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a b s t r a c t

For a principal bundle P → M equipped with a connection Ā, we study an infinite
dimensional bundle P dec

Ā
P over the space of paths on M , with the points of P dec

Ā
P being

horizontal paths on P decorated with elements of a second structure group. We construct
parallel transport processes on such bundles and study holonomy bundles in this setting.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

The focus of our study is parallel transport on bundles whose elements are paths decorated with elements of a second
structure group. Geometry of this type can be studied in the language of category theory but in thisworkwe focus exclusively
on differential geometric aspects. However, we shall make remarks indicating the significance of certain notions in the
category theoretic development.

We begin with a connection form Ā on a principal G-bundle π : P → M , where G is a Lie group, and consider first the
structure

πĀ : PĀP → PM : γ → π ◦ γ , (1.1)

where PM is the space of smooth paths on M and PĀP the space of Ā-horizontal smooth paths on P . Fig. 1 illustrates this
structure.

The group G acts on the space PĀP by right translations γ → γ g , and the structure (1.1) has the essential features of a
principal G-bundle. Next we introduce a Lie group H and a semidirect product H oα G, which serves as a ‘higher’ structure
group. Using these we construct a decorated bundle

πd
Ā : P dec

Ā P = PĀP × H → PM : (γ , h) → π ◦ γ , (1.2)

wherewe view each pair (γ , h) as an Ā-horizontal path γ on P decoratedwith an element h drawn from the second structure
group H . It is this structure, illustrated in Fig. 2, that is the ultimate focus of our work in this paper. The decorated bundle
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Fig. 1. Horizontal paths.

Fig. 2. Decorated paths.

arises as an example of a categorical principal bundle, as developed in [1]. Briefly put, the points of P are the objects of a
category and the pairs (γ , h) are morphisms; the source of the morphism (γ , h) is the initial point γ 0 of γ and the target is
the point γ 1τ(h), as shown in Fig. 2.

We prove results and explain how the structure (1.2) can be viewed as a principal H oα G-bundle. Parallel transport on
this bundle takes a path on the base space PM of the form [s0, s1] → PM : s → Γs, and associates to it a path on the
decorated bundle P dec

Ā
P of the form

[s0, s1] → P dec
Ā P : s → (Γ̂s, hs),

with a specified initial value (Γ̂s0 , hs0). This parallel transport process is obtained by using certain 1- and 2-forms on P with
values in the Lie algebras L(H) and L(G). Given a suitable 1-form on P with values in the Lie algebra L(H), we can associate,
by a type of parallel transport process, a special element h∗(γ ) ∈ H for each path γ ∈ PĀP; this selects out an element
γ , h∗(γ )−1


∈ P dec

Ā
P for each γ ∈ PĀP . We then determine, in Section 7, conditions on the 1- and 2-forms that ensure

that parallel transport of a point ofP dec
Ā

P of the form

γ , h∗(γ )−1


produces an element of the same type. This investigation

is a study of the holonomy bundle for the decorated bundle (the holonomy bundle for a connection on a traditional finite
dimensional principal bundle is a central object in the foundational work of Ambrose and Singer [2]).

The backgroundmotivation for our work arises from trying to construct a gauge theory for strings joining point particles.
There is an active literature in this area, much of it focused on category theoretic aspects. In our recent works [3,1] we have
developed a category theoretic framework centered on differential geometric notions such as parallel transport over spaces
of decorated paths. In the present paper we establish a differential geometric development of the theory of connections over
spaces of paths. For the category theoretic perspective we mention here the works of Abbaspour and Wagemann [4], Attal
[5,6], Baez et al. [7,8], Barrett [9], Bartels [10], Parzygnat [11], Picken et al. [12–14], Soncini and Zucchini [15], Schreiber and
Waldorf [16,17], and Wang [18,19].



S. Chatterjee et al. / Journal of Geometry and Physics 112 (2017) 147–174 149

1.1. Results and organization of material

All our constructions and results in this paper take as background a principal G-bundle π : P → M , and a given set of
connection forms and other forms on P . We denote by PĀP the space of all paths on P that are horizontal with respect to a
connection Ā on P . Here are the highlights of what we do in this paper:

• Section 2. We describe and study the bundle

PĀP → PM (1.3)

and explain the sense in which this is a principal G-bundle. We also describe an explicit isomorphism between such
bundles for different connections Ā.

• Section 3. We construct a connection form ω on the bundle (1.3), determine horizontal lifts and parallel transport with
respect to ω.

• Section 4. After reviewing the notion of a Lie crossed module, which involves two Lie groups G and H , with an action of
G on H , we describe a decorated bundle

P dec
Ā P → PM. (1.4)

A point on the decorated bundle is of the form

(γ , h)

where γ is an Ā-horizontal path on P and h ∈ H is a ‘decorating’ element attached to γ (for example, h might arise by
integration of an L(H)-valued 1-form along γ ). We study the decorated bundle and local trivializations for it.

• Sections 5 and 6.We construct a connection formΩ on the decorated bundleP dec
Ā

P .Working out the splitting of a tangent
vector to P dec

Ā
P into horizontal and vertical components, we determine horizontal lifts with respect to the connection

Ω . Using this we determine explicitly the equations for parallel transport in the decorated path bundle.
• Section 7. Here wemake an extensive examination of parallel transport of decorated paths. We consider a special type of

decoration of a path γ , where the decorating element in H arises by means of integration of an L(H) valued 1-form along
γ . In Proposition 7.1 we find conditions under which the parallel transport of such a decorated path is itself decorated in
the same manner.

The main objective of this paper is to study a differential geometric connection structure for the decorated bundles, with
structure group H o G. The importance of such bundles arises from the fact that they provide a framework for categorical
principal bundles, as explained in [1]. In Section 7, we consider a special type of subbundle of the decorated bundle with
structure group be the subgroup G ofHoG. We address the following question: when does a connection on theHoG bundle
reduce to a connection on that special subbundle. We obtain a curvature condition (7.10) that ensures that the connection
reduces to the subbundle. The construction in Section 7 is motivated by the classical work of Ambrose and Singer [2] on the
holonomy subbundle for a connection on a given principal G bundle.

2. A principal bundle of horizontal paths

We work with a principal G-bundle π : P → M , where G is a Lie group, and a connection form Ā on this bundle. Our
focus is on a pair of path spaces, one a space PM of paths on M and the other a space PĀP of Ā-horizontal paths on P . The
projection map π induces a corresponding projection

πĀ : PĀP → PM : γ → π ◦ γ ,

while the right action of G on the bundle space P induces a right action of G on PĀP that preserves the fibers of πĀ. It is this
structure, clearly analogous to a principal bundle, that we shall study. Specifying useful topologies and smooth structures
on path spaces tend to be unrewarding tasks, and so we will keep the involvement of such structures to a minimum and
make no attempt at formulating or using any general framework for them. However, it is important to note what exactly
the elements of PM are. Unfortunately, even this requires a somewhat complex articulation of features that are intuitively
quite clear.

2.1. The path spaces PM and PĀP

By a parametrized path on M we mean a C∞ map [t0, t1] → M , for some t0, t1 ∈ R with t0 < t1, that is constant near t0
and near t1. Thus the set of all such paths is

t0,t1∈R,t0<t1

C∞

c ([t0, t1];M) , (2.1)

where the subscript c signifies the behavior near t0 and t1. If γ1 ∈ C∞
c [t0, t1] and γ2 ∈ C∞

c [t1, t2] then the composite γ2 ◦ γ1
belongs to C∞

c [t0, t2]. It is often useful, at least for notational simplicity, to compose paths that are defined on the same
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parameter domain [t0, t1].With this inmind,we introduce the quotient setPM obtained by identifying paths that differ by a
time-translation reparametrization. Thus,γ : [t0, t1] → M is identifiedwithγ+a : [t0−a, t1−a] → M : t → γ (t+a) inPM ,
for any a ∈ R; this means that the parametrized paths γ and γ+a correspond to the same element in PM . We will usually
not make a notational distinction between γ and its equivalence class [γ ] of such time-translation reparametrizations. We
will then use the term ‘path’ to refer to an equivalence class such as this. Many important constructions are invariant under
a far larger class of reparametrizations but at this stage we find it more convenient to keep the reparametrizations to a
minimum.

We will not use a specific topology on PM . Any topology of use in our context should (i) be Hausdorff, (ii) the initial and
terminal points should be continuous functions of the path, and (iii) composition

(γ , δ) → δ ◦ γ ,

on the subset of PM × PM where defined, should be continuous.
Following the notational convention for PM we denoted by PĀP the set of all Ā-horizontal parametrized paths on P ,

where Ā is our given connection form. Thus, an element γ ∈ PĀP is represented by a C∞ mapping [t0, t1] → P , for some
t0 < t1 in R, constant near t0 and t1, such that

Ā

γ ′(t)


= 0 for all t ∈ [t0, t1].

2.2. Local trivialization

We shall now construct a local trivialization of the path bundle π : PĀP → PM using a local trivialization of the bundle
π : P → M . To this end consider an open set U ⊂ M and a smooth diffeomorphism

φ : U × G → π−1(U) (2.2)

that is G-equivariant in the sense that φ(u, gg ′) = φ(u, g)g ′ for all u ∈ U and g, g ′
∈ G. Associated to U is the set U0 of all

paths that begin in U:

U0
= ev−1

0 (U)

in the base path space, where ev0 gives the initial point, or source, of a path:

ev0 : PM → M : γ → γ0
def
= ev0(γ )

def
= γ (t0).

We view U0 as an open subset of PM . We can construct a diffeomorphism between π−1
Ā
(U0) and U × G by using the

trivialization φ; to understand this let

γ Ā
p (2.3)

be the Ā-horizontal path on P that starts at p and projects down to γ ; thus

Ā

{γ Ā

p}
′(t)


= 0 for all t ∈ [t0, t1],

the projection down to the base manifold is

π ◦ γ Ā
p = γ ,

and the initial point is p:

γ Ā
p(t0) = p.

Then we define the map:

φ0
: U0

× G → π−1
Ā
(U0) : (γ , g) → φ0(γ , g) def

= γ Ā
p, (2.4)

where p = φ(γ0, g).
The mapping φ0 is G-equivariant and is clearly bijective as well.

2.3. Transition functions

Let us now determine the transition function between trivializations φ0 andψ0. For trivializations φ : U ×G → π−1(U)
and ψ : V × G → π−1(V )we have the transition function

θφ,ψ : U ∩ V → G
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given by

ψ(u, g) = φ(u, g)θφ,ψ (u) for all (u, g) ∈ (U ∩ V )× G.

Then

initial point of ψ0(γ , g) = ψ

γ0, g


= φ


γ0, g


θφ,ψ


γ0


= initial point of φ0(γ , g)θφ,ψ


γ0


. (2.5)

Thus the transition function between φ0 and ψ0 is given by

θφ0,ψ0 : U0
∩ V 0

→ G : γ → θφ,ψ

ev0(γ )


. (2.6)

(Technically, we have not imposed a topology on the path space and so we do not have to verify continuity or smoothness
of these transition functions.)

