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Abstract

We state a condition for an observer to be comoving with another observer in general relativity,
based on the concept of lightlike simultaneity. Taking into account this condition, we study relative
velocities, Doppler effect and light aberration. We obtain that comoving observers observe the same
light ray with the same frequency and direction, and so gravitational redshift effect is a particular case
of Doppler effect. We also define a distance between an observer and the events that it observes, called
lightlike distance, obtaining geometrical properties. We show that lightlike distance is a particular
case of radar distance in the Minkowski space-time and generalizes the proper radial distance in the
Schwarzschild space-time. Finally, we show that lightlike distance gives us a new concept of distance
in Robertson—-Walker space-times, according to Hubble law.
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1. Introduction

In general relativity it is often difficult to interprete when an obse/ercomoving with
another observeg’, in the sense tha® moves “like” g’. For example, given a particular
coordinate system it is usual to suppose that stationary observers (i.e. with constant spatial
coordinates) are comoving each one with respect to the other. But this criterion is coordinate-
dependent: let us suppose that two observers are stationary using a particular coordinate
system; then they are comoving each one with respect to the other. On the other hand, we
can find another coordinate system in which one observer is stationary and the other one is
not stationary; then they are not comoving each one with respect to the other. Since we want
that the property “to be comoving with” was an intrinsic property of the observer (i.e. that
an observer was able to decide if it is comoving with another observer or not, independently
from the coordinate system), the “stationary criterion” is a bad criterion.

Given an observeg, there is a general method to check if it is comoving with another
observer’, based on the concept of simultaneity. We have to build a simultaneity foliation
associated wittg [1], then parallelly transport the 4-velocity 6f to 8, along geodesics
joining B’ with 8 in the leaves of the foliation, and finally compare it with the 4-velocity of
B (seeFig. 1).

There are a lot of kinds of simultaneities, but we are going to consider only two kinds
of simultaneity foliations associated with a given obseg/¢t]: the Landau foliationCg,
whose leaves are Landau submanifdldp (spacelike); and the past-pointing horismos
foliation £, whose leaves are past-pointing horismos submanifi@fglightlike). We
have to note that if we use Landau foliations, then the method to check if an observer
is comoving with another one is symmetric; on the other hand, if we use past-pointing

Fig. 1. Howto check if an observgiis comoving with another observgr, depending on the simultaneity foliation
that we are using. (Left) Landau foliatialy (spacelike). (Right) Past-pointing horismos foliatiff)p (lightlike).
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horismos foliations, then this method is not symmetric, i.e. one obsgieean be comoving

with another observes’, andg’ being non-comoving witl8. But, since we are working in
relativity, the non-symmetry is an acceptable property. So, the problem is to decide which
simultaneity (spacelike or lightlike) is mathematically and physically more suitable for us:

(a) Mathematically: in a previous woit] we proved that the Landau foliatiafy is not
always defined in every convex normal neighborhood because its leaves can intersect
themselves. For example, in a Minkowski space-time if the obsg@risenot geodesic.
Moreover,Lg is not necessarily spacelike at every point of a convex normal neighbor-
hood. On the other hand, the past-pointing horismos folieﬁ‘go'rs always well defined
in every convex normal neighborhood and it is always lightlike.

(b) Physically: given an observer at an eventith 4-velocityu, the events of its Landau
submanifoldZ , , do not affect the observeratn any way, since both electromagnetic
and gravitational waves travel at the speed of light. On the other hand, the events of
its past-pointing horismos submanifalgj, are precisely the events that affect and are
observed by the observerti.e. the events thatvisr for the observer at.

Therefore, we are going to work in the framework of lightlike simultaneity. So, given an
observer at an evept we will say that the events (E; arelightlike-simultaneous for this
observer ap. In fact “to be lightlike-simultaneous for an observer” is the same as “to be
observed simultaneously by an observer”.

Hence, in Sectior8, we define thevbservers congruence comoving with a given ob-
server, according to the concept of lightlike simultaneity, and we give a method to measure
relative velocities of observers in Secti8rL Given a light ray, we study Doppler effect
in Section3.2, obtaining that the frequency of a light ray remains constant for comoving
observers. This is apparently contradictory witlavitational redshift effect, stating that
light rays gain or lose frequency in the presence of a gravitational field, and it is considered
independent of Doppler effect. Gravitational redshift effect is completely explained in our
formalism, showing that it is a particular case of a generalized Doppler effect. We also study
light aberration effect in SectioB.3, obtaining that there is not light aberration between
comoving observers.

