
Journal of Geometry and Physics 134 (2018) 84–100

Contents lists available at ScienceDirect

Journal of Geometry and Physics

journal homepage: www.elsevier.com/locate/geomphys

Metric reduction and generalized holomorphic structures
Yicao Wang
Department of Mathematics, Hohai University, Nanjing 210098, China

a r t i c l e i n f o

Article history:
Received 8 August 2017
Received in revised form 14 May 2018
Accepted 7 August 2018
Available online xxxx

Keywords:
Reduction
Generalized complex structure
Generalized Kähler structure
Generalized holomorphic structure
Principal bundle
Curvature

MSC:
53D18
53D05
53C15

a b s t r a c t

In this paper, metric reduction in generalized geometry is investigated. We show how
the Bismut connections on the quotient manifold are obtained from those on the original
manifold. The result facilitates the analysis of generalized Kähler reduction, which moti-
vates the concept of metric generalized principal bundles and our approach to construct a
family of generalized holomorphic line bundles over CP2 equipped with some non-trivial
generalized Kähler structures.
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1. Introduction

Generalized complex geometry initiated by N. Hitchin and his school is a simultaneous generalization of symplectic
geometry and complex geometry. Since Marsden–Weinstein reduction is a basic construction in symplectic geometry, it
is natural to explore a generalized version of symplectic reduction in generalized geometry. This topic was treated in great
generality in the formalism of Courant reduction in [1]. When furthermore there is a generalized metric on the Courant
algebroid to be reduced, it also descends to the reduced Courant algebroid under proper conditions. In [2], this ’metric
reduction’ was investigated; in particular, this procedure was checked from the angle of geometry of tangent bundles. The
present paper arises from ourwork [3] on trying to understandmetric reduction from a topological field theoretic viewpoint.

Considerations in generalized geometry are conceptually direct and useful, but the underlying structures often hide in
depth and need careful analysis. For example, generalized Kähler reduction is easily understood from the general procedure
of reduction of Dirac structures, but it contains some sophisticated details from the viewpoint of classical complex geometry.
Some of these were included in [2]. In this paper, we will carry on this investigation.

We pay much attention on the special case of isotropic trivially extended G-actions in the sense of [1], where G is a
compact connected Lie group. With an invariant generalized metric in place, the manifold M under consideration carries
two horizontal distributions τ±, which are central in our paper. Basically, they are used to express the Bismut connections
in the reduced manifold Mred := M/G in terms of Bismut connections in M . This is different from the case of reducing the
Levi-Civita connection on M–In the latter case, a connection of the principal bundle M → Mred naturally arises from the
G-invariant metric g , i.e. the horizontal distribution is just the orthogonal complement H of the vertical distribution. The
Levi-Civita connection on Mred can then be expressed using the Levi-Civita connection on M and the orthogonal projection
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from TM toH. As for reducing Bismut connections, it is not as directly solved as in the ordinary case and should bemotivated
by conceptual considerations in generalized geometry. This investigation of reducing Bismut connections is motivated by
gauging a zero-dimensional supersymmetric σ -model in [3].

When the invariant generalizedmetric is from a generalized Kähler manifoldM, the situation becomesmore interesting.
To get a reduced generalized Kähler manifold, an invariant submanifoldM ⊂ M should be carefully chosen and the reduced
generalized Kähler structure will then sit on Mred = M/G. Hence M only serves as an intermediate object in this procedure.
But in this paper M as a metric generalized principal bundle (see Section 5) proves to have its own interest: The curvatures
of τ± are of type (1, 1) w.r.t. the reduced complex structures J̃± on Mred respectively. Thus any associated complex vector
bundle acquires simultaneously a J̃+-holomorphic structure and a J̃−-holomorphic structure.1 This motivates our approach
to constructing generalized holomorphic vector bundles from generalized Kähler reduction.

The paper is organized as follows. In Section 2, we review the basic content of generalized geometry. The goal of Section
3 is to lay the concrete background for later development by investigating the notion of isotropic trivially extended G-action
in the presence of an invariant generalized metric. Compared with the work in [2], we hardly contain much essentially new
content, but our viewpoint is slightly different. In particular, we include some details of the reduced structures which were
missing in [2], and emphasize the basic role of the distributions k± (Eq. (3.2) is essential for reducing the Bismut connections)
which was not explicitly mentioned in [2]. In Section 4, we mainly tackle the problem of expressing the reduced Bismut
connections in terms of Bismut connections in the original manifold (Theorem 4.1). The curvature of the reduced Bismut
connection is also computed in terms of the reduction data (Theorem 4.3). These computations play a basic role in [3].
The last three sections devote to using generalized Kähler reduction to produce generalized holomorphic vector bundles.
Section 5discusses the notion ofmetric generalized principalG-bundle and its associated relative curvature. Section 6 revisits
generalized Kähler reduction in the spirit of previous sections, and emphasis is put on structures on the intermediate metric
generalized principal G-bundle, which carries a biholomorphic structure. These two sections pave the way for us to produce
generalized holomorphic vector bundles via generalized Kähler reduction in Section 7. We give a sufficient condition for
the biholomorphic structure to be generalized holomorphic in the Hamiltonian case. As examples, we have constructed
generalized holomorphic line bundles on CP2 equipped with non-trivial generalized Kähler structures.