2.4. A pullback bundle

We can describe the bundle π : PĀP → PM as a pullback of the bundle π : P → M under the evaluation map

ev0 : PM → M : γ → γ0 = ev0(γ ).

To this end let

ev∗

0P := {(γ , p) ∈ PM × P | γ0 = π(p)}. (2.7)

Thus a point of ev∗

0P is specified by a point p ∈ P along with a path γ onM that starts at π(p).
The group G acts on this space by

(γ , p)g := (γ , pg).

The mapping

π0 : ev∗

0P → PM : (γ , p) → γ

is a surjective projection for which

π0

γ g, p


= π0(γ , p)

for all p ∈ P , γ ∈ PM and g ∈ G.

Proposition 2.1. The mapping

µ : ev∗

0P → PĀP : (γ , p) → γ Āp, (2.8)

where γ Ā
p is the Ā-horizontal lift of γ initiating at p ∈ P, is a G-equivariant bijection µ : ev∗

0P → PĀP. The diagram

ev∗

0P

π0

��

µ // PĀP

πĀ

��
PM

id
// PM

(2.9)

commutes.

Let us note that πĀ : PĀP → PM is a principal G-bundle (in the sense that the projection π is a surjection and the group G
acts freely and transitively on each fiber of π ); since the base and bundle spaces are both path spaces it might seem at first
that the structure group is infinite dimensional but in fact it is just G because we are focusing on the Ā-horizontal paths.

Proof. Consider any (γ , p) ∈ ev∗

0P; then by definition p ∈ π−1(γ0). Hence we can horizontally lift the path γ on M to P by
Ā to obtain the Ā-horizontal path γ Ā

p starting from p ∈ P and that path is unique. On the other hand, any element γ ∈ PĀP
is the image under µ of


γ , γ 0


∈ ev∗

0P , where γ = πĀ(γ ) ∈ PM . Thus

µ : (γ , p) → γ p

is a bijection. Since horizontal lifts behave equivariantly under the action ofG, themappingµ isG-equivariant. The definition
of µ also implies directly that the diagram (2.9) is commutative. �
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2.5. The tangent space TγPĀP

We define a tangent vector ṽ at γ ∈ PĀP by means of the following description:

(i) ṽ is a C∞ vector field along γ ,
(ii) ṽ satisfies the tangency condition

∂ Ā(ṽ(t))
∂t

= F Ā(γ ′(t), ṽ(t)), (2.10)

for all t ∈ [t0, t1], where [t0, t1] is the domain of γ , and
(iii) ṽ is constant near t0 and near t1.

To be more precise two such vector fields are viewed as the same tangent vector if they differ by reparametrization by a
translation as in the discussion following (2.1). We denote the set of all such vector fields by

TγPĀP.

The linear nature of the differential equation (2.10) implies that this tangent space is indeed a vector space (closed under
addition and scaling).

There is a unique tangent vector ṽ ∈ TγPĀP with a specified projection vector field v = π∗ṽ and initial value ṽ(t0). We
review the proof from [3, Lemma 2.1]. Let ṽ(t)h be the Ā-horizontal vector in Tγ (t)P that projects by π∗ to v(t):

Ā

ṽ(t)h


= 0 and π∗ṽ(t)h = v(t). (2.11)

Now let

Z(t) = Ā

v(t0)


+

 t

t0
F Āγ ′(u), ṽ(u)h


du ∈ L(G),

and consider the vector field ṽ along γ specified by

ṽ(t) = ṽ(t)h + γ (t)Z(t) (2.12)

for all t ∈ [t0, t1]. Then

Ā

ṽ(t)


= Z(t) = Ā


ṽ(t0)


+

 t

t0
F Āγ ′(u), ṽ(u)


du. (2.13)

Thus the differential equation (2.10) holds. Moreover, if ṽ is any vector field along γ projecting down to v and satisfying the
differential equation (2.10) then the relation (2.13) holds and so ṽ(t) is given by (2.12). Because γ is constant near t0 and t1
we see that Z is constant near these endpoints. Similarly v and ṽh are also constants near the ends, and hence so is ṽ.

Let us see how this is consistent with the pullback point of view in Proposition 2.1. If ṽ0 ∈ TpP , where p = γ (t0) and if v
is a smooth vector field along γ = πĀ(γ ), viewed as a vector in TγPM , with initial value v(t0) = dπ |pṽ0, then

dµ

(γ ,p)(v, ṽ0) = ṽ, (2.14)

where the derivative dµ is taken in a formal but natural sense; more officially, we can take (2.14) as defining dµ.
Working with the mapµ that identifies PĀP with the pullback bundle ev∗

0P it is possible to construct local trivializations
of πĀ : PĀP → PM from those of π : P → M , and these coincide with the type given in (2.4).

2.6. Changing the base connection PĀP

We have been working with a fixed connection Ā on the principal G-bundle π : P → M and using this we have defined
the path bundle PĀP → PM . Changing Ā to another connection Ā′ produces a bundle PĀ′P → PM . We show now that this
is ‘isomorphic’ to PĀP → PM; this is, of course, quite natural from the point of view of Proposition 2.1. For the following
result let us recall that the tangent space TγPĀP consists of all vector fields ṽ along γ ∈ PĀP , constant near the initial and
final points, that satisfy (2.10).

Let Ā and Ā′ be connections on a principal G-bundle π : P → M . Let PĀP be the set of all paths on P that are Ā-horizontal
and PĀ′P the set of all Ā′-horizontal paths. For each γ ∈ PĀP let T (γ ) be the path on P that is Ā′-horizontal, has the same
initial point as γ , and projects down to the same path π ◦ γ onM as γ . Thus we have a mapping

T : PĀP → PĀ′P : γ → T (γ ). (2.15)

For any vector field ṽ along γ that belongs to the tangent space TγPĀP let

T∗ṽ ∈ TT (γ )(PĀ′P), (2.16)
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be the vector field along T (γ ) whose initial value is ṽ(t0) and whose projection by π∗ is the vector field π∗ ◦ ṽ along the
path γ = π ◦ γ ∈ PM .

The mapping T∗ is, in a natural intuitive sense, the derivative of the mapping T . In more detail, suppose

Γ̃ : [t0, t1] × [s0, s1] → P : (t, s) → Γ̃s(t)

is a C∞ map for which γ = π ◦ Γ̃s0 and

ṽ(t) = ∂sΓ̃s

s=s0

(t) for all t ∈ [t0, t1].

This displays the vector field ṽ ∈ TγPĀP as the ‘tangent vector’ to a path s → Γ̃s on PĀP . Then the image of ṽ under the
derivative of T at γ should be the tangent, at s = s0, of the image path

s → T (Γ̃s).

This tangent is the vector field along T (γ ) given by

t → w(t) def
= ∂sT (Γ̃s)(t)


s=s0

.

Focusing on the initial ‘time’ t = t0 we have

w(t0) = ∂sΓ̃s(t0)

s=s0

because T (Γ̃s)(t0) = Γ̃s(t0) by definition of the mapping T . Thus

w(t0) = ṽ(t0).

Thus w ∈ TT (γ )PĀ′P , being uniquely determined by the initial value w(t0) and the projection π∗ ◦ w = π∗ṽ ∈ Tπ◦γM , is
exactly T∗(ṽ) as we have defined it above.

Proposition 2.2. With A and A′ connections on a principal G-bundle π : P → M, and T and T as in (2.15) and (2.16), we have:

(i) the mapping T : PĀP → PĀ′P is a bijection;
(ii) for any point in PĀP given by a path γ : [t0, t1] → P and any ṽ ∈ TγPĀP, the vector

T∗(ṽ)(t)− ṽ(t)gγ (t) (2.17)

is vertical for all t ∈ [t0, t1], where gγ (t) is the element of G for which T (γ )(t) = γ (t)gγ (t).

Proof. Horizontal lift of a path by a connection is uniquely determined by the initial point of the lifted path. Using this we
see that γ is determined uniquely when T (γ ) is known. Thus T is a bijection.

The right action mapping

Rg : P → P : p → pg,

for any fixed g ∈ G, preserves fibers:

π ◦ Rg(p) = π(p) for all p ∈ P .

Taking the derivative at p on any vector v ∈ TpP we then have

π∗|pg


(Rg)∗|pv


= π∗|pv (2.18)

for all v ∈ TpP and all p ∈ P . Our notation vg means simply (Rg)∗|pv:

vg def
= (Rg)∗|pv.

Hence

π∗(vg) = π∗(v).

Next from the definition of T∗(ṽ)(t) we know that its projection by π∗ is the vector π∗(ṽ(t)) ∈ Tπ◦γ (t)M . Thus the vectors
T∗(ṽ)(t) and ṽ(t)gγ (t) in TT (γ )(t)P both project down by π∗ to the vector π∗(ṽ(t)) ∈ Tπ◦γ (t)M . Hence the difference
T∗(ṽ)(t)− ṽ(t)gγ (t) is a vertical vector. �
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2.7. Pullback of forms

We continue with the comparison of the horizontal path spacesPĀP andPĀ′P using themapping T . We define pullbacks
in the natural way: if D̃ is a k-form on PĀ′P , with values in some vector space, then T ∗D̃ is the k-form on PĀP given by

(T ∗D̃)(ṽ1, . . . , ṽk) = D̃(T∗ṽ1, . . . , T∗ṽk). (2.19)

For example, suppose B is 2-form on P with values in some vector space. Consider then the 2-form B̃ on PĀ′P given by

B̃γ̃ (ṽ, w̃) =

 t1

t0
Bγ̃ (t)


ṽ(t), w̃(t)


dt (2.20)

for all γ̃ ∈ PĀ′P and ṽ, w̃ ∈ Tγ̃PĀ′P . Then
T ∗B̃


|γ (v,w) =

 t1

t0
BT (γ )


(T∗v)(t), (T∗w)(t)


dt. (2.21)

We can also pullback the 1-form on PĀ′P given by the Chen integral

Bch
γ̃ (ṽ)

def
=

 t1

t0
B

γ̃ ′(t), ṽ(t)


dt (2.22)

to obtain the 1-form T ∗Bch given by

(T ∗Bch)γ (v)
def
=

 t1

t0
B

γ ′(t), v(t)


dt. (2.23)

(Chen integrals were introduced and developed in [20,21].) As another example, for a 1-form C on P , with values in some
vector space, we have a 1-form C̃0 on PĀ′P given by

C̃0|γ̃ (ṽ) = C0|γ̃ (t0)

ṽ(t0)


and then the pullback T ∗C̃0 is given by

T ∗C̃0

|γ (v) = C̃0|T (γ̃ )(t0)


(T∗v)(t0)


, (2.24)

for all γ ∈ PĀP and v ∈ TγPĀP .

3. A connection form on the space of horizontal paths

We continue working with a principal G-bundle
π : P → M

equipped with a connection form Ā, and the corresponding projection map
πĀ : PĀP → PM : γ → π ◦ γ ,

wherePM is the space of smooth paths onM andPĀP the space of smooth horizontal paths in P . In the preceding sectionwe
have seen how πĀ : PĀP → PM can be viewed, in a reasonable sense, as a principal G-bundle. Nowwe turn to a description
of a 1-form ω on PĀP (the sense in which this is a 1-form will become clear) that essentially provides a connection form on
this path space bundle.