The concept of distance is strongly bounded to the concept of simultaneity too. We are
using lightlike simultaneity, so we have to measure distances between lightlike-simultaneous
events, i.e. we need to measure lengths of light rays. In Settiwadefine a new concept of
distance (calledightlike distance) between an observer and the events that it observes, i.e.
a distance betwegnand the events af,. In Section5, we show that lightlike distance is
a particular case of radar distance in the Minkowski space-time and generalizes the proper
radial distance in the Schwarzschild space-time. Finally, we show that lightlike distance
gives us a new concept of distance in Robertson—Walker space-times, according to Hubble
law.

We work in a 4-dimensional lorentzian space-time maniféi] with ¢ =1 andV
the Levi—Civita connection, using the Landau-Lifshitz Spacelike Convention (LLSC). We
suppose that is a convex normal neighborhoddl]. Thus, given two events andgq in
M, there exists a unique geodesic joinpngndg. The parallel transport fromto ¢ along
this geodesic will be denoted by,. If 5 : I — M isacurve withl C Rareal interval, we
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will identify B with the images! (that is a subset itM), in order to simplify the notation.
If u is a vector, them' denotes the orthogonal spacewfMoreover, ifx is a spacelike
vector, therj| x| denotes the module af Given a pair of vectors, v, we useg(u, v) instead

of u®v,. If X is a vector field X, will denote the unique vector of in 7, M.

2. Preliminaries

An observer in the space-time is determined by a timelike world [fhh@nd the events of
B are thepositions of the observer. It is usual to identify an observer with its world line, and
S0 B is an observer. Thé-velocity of the observer is a future-pointing timelike unit vector
field U defined ing and tangent t@. Given an eveng, the 4-velocity of an observer atis
given by a future-pointing timelike unit vecter It is also usual to identify an observer with
its 4-velocity, since they are defined reciprocally. Say i$ the 4-velocity of an observer
at p, we will say thatu is an observer at, in order to simplify the notation. To sum up,
we will say that a timelike world ling is an observer, and a future-pointing timelike unit
vectoru in T, M is an observer ai.

Given two observers andu’ at the same evept, there exists a unique vectore u*-
and a unique positive real numbesuch that

' = y(u+v). (1)
As consequences, we haveQ||v|| < 1andy = —g(u’, u) = L We will say that
' q =0 vl y | g’  u) o . y
is therelative velocity of u’ observed by u, andy is thegamma factor corresponding to the

velocity ||v]|.

A light ray is given by a lightlike geodesicand a future-pointing lightlike vector field
defined ink, tangent ta. and parallelly transported alongi.e. Vi F = 0), calledfrequency
vector field of 1. Given p € A andu an observer at, there exists a unique vectore u"
and a unique positive real numbesuch that

Fp =v(u + w). (2)

As consequences, we haye| = 1 andv = —g(F),, u). We will say thatw is therelative
velocity ofA observed by u, andv is thefrequency of A observed by u. In other wordsy is
the module of the projection df), ontou=.
A light ray from q to p is a light ray such thay, p € A and exy;;1 p is future-pointing.
Given two observers andu’ at the same eveptof a light raya, using(2), the frequency
vector F, of A is given by

Fp=v(+w)=Vu+w), (3)

wherev, V' are the frequencies afobserved by, u’ respectively anav, w’ are the relative
velocities ofa observed by, u’ respectively. Applyind1), we obtain that

vV =y - g, w)v. (4)

Expression(4) is the general expression @&foppler effect. For example, ifﬁ =w,
i.e. the direction of the relative velocity of observed by coincides with the direc-
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tion of the relative velocity of. observed by, we have the usual redshift expression

v =/ i
On the other hand, taking into acco) and (4) we have
w/=;(u+w)—uﬁ (5)
Y- g, w))

