observer”.

Hence, in Section3, we define theobservers congruence comoving with a given ob-
server, according to the concept of lightlike simultaneity, and we give a method to measure
relative velocities of observers in Section3.1. Given a light ray, we study Doppler effect
in Section3.2, obtaining that the frequency of a light ray remains constant for comoving
observers. This is apparently contradictory withgravitational redshift effect, stating that
light rays gain or lose frequency in the presence of a gravitational field, and it is considered
independent of Doppler effect. Gravitational redshift effect is completely explained in our
formalism, showing that it is a particular case of a generalized Doppler effect. We also study
light aberration effect in Section3.3, obtaining that there is not light aberration between
comoving observers.

The concept of distance is strongly bounded to the concept of simultaneity too. We are
using lightlike simultaneity, so we have to measure distances between lightlike-simultaneous
events, i.e. we need to measure lengths of light rays. In Section4, we define a new concept of
distance (calledlightlike distance) between an observer and the events that it observes, i.e.
a distance betweenp and the events ofE−

p . In Section5, we show that lightlike distance is
a particular case of radar distance in the Minkowski space-time and generalizes the proper
radial distance in the Schwarzschild space-time. Finally, we show that lightlike distance
gives us a new concept of distance in Robertson–Walker space-times, according to Hubble
law.

We work in a 4-dimensional lorentzian space-time manifoldM, with c = 1 and∇
the Levi–Civita connection, using the Landau–Lifshitz Spacelike Convention (LLSC). We
suppose thatM is a convex normal neighborhood[4]. Thus, given two eventsp andq in
M, there exists a unique geodesic joiningp andq. The parallel transport fromp to q along
this geodesic will be denoted byτpq. If β : I →M is a curve withI ⊂ R a real interval, we
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will identify β with the imageβI (that is a subset inM), in order to simplify the notation.
If u is a vector, thenu⊥ denotes the orthogonal space ofu. Moreover, ifx is a spacelike
vector, then‖x‖ denotes the module ofx. Given a pair of vectorsu, v, we useg(u, v) instead
of uαvα. If X is a vector field,Xp will denote the unique vector ofX in TpM.

2. Preliminaries

An observer in the space-time is determined by a timelike world lineβ, and the events of
β are thepositions of the observer. It is usual to identify an observer with its world line, and
soβ is an observer. The4-velocity of the observer is a future-pointing timelike unit vector
field U defined inβ and tangent toβ. Given an eventp, the 4-velocity of an observer atp is
given by a future-pointing timelike unit vectoru. It is also usual to identify an observer with
its 4-velocity, since they are defined reciprocally. So, ifu is the 4-velocity of an observer
at p, we will say thatu is an observer atp, in order to simplify the notation. To sum up,
we will say that a timelike world lineβ is an observer, and a future-pointing timelike unit
vectoru in TpM is an observer atp.

Given two observersu andu′ at the same eventp, there exists a unique vectorv ∈ u⊥
and a unique positive real numberγ such that

u′ = γ(u + v). (1)

As consequences, we have 0≤ ‖v‖ < 1 andγ = −g(u′, u) = 1√
1−‖v‖2

. We will say thatv

is therelative velocity of u′ observed by u, andγ is thegamma factor corresponding to the
velocity‖v‖.

A light ray is given by a lightlike geodesicλ and a future-pointing lightlike vector fieldF
defined inλ, tangent toλ and parallelly transported alongλ (i.e.∇FF = 0), calledfrequency
vector field of λ. Givenp ∈ λ andu an observer atp, there exists a unique vectorw ∈ u⊥
and a unique positive real numberν such that

Fp = ν(u + w). (2)

As consequences, we have‖w‖ = 1 andν = −g(Fp, u). We will say thatw is therelative
velocity ofλ observed by u, andν is thefrequency of λ observed by u. In other words,ν is
the module of the projection ofFp ontou⊥.

A light ray from q to p is a light rayλ such thatq, p ∈ λ and exp−1
q p is future-pointing.