3.1. The 2-form B0 and a connection form A

Henceforth we will work with an L(G)-valued 2-form B0 on P that has the following two special properties:
(i) B0 is Ad-equivariant in the sense that

B0|pg(vg, wg) = Ad(g−1)B0(v,w),

for all p ∈ P and all v,w ∈ TpP;
(ii) B0 is horizontal in the sense that

B0(v,w) = 0

whenever v orw is a vertical vector, i.e. in kerπ∗.

Thus B0 satisfies

B0|pg(vg, wg) = Ad(g−1)B0(v,w), ∀v,w ∈ TpP, g ∈ G,
B0(v,w) = 0, if v or w is vertical

(3.1)

at all points p ∈ P .
As our final ingredient, let A be a connection form on the G-bundle π : P → M .
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3.2. The form ω(A,B0) on PĀP

We define an L(G)-valued 1-form ω(A,B0) on PĀP by

ω
(A,B0)
γ (ṽ) := A


ṽ(t0))+

 t1

t0
B0(ṽ(t), γ ′(t)


dt, (3.2)

where ṽ ∈ TγPĀP .

3.3. The connection form ω on PĀP

In ω(A,B0) we have given a special role to the left endpoint γ (t0); this could, however, be replaced by the right endpoint
γ (t1). In fact a slightly more general construction leads to a 1-form with dependence on both endpoints. To this end, let C L

0
and CR

0 be 1-forms on P , with values in L(G), that vanish on vertical vectors and are equivariant:

C L,R
0 |pg(vg) = Ad(g−1)C L,R

0 |p(v). (3.3)

Consider then the L(G)-valued 1-form

ω = ω(A,B0,C
L
0,C

R
0 )

on PĀP given by

ωγ (ṽ)
def
= A|γ (t0)


ṽ(t0)


+ CR

0 |γ (t1)

ṽ(t1)


− C L

0|γ (t0)

ṽ(t0)


+

 t1

t0
B0|γ (t)


ṽ(t), γ ′(t)


dt. (3.4)

Thus

ω = ω(A,B0) + ev∗

1C
R
0 − ev∗

0C
L
0, (3.5)

where ev0 and ev1 are the evaluations at the left and right endpoints respectively.
The additional terms in (3.5) allow us to include counterparts of ω(A,B0) that have a right endpoint term in place of the

left endpoint term A

v(t0)


by taking

C L
0 = CR

0 = A − Ā (3.6)

and replacing B0 by F Ā
+ B0 leads to the counterpart of ω(A,B0) involving the right endpoint in place of the left endpoint.

Proposition 3.1. The 1-form ω on the principal G-bundle πĀ : PĀP → PM has the following properties:

(i)

ω(ṽg) = Ad(g−1)ω(ṽ) (3.7)

for all g ∈ G and all vector fields ṽ ∈ TγPĀP and all γ ∈ PĀP;
(ii) If Y is any element of the Lie algebra L(G) andY is the vector field along γ given byY (t) =

d
du


u=0γ (t) exp(uY ), then

ω(Y ) = Y . (3.8)

The property (3.8) can also be written as:

ωγ (γ Y ) = Y for all Y ∈ L(G) and γ ∈ PĀP . (3.9)

In [3, Proposition 2.2] we have established the preceding result with CR
0 = 0. The proof is simple, so we present a quick

sketch here. The equivariance property (i) holds for each of the terms on the right in the definition of ω in (3.4) and so it
holds forω. Next, applying ω to the vectorY ∈ TγPĀP all terms on the right in (3.4) are 0 except for the very first one which
equals A


γ (t0)Y

= Y since A is a connection form on P; this establishes property (ii).
Properties (i) and (ii) are the essential properties of a connection form on a traditional principal bundle and so we will

say that ω is a connection on π : PĀP → PM even though we have not equipped the latter with a smooth structure. We
will use this terminology henceforth for other forms that enjoy the properties (i) and (ii) in the relevant bundles.
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3.4. Horizontal lifts of vectors using ω

Having constructed the connection formω on the pathspace bundle, we now turn to a description of horizontal lifts with
respect to ω. Consider a path γ ∈ PM and a tangent v ∈ TγPM; this is just a smooth vector field along γ constant near
the initial and terminal points. Our objective now is to show that for any γ ∈ π−1

Ā
(γ ), the connection ω provides a unique

horizontal lift v ∈ TγPĀP; that is, v satisfies

ωγ

v


= 0 and πĀ(v) = v. (3.10)

We can choose a C∞ vector field v along the path γ for which

dπγ (t)

vγ (t)


= vγ (t) for all t ∈ [t0, t1].

Now let Z0 be the element of L(G) given by

Z0 = −


CR
0 |γ (t1)


v(t1)


− C L

0|γ (t0)

v(t0)


+

 t1

t0
B0|γ (t)


v(t), γ ′(t)


dt


. (3.11)

Let v0 ∈ Tγ (t0)P for which

v0 = vh0 + γ (t0)Z0, (3.12)

where

vh0 ∈ Tγ (t0)P

is the unique A-horizontal vector that projects byπ∗ down to v(t0). Now let v be the vector field along γ that is in the tangent
space TγPĀP and has initial value v0; this vector field is specified in (2.12) discussed earlier. Thus

Aγ (t0)

v(t0)


= Aγ (t0)(Z0) (3.13)

and so

Aγ (t0)

v(t0)


+ CR

0 |γ (t1)

v(t1)


− C L

0|γ (t0)

v(t0)


+

 t1

t0
B0|γ (t)


v(t), γ ′(t)


dt = 0. (3.14)

This says precisely that

ωγ (v) = 0.

Thus we have shown existence of the ω-horizontal lift v ∈ TγPĀP of the vector field v ∈ TγPM . Uniqueness follows from
the fact that the condition (3.14) implies that the initial value v(t0) is given by v0 as in (3.12), and this uniquely specifies v
as discussed in the context of (2.12).

3.5. Parallel transport of horizontal paths by ω

Let us now understand the process of parallel transport in the bundle PĀP using the connection form ω; we recall that

ωγ (v) = A

v(t0)


+ CR

0


v(t1)


− C L

0


v(t0)


+

 t1

t0
B0


v(t), γ ′(t)


dt, (3.15)

for any γ ∈ PĀP and v ∈ TγPĀP . Consider a C∞ map

[t0, t1] × [s0, s1] → M : (t, s) → Γ (t, s) = Γs(t),

forming a path s → Γs on PM , and consider an initial ‘point’ Γ̃s0 ∈ PĀP with

π ◦ Γ̃s0 = Γs0 .

Now let

Γ : [t0, t1] × [s0, s1] → P : (t, s) → Γ s(t)

be the mapping specified by the requirements that each path

t → Γ s(t)

be Ā-horizontal (hence Γ s ∈ PĀP), with π ◦ Γ s = Γs, and the initial points Γ s(t0) trace out an A-horizontal path on P with
initial point Γ̃s0(t0):

s → Γ s(t0) ∈ P is an A-horizontal path,

Γ s0 = Γ̃s0 .
(3.16)



S. Chatterjee et al. / Journal of Geometry and Physics 112 (2017) 147–174 157

By the nature of the differential equation for parallel transport the path s → Γ s(t0) is C∞ and then so is the mapping Γ .
Moreover, if Γ is constant in a ‘rectangular’ band of thickness ϵ > 0 near the boundary of [s0, s1] × [t0, t1], then so is Γ .

Now we would like to understand the nature of the path

s → Γ̃s ∈ PĀP

that is the ω-horizontal lift of s → Γs. Since both Γ̃s and Γ s are Ā-horizontal and both project down to the same path
Γs ∈ PM we can express Γ̃s as a rigid shift of Γ s:

Γ̃s = Γ sas (3.17)

for a unique as ∈ G, for each s ∈ [s0, s1]. The tangent vector to PĀP for the derivative of s → Γ̃s is the vector field along Γ̃s
given by

t → ∂sΓ̃s(t) = ∂tΓ s(t)as + Γ s(t)as a−1
s ȧs, (3.18)

with the natural meaning for the notation used; for example, the second term on the right is the vector at the point
Γ s(t)as ∈ P arising from the vector a−1

s ȧs ∈ L(G). We note that the second term on the right is a vertical vector. We
recall that B0 vanishes on vertical vectors and A, being a connection form, maps a vertical vector of the form pZ ∈ TpP to
Z ∈ L(G). Applying ω to ∂t Γ̃s(t)we then obtain

A

∂tΓ s(t0)as


+ a−1

s ȧs + CR
0


∂tΓ s(t1)as


− C L

0


∂tΓ s(t0)as


+

 t1

t0
B0


∂sΓ s(t)as, ∂tΓ s(t)as


dt. (3.19)

The condition that s → Γ̃s isω-horizontal is that the above expression is 0 for s ∈ [s0, s1]. Using the equivariance properties
of A, B0, C L

0 and CR
0 , this condition is then equivalent to

ȧsa−1
s = −A


∂tΓ s(t0)


− CR

0


∂tΓ s(t1)


+ C L

0


∂tΓ s(t0)


−

 t1

t0
B0


∂sΓ s(t), ∂tΓ s(t)


dt. (3.20)

Now the definition of as given in (3.17), as the ‘shift’ that should be applied to Γ s to yield Γ̃s, shows that at s = s0 the value
is e because, by our definition of s → Γ s the initial path Γ s0 is the same as the given initial path Γ̃s0 . Since the right hand
side of (3.20) involves only C∞ functions, there is a unique C∞ solution path

[s0, s1] → G : s → as.

Thus we have constructed the ω-horizontal lift

[s0, s1] → PĀP : s → Γ̃s = Γ sas (3.21)

of the given path s → Γs on PM .
Since the ordinary differential equation (3.20) has a unique solution with given initial value as0 = e it follows that any

C∞ path s → Γs on PM has a unique ω-horizontal lift to a path s → Γ̃s on PĀP with given initial path Γ̃0.
Let us note that if A = Ā then the first term on the right in (3.20) is 0. No essential generality is achieved by working with

an A different from Ā because their difference could be absorbed into C L
0 .

4. The decorated bundle

In this section we shall construct a ‘decorated’ principal bundle over a path space starting with a traditional principal
bundle along with some additional data. This notion was introduced in our earlier work [1] where we developed it from
a mainly category-theoretic point of view. In this section we shall explore this notion from a more differential geometric
standpoint. Furthermore, we shall work out several formulas, such as for the derivatives of right actions on the relevant
bundles, that will be of use later when we work with connection forms.

As we have remarked before, the motivation for constructing the decorated bundle comes from a physics context, where
the decoration arises from a second structure group that describes a gauge theory where point particles are replaced by
paths.

4.1. Lie crossed modules

A Lie crossed module (G,H, α, τ ) is comprised of Lie groups G and H , and homomorphisms

τ : H → G and α : G → Aut(H), (4.1)

with τ being smooth and the map G × H → H : (g, h) → α(g)(h) also smooth, satisfying the Peiffer [23] relations:

τ(α(g)(h)) = gτ(h)g−1, ∀g ∈ G, h ∈ H,

α(τ (h))(h′) = hh′h−1, ∀h, h′
∈ H.