The fact thatw’ is different fromw causes aaberration effect[5]. It is easy to prove that

cost’ —
cost = cost — vl , (6)
1— |jv|| cos¢’
wheref is the angle betweeaw andv, andd’ is the angle betweerw’ and the projection
of vontou’t (¢’ is also the angle betweerw’ and—v’, wherev’ is the relative velocity ofi
observed by’). The expressio(6)is the general expression of light aberration phenomenon
[6], and the scalar function given 8y — @ is the aberration angle of u'observed by u
corresponding to A.
Letp € M andy : M — R defined byp(q) := g(exp,* ¢, exp,* q). Then, itis a sub-
mersion and the set

E, = ¢ 10) - {p} (7)

isaregular 3-dimensional submanifold, calkedismos submanifold of p [3]. In other words,
an eveny inthe space-timeisift, ifand only ifg # p and there exists a lightlike geodesic
joining p andq. E, has two connected componenks; ande, [7]; E; (respectivelyE )
is thefuture-pointing (respectivelypast-pointing) horismos submanifold of p, and it is the
connected component ¢7) in which, for each every E;; (respectivelyg € E,), the
preimage exp1 q is a future-pointing (respectively past-pointing) lightlike vector.

We can construct horismos foliations in this wd$,8]): let g be an observer. Then,
we defineMy := UpepEf and My 1= U,esE), . So, there exists a foliatiofi; (respec-
tively S/g) defined in/\/lg (respectively\/llg) whose leaves are future-pointing (respectively

past-pointing) horismos submanifolds of eventgoThe foliationsf}r andé’lg are called
respectivelyfuture-pointing andpast-pointing horismos foliation generated by B.

3. Comoving observers in the framework of lightlike simultaneity

As we discussed in Sectidh we are going to work in the framework of lightlike si-
multaneity. So, to check if an observgris comoving with another observes’, we have
to parallelly transport the 4-velocity ¢f to 8, along lightlike geodesics joining’ with
B in the leaves of the foliatioﬁg, and finally compare it with the 4-velocity & (see
Fig. 1, right). This is a non-symmetric method, i.e ifis comoving withg’ theng’ is not
necessarily comoving with.

Given an observeg with 4-velocity U, we can construct an observers congruence ex-
tendingU to Mg by means of parallel transports along light rays from eventMgf to
events off:
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Ug=Tpq Up

Fig. 2. The extension d atq is given byr,,U,, wherep € g and there exists a light rayfrom g to p. So, we
can build a reference frame from a single observer.

Definition 1. Let 8 be an observer with 4-velocity. The observers congruence associated
with g is the extension oU defined onMj U B such thatl, := 14U, Wherep € B,

q e M;, and there exists a light ray frogto p (seeFig. 2).

Let B8, B’ be two observers. We will say thatis comoving withg’ if g’ is an observer
of the observers congruence associated \Wijthe. 8’ is an integral curve of this vector
field.

Since parallel transport conserves metric and causality, the observers congruence as-
sociated with a given observgr is actually an observers congruence, because it is a
future-pointing timelike unit vector field defined in the open 4df; U B. Moreover, g
observes that its 4-velocity is the same as the 4-velocity of any observer of this con-
gruence. So, they define a reference frame associated with the obgdrver natural
way.

According to this method, we state the next definition.

Definition 2. Let A be a light ray fromg to p and letu, u’ be two observers a, g
respectively. We will say that is comoving withu” if 7 ,u’ = u.

3.1. Relative velocity of an observer

We can generalize the concept of “relative velocity of an observer” (given in Setion
for observers at two different events of the same light ray.

Definition 3. Let) be alightray fromytop and let, u’ be two observers at g respectively.
The relative velocity ofi’ observed by: is the relative velocity ot,,u" observed by:.
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So, the relative velocity af’ observed by: is given by the unique vectar e - such that
U’ = y(u + v), wherey is the gamma factor corresponding to the velotity. Note that
T4pu’ is the wayu observers:’, and so, it is the natural adaptationudfat p.

We can generalize this definition for two observgmndg’.

Definition 4. Let 3, 8’ be two observers, and |&t, U’ be the 4-velocities of, 8’ respec-
tively. The relative velocity o3’ observed byg is a vector fieldV defined ong such that
V, is the relative velocity oU,/I observed by, (in the sense dbefinition 3, wherep, g
are events of, 8’ respectively and there exists a light ray fragto p.