2. Basics of generalized geometry

In this section, we collect the most relevant aspects of generalized geometry. For a detailed account for it, we refer the
reader to [4,5].

In generalized geometry, one considers geometric structures defined on the generalized tangent bundleTM = TM⊕T ∗M
of a smooth manifoldM , or more generally on an exact Courant algebroid overM .

A Courant algebroid E is a real vector bundle E over M , together with an anchor map π to TM , a non-degenerate inner
product and a so-called Courant bracket [·, ·]c onΓ (E). These structures should satisfy some compatibility axioms. E is called
exact, if the short sequence

0 −→ T ∗M
π∗

−→ E
π

−→ TM −→ 0

is exact. In this paper, by ’Courant algebroid’, we always mean an exact one. Given E, one can always find an isotropic right
splitting s : TM → E, which has a curvature form H ∈ Ω3

cl(M) defined by

H(X, Y , Z) = ⟨[s(X), s(Y )]c, s(Z)⟩, X, Y , Z ∈ Γ (TM).

By the bundle isomorphism s+π∗
: TM ⊕ T ∗M → E, the Courant algebroid structure can be transported onto TM . Then the

inner product ⟨·, ·⟩ is the natural pairing, i.e. ⟨X + ξ, Y + η⟩ = ξ (Y ) + η(X), and the Courant bracket is

[X + ξ, Y + η]H = [X, Y ] + LXη − ιYdξ + ιY ιXH, (2.1)

called the H-twisted Courant bracket. Different splittings are related by B-field transforms, i.e. eB(X + ξ ) = X + ξ + ιXB,
where B is a 2-form.

A maximal isotropic subbundle L ⊂ E is called an almost Dirac structure. If L is involutive w.r.t. the Courant bracket, it is
called a Dirac structure. These notions can be extended directly to the complexified setting which interests us most.

Definition 2.1. A generalized complex structure on E is a complex structure J on E orthogonal w.r.t. the inner product and
whose

√
−1-eigenbundle L ⊂ E ⊗ C is a complex Dirac structure.

Since J and its
√

−1-eigenbundle L are equivalent notions, we shall use them interchangeably to denote a generalized
complex structure. At a point x ∈ M , the codimension of π (Lx) in TxM ⊗ C is called the type of J at x. Type can vary along
some subset ofM , which makes the local geometry of generalized complex structures rather non-trivial.

A generalized complex structure L is an example of complex Lie algebroids. Via the inner product, ∧·L∗ can be identified
with ∧

·L̄, and we have an elliptic differential complex (Γ (∧·L̄), dL), which induces the Lie algebroid cohomology associated
with the Lie algebroid L. The differential complex can be twisted by an L-module.

1 Similar phenomenon, of course, occurs in ordinary Kähler reduction but is seldom emphasized in the literature.
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Definition 2.2. Given a generalized complex structure L over M , an L-connection D in a complex vector bundle W is a
differential operator D : Γ (W ) −→ Γ (L̄ ⊗ W ) satisfying

D(fs) = dLf ⊗ s + fDs, s ∈ Γ (W ), f ∈ C∞(M).

If D is flat, i.e. D2
= 0, D is called a generalized holomorphic structure and W an L-module or a generalized holomorphic

vector bundle.

A standard non-trivial example of generalized holomorphic bundles is the canonical line bundle in the pure spinor
description of a generalized complex structure. Further analysis and examples of generalized holomorphic structures can be
found in [6,7].

Definition 2.3. A generalized (Riemannian) metric on E is an orthogonal, self-adjoint operator G such that ⟨Ge, e⟩ > 0 for
nonzero e ∈ E. It is necessary that G2

= id. The ±-eigenbundles V± are positive and negative subbudles of maximal rank
respectively.

A generalized metric induces a canonical isotropic splitting: E = G(T ∗M) ⊕ T ∗M . It is called the metric splitting. Given

a generalized metric, we shall always choose the metric splitting to identify E with TM . Then G is of the form
(

0 g−1

g 0

)
where g is an ordinary Riemannian metric, and vectors in V± are of the form X ± g(X) respectively for X ∈ TM .

If H is the curvature of the metric splitting, sometimes we call the triple (M, g,H) a generalized Riemannian manifold,
without explicitly mentioning the underlying Courant algebroid and generalized metric. For a generalized Riemannian
manifold (M, g,H), one can define the Bismut connections ∇

±
= ∇ ±

1
2g

−1H , where ∇ is the Levi-Civita connection. It
was observed in [8,9] that these connections can be expressed using H-twisted Courant bracket:

[X ∓ g(X), Y ± g(Y )]±H = ∇
±

X Y ± g(∇±

X Y ), (2.2)

where (X + ξ )± denote the V±-part of X + ξ ∈ Γ (TM) w.r.t. the decomposition E = V+ ⊕ V−.
A generalized metric is an ingredient of a generalized Kähler structure, which is the analogue of Kähler structure in

complex geometry.

Definition 2.4. A generalized Kähler structure on E is a pair of commuting generalized complex structures J1 and J2 such
that G = −J1J2 is a generalized metric.