(4.2)
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For later use we note that the derivative of the first relation in (4.2) leads to

τ

α(g)X


= Ad(g)τ (X) (4.3)

for all g ∈ G and X ∈ L(H), and we have used the following natural notation: in (4.3) τ means τ(X) = dτ |eX , and
α(g)X = dα(g)|eX .

We need only the semidirect product group H oα G. The map τ becomes significant in the category theoretic framework,
where the Lie crossed module corresponds to a categorical Lie group G, whose object set is G and whose morphisms are of
the form (h, g), with source g and target τ(h)g .

4.2. The semidirect product H oα G and conjugation

Below in Section 4.3 we will construct a principal bundle whose structure group is the semidirect product H oα G; the
product law in this group is given by

(h1, g1)(h2, g2) =

h1α(g1)(h2), g1g2


. (4.4)

Identifying H and G in the natural way as subgroups in H oα Gwe have the commutation relation

hg = gα(g−1)(h) (4.5)

for all h ∈ H and g ∈ G; to verify this note that the left side is, by definition, (h, e)(e, g) = (h, g) and the right side is
(e, g)


α(g−1)(h), e


. The commutation relations can be used to reformulate some of our constructions below in a manner

where the elements of G appear before the elements of H and for some relations this results in clearer expressions. For
example, the commutation relation is also equivalent to

gh = α(g)(h)g. (4.6)

It is also very useful to note that after identifying G and H with subgroups of H oα G (specifically, writing g for (e, g) and
h for (h, e)), the commutation relation gives the following friendly form for the automorphism α:

α(g)(h) = ghg−1
; (4.7)

thus the automorphism α(g) is simply conjugation by g in H oα G restricted to the subgroup H ≃ H × {e}.
The identification ofH andGwith the corresponding subgroups ofH oα Goftenprovides a great simplification of notation.

An example of this simplification is seen in the derivative of the mapping α(g) : H → H at e ∈ H , which can be obtained
by restricting the operator

Ad(g) : L(H oα G) → L(H oα G) (4.8)

to the subspace L(H).

4.3. The decorated bundle

The total space of the bundle we will study is obtained by decorating P with elements of H:

P dec
Ā P := PĀP × H. (4.9)

The bundle projection is given by (γ , h) → πĀ(γ ) = π ◦ γ . The group H oα G acts on the right on the space P dec
Ā

P by

(γ , h)(h1, g1) :=


γ g1, α(g−1

1 )(hh1)

. (4.10)

(This action has an important property that becomes clearer in the category theoretic framework: the categorical group
arising from (G,H, α, τ ) has a functorial right action on the category whose object set is P and whose morphisms are of the
form (γ , h).) It will be notationally convenient to write (γ , h) as γ h; then the action (with a dot, which we shall later omit,
for visual clarity) reads

γ h · h1g1 = γ g1 · α(g−1
1 )(hh1), (4.11)

an expression which has a formal consistency with the commutation relation (4.5). What we are denoting γ h here is what
is denoted (γ , h−1) in [1]. We note that for any γ ∈ PĀP , g ∈ G and h ∈ H ,

γ g is an element of PĀP;
γ h is an element of PĀP × H .

The notation

γ hg
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might have two potentially different meanings:

(γ eH) · (hg) = (γ , eH)(h, g) or (γ h) · g = (γ , h)(eH , g),

where we have written eH to stress that it is the identity in H . However, we can readily verify the following notational
consistencies:

γ eH · h = γ h

γ eH · hg = γ g · α(g−1)(h) = γ h · g,
(4.12)

where on the right sides h is, technically, (h, e) and g is (e, g) in H oα G.
Because of the relations (4.12), we can write γ eH simply as γ if needed.

Proposition 4.1. The mapping

P dec
Ā P × (H oα G) → P dec

Ā P : (γ h, h1g1) → γ h · h1g1 (4.13)

is a right action. This action is free and is transitive on the fibers of πdec
Ā

: P dec
Ā

P → PM.

Proof. We verify that (4.13) specifies a right action:

γ h · (h1g1h2g2) = γ h ·

h1α(g1)(h2)g1g2


= γ g1g2 · α(g−1

2 g−1
1 )


hh1α(g1)(h2)


= γ g1g2 · α(g−1

2 )

α(g−1

1 )

hh1


h2


=


γ g1 · α(g−1

1 )(hh1)


· h2g2

=

γ h · h1g1


h2g2. (4.14)

Let us now verify that the action is free. Suppose

a relation γ h · h1g1 = γ h. (4.15)

By (4.11), this means

γ g1 · α(g−1
1 )(hh1) = γ h,

which in turn is equivalent to

g1 = e and hh1 = h

with the latter relation being equivalent to h1 = e. Thus the fixed point relation (4.15) implies that h1g1 = e.
Next suppose πdec

Ā
(γ 1, h1) = πdec

Ā
(γ 2, h2). Then γ 1 and γ 2, both Ā-horizontal paths in P , project down to the same path

γ ∈ PM , and so there is a g ∈ G such that

γ 2 = γ 1g.

Next we observe that

γ 2h2 = γ 1gh2

= γ 1α(g)(h2)g (by the commutation relation (4.6))

= γ 1h1 · h−1
1 α(g)(h2)g. (4.16)

Thus (γ 2, h2) is obtained by acting on (γ 1, h1)with the element h−1
1 α(g)(h2)g ∈ H oα G. �

As an illustration of the power of working within the semidirect product and using the notation hg = (h, g) and
γ hg = (γ , h)(eH , g), we realize that the computation (4.14) becomes completely natural using this notation:

γ h · (h1g1h2g2) = γ h ·

h1α(g1)(h2)g1g2


= γ g1g2 · α(g−1

2 g−1
1 )


hh1α(g1)(h2)


= γ g1g2 · α(g−1

2 )

α(g−1

1 )

hh1


h2


=


γ g1 · α(g−1

1 )(hh1)


· h2g2

=

γ h · h1g1


h2g2. (4.17)
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4.4. Local trivialization of the decorated bundle

We have seen that a local trivialization
φ : U × G → π−1(U)

of the original bundle π : P → M leads to a local trivialization of (πĀ,PĀP,PM) given in (2.4) by

φ0
: U0

× G → π−1
Ā
(U0).

Let φ0 be the inverse of φ0; thus,
φ0 : π−1

Ā
(U0) → U0

× G

is aG-equivariant bijection. Nowwe can construct a local trivialization for the (H oα G)-bundle (πdec,P
dec
Ā

P,PM) bymeans
of the mapping:

φdec
: U0

× (H oα G) → π−1
dec(U

0)
γ , (h, g)


→


γ , α(g−1)(h)

 (4.18)

where γ = φ0(γ , g) is the Ā-horizontal lift of γ starting at the point φ(γ0, g), with γ0 being the source (initial point) of γ .
The inverse of this is:

φdec : π−1
dec(U

0) → U0
× (H oα G)

(γ , h) →


γ ,


α(g)(h), g


where g is specified by (γ , g) = φ0(γ ).

(4.19)

We can check that this is equivariant under the action of H oα G:
φdecγ , hg) · h1g1 =


φ0(γ , g), α(g−1)(h)


h1g1

=


φ0(γ , g)g1, α


g−1
1 )(α(g−1)(h)h1


=


φ0(γ , gg1), α(g−1

1 g−1)

hα(g)(h1)


(4.20)

which agrees with

φdecγ , hgh1g1


=


φ0γ , gg1, α

(gg1)−1(hα(g)(h1))


(4.21)

Thus we have proved:

Proposition 4.2. (πdec,P
dec
Ā

P,PM) is a principal H oα G-bundle with right-action given by (4.10) and local trivialization given
by (4.18).

Let us note that whenworking with bundles over spaces of paths we do not use a topology or an explicitly stated smooth
structure. This is discussed further in Section 8.

4.5. The derivative of the right action

We turn now to some derivative computations that will be useful later, for example in Proposition 5.1, when we study
a connection formΩ on the bundle of decorated paths. We view P dec

Ā
P = PĀP × H as we would a product manifold. Thus

we specify a tangent vector v̂ at (γ , h) ∈ P dec
Ā

P by

v̂ = v + X,
where v ∈ TγPĀP and X ∈ ThH . (The tangent space TγPĀP is itself identifiable with TγPM ⊕ L(G), where γ = π ◦ γ , by
means of a local trivialization.) Thus we will take the tangent space T(γ ,h)P dec

Ā
P to be

T(γ ,h)P dec
Ā P = TγPĀP ⊕ ThH. (4.22)

Recalling from (4.10) the right action of H oα G on P dec
Ā

P given by

(γ , h)h1g1 =

γ g1, α(g−1

1 )(hh1)

, (4.23)

we take, for fixed (h1, g1) ∈ H oα G, the ‘differential’ of the map
P dec

Ā P → P dec
Ā P : (γ , h) → (γ , h)h1g1

to be given by

R(h1,g1)∗ : T(γ ,h)P dec
Ā P→T(γ ,h)h1g1P

dec
Ā P

R(h1,g1)∗(v + X) : = (v + X)(h1, g1) = vg1 + g−1
1 (Xh1)g1,

(4.24)

where Xh1 ∈ Thh1H is the image of X ∈ ThH under the derivative of the right-translation map H → H : x → xh1, and the
last term on the right hand side is, more precisely, the derivative dα(g)|hh1 applied to Xh1.
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4.6. Derivative of the orbit map

Next let us look at what should be taken to be the differential of the map

H oα G → P dec
Ā P : (h1, g1) → (γ , h)h1g1,

where (γ , h) is any fixed point in P dec
Ā

P . (This will be useful when we study the connection formΩ in Proposition 5.1.) We
use the realization of the tangent space to H oα G as

T(h1,g1)(H oα G) = Th1H ⊕ Tg1G,

and write a vector in this space in the form

h1Y1 + g1Z1
def
= (h1Y1, g1Z1) ∈ Th1H ⊕ Tg1G,

where Y1 ∈ L(H) and Z1 ∈ L(G). Here, as always, xV means the derivative of the left-translation map G → G : y → xy by x
on V ∈ TxG and Vx has an analogous meaning with respect to right translations. We will often use notation such as xV that
makes it possible to see at a glance that we are speaking of a vector located at the point x.

We also realize the tangent space T(γ ,h)(P dec
Ā

P) as

T(γ ,h)(P dec
Ā P) = Tγ (PĀP)⊕ ThH.