By Definitions 2 and 3we have that is comoving withu’ if and only if the relative velocity
of u’ observed by is zero. Analogously, bPefinitions 1 and 4we have thag is comoving
with g’ if and only if the relative velocity o’ observed bys is zero.

For example, in the Schwarzschild metric with spherical coordinafes-d-a2(r) dr? +
azl(r) dr? + r2(d6? + sin® 6 d?), wherea(r) = \/1— 2% andr > 2m, we have that :

[r1, +00) — M with r1 > 2m given by

A(r):=(2mIn r-2m +r—r1,r,z,0 8
ry— 2m 2

is a radial light ray emitted frong := A(r1) = (0, r1, 3, 0) and moving away from the
event horizonr = 2m. Given a radiusz > r1, let p := A(r2) be an event ofk and let
uy =l g, +uh 5|, +ul g, +ul %‘q be a vector irf,, M. Taking into account the
Christoffel symbols of the metric, it can be proved that

1 2 2 a% 0
TgpU1 = Zg ((az + ap)u + ( - a? uy %

1( 5 5 a\ .\ o

wherea; = a(r1) andaz := a(ry).

p

e If uy is a stationary observer, them = - £|q. So, by (9), we have t u; =
2a1

into accounDefinition 3 the relative velocity of u;1 observed by, is given by

2 p
1 <(1 + Zé) a%|p + (a2 — a3) £|p . Let u be a stationary observer at Taking

2 2
—a? 3
v=ap %2 2| (10)
2+a2 or
1 2 14

2_ 2
and hence|jv|| = Z§+Z§ < 1.1f r{ — 2m then|lv|| — 1. This accords with the fact that
2 1

“a ‘particle’ at rest in the space at= 2m would have to be a photorj9].
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e If u is a radial free-falling observer, then = a—b; %\q —/E2 — al ar‘ whereE is
1
1/2
a constant of motion given b¥ := % , ro is the radial coordinate at which

the fall begins, andy is the initial velocity (seeﬁlo]). Letuy be a stationary observer at
p- So, by(9) and taking into accouriefinition 3 the relative velocity of 1 observed
by uz is given by

(a2 + al)1 /E?2 — al + E(a2 - al) 9
- al)1 /E?2 — al + E(a2 + al) ar

2, .2 2_ 2 2_ 2

as+as)+/ Ec—aj+E(a5—a

and hencejjv|| = (a+ay) G ) < 1.1f ry = 2m then|v| — 1.
a%—a%) \/Ez—a§+E(a§+a%)

V= —a

An observer withr > 2m is unable to observe a free-falling particle crossing the event
horizon, since light rays cannot escape from the zore2m. Hence, it can never observe

a free-falling particle reaching the speed of light. The only observer being able to observe
a particle atr = 2m is an observer which crosses the event horizon at the same time and at
the same point as the particle. The relative velocity of the particle observed by this observer
is smaller than the speed of light, as it is showifili@].

3.2. Doppler effect and gravitational redshift

Taking into accounbefinition 3 we can generalize the expression of Doppler effért
for observers at different events of the same light ray.

Proposition 5. Let A be a light ray from q to p and let u, u' be two observers at p, q
respectively. Then

vV =y - g, w)v, (11)

where v, V' are the frequencies of A observed by u, u’ respectively, v is the relative velocity
of u' observed by u, w is the relative velocity of A observed by u and y is the gamma factor
corresponding to the velocity ||v|.

Proof. LetF be the frequency vector field af Then,’ = —g(F,, u’). Since parallel trans-
port conserves metric, we have= —g(ty, Fy, tgpu’) = —g(Fp, t4pu’). S0, the frequency
of A observed byt,,u’ is alsov’. Taking into accounf4) andDefinition 3, expressior{11)
holds. O

Note that the proof oProposition 5assures that the frequencyobbserved by’ is the
same as the frequency afobserved byr,,u’. Taking into accounDefinition 2 if u is
comoving withu’ then they observe with the same frequency. This result can be also
obtained from expressidii1), since the relative velocity of u’ observed by is zero ifu

is comoving withu'.
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B

B(z)

B'(t)

B(v)

Fig. 3. If Bis comoving withg’ thenp observes thas’ uses the same clock as its.