A generalized Kähler structure can also be characterized in terms of more ordinary notions: There are two complex
structures J± on M compatible with the Riemannian metric g induced from the generalized metric. Let ω± = gJ± and H
be the curvature of the metric splitting. Then

dc
+
ω+ = −dc

−
ω− = −H, (2.3)

where dc
±
are the dc-differentials associated to J± respectively. J± is necessarily flat w.r.t. ∇± respectively and H should be

of type (1, 2)+ (2, 1) w.r.t. both J+ and J−. Let T±

0,1M be the anti-holomorphic tangent bundles w.r.t. J± respectively. Then we
can form two vector bundles overM:

L± = {X ±
√

−1ω±(X)|X ∈ T±

0,1M}.

In the metric splitting, L1 := L+ ⊕ L− and L2 := L+ ⊕ L̄− are precisely
√

−1-eigenbundles of J1 and J2 respectively.
We are particularly interested in generalized holomorphic structures over a generalized Kähler manifold. In this setting,

we choose L1 to be the underlying generalized complex structure of a generalized holomorphic structure D. Due to the
decomposition L1 = L+ ⊕ L−, D can be decomposed as D = δ̄+ + δ̄− accordingly. Actually, δ̄± are ordinary J±-holomorphic
structures respectively. Additionally, it is necessary that

δ̄+δ̄− + δ̄−δ̄+ = 0. (2.4)

Conversely, given J±-holomorphic structures δ̄±, if Eq. (2.4) is also satisfied, then D := δ̄+ + δ̄− is a generalized holomorphic
structure [10].

3. Isotropic trivially extended action and metric reduction

Though there is a much more general framework in [1] to adapt an ordinary Lie algebra action to the setting of a Courant
algebroid, we content ourselves here with the followingmore restrictive notion of isotropic trivially extended action of a Lie
algebra g. Throughout the paper, we always assume that g is the Lie algebra of a compact connected Lie group G acting freely
onM from the left. In the following, a Courant algebroid E overM is fixed.
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Definition 3.1 ([1]). Let ϕ0 : g → Γ (TM) be the infinitesimal action of G overM . An isotropic trivial extension of this action
to E is a bracket-preserving morphism ϕ : g → Γ (E) such that the following diagram

g
id

−−−−→ g

ϕ

⏐⏐↓ ϕ0

⏐⏐↓
Γ (E) −−−−→

π
Γ (TM)

is commutative and the image of ϕ is isotropic pointwise in E. If furthermore this extended action integrates to a G-action
on E, we call it an isotropic trivially extended G-action.

Let ea, a = 1, 2, . . . , dimg be a basis of g and let Va be the corresponding fundamental vector fields on M . When an
isotropic splitting of E is chosen, ϕ(ea) = Va + ξa, where ξ(·) : g → Γ (T ∗M) is equivariant and ιaξb + ιbξa = 0, where
ιa denotes contraction with Va. If additionally the splitting is invariant, then its curvature H is invariant and ιaH = dξa. A
remarkable fact in [1] is that H + ξ(·) is actually a closed equivariant 3-form in the Cartan model of equivariant de Rham
cohomology.

Let K ⊂ E be the subbundle generated by ϕ(g), and K⊥ its orthogonal complement in E w.r.t. the inner product. Then due
to the reduction theory developed in [1], Ered :=

K⊥

K /G has the structure of a Courant algebroid induced from E. Now if G is
a G-invariant generalized metric over E, then Ered also acquires a generalized metric Gred.

There is a useful way to describe Gred. Let KG be the G-orthogonal complement of K in K⊥, i.e.

KG
= G(K⊥) ∩ K⊥.

By projection, KG is isomorphism to K⊥/K , and Gred is actually the restriction of G on the subbundle KG
⊂ K⊥. Accordingly,

we have the decomposition

KG
= V red

+
⊕ V red

−
,

where V red
±

= V± ∩KG . Furthermore, by the abovementioned isomorphism, we can regard KG/G as a Courant algebroid over
Mred. The advantage of using KG instead of K⊥/K is that, when a lift Â ∈ Γ (K⊥) of A ∈ Γ (Ered) is needed, we can choose Â to
be the unique one in Γ (KG).

Though the Courant algebroid structure of KG/G is clear from the generalized reduction procedure, for later convenience,
in the following we spell out some details of this structure. We do this mainly at the level of equivariant bundles.

Themetric splitting of G is, of course, invariant and in this splitting the Riemannianmetric g and the curvatureH are both
invariant. Let ϕ(ea) = Va + ξa in this splitting. Associated with the isotropic trivially extended g-action are two horizontal
distributions onM [2]:

τ± := {Y ∈ TM|g(Y , Va) ± ξa(Y ) = 0, a = 1, 2, . . . , dimg}. (3.1)

They are just distributions derived by projecting V red
±

to TM and define two connections in the principal G-bundle M →

Mred := M/G. They are basic for our later considerations. It is convenient to use V±
a := Va ± g−1ξa. Denote the bundles

generated by {V±
a } by k± ⊂ TM respectively. Then Eq. (3.1) can be rephrased as the orthogonal decomposition

TM = k± ⊕ τ±. (3.2)

Let q : M → Mred be the natural quotient map. Let us first interpret the short exact sequence properly:

0 −→ q∗(T ∗Mred)
[π ]

∗

−→ KG [π ]

−→ q∗(TMred) −→ 0, (3.3)

where q∗ means the pull-back of vector bundles by the quotient map q, and [π ] denotes the composition q∗ ◦ π .

Lemma 3.2.

KG
= {Y + η ∈ TM|g(Y , Va) + g(η, ξa) = 0, ξa(Y ) + η(Va) = 0},

and

ker([π ]) = {Y + η ∈ KG
|Y ∈ π (K )}.