We will frequently need to use the derivative of the inversion map

j : G → G : g → g−1,

and this is given by

dj|g(W ) = −g−1Wg−1, (4.25)

for all tangent vectorsW ∈ TgG. In particular ifW = gZ , where Z ∈ L(G), then

dj|g(gZ) = −Zg−1. (4.26)

As always we denote by

γ g1Z

the vertical vector field along γ g1 whose value at any parameter value t is

γ (t)g1Z =
d
ds


s=0
γ (t)g1 exp(sZ). (4.27)

Let us write the right action of H oα G on PĀP × H , as we have done in (4.10), in the form

(γ , h)h1g1 = (γ g1, g−1
1 hh1g1). (4.28)

Holding (γ , h) fixed, the derivative of the orbit map

h1g1 → (γ , h)h1g1
is given by

r(γ ,h),(h1,g1) : T(h1,g1)(H oα G) → T(γ ,h)h1g1P
dec
Ā P

h1Y1 + g1Z1 → γ g1Z1 + g−1
1 hh1Y1g1 +


g−1
1 hh1g1Z1 − Z1g−1

1 hh1g1

,

(4.29)

where the last expression, comprised of two terms within (· · · ), lies in Thh1H , by the reasoning used below in (4.31). Let us
note here the distinction between the derivative r(γ ,h),(h1,g1) and the derivative R(h,g)∗.

Here and in most of our computations we identify the Lie algebras of H and Gwith the corresponding subalgebras inside
L(H oα G). Thus

L(H oα G) = L(H)⊕ L(G) as a direct sum of vector spaces. (4.30)

Evaluating the derivative in (4.29) at the identity (e, e) ∈ H oα Gwe obtain the linear map

r(γ ,h) : L(H oα G) → T(γ ,h)P dec
Ā P

Y1 + Z1 → γ Z1 + hY1 + hZ1 − Z1h
= γ Z1 + h


Y1 +


1 − Ad(h−1)


Z1


,

(4.31)

where Y1 ∈ L(H) and Z1 ∈ L(G). Note that Ad(h−1)Z1 is obtained by applying Ad(h−1) to Z1, with everything taking place
inside the Lie algebra L(H oα G). The term


1 − Ad(h−1)


Z1 lies in L(H), which can be seen by examining the derivative, at

the identity in G, of the mapping

G → H : g1 → g1hg−1
1 = α(g1)(h).
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5. Connections on the decorated bundle

We continue with the framework established in the preceding sections. Thus Ā is a connection on a principal G-bundle

π : P → M,

and (G,H, α, τ ) is a Lie crossed module. We have then a connection ω(A,B0), constructed from a connection A on P and an
L(G)-valued 2-form B0 on P , on the horizontal path bundle

PĀP → PM,

which is also a principalG-bundle in the sense discussed before.Wehave constructed the decorated principalH oα G-bundle

P dec
Ā P = PĀP × H → PM.

In this section we shall construct a connection on this decorated bundle by using the connectionω and two additional forms
on P as ingredients.

5.1. The endpoint forms C L,R and a 2-form B

As noted before, the Lie algebra L(H oα G) is the vector space direct sum L(H) ⊕ L(G) (the Lie algebra structure on
L(H oα G) is not, however, obtained as a direct sum of Lie algebras). Viewing G as a subgroup of H oα G we have, for each
g ∈ G, the operator Ad(g−1) on L(H oα G). We shall workwith an L(H oα G)-valued 2-form B on P with following properties:

B(ug, vg) = Ad(g−1)(B(u, v)) ∀u, v ∈ TpP, g ∈ G,
B(u, v) = 0, if u or v is vertical.

(5.1)

Let us note here that in the first equation above, Ad(g) is acting on L(H oα G) as in (4.8). Since this action maps L(G) into
itself and L(H) also into itself, the equations in (5.1) mean that they hold separately for the components B0 and B1. We shall
also use L(H oα G)-valued 1-forms C L and CR on P that have the following properties:

C L
|pg(vg) = Ad(g−1)C L

|p(v) ∀v ∈ TpP, g ∈ G,

C L
|p(v) = 0, if v ∈ TpP is any vertical vector,

(5.2)

for all p ∈ P and the corresponding properties for CR.
LetΣ be the Maurer–Cartan form on H:

Σh(X) = h−1X, ∀h ∈ H, X ∈ ThH,

where on the right the notation signifies the action of the derivative of the left-translation map h1 → h−1h1.

5.2. The connection formΩ

As before we denote the evaluation map at the initial point by:

ev0 : P dec
Ā P → P : (γ , h) → γ (t0),

where the domain of γ is an interval [t0, t1]. Using a connection form A on P , alongwith the L(H oα G)-valued 2- and 1-forms

B = B0 + B1

C L,R
= C L,R

0 + C L,R
1 ,

(5.3)

we define a 1-formΩ on P dec
Ā

P , with values in L(H oα G), as follows:

Ωγ ,h
def
= Ad(h−1)


ev∗

0


A − C L

|γ (t0) + ev∗

1(C
R)|γ (t1) +


γ

B


+Σh, (5.4)

where on the right we viewΣ as a form on PĀP × H with the obvious pullback from the projection map onto H . Thus

Ωγ ,h(v + X) = Ad(h−1)


ωγ (v)+ CR

1 |γ (t1)(v(t1))− C L
1|γ (t0)(v(t0))+

 t1

t0
B1|γ (t)(v(t), γ ′(t))dt + Xh−1


, (5.5)

where v + X ∈ T(γ ,h)P dec
Ā

P , with v a vector field along the path γ and X ∈ ThH , and the 1-form ω is as defined in (3.4):

ωγ (v) := Aγ (t0)(v(t0))+ CR
0 |γ (t1)


vγ (t1)


− C L

0|γ (t0)

vγ (t0)


+

 t1

t0
B0|γ (t)


v(t), γ ′(t)


dt, (5.6)

for every path γ : [t0, t1] → P in PĀP .
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Let us recall the right action

P dec
Ā P × (H oα G) → P dec

Ā P :


(γ , h), (h1, g1)


→ (γ g1, g−1

1 hh1g1). (5.7)

From this map we have the two ‘directional derivatives’:

R(h1,g1)∗ : Tγ ,h(P dec
Ā P)→T(γ ,h)h1g1(P

dec
Ā P)

and

r(γ ,h) : T(h1,g1)(H oα G)→T(γ ,h)h1g1(P
dec
Ā P).

(5.8)

Proposition 5.1. The 1-formΩ is a connection on (πdec,P
dec
Ā

P,PM) in the sense that the following conditions hold.

(i) It is equivariant under the right-action of H oα G:

Ω(γ ,h)h1g1R(h1,g1)∗(v, X) = Ad(h1g1)−1Ω(γ ,h)(v, X) (5.9)

for all h, h1 ∈ H, g1 ∈ G, γ ∈ PĀP, v ∈ TγPĀP and X ∈ ThH;
(ii) It returns the appropriate elements of L(H oα G) when applied to vertical vectors:

Ω(γ ,h)r(γ ,h)(Y1 + Z1) = Y1 + Z1, (5.10)

where r(γ ,h) is the derivative of the right-action of H oα G on PĀP as in (4.29) and (Y1, Z1) ∈ L(H)⊕ L(G).

Proof. For notational conveniencewe shall write v0 for v(t0), γ 0 for γ (t0), and analogously for other paths and vector fields.
Working through the right-action we have

Ω(γ ,h)h1g1R(h1,g1)∗(v, X) = Ω
(γ g1,g

−1
1 hh1g1)

(vg1 + g−1
1 Xh1g1) using (4.24)

= Ad(g−1
1 h−1

1 h−1g1)

ωγ (vg1)+ CR

1 |γ 1g1(v0g1)− C L
1|γ 0g1(γ 0g1)


+ (g−1

1 hh1g1)−1g−1
1 Xh1g1 + Ad(g−1

1 h−1
1 h−1g1)

 t1

t0
B1


v(t)g1, γ ′(t)g1


dt. (5.11)

We work out the last term on the right separately:

Ad(g−1
1 h−1

1 h−1g1)
 t1

t0
B1


v(t)g1, γ ′(t)g1


dt = Ad(g−1

1 h−1
1 h−1g1)Ad(g−1

1 )

 t1

t0
B1


v(t), γ ′(t)


dt

(using the equivariance property of B1 from (5.1))

= Ad(g−1
1 h−1

1 h−1)

 t1

t0
D

v(t), γ ′(t)


dt. (5.12)

Returning to our computation (5.11), we have:

Ω(γ ,h)h1g1R(h1,g1)∗(v, X) = Ad(g−1
1 h−1

1 h−1g1)Ad(g−1
1 )


ωγ (v)+ CR

1 |γ 1(v0)− C L
1|γ 0(v0)


+ g−1

1 h−1
1 h−1g1 g−1

1 Xh1g1 + Ad(g−1
1 h−1

1 h−1)

 t1

t0
B1


v(t), γ ′(t)


dt. (5.13)

On the other hand

Ad(h1g1)−1Ω(γ ,h)(v, X) = Ad(h1g1)−1Ad(h−1)

ωγ (v)+ CR

1 |γ 1(v0)− C L
1|γ 0(v0)


+Ad(h1g1)−1(h−1X)+ Ad(h1g1)−1Ad(h−1)

 t1

t0
B1


v(t), γ ′(t)


dt. (5.14)

We see that this is equal to the expression on the right in (5.13). This proves property (i) forΩ .
Next we consider how the connection form acts on a ‘vertical vector’ in the bundle P dec

Ā
P; such a vector is of the form

r(γ ,h)(Y1 + Z1) ∈ T(γ ,h)(P dec
Ā P),

where

Y1 + Z1 = (Y1, Z1) ∈ L(H)⊕ L(G),
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is an arbitrary vector in L(H oα G). Thus

Ω(γ ,h)r(γ ,h)(Y1 + Z1) = Ω(γ ,h)


γ Z1 + hY1 +


1 − Ad(h−1)


Z1


(using the expression for r(γ ,h) obtained in (4.31))

= Ad(h−1)

ωγ (γ Z1)+ CR

1 |γ 1(γ 1Z1)− C L
1|γ 0(γ 0Z1)


+


Y1 +


1 − Ad(h−1)


Z1


+ Ad(h−1)

 t1

t0
B1


γ (t)Z1, γ ′(t)


dt. (5.15)

In the expression on the right, the terms with C and the last term, with B1, are 0 because B1, C L
1 and CR

1 vanish on vertical
vectors (see (5.1) and (5.2)). The first term equals Z1:

ωγ (γ Z1) = Z1, (5.16)

as seen in (3.9).
Putting all this together we have

Ω(γ ,h)r(γ ,h)(Y1 + Z1) = Ad(h−1)Z1 +


Y1 +


1 − Ad(h−1)


Z1


+ 0

= Y1 + Z1. (5.17)

This proves property (ii). �

The conditions (i) and (ii) above imply that the formΩ splits each tangent space T(γ ,h)P dec
Ā

P into horizontal and vertical
subspaces as explained in the following result.

5.3. Horizontal and vertical parts

We turn now to understand how the connection formΩ splits a vector v ∈ T(γ ,h)P dec
Ā

P into a horizontal and a vertical
component.

Proposition 5.2. At any (γ , h) ∈ P dec
Ā

P,Ω splits T(γ ,h)P dec
Ā

P into a direct sum:

T(γ ,h)P dec
Ā P = H(γ ,h)P dec

Ā P ⊕ V(γ ,h)P dec
Ā P, (5.18)

where the ‘horizontal subspace’ H(γ ,h)P dec
Ā

P is

H(γ ,h)P dec
Ā P = kerΩ(γ ,h), (5.19)

and the ‘vertical subspace’ V(γ ,h)P dec
Ā

P is the image of r(γ ,h):

V(γ ,h)P dec
Ā P = {r(γ ,h)(Y1 + Z1) : Y1 ∈ L(H), Z1 ∈ L(G)}, (5.20)

as noted in (4.31), with r(γ ,h) being the right action of H oα G on P dec
Ā

P.