So, givenB an observer comoving with another obsergérand giveni a light ray
from B’ to B, we have tha and 8’ observe. with the same frequency. Hence, within the
framework of lightlike simultaneity, 8 is comoving with 8" means ‘B is spectroscopically
comoving with 8. This fact can be interpreted in this way: gf emitsn light rays in a
unit of its proper time, the observes alsa light rays in a unit of its proper time. Sg,
observes that’ uses the “same clock” as its (sEig. 3).

Given two stationary observers (i.e. with constant spatial coordinates, for a given co-
ordinate systemp, 8/, and a light rayx from g’ to 8, the frequency of. observed byg
is, in general, different from the frequency observedgayThis phenomenon is known
asgravitational redshift. Since two stationary observers are in “rest” with respect to each
other, they are supposed to be “comoving”. Thus, gravitational redshift effect has been
always considered independent from Doppler effect, arguing that photons lose or gain
energy when rising or falling in a gravitational field. Nevertheless, in our formalism,
stationary observers are not comoving in general. Hence, there appears a Doppler shift
given by(11) that coincides with the known gravitational shift, explaining it in a natural
way.

A clear example can be found in the Schwarzschild metric with spherical coordinates,
considering the radial light ray given in(8). Letu1 be a stationary observer@t= A(r1),
and letup be another stationary observerat= A(r2), with ro > r1 > 2m. Takinga; :=
a(r1) anday = a(r2), we have that the relative velocityof 11 observed by: is given by
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(10). Moreover, the relative velocity of A observed byis isaz 3% ]P. Applying the general
expression for Doppler effe¢11), we have
V= %vz, (12)
ai
where vy, vo are the frequencies of observed byus, uo respectively. This redshift is
produced because is not comoving withs1 in our formalism. Effectively, if we parallely

, 2\ .
transportuy to p along A, we obtain the vectos <Z§ + all> §|p +1 <a1 - Zi) 2 )
2

that it is obviously different fronus.
Hence, we can affirm that given two equatorial stationary obsergg(s) :=

(ir, r. 3, 0) and g ;= (%r r2. 3, O) with 7 € R, and a radial light ray. from B;
to B2, EQ. (12) holds, wherev1, v, are the frequencies of observed byB;, B2 respec-
tively. Eq. (12) is the known expression for gravitational redshift in Schwarzschild met-
ric, and so, it is a particular case of the generalized Doppler effect given by expression
(11). Note thatv — 0 whenr; — 2m, according to the fact thd|| — 1 whenr; — 2m
(see(10)).

Another example is the cosmological redshift produced by the expansion of the

universe in the Robertson-Walker metric with spherical coordinas@s=d-ds? +

a?(r) ( »dr2 + r2(do? + sin? 9d<p2)) wherea(t) is thescale factor andk = —1, 0, 1.
Such redshlft is too a particular case of Doppler effect because stationary observers (usu-
ally called “comoving”, unfortunately for our formalism) are not comoving. This effect can
be calculated using the Killing (D)- tensorK(X Y) = a?(1)(g(X, Y) + g(X, U)g(Y, U))
whereX,Y are two vector fields and/ := 3t is the 4-velocity vector field of the congru-
ence of stationary observers. So, givea geodesic vector field, we have thé&¢X, X) =
a?(1)(g(X, X) + g(X, U)?) is constant along its integral curves. Therefore, since the fre-
guency vector field” of the light rayA is geodesic and lightlike, we have thdt) g(F,U)
is constant along. So,a(r)v is constant too, whereis the frequency of observed by a
stationary observer of the congrueri¢eHence, given two stationary observegis 82 and
a light rayA emitted bygs; at coordinate time; and observed by, at coordinate timey,
we have that the expressi¢hl) for Doppler effect has the form

a(tz)
— =9, 13
1= (13)
wherevy, vo are the frequencies afobserved by31 and 8, respectively.
The functionsu(r) of (12) anda(z) of (13) are responsible for the gravitational redshift
in Schwarzschild and Robertson—Walker metrics. This functions are usually éalled
functions.