Proof. This is obvious by definition of KG . □

For Ered to be exact, q∗(T ∗Mred) should be identified with ker([π ]) via the inner product on KG . This is realized as follows:

Lemma 3.3. Let Tab := g(V+
a , V+

b ) = g(V−
a , V−

b ) and denote its inverse by T ab. Then for ξ ∈ q∗(T ∗Mred),

[π ]
∗(ξ ) = ξ − T abg(ξ, ξa)(Vb + ξb),

and the image of [π ]
∗ is precisely ker([π ]).
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Proof. First note that

g(V+

a , V+

b ) = g(V−

a , V−

b ) = g(Va, Vb) + g(ξa, ξb)

due to the fact ιaξb + ιbξa = 0. This implies that the restriction of g on either τ+ or τ− gives rise to the same Riemannian
metric on TMred, just as required.

For ξ ∈ q∗(T ∗Mred), [π ]
∗(ξ ) ∈ KG is characterized by

⟨[π ]
∗(ξ ), Y + η⟩ = ξ ([π ](Y + η)) = ξ (q∗(Y )), ∀Y + η ∈ KG .

We can assume [π ]
∗(ξ ) = ξ + f b(Vb + ξb) for some constants f b to be determined. We thus have

g(ξ + f bξb, ξa) + g(f bVb, Va) = 0, a, b = 1, 2, . . . , dimg,

i.e.

[g(Va, Vb) + g(ξa, ξb)]f b = Tabf b = −g(ξ, ξa), a, b = 1, 2, . . . , dimg.

This leads to our expression of [π ]
∗(ξ ).

It is obvious that Ran([π ]
∗) ⊂ ker([π ]). Thus Ran([π ]

∗) = ker([π ]) by dimensional reason. □

We have already used the metric splitting of G to identify E with TM . G, when restricted on KG , also gives rise to an
isotropic splitting G(ker[π ]) of the sequence (3.3). Then G(ker[π ])/G is a splitting of KG/G. Let Qab = g(Va, Vb) and Q ab be its
inverse.

Proposition 3.4. If Ered is identified with KG/G and T ∗Mred with ker[π ]/G, then G(ker[π ])/G is the metric splitting of Ered.

Proof. The following proof can only be viewed as a detailed analysis of the obvious conclusion. We only need to prove that
in this splitting, V red

+
/G is the graph of the reduced metric g̃ on TMred, since other splittings will involve extra B-transforms.

Note that

G(ker[π ]) = {Y + η ∈ KG
|g−1η ∈ π (K )}.

The projection of G(ker[π ]) to TM is a third horizontal distribution τ onM as a principal G-bundle. For Y + η ∈ G(ker[π ]), η
is uniquely determined by Y . We thus write ηY instead of η.

As observed in [2], a typical element in V+ ∩ KG is of the form

A = Y + g−1ηY + g(Y ) + ηY , Y ∈ τ .

Note that Y +ηY ∈ G(ker[π ]) and g−1ηY +g(Y ) ∈ ker[π ]. Thismeans, in the splitting determined by G(ker[π ])/G, A descends
to

[Y ] + g(Y ) − Q abηY (Vb)ξa ∈ TMred ⊕ T ∗Mred,

since g−1ηY = Q abηY (Vb)Va and

g−1ηY = −Q abηY (Vb)ξa + Q abηY (Vb)(Va + ξa).

Note that

g(Y , Vc) − Q abηY (Vb)ξa(Vc) = g(Y , Vc) + Q abηY (Vb)ξc(Va)
= g(Y , Vc) + ξc(g−1ηY )
= g(Y , Vc) + g(ηY , ξc)
= 0.

So g(Y ) − Q abηY (Vb)ξa does live in T ∗Mred. Now we only need to check that on τ we have

q∗g̃([Y ]) = g(Y ) − Q abηY (Vb)ξa, ∀Y ∈ τ .

Let Z ∈ τ . Then on one side by definition of g̃ we have

q∗g̃([Y ])(Z) = g̃([Y ], [Z]) = g(Y + g−1ηY , Z + g−1ηZ )
= g(Y , Z) + ηY (Z) + ηZ (Y ) + g(ηY , ηZ )
= g(Y , Z) + g(ηY , ηZ ).

On the other side,

g(Y , Z) − Q abηY (Vb)ξa(Z) = g(Y , Z) + Q abηY (Vb)ηZ (Va)
= g(Y , Z) + ηZ (g−1ηY )
= g(Y , Z) + g(ηY , ηZ ).

Hence the claim follows. □
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Remark. τ is the average of τ± in the following sense: If Y is the lift of [Y ] in τ , then Y ± g−1ηY are the lifts of [Y ] in τ±

respectively.

Let us compute the curvature H̃ of themetric splitting G(ker[π ])/G. Note that η is a map from τ to T ∗M . Since G(ker[π ]) is
isotropic, we have ηX (Y )+ ηY (X) = 0. Additionally, it can be easily obtained that ηX (Va) = −ξa(X). We can look for a 2-form
γ : TM → T ∗M such that its restriction on τ is precisely η. Let θ a be the connection form determined by τ . A choice of γ is
then

γ = −
1
2
Q ab

[ξb − ξb(Vc)θ c
] ∧ [g(Va) − Qadθ

d
] − ξa ∧ θ a

+
1
2
ξb(Va)θ aθb.