Proof. Let

v̂ = v + X ∈ T(γ ,h)P dec
Ā P,

where v ∈ TγPĀP, X ∈ ThH . Let vH and vV be, respectively, the horizontal and vertical components of v with respect to the
connection ω = ω(A,B0). Thus, in particular, ωγ (vH) = 0.

Let γ 1 denote the right endpoint γ (t1), and γ 0 denote the left endpoint γ (t0). We will now show that the horizontal and
vertical components of v̂ = v + X are

v̂H = vH −


CR
1 |γ 1


vH(t1)


− C L

1|γ 0


vH(t0)


+

 t1

t0
B1(v

H(t), γ ′(t))dt

h

v̂V = vV + X +


CR
1 |γ 1


vH(t1)


− C L

1|γ 0


vH(t0)


+

 t1

t0
B1(v

H(t), γ ′(t))dt

h,

(5.21)

respectively, where, as always, Zh ∈ ThH is the result of applying the derivative of the right translationmapH → H : x → xh
to Z ∈ L(H).

Our objective now is to show that v̂H lies in the horizontal subspace, v̂V in the vertical subspace.
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The relation (5.17) shows thatwhenΩ is applied to a vertical vector,which, by definition, is of the form v = r(γ ,h)(Y1+Z1)
then the value obtained is Y1 + Z1; hence if this is 0 then v itself is 0. Thus the only vertical vector which is also horizontal
is just the zero vector. Thus the sum in (5.18) is indeed a direct sum.

Inserting (5.21) in the expression forΩ given in (5.5) we get

Ad(h)Ωγ ,h(v̂
H) = ωγ (v

H)+ CR
1 |γ 1


vH(t1)


− C L

1|γ 0


vH(t0)


+

 t1

t0
B1(v

H(t), γ ′(t))dt

−


CR
1 |γ 1


vH(t1)


− C L

1|γ 0


vH(t0)


+

 t1

t0
B1(v

H(t), γ ′(t))dt


= 0. (5.22)

The vector vV, which is the ω-vertical part of v, is given by

vV = γ Z, (5.23)

where

Z = ωγ (v)

(as we have discussed earlier in (3.8)). ApplyingΩγ ,h to vV we have

Ωγ ,h(v̂
V) = Ad(h−1)


Z + Xh−1

+ CR
1 |γ 1


vH(t1)


− C L

1|γ 0


vH(t0)


+

 t1

t0
B1(v

H(t), γ ′(t))dt

. (5.24)

We can write the right hand side of (5.24) as a sum of a vector in L(H) and a vector in L(G) on using the observation, made
earlier after (4.31), that


1 − Ad(h−1)


Z is in L(H). Thus we have

Ωγ ,h(v̂
V) =


Ad(h−1)− 1


Z + h−1


X +


CR
1 |γ 1


vH(t1)


− C L

1|γ 0


vH(t0)


+

 t1

t0
B1(v

H(t), γ ′(t))dt

h


+ Z . (5.25)

Now we recall from (4.31) that the derivative of the orbit map

H oα G → P dec
Ā P : (h1, g1) → (γ , h)h1g1

at the identity element (e, e) ∈ H oα G is given by

r(γ ,h) : L(H oα G)→T(γ ,h)P dec
Ā P

Y1 + Z1 → γ Z1 + h

Y1 +


1 − Ad(h−1)


Z1


.

(5.26)

Applying this toΩγ ,h(v̂
V) as given above we obtain

r(γ ,h)

Ωγ ,h(v̂

V)


= γ Z + h

Ad(h−1)− 1


Z

+


X +


CR
1 |γ 1


vH(t1)


− C L

1|γ 0


vH(t0)


+

 t1

t0
B1(v

H(t), γ ′(t))dt

h


+ h

1 − Ad(h−1)


Z

= γ Z +


X +


CR
1 |γ 1


vH(t1)


− C L

1|γ 0


vH(t0)


+

 t1

t0
B1(v

H(t), γ ′(t))dt

h

, (5.27)

which we recognize to be v̂V as given in (5.21). Thus,

v̂V = r(γ ,h)

Ωγ ,h(v̂

V)


lies in the vertical subspace V(γ ,h)P dec
Ā

P . �

6. Horizontal lifts of paths on decorated bundles

Wework with the framework from the preceding sections, with a connection Ā on a principal G-bundle π : P → M , and
a Lie crossed module (G,H, α, τ ); as noted before, we shall only use the semidirect product H oα G and not τ at this stage.
There is then a principal G-bundlePĀP → PM , where the elements ofPĀP are Ā-horizontal paths on P . We have introduced
a connection ω on PĀP → PM , and a connectionΩ on the principal H oα G-bundle P dec

Ā
P → PM . The elements of P dec

Ā
P

are of the form (γ , h), where γ ∈ PĀP and h ∈ H . Our goal in this section is to determine parallel-transport, illustrated in
Fig. 3, by the connectionΩ (in the figure k encodes the parallel transport multiplier).
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Fig. 3. Parallel transport of decorated paths.

6.1. Paths on the path space

We consider a path

Γ : [s0, s1] → PM : s → Γs

where each Γs is a C∞ path [t0, t1] → M , for some t0 < t1. We assume that Γ is smooth in the sense that

[t0, t1] × [s0, s1] → M : (t, s) → Γ (t, s) = Γs(t) (6.1)

is C∞. There are some additional technical requirements we impose in order to ensure that composition of paths of paths
produces a path of paths of the same nature. To this end we assume that for the mapping Γ there exists an ϵ > 0 such that
for each fixed s the point

Γs(t)

remains constant when t is within distance ϵ of t0 or t1, and for each fixed t ∈ [t0, t1] the point Γs(t) remains constant when
s is within distance ϵ of s0 or s1. Furthermore, we identify Γ with the mapping

Γ −v
: ([t0, t1] × [s0, s1])+ v → M : (t, s) → Γ


(t, s)− v


,

for any fixed v ∈ R2. More precisely, identification means that we form a quotient space P2(M), where Γ and Γ −v

correspond to the same element.

6.2. TheΩ-horizontal lift of a path on PM

Our goal is to determine theΩ-horizontal lift of s → Γs, with a given initial point

(Γ̃s0 , hs0) ∈ P dec
Ā P

where

π ◦ Γ̃s0 = Γs0 .

To this end let

[s0, s1] → PĀP : s → Γ̃s (6.2)

be the ω-horizontal lift of the path s → Γs, with initial point Γ̃s0 . (Recall that ω is a connection on PĀP and in Section 3.5
we have shown the existence of ω-horizontal lifts.) Next let

s → hs (6.3)

be the solution of the differential equation

ḣsh−1
s = −


CR
1


∂sΓ̃s(t1)


− C L

1


∂sΓ̃s(t0)


+

 t1

t0
B1


∂sΓ̃s(t), ∂t Γ̃s(t)


dt


(6.4)

with an initial value hs0 = e ∈ H .
We recall our assumptions that C L,R

1 and B1 take values in the Lie algebra L(H) ⊂ L(H oα G). As a result, hs lies in H .
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We note that

ḣsh−1
s = −


CR
1


∂sΓ̃s(t1)


− C L

1


∂sΓ̃s(t0)


+

 t1

t0
B1


∂sΓ̃s(t), ∂t Γ̃s(t)


dt


. (6.5)

Let us recall from (5.5) the connection formΩ on P dec
Ā

P given by:

Ωγ ,h(v + X) = Ad(h−1)


ωγ (v)+ CR

1


∂sΓ̃s(t1)


− C L

1


∂sΓ̃s(t0)


+

 t1

t0
B1|γ (t0)(v(t), γ

′(t))dt + Xh−1

, (6.6)

where v + X ∈ T(γ ,h)P dec
Ā

P , with v a vector field along the path γ : [t0, t1] → P belong to PĀP and X ∈ ThH , the 1-form ω
is as defined in (3.2):

ωγ (v) := Aγ (t0)(v(t0))+ CR
0 (v(t1))− C L

0(v(t0))+

 t1

t0
B0|γ (t0)


v(t), γ ′(t)


dt. (6.7)

Proposition 6.1. Suppose (G,H, α, τ ) is a Lie crossed module and Ā is a connection on a principal G-bundle π : P → M. We
have then as above the bundle PĀP → PM of Ā-horizontal paths on M over the space PM of paths on M, and the decorated
bundle

P dec
Ā P = PĀP × H → PM,

equipped with a connection formΩ given above in (6.6), involving the forms CR,L
1 and B1 that take values in L(H). Then the path

[s0, s1] → P dec
Ā P : s → (Γ̃s, hs) (6.8)

isΩ-horizontal if and only if s → Γ̃s is an ω-horizontal path on PĀP and s → hs satisfies the differential equation

ḣsh−1
s = −CR

1


∂sΓ̃s(t1)


+ C L

1


∂sΓ̃s(t0)


−

 t1

t0
B1


∂sΓ̃s(t), ∂t Γ̃s(t)


dt. (6.9)

Proof. EvaluatingΩ on the tangent vector (field)

∂s(Γ̃s, hs) =


∂sΓ̃s, ḣs


∈ T(Γ̃s,hs)P

dec
Ā P,

we have

Ω(Γ̃s,hs)∂s(Γ̃s, hs) = Ad(h−1
s )ω


∂sΓ̃s


+ Ad(h−1

s )


ḣsh−1

s

+ CR
1


∂sΓ̃s(t1)


− C L

1


∂sΓ̃s(t0)


+

 t1

t0
B1


∂sΓ̃s(t), ∂t Γ̃s(t)


dt


. (6.10)

Here, on the right, the first term is in L(G) and the second term is in L(H). The entire expression is 0 if and only if each of
these terms is 0. This is equivalent to s → Γ̃s being ω-horizontal and s → hs satisfying the differential equation (6.9). �

7. Curvature conditions for reduction to holonomy bundle

We continue to work in the framework of the decorated bundle P dec
Ā

P . Let C1 be an L(H)-valued 1-form on P that is
equivariant and vanishes on vertical vectors. Then we can associate to each γ ∈ PĀP a special decoration h∗(γ ) that is given
by

h∗(γ ) = hγ (t1), (7.1)

where [t0, t1] → H : t → hγ̃ (t) is the solution of

h′

γ (t)hγ (t)
−1

= −C1

γ ′(t)


, (7.2)

with initial value hγ (t0) = e.
Then we have a sub-bundle P

dec
Ā P of P dec

Ā
P specified by:

P
dec
Ā P := {


γ , h∗(γ )−1

| γ ∈ PĀP} ⊂ P dec
Ā P. (7.3)
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More precisely,

P
dec
Ā P → PM :


γ , h∗(γ )−1

→ π ◦ γ (7.4)

is a principal G-bundle. Henceforth, in this section we take the connection A to be the same as the connection Ā:

A = Ā.