3.3. Light aberration

Taking into accounbDefinition 3 we can also generalize expressi@Bsand (6)of light
aberration effect for observers at different events of the same light ray.
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Proposition 6. Let A be a light ray from q to p and let u, u' be two observers at p, q
respectively. Then

/
TpW = ————
P (1 - g(v, w))
where w, w' are the relative velocities of . observed by u, u’ respectively, v is the relative
velocity of u’ observed by u, and y is the gamma factor corresponding to the velocity ||v||.
Moreover, ift,,w’ # w then
cost’ — |lv||

cos = —————, (15)
1— ||v| cost9’

(u+w) — gpu’, (14)

where 0 is the angle between —w and v, and 0 is the angle between —t w’ and the
projection of v onto (rqpu’)l.

Proof. Let F be the frequency vector field of Then,F, = v(u + w) and F, = v'(u’ +
w’). SinceF is tangent tor and geodesic, we havg, = t,, F, = V' (tgpu’ + t5pw'). SO,
Topw' = 5 (u 4+ w) — 7,u’. Applying Proposition 5 expressior(14) holds. If ,,w" # w
then expressiofil5) is obtained from(14) by simple algebraic manipulations.[]

If u is comoving withu’, thent,,u’ = u, v =0 and so, from(14), we haver,,w’ = w.

Sincer,,w’ is the wayu observesy’, we can say that andu’ observes. with the “same”
relative velocity, and hence there is not light aberration between comoving observers.

4. Lightlike distance

To measure distances in our formalism we have to measure “lengths” of light rays, as
we told in the Introduction. But light rays are lightlike curves and they have no length. To
measure distances and angles, an observer has to project these light rays onto its physical
space (i.e. the orthogonal space of its 4-velocity). This idea drives us to the next definition
of lightlike distance.

Definition 7. Let A be a light ray fromg to p and letu be an observer at The lightlike
distance fromy to p observed by, d, (g, p), is the module of the projection of elxibq

ontou™ (seeFig. 4).

This concept of distance is defined according to the concept of lightlike simultaneity
given by the past-pointing horismos submanifolds, because we measure distances between
an evenp and the events that are observed simultaneougiy(ia. events ofz})).

Taking into accounbDefinition 7, we haved, (¢, p) = —g(exp;l q, w), wherew is the
relative velocity ofr observed by: (seeFig. 4). So, it is easy to prove that

du(g, p) = g(exp,* q, u). (16)

In the tangent spac&, M we have thatw and exp 1 4 are proportional and opposite.
Taking into accounDefinition 7, we have exp1 q = —dy(q, p)(u + w). Given another
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u / expp' B

W / dy(q.p)

Fig. 4. Scheme iff, M of the lightlike distance frong to p observed by, given inDefinition 7. In this caseg
is an event of a world lingg’. Note thatd, (¢, p) does not depend gfi.

observen’ atp, we have exp1 q = —dy(q, p) + '), wherew' is the relative velocity
of A observed by:’. Therefore, we obtain

dy (g, p) = y(1 — g(v, w))du(q, p), (17)

wherev is the relative velocity of:” observed by: andy is the gamma factor corresponding
to [|v]].

If we compare(17) with (4), we realize that frequency and lightlike distance have the
same behaviour when a change of observer is done. Hencés H light ray fromg to p
andu, u’ are two observers at we have

@@m:@@m

9
% v

(18)

wherev, V' are the frequencies af observed by, u’ respectively.
The next proposition shows that the concept of lightlike distance giv&efimition 7
is according to the concept of parameter “length” (or “time”) of a lightlike geodesic.

Proposition 8. Let A be a light ray from q to p, let u be an observer at p and let w be the
relative velocity of 1 observed by u. If we parameterize 1 affinely (.e. VjyA(s) = 0) such
that »(0) = p, and A(0) = —(u + w), then A(d, (g, p)) = q (see Fig. 5).

Proof. By the properties of the exponential map ($ép, we havei(s) = exp,(—s(u +
w)). SoA(du(q, p)) = exp,(—dulq, p)u +w)) =q. U

Hence, given a light ray. from ¢ to p and an observet at p, we can interprete the
lightlike distance fromy to p observed by: as the distance (or time) travelled by the light
ray A, measured by an observeratith 4-velocity u.

An equivalent result is given.
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q =Mdu(q,p))

Fig. 5. Scheme dProposition 8whereg is an event of a world ling’. Note thatd, (¢, p) does not depend g#i.