Given two observersu andu′ at the same eventp of a light rayλ, using(2), the frequency
vectorFp of λ is given by

Fp = ν(u + w) = ν′(u′ + w′), (3)

whereν, ν′ are the frequencies ofλ observed byu, u′ respectively andw, w′ are the relative
velocities ofλ observed byu, u′ respectively. Applying(1), we obtain that

ν′ = γ(1 − g(v, w))ν. (4)

Expression(4) is the general expression ofDoppler effect. For example, if v
‖v‖ = w,

i.e. the direction of the relative velocity ofu′ observed byu coincides with the direc-
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tion of the relative velocity ofλ observed byu, we have the usual redshift expression

ν′ =
√

1−‖v‖
1+‖v‖ν.

On the other hand, taking into account(3) and (4), we have

w′ = 1

γ(1 − g(v, w))
(u + w) − u′. (5)

The fact thatw′ is different fromw causes anaberration effect[5]. It is easy to prove that

cosθ = cosθ′ − ‖v‖
1 − ‖v‖ cosθ′ , (6)

whereθ is the angle between−w andv, andθ′ is the angle between−w′ and the projection
of v ontou′⊥ (θ′ is also the angle between−w′ and−v′, wherev′ is the relative velocity ofu
observed byu′). The expression(6) is the general expression of light aberration phenomenon
[6], and the scalar function given byθ′ − θ is the aberration angle of u′observed by u
corresponding to λ.

Let p ∈M andϕ :M→ R defined byϕ(q) := g(exp−1
p q, exp−1

p q). Then, it is a sub-
mersion and the set

Ep := ϕ−1(0) − {p} (7)

is a regular 3-dimensional submanifold, calledhorismos submanifold of p [3]. In other words,
an eventq in the space-time is inEp if and only ifq �= p and there exists a lightlike geodesic
joining p andq. Ep has two connected components,E+

p andE−
p [7]; E+

p (respectivelyE−
p )

is thefuture-pointing (respectivelypast-pointing) horismos submanifold of p, and it is the
connected component of(7) in which, for each eventq ∈ E+

p (respectivelyq ∈ E−
p ), the

preimage exp−1
p q is a future-pointing (respectively past-pointing) lightlike vector.

We can construct horismos foliations in this way ([1,8]): let β be an observer. Then,
we defineM+

β := ∪p∈βE+
p andM−

β := ∪p∈βE−
p . So, there exists a foliationE+β (respec-

tively E−β ) defined inM+
β (respectivelyM−

β ) whose leaves are future-pointing (respectively

past-pointing) horismos submanifolds of events ofβ. The foliationsE+β andE−β are called
respectivelyfuture-pointing andpast-pointing horismos foliation generated by β.

3. Comoving observers in the framework of lightlike simultaneity

As we discussed in Section1, we are going to work in the framework of lightlike si-
multaneity. So, to check if an observerβ is comoving with another observerβ′, we have
to parallelly transport the 4-velocity ofβ′ to β, along lightlike geodesics joiningβ′ with
β in the leaves of the foliationE−β , and finally compare it with the 4-velocity ofβ (see
Fig. 1, right). This is a non-symmetric method, i.e. ifβ is comoving withβ′ thenβ′ is not
necessarily comoving withβ.

Given an observerβ with 4-velocityU, we can construct an observers congruence ex-
tendingU toM−

β by means of parallel transports along light rays from events ofM−
β to

events ofβ:
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Fig. 2. The extension ofU at q is given byτpqUp, wherep ∈ β and there exists a light rayλ from q to p. So, we
can build a reference frame from a single observer.

Definition 1. Letβ be an observer with 4-velocityU. The observers congruence associated
with β is the extension ofU defined onM−

β ∪ β such thatUq := τpqUp, wherep ∈ β,

q ∈M−
β , and there exists a light ray fromq to p (seeFig. 2).

Let β, β′ be two observers. We will say thatβ is comoving withβ′ if β′ is an observer
of the observers congruence associated withβ, i.e. β′ is an integral curve of this vector
field.

Since parallel transport conserves metric and causality, the observers congruence as-
sociated with a given observerβ is actually an observers congruence, because it is a
future-pointing timelike unit vector field defined in the open setM−

β ∪ β. Moreover,β
observes that its 4-velocity is the same as the 4-velocity of any observer of this con-
gruence. So, they define a reference frame associated with the observerβ in a natural
way.

According to this method, we state the next definition.

Definition 2. Let λ be a light ray fromq to p and letu, u′ be two observers atp, q
respectively. We will say thatu is comoving withu′ if τqpu′ = u.