Proposition 3.5. If TMred is modelled on τ , then the curvature of the metric splitting of Ered is H̃ = (H + dγ )|τ .

Proof. Let [X] here denote a vector field onMred represented by the invariant lift X ∈ Γ (τ ). Then

H̃([X], [Y ], [Z]) = ⟨[X + ηX , Y + ηY ]H , Z + ηZ ⟩

= ⟨[X, Y ] + LXηY − ιYdηX + ιY ιXH, Z + ηZ ⟩

= ηZ ([X, Y ]) + ηY ([Z, X]) + ηX ([Y , Z]) + XηY (Z)
+ YηZ (X) + ZηX (Y ) + H(X, Y , Z)
= γ (Z, [X, Y ]) + γ (Y , [Z, X]) + γ (X, [Y , Z])
+ Xγ (Y , Z) + Yγ (Z, X) + Zγ (X, Y ) + H(X, Y , Z)
= (H + dγ )(X, Y , Z),

as required. □

Remark. The appearance of H̃ depends on which connection among τ , τ± is used to model TMred. In [2], τ+ is used to do this.
In the next section, we will carry out the same computation in a way different from that of [2] .

To conclude this section, we clarify some notation for our later use. IfM is a biggermanifold carrying an isotropic trivially
extended G-action and M is an invariant submanifold of M, the Courant algebroid E on M can be directly pulled back to M
and the isotropic trivially extended G-action also descends. In fact, if ϕ(ea) = Va + ξa onM in some splitting, then a natural
splitting arises in the pull-back of E and ϕ(ea) = Va|M+i∗(ξa), where i is the inclusionmap. By abuse of notation, wewill only
write ϕ(ea) = Va + ξa either on M or onM . The ambiguity will be clarified by the context.

4. Bismut connections in metric reduction

The basic context of this section is the same as that of the former one, and we continue to use the notation there. We try
to figure out how the Bismut connections ∇̃

± inMred are reduced from those inM . The curvature of ∇̃− is a basic ingredient
in [3] to interpret metric reduction in the formalism of balanced topological field theories.

Our starting point is Eq. (2.2) where Bismut connections are expressed using Courant bracket. Since by the reduction
procedure established in [1], the Courant algebroid Ered onMred can naturally be described in terms of the Courant algebroid
E on M , one can expect that the Bismut connections on Mred could be described in terms of the Courant bracket on M . The
two connections τ± play a fundamental role in this investigation.

Note that g̃ is in fact defined by restricting g on τ+ (or τ−). This is different from the ordinary case. Let ∇̃− be the−-Bismut
connection on Mred and let [X] denote a vector field on Mred represented by an invariant lift X on M . X± are used to denote
the unique lifts of [X] in τ± respectively. Let ϱ−([X], [Y ]) denote the unique lift of ∇̃−

[X]
[Y ] in τ−.

Theorem 4.1. ϱ−([X], [Y ]) is the projection of ∇−

X+Y− to τ− along k−, namely

ϱ−([X], [Y ]) = ∇
−

X+Y−
+ T abg(Y−, ∇−

X+V−

b )V−

a , (4.1)

where T ab is the inverse of Tab = g(V−
a , V−

b ).

Proof. According to Eq. (2.2), in the metric splitting of Ered,

∇̃
−

[X]
[Y ] − g̃(∇̃−

[X]
[Y ]) = [[X] + g̃([X]), [Y ] − g̃([Y ])]−

H̃
.

Due to the discussion in Section 3 the R.H.S. of the above equation can be computed using the corresponding invariant
sections of KG , i.e.

[X+
+ g(X+), Y−

− g(Y−)]−H .
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It should be noted that Γ G(KG) is not involutive under the Courant bracket. Involutivity can only hold up to addition of
invariant section of K . Therefore,

[X+
+ g(X+), Y−

− g(Y−)]H = A+ + A− + N,

where A± ∈ Γ (V red
±

) and N = 2ca(Va + ξa) for some functions ca to be determined. Of course we want to separate A− from
the above expression because ϱ−([X], [Y ]) = π−(A−) where π− is the projection from V− to TM .

We already have

[X+
+ g(X+), Y−

− g(Y−)]−H = A− + N−,

where N− = ca(Va − g(Va) + ξa − g−1ξa). Hence,

A− + N− = ∇
−

X+Y−
− g(∇−

X+Y−).

Therefore,

ϱ−([X], [Y ]) + ca(Va − g−1ξa) = ϱ−([X], [Y ]) + caV−

a = ∇
−

X+Y−.

Due to the orthogonal decomposition TM = τ− ⊕ k−, the above equation means that ϱ−([X], [Y ]) is actually the τ−-part of
∇

−

X+Y− w.r.t. this decomposition. We then find

ca = T abg(∇−

X+Y−, V−

b ) = −T abg(Y−, ∇−

X+V−

b ).

We finally obtain the formula as required. □

Remark. The result is very similar to the ordinary case except that a different orthogonal decomposition is used. In particular,
if [Z] is another vector field onMred, then g̃(∇̃−

[X]
[Y ], [Z]) = g(∇−

X+Y−, Z−).

Nowwe can turn to the problem of expressing the curvature of ∇̃− in terms of that of∇−. Let θ a
±
be the connection forms

associated to τ± respectively and let Ωa
±
be the associated curvatures. For later use, we want to express Ωa

±
in terms of Va,

ξa. Let Kab = gab − ξa(Vb) and K ba its inverse, i.e. K bcKab = δca .