Corollary 9. Let A be a light ray from q to p, let u be an observer at p and let w be
the relative velocity of ) observed by u. If we parameterize ) affinely such that A(0) = g,
AMd) = p and A(d) = u + w, then d is the lightlike distance from q to p observed by u.

Now, we are going to generaliZzefinition 7.

Definition 10. Let 8, 8/ be two observers. The lightlike distance fr@ito g observed by
B is a real positive functiody defined ong such that, giverp € g, dg(p) is the lightlike

distance frony to p observed by, whereu is the 4-velocity ofg at p, andg is the unique
event of’ such that there exists a light ray frajro p.

Note that even i is comoving withg’, the lightlike distancels from g’ to 8 observed by
B is not necessarily constant. Inversely/jfis constant theg is not necessarily comoving
with g’, as we will see in SectioB.2 Only in some special cases we have thgis constant
if and only if 8 is comoving withg'. For example in Minkowski if the observefisand 8’
are geodesic.
Finally, we can define a distance 1] extending the concept of lightlike distance given
in Definition 7, using the idea that an observer has to project light rays onto its physical
space.

Definition 11. Letu be an observer @t andg, ¢’ € E,; U{p}. The lightlike distance from

qtoq’ observed by, d,(q, q'), is the module of 7,1 (exp;l q) — 7,1 (exp;l q'), where 7,1

is the map “ projection onto u™-".

It can be easily proved that
du(q.q') = (g(exp,* g —exp,* ¢’ exp,t g — exp,* ¢)

+g(u. exp,t g — exp,t ¢)H)Y2. (19)
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Moreover, expressiofl9) generalizes expressi¢h6) in the sense that if we substitute
¢’ by pin (19), we obtain(16).

The lightlike distance given iBefinition 11is symmetric, positive-definite and satisfies
the triangular inequality. So, it has all the properties that must verify a topological distance
defined onE, U {p}.

5. Some examples of lightlike distance

In this section we are going to show that lightlike distance is a particular cas@of
distance in the Minkowski space-time (concretely, for geodesic observers), and generalizes
theproper radial distance in the Schwarzschild space-time. Finally, we show that lightlike
distance gives us a new concept of distance in Robertson—Walker space-times, according
to Hubble law.

5.1. Minkowski

In the Minkowski metric with rectangular coordinate€ & —dr2 + dx? + dy? + dz2,
let us consider an event= (1, x1, y1, z1) observed atp = (r2, x2, y2, z2) by an ob-

serveruzy(aﬂ +vx<’ ,FY ’+Uzd%

>, wherey is the gamma factor given

y 1 . Then, using16), we have the general expression for the lightlike
V102022
distance frony to p observed by::

du(q, p) = g(q — p, u) = y((t2 — t1) + v*(x1 — x2) + v*(y1 — y2) + v*(z1 — 22)).
(20)

Note that o — 1) = v/(x1 — x2)2 + (y1 — y2)? + (z1 — z2)2 because there is a light ray
fromgtop.

There exists a known method to measure distances between an olgdthat we
can suppose parameterized by its proper tthand an observed evegt called “radar
method”, consisiting on emitting a light ray from(z1) to ¢, that bounces and arrives
at p = B(t2). The radar distance betweeng and g observed byg is given by%(l'z —
71) [11]. So, considering a geodesic obsengepassing througly with 4-velocity u =

9 x 0 y 0
V<az‘p+v awlp TV |,

+ 07 a%‘ ) atp we have that
P

B(z) = (y(z — 12) + 12, (v — 12) + x2, Y’ (v — 12) + y2, Y0 (T — 72) + 22)
(21)
is the parameterization by its proper time. Setting out ¢hatB(z1) is lightlike andz, —
71 # 0, from (21) we obtain

e Bt (R R SR B (PR Pt U N )
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Comparing(22) with (20), we state that lightlike distance coincides with radar distance for
geodesic observers in Minkowski space-time.

The radar distance between a non-geodesic obsgraed an observed eveptlepends
on the world lineB betweens(z1) andB(z2). On the other hand, the lightlike distance only
depends on the 4-velocity of the observepat S(t2), i.e. at the instant when the light ray
arrives fromg. So, it is easier to calculate and it has more physical sense.