3.1. Relative velocity of an observer

We can generalize the concept of “relative velocity of an observer” (given in Section2)
for observers at two different events of the same light ray.

Definition 3. Letλ be a light ray fromq top and letu,u′ be two observers atp,q respectively.
The relative velocity ofu′ observed byu is the relative velocity ofτqpu′ observed byu.
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So, the relative velocity ofu′ observed byu is given by the unique vectorv ∈ u⊥ such that
τqpu′ = γ(u + v), whereγ is the gamma factor corresponding to the velocity‖v‖. Note that
τqpu′ is the wayu observersu′, and so, it is the natural adaptation ofu′ at p.

We can generalize this definition for two observersβ andβ′.

Definition 4. Let β, β′ be two observers, and letU, U ′ be the 4-velocities ofβ, β′ respec-
tively. The relative velocity ofβ′ observed byβ is a vector fieldV defined onβ such that
Vp is the relative velocity ofU ′

q observed byUp (in the sense ofDefinition 3), wherep, q
are events ofβ, β′ respectively and there exists a light ray fromq to p.

By Definitions 2 and 3, we have thatu is comoving withu′ if and only if the relative velocity
of u′ observed byu is zero. Analogously, byDefinitions 1 and 4, we have thatβ is comoving
with β′ if and only if the relative velocity ofβ′ observed byβ is zero.

For example, in the Schwarzschild metric with spherical coordinates ds2 = −a2(r) dt2 +
1

a2(r)
dr2 + r2(dθ2 + sin2 θ dϕ2), wherea(r) =

√
1 − 2m

r
and r > 2m, we have thatλ :

[r1, +∞) →M with r1 > 2m given by

λ(r) :=
(

2m ln

(
r − 2m

r1 − 2m

)
+ r − r1, r,

π

2
, 0

)
(8)

is a radial light ray emitted fromq := λ(r1) = (0, r1,
π
2 , 0
)

and moving away from the
event horizonr = 2m. Given a radiusr2 > r1, let p := λ(r2) be an event ofλ and let

u1 = ut
1

∂
∂t

∣∣
q
+ ur

1
∂
∂r

∣∣
q
+ uθ

1
∂
∂θ

∣∣
q
+ u

ϕ
1

∂
∂ϕ

∣∣∣
q

be a vector inTqM. Taking into account the

Christoffel symbols of the metric, it can be proved that

τqpu1 = 1

2a2
2

(
(a2

2 + a2
1)ut

1 +
(

1 − a2
2

a2
1

)
ur

1

)
∂

∂t

∣∣∣∣
p

+1

2

(
(a2

1 − a2
2)ut

1 +
(

1 + a2
2

a2
1

)
ur

1

)
∂

∂r

∣∣∣∣
p

+ r1

r2
uθ

1
∂

∂θ

∣∣∣∣
p

+ r1

r2
u

ϕ
1

∂

∂ϕ

∣∣∣∣
p

,

(9)

wherea1 := a(r1) anda2 := a(r2).

• If u1 is a stationary observer, thenu1 = 1
a1

∂
∂t

∣∣
q
. So, by (9), we have τqpu1 =

1
2a1

((
1 + a2

1
a2

2

)
∂
∂t

∣∣
p

+ (a2
1 − a2

2) ∂
∂r

∣∣
p

)
. Let u2 be a stationary observer atp. Taking

into accountDefinition 3, the relative velocityv of u1 observed byu2 is given by

v = a2
a2

1 − a2
2

a2
1 + a2

2

∂

∂r

∣∣∣∣
p

, (10)

and hence,‖v‖ = a2
2−a2

1
a2

2+a2
1

< 1. If r1 → 2m then‖v‖ → 1. This accords with the fact that

“a ‘particle’ at rest in the space atr = 2m would have to be a photon”[9].
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• If u1 is a radial free-falling observer, thenu1 = E

a2
1

∂
∂t

∣∣
q
−
√

E2 − a2
1

∂
∂r

∣∣
q
, whereE is

a constant of motion given byE :=
(

1−2m/r0
1−v2

0

)1/2

, r0 is the radial coordinate at which

the fall begins, andv0 is the initial velocity (see[10]). Letu2 be a stationary observer at
p. So, by(9) and taking into accountDefinition 3, the relative velocityv of u1 observed
by u2 is given by

v = −a2

(a2
2 + a2

1)
√

E2 − a2
1 + E(a2

2 − a2
1)

(a2
2 − a2

1)
√

E2 − a2
1 + E(a2

2 + a2
1)

∂

∂r

∣∣∣∣
p

,

and hence,‖v‖ = (a2
2+a2

1)
√

E2−a2
1+E(a2

2−a2
1)

(a2
2−a2

1)
√

E2−a2
1+E(a2

2+a2
1)

< 1. If r1 → 2m then‖v‖ → 1.