Lemma 4.2. Let Ωa
±
be the curvatures of τ±. Then

Ωa
+
|τ+= K badξ+

b |τ+ , Ωa
−
|τ−= K abdξ−

b |τ− ,

where ξ±

b = g(V±

b ).

Proof. We only compute Ωa
+
. The computation for Ωa

−
is similar. Note that

θ+ = θ a
+
ea = tbag(V+

b )ea,

where tba is to be determined. We have

tbag(V+

b , Vc) = tbaKcb = δac .

Then tba is precisely K ba and θ a
+

= K bag(V+

b ). Then

Ωa
+
(X+, Y+) = dθ a

+
(X+, Y+) = X+θ a

+
(Y+) − Y+θ a

+
(X+) − θ a

+
([X+, Y+

])

= −θ a
+
([X+, Y+

]) = −K ba(V+

b , [X+, Y+
])

= K ba(dξ+

b )(X+, Y+). □

Let R− and R̃− be the curvatures of ∇− and ∇̃
− respectively. We have

Theorem 4.3. The curvature R̃− of ∇̃− is

g̃(R̃−([X], [Y ])[Z], [W ]) = g(R−(X+, Y+)Z−,W−)

−
1
2
K ab(dξ+

a )(X+, Y+)(dξ−

b )(Z−,W−)

+ T ab
[g(Z−, ∇−

Y+V−

a )g(W−, ∇−

X+V−

b ) − (X ↔ Y )],

where (X ↔ Y ) denotes a term similar to the term in front of it, only with X and Y exchanged.

Proof. Since ∇̃
− and ∇

− are metric connections, we have

g̃(∇̃−

[X]
∇̃

−

[Y ]
[Z], [W ]) = [X]g̃(∇̃−

[Y ]
[Z], [W ]) − g̃(∇̃−

[Y ]
[Z], ∇̃−

[X]
[W ])

= X+g(∇−

Y+Z−,W−)
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− g(∇−

Y+Z−
+ T abg(Z−, ∇−

Y+V−

b )V−

a , ∇−

X+W−
+ T cdg(W−, ∇−

X+V−

d )V−

c )

= g(∇−

X+∇
−

Y+Z−,W−) − T abg(Z−, ∇−

Y+V−

a )g(W−, ∇−

X+V−

b )

− 2T abg(Z−, ∇−

Y+V−

b )g(V−

a , ∇−

X+W−)

= g(∇−

X+∇
−

Y+Z−,W−) + T abg(Z−, ∇−

Y+V−

a )g(W−, ∇−

X+V−

b ),

where Eq. (4.1) is used.
Additionally,

g̃(∇̃−

[[X],[Y ]]
[Z], [W ]) = g(∇−

[X+,Y+]+Ω+(X+,Y+)Z
−,W−)

= g(∇−

[X+,Y+]
Z−,W−) + g(∇−

Ω+(X+,Y+)Z
−,W−),

where we have used the identity2

[X+, Y+
] − ˜[[X], [Y ]] = −Ω+(X+, Y+) = −Ωa

+
(X+, Y+)Va,

and Ωa
+
is the curvature of τ+.

By Lemma 4.2, we have

g(∇−

Ω+(X+,Y+)Z
−,W−) = K ba(dξ+

b )(X+, Y+)g(∇−

VaZ
−,W−).

Note that

g(∇−

VaZ
−,W−) = g(∇VaZ

−,W−) −
1
2
H(Va, Z−,W−)

= g(∇VaZ
−,W−) −

1
2
(dξa)(Z−,W−),

g(∇VaZ
−,W−) = g(∇Z−Va,W−) = Z−(g(Va)(W−)) − g(Va, ∇Z−W−)

= Z−(g(Va)(W−)) − g(Va, ∇W−Z−) − g(Va)([Z−,W−
])

= Z−(g(Va)(W−)) − W−(g(Va)(Z−)) + g(∇W−Va, Z−)
− g(Va)([Z−,W−

])
= dg(Va)(Z−,W−) + g(∇W−Va, Z−),

and

g(∇VaZ
−,W−) + g(∇W−Va, Z−) = 0.

Then we have

g(∇−

VaZ
−,W−) =

1
2
dξ−

a (Z−,W−). (4.2)

Combining all the above ingredients together, we come to the conclusion. □

Similar formulae for ∇̃
+ hold, but we just write down the counterpart of Eq. (4.1) for ∇̃

+ for later use. The detail is left to
the interested reader. Let ϱ+([X], [Y ]) be the τ+-lift of ∇̃+

[X]
[Y ]. Then

ϱ+([X], [Y ]) = ∇
+

X−Y+
+ T abg(Y+, ∇+

X−V+

b )V+

a . (4.3)

As an application of our formula (4.3), we use it to compute the curvature H̃ of the reduced metric splitting again.

Proposition 4.4. The curvature H̃ of the reduced metric splitting is (H + Ωa
+

∧ ξa)|τ+ .

Proof. Since H̃ is the torsion of ∇̃+, we have

H̃([X], [Y ], [Z]) = g̃(∇̃+

[X]
[Y ], [Z]) − g̃(∇̃+

[Y ]
[X], [Z]) − g̃([[X], [Y ]], [Z])

= g(∇+

X−Y+, Z+) − g(∇+

Y−X+, Z+)
− g([X+, Y+

] + Ωa
+
(X+, Y+)Va, Z+).