5.2. Schwarzschild

In Schwarzschild metric with spherical coordinates, ggtand 8, be two stationary
observers like in SectioB.2 We are going to calculate the lightlike distant&om g; to
B2 observed bys,. Since

Als) = (—a(rz)s +2m In (1 - rzas(rg)) .12 — a(ra)s, %’ O)

is a light ray parameterized as the hypotheseBroposition 8 with p := A(0) € 82 and

qg:=x (’02(;2’)1) € B1, we have that the lightlike distance froito p observed by: (where

u is the 4-velocity of, atp) is given byd, (g, p) = ’5(:2’)1. This expression only depends
onri andro, i.e. the eventg andp can be any events ¢f; and 3, respectively, such that
there exists a light ray from to p. Hence the lightlike distancéfrom 81 to g2 observed

by B> is given by

r2—r1
a(ra)

So,d is constant, buB, is not comoving withs;.
Expression(23)is precisely a known expression for theper radial distance between
spheres of radiug andr; (se€]11]). So, the lightlike distance generalizes the proper radial

distance given in Schwarzschild metric, since it is a particular case.

(23)

5.3. Robertson—Walker

In Robertson—Walker metric with spherical coordinatesgiednd gy be two stationary
observers at = r1 > 0 andr = 0 respectively. Let us suppose thfatemits a light rayi
att = r1 that arrives affp at¢ = #p. To study distances in cosmology it is usual to consider
the scale factor in the form

a(t) = alto) (1 + Holt — 10) — S qoH3(c ~ to)2> + OH( — 1)) (24)

where a(tg) > 0, H(t) = a(t)/a(t) is the Hubble “constant”Ho = H(tp) > 0, ¢(t) =
—a(t)a(r)/a(f)? is the deceleration coefficient, agd = ¢(f0) > 0, with |Ho(t — 10)] < 1
[11]. This corresponds to a universe in decelerated expansion and the time scales that we
are going to use are relatively small.

The proper distance, dproper, Detween two stationary observers at a given instasit
defined as the coordinate distance multiplied by the scale fa@disee[11]). The proper
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distance betweefy andfo att = g is given bydproper := r1a(to). Obviously, this distance
is not the same as the lightlike distance (which we are going to défpgke). We define
the redshift parameter:= %/ _ 1, obtaining that

a(t1)

Hio (1 - %(1 + qo)z) + O(3). (25)

Moreover, théuminosity distance, diuminosity, D€tween a stationary observer and a stationary

dproper =

light source at a given instants defined asluminosity := \/ 725, WhereL is the absolute

luminosity andA is the apparent luminosity (s¢&l]). Applied toBy andg; att = 7o, we
have

1
Hio <1 +50- qo)z> + 0. (26)
Comparing(26) with (25), we obtain that/proper < diuminosity for z <« 1. This distance is
related to the geodesic deviation method, and it is studi¢ttdh

Finally, we are going to calculate the lightlike distarligntike from g1 to So observed
by Bo att = 1p. It can be interpreted as the distance travelled by the light ragasured by
the observepo, and it will satisfyria(r1) < dightike < r1a(to) = dproper The vector field

_%% + 16;2"’2% is geodesic, lightlike and its integral curves are radial light rays that

arrive atr = 0 (i.e. atfBp). So, to parameterize like in Proposition 8 we have to set out
the system

dluminosity =

o —alto) o a(to)y/1— k' (s)? tr fray
Mo = ey 0= T S 0 =6, K©)=0

(27)

wherex! and" are the temporal and radial components. séspectively. Using24) and
taking into account tha\tt(d”ghﬂike) = 11 (by Proposition §, from the integration of the first
equation of(27) we obtain that

1 1
diightike = (to — 11) — éHo(to —1)? - éflng(fo — 1)+ O(H3(to — n)*).  (28)

SinceHo(tp — 11) = z — (1 + %qo) z2 + O(z8), from (28) we have
digntive = — (1= 2@+ q0)2 ) + O (29)
lightlike = Ho 2 q0)< "),
that is consistent with the Hubble law (foiof first order approximation). If we compare
(29) with (25) we obtain that, effectivelyjightike < dproperfor z <« 1.
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