An observer withr > 2m is unable to observe a free-falling particle crossing the event
horizon, since light rays cannot escape from the zoner ≤ 2m. Hence, it can never observe
a free-falling particle reaching the speed of light. The only observer being able to observe
a particle atr = 2m is an observer which crosses the event horizon at the same time and at
the same point as the particle. The relative velocity of the particle observed by this observer
is smaller than the speed of light, as it is shown in[10].

3.2. Doppler effect and gravitational redshift

Taking into accountDefinition 3, we can generalize the expression of Doppler effect(4)
for observers at different events of the same light ray.

Proposition 5. Let λ be a light ray from q to p and let u, u′ be two observers at p, q
respectively. Then

ν′ = γ(1 − g(v, w))ν, (11)

where ν, ν′ are the frequencies of λ observed by u, u′ respectively, v is the relative velocity
of u′ observed by u, w is the relative velocity of λ observed by u and γ is the gamma factor
corresponding to the velocity ‖v‖.

Proof. LetF be the frequency vector field ofλ. Then,ν′ = −g(Fq, u
′). Since parallel trans-

port conserves metric, we haveν′ = −g(τqpFq, τqpu′) = −g(Fp, τqpu′). So, the frequency
of λ observed byτqpu′ is alsoν′. Taking into account(4) andDefinition 3, expression(11)
holds. �
Note that the proof ofProposition 5assures that the frequency ofλ observed byu′ is the
same as the frequency ofλ observed byτqpu′. Taking into accountDefinition 2, if u is
comoving withu′ then they observeλ with the same frequency. This result can be also
obtained from expression(11), since the relative velocityv of u′ observed byu is zero ifu
is comoving withu′.
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Fig. 3. If β is comoving withβ′ thenβ observes thatβ′ uses the same clock as its.

So, givenβ an observer comoving with another observerβ′ and givenλ a light ray
from β′ to β, we have thatβ andβ′ observeλ with the same frequency. Hence, within the
framework of lightlike simultaneity, “β is comoving with β′” means “β is spectroscopically
comoving with β′”. This fact can be interpreted in this way: ifβ′ emitsn light rays in a
unit of its proper time, thenβ observes alson light rays in a unit of its proper time. So,β

observes thatβ′ uses the “same clock” as its (seeFig. 3).
Given two stationary observers (i.e. with constant spatial coordinates, for a given co-

ordinate system)β, β′, and a light rayλ from β′ to β, the frequency ofλ observed byβ
is, in general, different from the frequency observed byβ′. This phenomenon is known
asgravitational redshift. Since two stationary observers are in “rest” with respect to each
other, they are supposed to be “comoving”. Thus, gravitational redshift effect has been
always considered independent from Doppler effect, arguing that photons lose or gain
energy when rising or falling in a gravitational field. Nevertheless, in our formalism,
stationary observers are not comoving in general. Hence, there appears a Doppler shift
given by(11) that coincides with the known gravitational shift, explaining it in a natural
way.

A clear example can be found in the Schwarzschild metric with spherical coordinates,
considering the radial light rayλ given in(8). Letu1 be a stationary observer atq := λ(r1),
and letu2 be another stationary observer atp := λ(r2), with r2 > r1 > 2m. Takinga1 :=
a(r1) anda2 := a(r2), we have that the relative velocityv of u1 observed byu2 is given by
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(10). Moreover, the relative velocityw of λ observed byu2 isa2
∂
∂r