Our goal in this section is to determine a type of connection Ω̂ on P dec
A P that reduces to a connection on the sub-bundle

P
dec
A P . Section 7.4 serves as a technical appendix to this section and presents some of the background computations for the

proof of the main result Proposition 7.1. Later in Section 7.5 we present a description of the notion of a holonomy bundle
and a result of Ambrose and Singer [2], that form a motivational background for our investigations.

7.1. Statement of the result

Let us first summarize the notation and framework.
Let A be a connection form on a principal G-bundle π : P → M , and suppose (G,H, α, τ ) is a Lie crossed module. (As

noted before, we will use only the semidirect products here, and not the target map τ , which is useful in the categorical
framework.) Let C be an L(H oα G)-valued 1-form on P that vanishes on vertical vectors and satisfies the equivariance

C |pg(vg) = Ad(g−1)C |p(v) (7.5)

for all p ∈ P , v ∈ TpP and g ∈ H . Here, as usual, on the right we take Ad(g−1) to be an operator on L(H oα G). We decompose
C into its component in L(H) and the component in L(G):

C = C0 + C1, (7.6)

where C0 takes values in L(G) and C1 in L(H).
Let B be an L(H oα G)-valued 1-form on P that is equivariant analogously to C and vanishes when contracted on any

vertical vector; we write

B = B0 + B1, (7.7)

where B0 is the L(G)-component of B and B1 is the L(H)-component.
LetPAP be, as before, the path space of A-horizontal paths γ on P , andPM the path space forM . On the decorated bundle

P dec
A P def

= PAP × H → PM

consider the connection form Ω̂ given by

Ω̂γ ,h(v + X) = Ad(h−1)


Aγ (t0)


v(t0)


− Ad


g−1
γ (t1)


C |γ (t1)


v(t1)


+ C |γ (t0)


v(t0)


+

 t1

t0
Ad


gγ (t)−1Bγ (t)(v(t), γ ′(t)


dt + Xh−1


(7.8)

for all γ ∈ PAP , h ∈ H , v ∈ TγPĀP and X ∈ ThH . (Let us note that in relation to our previous notation, CR
= C L

= −C .) In
(7.8) the element gγ (t) ∈ G is given by

gγ (t) = τ

hγ (t)


, (7.9)

where hγ (t) ∈ H is as given by the differential equation (7.2).
The connection Ω̂ can be obtained as a pullback T ∗Ω , whereΩ is the connection given in (5.4) on the decorated bundle

and T is the change of base connection map discussed in Section 2.6 from the connection A to the connection A + τC1;
however, we leave this as a remark and omit verification.

Suppose that B1 and C1 are related by

B1 = dC1 +
1
2
[C1, C1]. (7.10)

Consider a path [s0, s1] → PM : s → Γs given by a C∞ map

[t0, t1] × [s0, s1] → M : (t, s) → Γs(t) = Γ (t, s)

and let γ ∈ PAP be an Ā-horizontal lift of the initial path Γs0 . Let h
∗(γ ) be the value hs0(t1)where [t0, t1] → H : t → hs(t)

is the solution of the equation

h′

s(t)+ C1

γ ′(t)


hs(t) = 0 for all t ∈ [t0, t1];

hs(t0) = e.
(7.11)
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We can conjugate by any g ∈ G to see that the path

[t0, t1] → G : t → hs;g(t)
def
= g−1hs(t)g

satisfies

h′

s;g(t)+ g−1C1

γ ′(t)


g hs;g(t) = 0 for all t ∈ [t0, t1];

hs;g(t0) = e.
(7.12)

By the equivariance of C , and hence of the L(H)-component C1, given by (7.5), the first equation in (7.12) is equivalent to

h′

s;g(t)+ C1

(γ g)′(t)


hs;g(t) = 0. (7.13)

Thus, by uniqueness of the solution of such differential equations,

hs;g(t) = g−1hs(t)g for all (t, s) ∈ [t0, t1] × [s0, s1]. (7.14)

Let

h∗(γ ) = hγ (t1)

g∗(γ ) = τ

h∗(γ )


.

(7.15)

We can now state the main result of this section.

Proposition 7.1. With notation and framework as above, suppose the relation (7.10) holds. Then parallel transport by the
connection Ω̂ carries elements of the form


γ , h∗(γ )−1


to elements of the same form.

The remainder of this section is devoted to an understanding and proof of this result.

7.2. Horizontal lifts by ω̂ and Ω̂

Consider a path s → Γs on PM specified by a C∞ map

Γ : [t0, t1] × [s0, s1] → M : (t, s) → Γ (t, s) = Γs(t)

and an A-horizontal lift

Γ 0 : [t0, t1] → P : t → Γ 0(t)

of the initial path Γs0 onM . Now let

[t0, t1] × [s0, s1] → P : (t, s) → Γ̂s(t)

be the ω̂-horizontal lift of the path s → Γs, with initial value being the given path Γ 0:

Γ̂s0 = Γ 0.

We follow the strategy used to study ω-horizontal lifts, as in (3.17). We compare Γ̂ to another path

Γ : [s0, s1] → PAP : s → Γ g

that is constructible in terms of just the connection for A and the initial path Γ 0. We define

Γ : [t0, t1] × [s0, s1] → P : (t, s) → Γ s(t)

to be the C∞ map for which (i) each path Γ s is Ā-horizontal, (ii) the initial points s → Γ s(t0) constitute a path

[t0, t1] → P : t → Γ s0(t)

that is horizontal with respect to the connection for A, and (iii) the initial path Γ s0 is the given initial path Γ 0 ∈ PAP .
Then by (3.20) (applied to the connection form ω̂) it follows that the path Γ̂s is obtained from Γ s by translation with an

element as ∈ G:

Γ̂s = Γ sas,

where s → as satisfies the differential equation

ȧsa−1
s = Ad


g∗(Γ s(t1))−1C0


∂tΓ s(t1)


− C0


∂tΓ s(t0)


−

 t1

t0
Ad


g∗(Γ s(t))−1B0


∂sΓ s(t), ∂tΓ s(t)


dt (7.16)

with initial value as0 = e. (In (3.20) there is a first term on the right that is absent here because A = Ā in this context.) Note
that this differential equation is for a path on the group G.



170 S. Chatterjee et al. / Journal of Geometry and Physics 112 (2017) 147–174

Next, by Proposition 6.1 applied to Ω̂ , the path
[s0, s1] → P dec

A P : s → (Γ̂s, xs)

is Ω̂-horizontal if and only if the path s → xs ∈ H satisfies the differential equation

ẋsx−1
s = Ad


g∗(Γ̂s(t1))−1C1


∂sΓ̂s(t1)


− C1


∂sΓ̂s(t0)


−

 t1

t0
Ad


g∗(Γ̂s(t))−1B1


∂sΓ̂s(t), ∂t Γ̂s(t)


dt. (7.17)

This differential equation, for the decoration element, is for a path on the group H . We can also verify (7.17) directly by
focusing on the L(H)-component of the expression for Ω̂ given in (7.8) applied to the vector (∂sΓ̂s, ḣs), the result being
equal to 0.

From the second relation between α and τ that have noted in (4.2) we have

Ad

τ(h)


X = α


τ(h)


X = Ad(h)X (7.18)

for all h ∈ H and X ∈ L(H). From this we see that in the right side of (7.17) we can replace each g∗ by an h∗, and so

ẋsx−1
s = C1


∂sΓ̂s(t0)


− Ad


h∗(Γ̂s(t1))−1C1


∂sΓ̂s(t1)


−

 t1

t0
Ad


h∗(Γ̂s(t))−1B1


∂sΓ̂s(t), ∂t Γ̂s(t)


dt. (7.19)

7.3. Comparison with variation of parallel transport

We continue with the framework as above. For fixed s ∈ [s0, s1], consider the path
[t0, t1] → H : t → hs(t)

that satisfies

h′

s(t)+ C1

Γ̂ ′

s (t)

hs(t) = 0

hs(t0) = e.
(7.20)

We use the notation

h∗(Γ̂s) = hs(t1). (7.21)
Our objective is to show that the path

[s0, s1] → P
dec
A P : s →


Γ̂s, h∗(Γ̂s)

−1


(7.22)

is Ω̂-horizontal. Let

ys(t)
def
= hs(t)−1. (7.23)

Thus, we need to show that

[s0, s1] → P
dec
A P : s →


Γ̂s, ys(t1)


is Ω̂-horizontal. Expressing Eq. (7.20) in terms of ys we have:

ys(t)−1y′

s(t) = hs(t)

−hs(t)−1h′

s(t)hs(t)−1
= −h′

s(t)hs(t)−1

= C1

Γ̂ ′

s (t)

. (7.24)

Then, as we show below in (7.60),

ẏs(t1)ys(t)−1
− ẏs(t0)ys(t0)−1

= −

 t1

t0
ys(u)


dĈ1 +

1
2
[Ĉ1, Ĉ1]


(∂t , ∂s)ys(u)−1du

+ ys(t1)C1

∂sΓ̂s(t1)


ys(t1)−1

− ys(t0)C1

∂sΓ̂s(t0)


ys(t0)−1, (7.25)

where

Ĉ1 = Γ̂ ∗C1. (7.26)
Since ys(t0) is held fixed at e we have then, on using (7.25),

ẏs(t1)ys(t)−1
= −

 t1

t0
ys(u)


dĈ1 +

1
2
[Ĉ1, Ĉ1]


(∂t , ∂s)ys(u)−1du + ys(t1)C1(∂sΓ̂s(t1)


ys(t1)−1

− C1

∂sΓ̂s(t0)


. (7.27)

Comparing with the equation for Ω̂-parallel transport (7.17) we see that the two equations agree if

B1 = dC1 +
1
2
[C1, C1]. (7.28)

Thus the path (7.22) is Ω̂-horizontal, and the proof of Proposition 7.1 is complete.
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7.4. Variation of differential equations

In this subsection we work through the details of the computation that leads to the equation (7.27) which was central to
the proof of Proposition 7.1.

Consider the differential equation

b(t)−1b′(t) = C

γ ′(t)


(7.29)

for t ∈ [0, 1], where γ ∈ PAP . We shall determine how fast the terminal point b(1) changes when we change the path γ .
Our strategy is to consider the family of differential equations

bs(t)−1b′

s(t) = C

Γ̂ ′

s (t)


(7.30)

where s ∈ [0, 1] and t ∈ [0, 1], and the prime is derivative with respect to t . Here

Γ̂ : [0, 1] × [0, 1] → P : (t, s) → Γ̂s(t) (7.31)

is a smooth map. We think of s as a variational parameter and our goal is to compute how fast bs(1) changes with s.
Let us denote the right hand side by Es(t) ∈ L(G):

Es(t) = C

Γ̂ ′

s (t)

. (7.32)

Thus our differential equation is

bs(t)−1b′

s(t) = Es(t). (7.33)

Now let

Ds(t) = ḃs(t)bs(t)−1, (7.34)

where

ḃs(t) = ∂sbs(t) (7.35)

is the derivative which contains the information we are ultimately seeking. Our goal is to compute Ds(t).
As always, we will denote the s-derivative by a dot over the letter:

ẋs(t) = ∂sxs(t). (7.36)

Our strategy is to compute D′
s(t) = ∂tDs(t) and then obtain Ds(t) by integrating:

Ds(t) =

 t

0
D′

s(u) du + Ds(0).