Since X− is uniquely determined by X+, define ς (X+) = X+
− X−. By definition, g(X+

− ς (X+), V−
a ) = 0, i.e.

g(Vb, V−

a )ςb(X+) = g(X+, V−

a ) = −2ξa(X+).

2
[̃X] denotes the horizontal lift of [X] in τ+ .
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Since g(Vb, V−
a ) = Kab, we find ς (X+) = −2K abξb(X+)Va, and

g(∇+

ς (X+)Y
+, Z+) = −2K abξb(X+)g(∇+

VaY
+, Z+)

= −K abξb(X+)dξ+

a (Y+, Z+)
= −Ωb

+
(Y+, Z+)ξb(X+),

where we have used a counterpart of Eq. (4.2) for ∇
+ and Lemma 4.2. Thus we obtain

H̃([X], [Y ], [Z]) = H(X+, Y+, Z+) − g(∇+

ς (X+)Y
+, Z+)

+ g(∇+

ς (Y+)X
+, Z+) + Ωa

+
(X+, Y+)ξa(Z+)

= H(X+, Y+, Z+) + Ωb
+
(Y+, Z+)ξb(X+)

− Ωb
+
(X+, Z+)ξb(Y+) + Ωb

+
(X+, Y+)ξb(Z+)

= (H + Ωb
+

∧ ξb)(X+, Y+, Z+),

which recovers the result in [2]. □

As a conclusion, we briefly discuss the metric reduction from a bigger manifold M to a submanifold M . The Courant
algebroid E over M and the generalized metric G can be directly pulled back toM . This situation can be treated in the same
spirit as before but is much simplified. If M is locally defined by σ α

= 0, α = 1, 2, . . . , dimM − dimM , one only needs to
use {dσ α

} to generate the bundle K on M . Then K⊥ and KG can be similarly defined. The metric splitting of G directly gives
rise to the metric splitting on the reduced Courant algebroid. The reduced metric g̃ is just the restriction of g on TM and the
curvature H̃ onM is just the pull-back of H on M by the inclusion map.

We still use ∇̃
− to denote the reduced −-Bismut connection. Let Gαβ

= g(dσ α, dσ β )|M and Gαβ be its inverse.

Proposition 4.5. Let X̄, Ȳ be vector fields on M, and X, Y be their arbitrary extensions to M. Then

∇̃
−

X̄
Ȳ = ∇

−

X Y |M+Gαβ (Y , ∇−

X dσ β )|M (g−1dσ α)|M . (4.4)

Proof. We have an orthogonal decomposition TM|M= TM ⊕ Q , where Q is the normal bundle of M in M and is locally
generated by {g−1dσ α

|M}. It is easy to check that ∇̃
−

X̄
Ȳ is just the projection of ∇−

X Y |M to TM along Q . This is enough to lead
to the conclusion. □

As for the curvature of ∇̃−, we have

Proposition 4.6. The curvature of ∇̃− is

ḡ(R̃−(X̄, Ȳ )Z̄, W̄ ) = g(R−(X, Y )Z,W )|M
+ Gαβ [(Z, ∇−

Y dσ β )(W , ∇−

X dσ α) − (X ↔ Y )]|M ,

where (X ↔ Y ) still denotes a term similar to the term in front of it, only with X and Y exchanged.

Proof. We leave the proof to the interested reader. A detailed argument can also be found in [3]. □

5. Metric generalized principal G-bundles and relative curvatures

In this section, motivated by former observations and also for later use, we investigate generalized principal G-bundles
in the presence of an invariant generalized metric.

The notion of generalized principal bundles was introduced in [7] to define generalized holomorphic structures in the
setting of principal bundles.

Definition 5.1. A generalized principal G-bundle overM is a triple (P, E, ϕ) such that
(i) p : P → M is an ordinary principal G-bundle,
(ii) E is a Courant algebroid over P and ϕ is an isotropic trivially extended G-action on E.

In contrast with Definition 3.1, the notion of generalized principal bundles hardly contains any essentially new points,
but emphasizes a different aspect of the same object. So E descends to M in the same way as before. In the following, we
additionally assume that there is a G-invariant generalizedmetric G on E and call P ametric generalized principal bundle. Then
the two connections τ± again arise. Let ∇̃

± denote the Bismut connections in the base manifoldM .
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Definition 5.2. Let X, Y be vector fields onM , and X+, Y− be their lifts in τ± respectively. The relative curvature of the pair
(τ+, τ−) is

R(X, Y ) = (∇̃−

X Y )− − (∇̃+

Y X)+ − [X+, Y−
],

where (∇̃−

X Y )− is the τ−−lift of ∇̃−

X Y and (∇̃+

Y X)+ is the τ+-lift of ∇̃+

Y X .

It is not hard to check that R is tensorial and takes values in the vertical distribution. There is a vector-bundle version of
the notion of relative curvature.

Definition 5.3. On a generalized Riemannian manifold (M, g,H), if a vector bundle W is equipped with two connections
∇

±, then the relative curvature of the pair (∇+, ∇−) is defined as

R(X, Y )s = ∇
+

X ∇
−

Y s − ∇
−

Y ∇
+

X s − ∇
−

∇̃
−

X Y
s + ∇

+

∇̃
+

Y X
s, ∀s ∈ Γ (W ),

where ∇̃
± are the Bismut connections in the base manifoldM .