∣∣
p
. Applying the general

expression for Doppler effect(11), we have

ν1 = a2

a1
ν2, (12)

whereν1, ν2 are the frequencies ofλ observed byu1, u2 respectively. This redshift is
produced becauseu2 is not comoving withu1 in our formalism. Effectively, if we parallely

transportu1 to p alongλ, we obtain the vector12

(
a1
a2

2
+ 1

a1

)
∂
∂t

∣∣
p

+ 1
2

(
a1 − a2

2
a1

)
∂
∂r

∣∣
p
,

that it is obviously different fromu2.
Hence, we can affirm that given two equatorial stationary observersβ1(τ) :=(

1
a1

τ, r1,
π
2 , 0
)

and β2 :=
(

1
a2

τ, r2,
π
2 , 0
)

with τ ∈ R, and a radial light rayλ from β1

to β2, Eq. (12) holds, whereν1, ν2 are the frequencies ofλ observed byβ1, β2 respec-
tively. Eq. (12) is the known expression for gravitational redshift in Schwarzschild met-
ric, and so, it is a particular case of the generalized Doppler effect given by expression
(11). Note thatν → 0 whenr1 → 2m, according to the fact that‖v‖ → 1 whenr1 → 2m

(see(10)).
Another example is the cosmological redshift produced by the expansion of the

universe in the Robertson–Walker metric with spherical coordinates ds2 = −dt2 +
a2(t)

(
1

1−kr2 dr2 + r2(dθ2 + sin2 θ dϕ2)
)

, wherea(t) is thescale factor andk = −1, 0, 1.

Such redshift is too a particular case of Doppler effect because stationary observers (usu-
ally called “comoving”, unfortunately for our formalism) are not comoving. This effect can
be calculated using the Killing (2, 0)-tensorK(X, Y ) := a2(t)(g(X, Y ) + g(X, U)g(Y, U))
whereX,Y are two vector fields andU := ∂

∂t
is the 4-velocity vector field of the congru-

ence of stationary observers. So, givenX a geodesic vector field, we have thatK(X, X) =
a2(t)(g(X, X) + g(X, U)2) is constant along its integral curves. Therefore, since the fre-
quency vector fieldF of the light rayλ is geodesic and lightlike, we have thata(t) g(F,U)
is constant alongλ. So,a(t)ν is constant too, whereν is the frequency ofλ observed by a
stationary observer of the congruenceU. Hence, given two stationary observersβ1, β2 and
a light rayλ emitted byβ1 at coordinate timet1 and observed byβ2 at coordinate timet2,
we have that the expression(11) for Doppler effect has the form

ν1 = a(t2)

a(t1)
ν2, (13)

whereν1, ν2 are the frequencies ofλ observed byβ1 andβ2 respectively.
The functionsa(r) of (12) anda(t) of (13) are responsible for the gravitational redshift

in Schwarzschild and Robertson–Walker metrics. This functions are usually calledlapse
functions.

3.3. Light aberration

Taking into accountDefinition 3, we can also generalize expressions(5) and (6)of light
aberration effect for observers at different events of the same light ray.
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Proposition 6. Let λ be a light ray from q to p and let u, u′ be two observers at p, q
respectively. Then

τqpw′ = 1

γ(1 − g(v, w))
(u + w) − τqpu′, (14)

where w, w′ are the relative velocities of λ observed by u, u′ respectively, v is the relative
velocity of u′ observed by u, and γ is the gamma factor corresponding to the velocity ‖v‖.
Moreover, ifτqpw′ �= w then

cosθ = cosθ′ − ‖v‖
1 − ‖v‖ cosθ′ , (15)

where θ is the angle between −w and v, and θ′ is the angle between −τqpw′ and the
projection of v onto (τqpu′)⊥.

Proof. Let F be the frequency vector field ofλ. Then,Fp = ν(u + w) andFq = ν′(u′ +
w′). SinceF is tangent toλ and geodesic, we haveFp = τqpFq = ν′(τqpu′ + τqpw′). So,
τqpw′ = ν

ν′ (u + w) − τqpu′. Applying Proposition 5, expression(14) holds. If τqpw′ �= w

then expression(15) is obtained from(14)by simple algebraic manipulations.�
If u is comoving withu′, thenτqpu′ = u, v = 0 and so, from(14), we haveτqpw′ = w.
Sinceτqpw′ is the wayu observesw′, we can say thatu andu′ observesλ with the “same”
relative velocity, and hence there is not light aberration between comoving observers.