So now let us compute the derivative D′
s(t). From (7.34) we have

D′

s(t) = −ḃs(t)bs(t)−1b′

s(t)bs(t)
−1

+

∂s∂tbs(t)


bs(t)−1. (7.37)

Now we are going to work out ∂sEs(t), but first let us recall what Es(t) is:

Es(t) = bs(t)−1b′

s(t). (7.38)

It is important that we have bs(t)−1 on the left for Es(t) and on the right for Ds(t). Returning to the calculation, we have:

Ės(t) = bs(t)−1∂s∂tbs(t)− bs(t)−1ḃs(t)bs(t)−1b′

s(t). (7.39)

Comparing with D′
s(t)we see that it is useful to conjugate Ės(t) by bs(t):

bs(t)Ės(t)bs(t)−1
=


∂2stbs(t)


bs(t)−1

− ḃs(t)bs(t)−1b′

s(t)bs(t)
−1, (7.40)

which is exactly D′
s(t)! Thus:

D′

s(t) = bs(t)Ės(t)bs(t)−1. (7.41)

Integrating, we obtain

Ds(t) = Ds(0)+

 t

0
bs(u)Ės(u)bs(u)−1 du. (7.42)

This is in itself a nice formula for Ds(t) = ḃs(t)bs(t)−1, the rate of change of bs(t)when s is varied.
Let us formally summarize what we have proved so far as a self-contained result.
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Proposition 7.2. Let H be a Lie group and suppose

[t0, t1] × [s0, s1] → H : (t, s) → bs(t)

is a C∞ function. Let

E : [t0, t1] × [s0, s1] → L(H) : (t, s) → Es(t)

be the function given by

Es(t) = bs(t)−1b′

s(t) (7.43)

for all (t, s) ∈ [t0, t1] × [s0, s1]. Then

ḃs(t)bs(t)−1
= ḃs(t0)bs(t0)−1

+

 t

t0
Ad


bs(u)


Ės(u) du (7.44)

for all (t, s) ∈ [t0, t1] × [s0, s1], with a dot over a letter denoting the derivative with respect to s.

Results of this type are sometimes called ‘non-abelian Stokes formulas’.
Now let us return to the geometric context, with notation as before. Thus, as in (7.32), Es(t) is given by:

Es(t) = C

∂t Γ̂s(t)


. (7.45)

We can write this as

Es(t) = Ĉ(∂t), (7.46)

where Ĉ is the pull back

Ĉ = Γ̂ ∗C, (7.47)

which is a 1-form on [0, 1] × [0, 1]. Let us now use the formula for the exterior differential of a 1-form:

dĈ(v,w) = v[Ĉ(w)] − w[Ĉ(v)] − Ĉ([v,w]), (7.48)

for any smooth vector fields v andw. Then

dĈ(∂t , ∂s) = ∂t


Ĉ(∂s)


− ∂s


Ĉ(∂t)


− Ĉ


[∂t , ∂s]


. (7.49)

The Lie bracket of the coordinate vector fields ∂t and ∂s appearing on the right is 0. So we have

Ės(t) = ∂s


Ĉ(∂t)


= ∂t


Ĉ(∂s)


− dĈ(∂t , ∂s). (7.50)

To keep the notation simple let us write

Fs(t) = Ĉ(t,s)(∂s). (7.51)

Then

Ės(t) = −dĈ(∂t , ∂s)+ ∂tFs(t). (7.52)

Looking back at D′
s(t) as given in (7.41) we compute

D′

s(t) = bs(t)

−dĈ(∂t , ∂s)+ F ′

s(t)

bs(t)−1. (7.53)

We focus for now on the second term and compute:

bs(t)F ′

s(t)bs(t)
−1

= ∂t


bs(t)Fs(t)bs(t)−1


− b′

s(t)Fs(t)bs(t)
−1

− bs(t)Fs(t)∂t

bs(t)−1

= ∂t


bs(t)Fs(t)bs(t)−1


− bs(t)Es(t)Fs(t)bs(t)−1

+ bs(t)Fs(t)Es(t)bs(t)−1

= ∂t


bs(t)Fs(t)bs(t)−1


− bs(t)[Es(t), Fs(t)]bs(t)−1. (7.54)

Let us analyze the Lie bracket term

[Es(t), Fs(t)] = [Ĉ(∂t), Ĉ(∂s)]. (7.55)
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The 2-form [Ĉ, Ĉ] is defined by

[Ĉ, Ĉ](v,w) = [Ĉ(v), Ĉ(w)] − [Ĉ(w), Ĉ(v)] = 2[Ĉ(v), Ĉ(w)]. (7.56)

There is also the related notation

(Ĉ ∧ Ĉ)(v,w) = [Ĉ(v), Ĉ(w)], (7.57)

which is directly meaningful if Ĉ takes values in a matrix Lie algebra.
Hence

[Es(t), Fs(t)] =
1
2
[Ĉ, Ĉ](∂t , ∂s). (7.58)

Now glancing back a few steps at (7.53) we see that

D′

s(t) = −bs(t)dĈ(∂t , ∂s)bs(t)−1
+ ∂t


bs(t)Fs(t)bs(t)−1


− bs(t)

1
2
[Ĉ, Ĉ](∂t , ∂s)bs(t)−1. (7.59)

Integrating, and recalling from (7.34) that Ds(t) is ḃs(t)bs(t)−1, we have

ḃs(t)bs(t)−1
− ḃs(0)bs(0)−1

= −

 t

0
bs(u)


dĈ +

1
2
[Ĉ, Ĉ]


(∂t , ∂s)bs(u)−1du

+ bs(t)Fs(t)bs(t)−1
− bs(0)Fs(0)bs(0)−1, (7.60)

wherein, as before, Fs(t) = Ĉ(t,s)(∂s).

7.5. The holonomy bundle

For a principal G-bundle π : P → M equipped with a connection A we denote by PA(u) the set of all terminal points
of A-horizontal paths that initiate at any given point u ∈ P . The holonomy group HA(u) consists of all g ∈ G for which
ug ∈ PA(u). If γ p

u is an A-horizontal path on P initiating at u and terminating at p ∈ PA(u) then γ p
ug is also A-horizontal,

initiating at the point ug and terminating at pg; if g ∈ HA(u) then we can choose an A-horizontal path γ ug
u from u to ug , and

the composite (γ p
ug)◦γ

ug
u is an A-horizontal path from u to the point pg . Thus PA(u) is mapped into itself by the right action

of the holonomy group HA(u) ⊂ G. In this way the structure

π : PA(u) → M : p → π(p) (7.61)

is a principal HA(u)-bundle overM . The connection A reduces to a connection on this bundle. A celebrated result of Ambrose
and Singer [2] relates the Lie algebra of the holonomy group to the Lie subalgebra of L(G) spanned by elements FA(v,w),
where FA is the curvature of A and v and w run over all vectors in TpP with p running over the holonomy bundle PA(u).
(Since composition of paths is crucial in these discussions, such as even to see that HA(u) is a subgroup, the definition of
the holonomy bundle should involve a family of paths that is closed under composition; in fact we may use just the type
of paths we have been using, C∞ and constant near the initial and final times.) In our context, for the connection Ω̂ on the
bundle P dec

A P , Proposition 7.1 says that the holonomy subbundle of any point in P
dec
A P is contained inside this subbundle.

8. Differential calculus on path spaces

We have avoided putting a manifold structure on the spaces of paths with which we have worked. Such a structure
is not logically needed for any of our constructions and is useful only as an idea. It is standard practice in the theory of
stochastic processes (which is concerned with integration on path spaces) to work primarily with notions of differentiation
and integration defined in the specific context of path or function spaces rather than on any abstract infinite dimensional
manifold. Although an abstract theory of such integration was constructed (Kuo [22]) it has been found to be more useful
to define geometric, differential and measure theoretic notions directly on path spaces. Let us then summarize here the
differential notions we need for our work.

Consider a set X whose points are paths on a givenmanifoldM . In this context we require that the paths be C∞, and there
might be additional restrictions placed.

By a tangent vector v to X at a point in X given by a path γ : [t0, t1] → M we mean a C∞ vector field v : [t0, t1] → TM
along γ that is constant near t0 and near t1. For example, there is the special vector γ ′

∈ Tγ X which is just the tangent
vector field along γ (the tangent vector field along γ is zero near the initial and final times). We denote the set of all vectors
tangent to X at γ by Tγ X and call this the tangent space to X at γ . This is clearly a vector space under pointwise addition and
scaling.

If v is a C∞ vector field on an open subset ofM and γ ∈ P (M) lies entirely in U then we obtain a vector field vγ along γ
given by

vγ (t) = v

γ (t)


for all t ∈ [t0, t1].
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Then vγ is C∞ and constant near t0 and t1, and hence is a vector in the tangent space TγP (M).
A k-formΘ on X is an assignment to each γ ∈ X an alternating multilinear mapping
(Tγ X)k → R : (v1, . . . , vk) → Θγ (v1, . . . , vk).

A typical example of interest is a k-form I(θ) that arises from a k-form θ onM by the specification:

I(θ)γ (v1, . . . , vk) =

 t1

t0
θγ (t)


v1(t), . . . , vk(t)


dt. (8.1)

Many forms on X of interest to us have some additional features: for example, they are invariant under a class of
reparametrizations of the paths. Moreover, many of the forms we use vanish when contracted on the tangent vector field.
As an example consider, with I(θ) as above, the (k − 1)-form on X given by:

(iγ ′ I(θ)γ )(v1, . . . , vk−1) =

 t1

t0
θγ (t)


γ ′(t), v1(t), . . . , vk−1(t)


dt. (8.2)

This form vanishes when one of the vectors vj happens to be γ ′. The form iγ ′ I(θ)γ is the Chen integral
γ

θ
def
= iγ ′ I(θ)γ . (8.3)

Intuitively we think of X as a bundle over a quotient space [X] after quotienting by a group of reparametrizations. Of
interest then are formsonX that vanish along the orbital directions and are invariant under translations (reparametrizations)
by the action of the structure group; thus these correspond to forms on [X] pulled back up to the space X .

Now let
Γ : [t0, t1] × [s0, s1] → M : (t, s) → Γs(t)

be a C∞ map which is stationary near the boundary in the following sense: there is an ϵ > 0 such that for each fixed s the
point Γs(t) is the same when t is at distance < ϵ from {t0, t1}, and for each fixed t the point Γs(t) is the same when s is at
distance< ϵ from {s0, s1}. Thus each Γs is in P (M) as defined in (2.1). Then there is for each s ∈ [s0, s1] the tangent vector
Γ̇s ∈ TΓsP (M) given by

Γ̇s(t) = ∂sΓs(t) for all t ∈ [t0, t1]. (8.4)
Other differential geometric notions such as bundles and connections over spaces of paths can be defined by natural
extension of the usual definitions on finite dimensional spaces.
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