4. Lightlike distance

To measure distances in our formalism we have to measure “lengths” of light rays, as
we told in the Introduction. But light rays are lightlike curves and they have no length. To
measure distances and angles, an observer has to project these light rays onto its physical
space (i.e. the orthogonal space of its 4-velocity). This idea drives us to the next definition
of lightlike distance.

Definition 7. Let λ be a light ray fromq to p and letu be an observer atp. The lightlike
distance fromq to p observed byu, du(q, p), is the module of the projection of exp−1

p q

ontou⊥ (seeFig. 4).

This concept of distance is defined according to the concept of lightlike simultaneity
given by the past-pointing horismos submanifolds, because we measure distances between
an eventp and the events that are observed simultaneously atp (i.e. events ofE−

p ).

Taking into accountDefinition 7, we havedu(q, p) = −g(exp−1
p q, w), wherew is the

relative velocity ofλ observed byu (seeFig. 4). So, it is easy to prove that

du(q, p) = g(exp−1
p q, u). (16)

In the tangent spaceTpM we have thatw and exp−1
p q are proportional and opposite.

Taking into accountDefinition 7, we have exp−1
p q = −du(q, p)(u + w). Given another
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Fig. 4. Scheme inTpM of the lightlike distance fromq to p observed byu, given inDefinition 7. In this case,q
is an event of a world lineβ′. Note thatdu(q, p) does not depend onβ′.

observeru′ at p, we have exp−1
p q = −du′ (q, p)(u′ + w′), wherew′ is the relative velocity

of λ observed byu′. Therefore, we obtain

du′ (q, p) = γ(1 − g(v, w))du(q, p), (17)

wherev is the relative velocity ofu′ observed byu andγ is the gamma factor corresponding
to ‖v‖.

If we compare(17) with (4), we realize that frequency and lightlike distance have the
same behaviour when a change of observer is done. Hence, ifλ is a light ray fromq to p
andu, u′ are two observers atp, we have

du(q, p)

ν
= du′ (q, p)

ν′ , (18)

whereν, ν′ are the frequencies ofλ observed byu, u′ respectively.
The next proposition shows that the concept of lightlike distance given inDefinition 7

is according to the concept of parameter “length” (or “time”) of a lightlike geodesic.

Proposition 8. Let λ be a light ray from q to p, let u be an observer at p and let w be the
relative velocity of λ observed by u. If we parameterize λ affinely (i.e. ∇λ̇(s)λ̇(s) = 0) such
that λ(0) = p, and λ̇(0) = −(u + w), then λ(du(q, p)) = q (see Fig. 5).

Proof. By the properties of the exponential map (see[4]), we haveλ(s) = expp(−s(u +
w)). Soλ(du(q, p)) = expp(−du(q, p)(u + w)) = q. �

Hence, given a light rayλ from q to p and an observeru at p, we can interprete the
lightlike distance fromq to p observed byu as the distance (or time) travelled by the light
rayλ, measured by an observer atp with 4-velocityu.

An equivalent result is given.
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Fig. 5. Scheme ofProposition 8, whereq is an event of a world lineβ′. Note thatdu(q, p) does not depend onβ′.

Corollary 9. Let λ be a light ray from q to p, let u be an observer at p and let w be
the relative velocity of λ observed by u. If we parameterize λ affinely such that λ(0) = q,
λ(d) = p and λ̇(d) = u + w, then d is the lightlike distance from q to p observed by u.

Now, we are going to generalizeDefinition 7.

Definition 10. Let β, β′ be two observers. The lightlike distance fromβ′ to β observed by
β is a real positive functiondβ defined onβ such that, givenp ∈ β, dβ(p) is the lightlike
distance fromq to p observed byu, whereu is the 4-velocity ofβ at p, andq is the unique
event ofβ′ such that there exists a light ray fromq to p.

Note that even ifβ is comoving withβ′, the lightlike distancedβ from β′ to β observed by
β is not necessarily constant. Inversely, ifdβ is constant thenβ is not necessarily comoving
with β′, as we will see in Section5.2. Only in some special cases we have thatdβ is constant
if and only if β is comoving withβ′. For example in Minkowski if the observersβ andβ′
are geodesic.

Finally, we can define a distance onE−
p extending the concept of lightlike distance given

in Definition 7, using the idea that an observer has to project light rays onto its physical
space.

Definition 11. Let u be an observer atp, andq, q′ ∈ E−
p ∪ {p}. The lightlike distance from

q toq′ observed byu, du(q, q′), is the module of πu⊥ (exp−1
p q) − πu⊥ (exp−1

p q′), where πu⊥

is the map “projection onto u⊥”.

It can be easily proved that

du(q, q′) = (g(exp−1
p q − exp−1

p q′, exp−1
p q − exp−1

p q′)

+ g(u, exp−1
p q − exp−1

p q′)2)1/2. (19)
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Moreover, expression(19) generalizes expression(16) in the sense that if we substitute
q′ by p in (19), we obtain(16).

The lightlike distance given inDefinition 11is symmetric, positive-definite and satisfies
the triangular inequality. So, it has all the properties that must verify a topological distance
defined onE−

p ∪ {p}.

5. Some examples of lightlike distance

In this section we are going to show that lightlike distance is a particular case ofradar
distance in the Minkowski space-time (concretely, for geodesic observers), and generalizes
theproper radial distance in the Schwarzschild space-time. Finally, we show that lightlike
distance gives us a new concept of distance in Robertson–Walker space-times, according
to Hubble law.

5.1. Minkowski

In the Minkowski metric with rectangular coordinates ds2 = −dt2 + dx2 + dy2 + dz2,
let us consider an eventq = (t1, x1, y1, z1) observed atp = (t2, x2, y2, z2) by an ob-

serveru = γ

(
∂
∂t

∣∣
p

+ vx ∂
∂x

∣∣
p

+ vy ∂
∂y

∣∣∣
p

+ vz ∂
∂z

∣∣∣
p

)
, whereγ is the gamma factor given

by 1√
1−(vx)2−(vy)2−(vz)2

. Then, using(16), we have the general expression for the lightlike

distance fromq to p observed byu:

du(q, p) = g(q − p, u) = γ((t2 − t1) + vx(x1 − x2) + vy(y1 − y2) + vz(z1 − z2)).

(20)

Note that (t2 − t1) =
√

(x1 − x2)2 + (y1 − y2)2 + (z1 − z2)2 because there is a light ray
from q to p.

There exists a known method to measure distances between an observerβ (that we
can suppose parameterized by its proper timeτ) and an observed eventq, called “radar
method”, consisiting on emitting a light ray fromβ(τ1) to q, that bounces and arrives
at p = β(τ2). The radar distance betweenβ and q observed byβ is given by 1

2(τ2 −
τ1) [11]. So, considering a geodesic observerβ passing throughp with 4-velocity u =
γ

(
∂
∂t

∣∣
p

+ vx ∂
∂x

∣∣
p

+ vy ∂
∂y

∣∣∣
p

+ vz ∂
∂z

∣∣∣
p

)
at p we have that

β(τ) = (γ(τ − τ2) + t2, γvx(τ − τ2) + x2, γvy(τ − τ2) + y2, γvz(τ − τ2) + z2)

(21)

is the parameterization by its proper time. Setting out thatq − β(τ1) is lightlike andτ2 −
τ1 �= 0, from(21)we obtain

1

2
(τ2 − τ1) = γ((t2 − t1) + vx(x1 − x2) + vy(y1 − y2) + vz(z1 − z2)). (22)
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Comparing(22)with (20), we state that lightlike distance coincides with radar distance for
geodesic observers in Minkowski space-time.

The radar distance between a non-geodesic observerβ and an observed eventq depends
on the world lineβ betweenβ(τ1) andβ(τ2). On the other hand, the lightlike distance only
depends on the 4-velocity of the observer atp = β(τ2), i.e. at the instant when the light ray
arrives fromq. So, it is easier to calculate and it has more physical sense.

5.2. Schwarzschild

In Schwarzschild metric with spherical coordinates, letβ1 and β2 be two stationary
observers like in Section3.2. We are going to calculate the lightlike distanced from β1 to
β2 observed byβ2. Since

λ(s) =
(

−a(r2)s + 2m ln

(
1 − s

r2a(r2)

)
, r2 − a(r2)s,

π

2
, 0

)

is a light ray parameterized as the hypotheses ofProposition 8, with p := λ(0) ∈ β2 and

q := λ
(

r2−r1
a(r2)

)
∈ β1, we have that the lightlike distance fromq to p observed byu (where

u is the 4-velocity ofβ2 at p) is given bydu(q, p) = r2−r1
a(r2) . This expression only depends

on r1 andr2, i.e. the eventsq andp can be any events ofβ1 andβ2 respectively, such that
there exists a light ray fromq to p. Hence the lightlike distanced from β1 to β2 observed
by β2 is given by

d = r2 − r1

a(r2)
. (23)

So,d is constant, butβ2 is not comoving withβ1.
Expression(23) is precisely a known expression for theproper radial distance between

spheres of radiusr1 andr2 (see[11]). So, the lightlike distance generalizes the proper radial
distance given in Schwarzschild metric, since it is a particular case.

5.3. Robertson–Walker

In Robertson–Walker metric with spherical coordinates, letβ1 andβ0 be two stationary
observers atr = r1 > 0 andr = 0 respectively. Let us suppose thatβ1 emits a light rayλ
at t = t1 that arrives atβ0 at t = t0. To study distances in cosmology it is usual to consider
the scale factor in the form

a(t) = a(t0)

(
1 + H0(t − t0) − 1

2
q0H

2
0(t − t0)2

)
+O(H3

0(t − t0)3) (24)

where a(t0) > 0, H(t) = ȧ(t)/a(t) is the Hubble “constant”,H0 = H(t0) > 0, q(t) =
−a(t)ä(t)/ȧ(t)2 is the deceleration coefficient, andq0 = q(t0) > 0, with |H0(t − t0)| � 1
[11]. This corresponds to a universe in decelerated expansion and the time scales that we
are going to use are relatively small.

The proper distance, dproper, between two stationary observers at a given instantt is
defined as the coordinate distance multiplied by the scale factora(t) (see[11]). The proper
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distance betweenβ1 andβ0 at t = t0 is given bydproper := r1a(t0). Obviously, this distance
is not the same as the lightlike distance (which we are going to denotedlightlike). We define
the redshift parameterz := a(t0)

a(t1) − 1, obtaining that

dproper= z

H0

(
1 − 1

2
(1 + q0)z

)
+O(z3). (25)

Moreover, theluminosity distance,dluminosity, between a stationary observer and a stationary

light source at a given instantt is defined asdluminosity :=
√

L
4πA

, whereL is the absolute
luminosity andA is the apparent luminosity (see[11]). Applied toβ0 andβ1 at t = t0, we
have

dluminosity = z

H0

(
1 + 1

2
(1 − q0)z

)
+O(z3). (26)

Comparing(26) with (25), we obtain thatdproper< dluminosity for z � 1. This distance is
related to the geodesic deviation method, and it is studied in[12].

Finally, we are going to calculate the lightlike distancedlightlike from β1 to β0 observed
by β0 at t = t0. It can be interpreted as the distance travelled by the light rayλ measured by
the observerβ0, and it will satisfyr1a(t1) < dlightlike < r1a(t0) = dproper. The vector field

−1
a

∂
∂t

+
√

1−kr2

a2
∂
∂r

is geodesic, lightlike and its integral curves are radial light rays that
arrive atr = 0 (i.e. atβ0). So, to parameterizeλ like in Proposition 8, we have to set out
the system

λ̇t(s) = −a(t0)

a(λt(s))
, λ̇r(s) = a(t0)

√
1 − kλr(s)2

a2(λt(s))
, λt(0) = t0, λr(0) = 0,

(27)

whereλt andλr are the temporal and radial components ofλ respectively. Using(24) and
taking into account thatλt(dlightlike) = t1 (by Proposition 8), from the integration of the first
equation of(27)we obtain that

dlightlike = (t0 − t1) − 1

2
H0(t0 − t1)2 − 1

6
q0H

2
0(t0 − t1)3 +O(H3

0(t0 − t1)3). (28)

SinceH0(t0 − t1) = z −
(

1 + 1
2q0

)
z2 +O(z3), from (28)we have

dlightlike = z

H0

(
1 − 1

2
(3 + q0)z

)
+O(z3), (29)

that is consistent with the Hubble law (forz of first order approximation). If we compare
(29)with (25)we obtain that, effectively,dlightlike < dproperfor z � 1.
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