Remark. It can be recognized that the relative curvature for a vector bundle is actually part of the curvature of a generalized
connection defined in [9]: In the formula for the latter, simply by letting the two arguments take values in V+ and V−

respectively (recall that V± are the eigenbundles of the generalized metric G), one recovers a relative curvature.

If ρ : G → End(W0) is a representation of G in a vector spaceW0, then τ± in the metric generalized principal G-bundle P
give rise to two connections∇

± in the associated vector bundleW0×ρP . It should be pointed out that since by our convention
G acts on P from the left, G should act on W0 from the right; in particular, ρ∗([v, w]) = −[ρ∗(v), ρ∗(w)] for v, w ∈ g.

Proposition 5.4. If RaVa is the relative curvature of the pair (τ+, τ−) in the metric generalized principal G-bundle P, then Raρ∗(ea)
is the relative curvature of the pair (∇+, ∇−) in the associated vector bundle W0 ×ρ P.

Proof. Since the computation is essentially local, we can safely assume P is of the form G×M . Let θ± be the connection form
of τ± respectively. Then

X+
= X − θ a

+
(X)Va, Y−

= Y − θ a
−
(Y )Va.

Note that

∇̃
−

X Y − ∇̃
+

Y X = ∇̃XY − ∇̃YX −
1
2
g−1H̃(X, Y ) −

1
2
g−1H̃(Y , X)

= ∇̃XY − ∇̃YX
= [X, Y ],

where ∇̃ is the Levi-Civita connection onM and H̃ the curvature of the reduced metric splitting. Thus the relative curvature
of the pair (τ+, τ−) is

R(X, Y ) = [−θ a
−
(∇̃−

X Y ) + θ a
+
(∇̃+

Y X)]Va + [X, θb
−
(Y )Vb]

+ [θb
+
(X)Vb, Y ] − [θ a

+
(X)Va, θ

b
−
(Y )Vb]

= [Xθ a
−
(Y ) − Yθ a

+
(X) − θ a

−
(∇̃−

X Y ) + θ a
+
(∇̃+

Y X)]Va

− θ c
+
(X)θb

−
(Y )f acbVa.

Let s be the frame ofW0 ×ρ P corresponding to the trivialization of P . We have

∇
+

X ∇
−

Y s = ∇
+

X (sρ∗(θ−(Y ))) = s(ρ∗(Xθ−(Y ))) + sρ∗(θ+(X))ρ∗(θ−(Y )),

and

∇
−

Y ∇
+

X s = ∇
−

Y (sρ∗(θ+(X))) = s(ρ∗(Yθ+(X))) + sρ∗(θ−(Y ))ρ∗(θ+(X)).

Therefore, the relative curvature of the pair (∇+, ∇−) is

R(X, Y ) = ρ∗(Xθ−(Y )) − ρ∗(Yθ+(X)) − ρ∗(θ−(∇̃−

X Y )) + ρ∗(θ+(∇̃+

Y X))
+ ρ∗(θ+(X))ρ∗(θ−(Y )) − ρ∗(θ−(Y ))ρ∗(θ+(X))
= ρ∗(Xθ−(Y )) − ρ∗(Yθ+(X)) − ρ∗(θ−(∇̃−

X Y )) + ρ∗(θ+(∇̃+

Y X))
− ρ∗([θ+(X), θ−(Y )]).

The claim then follows. □
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Now let us go back to the context of Section 4 and view M as a metric generalized principal G-bundle over Mred. We
want to derive a formula for the relative curvature of the pair (τ+, τ−) in terms of the data of the isotropic trivially extended
G-action.

By Eq. (4.1) and Eq. (4.3),

ϱ−([X], [Y ]) = ∇
−

X+Y−
+ T abg(Y−, ∇−

X+V−

b )V−

a ,

and

ϱ+([Y ], [X]) = ∇
+

Y−X+
+ T abg(X+, ∇+

Y−V+

b )V+

a .

Therefore, the relative curvature is

R([X], [Y ]) = T ab
[g(Y−, ∇−

X+V−

b )V−

a − g(X+, ∇+

Y−V+

b )V+

a ]

= T ab
[g(Y−, ∇−

X+V−

b ) − g(X+, ∇+

Y−V+

b )]Va

− T ab
[g(Y−, ∇−

X+V−

b ) + g(X+, ∇+

Y−V+

b )]g−1ξa.

A simple calculation shows g(Y−, ∇−

X+V−

b ) + g(X+, ∇+

Y−V+

b ) = 0. We finally have

Ra([X], [Y ]) = −2T abg(∇−

X+Y−, V−

b ). (5.1)

If additionallyM togetherwith its structure of ametric generalized principalG-bundle comes as an invariant submanifold
of a bigger manifold M, which carries an isotropic trivially extended G-action and a G-invariant generalized metric, we can
express the above result in terms of extensions X̆ , Y̆ of X+, Y− onM. Let ğ be themetric onM and ∇̆

± be Bismut connections
on M. IfM ⊂ M is locally defined by µα

= 0 for α = 1, 2, . . . , dimM − dimM , then by Eq. (4.4), we have

Ra([X], [Y ]) = −2T abğ(∇̆−

X̆
Y̆ , V−

b )|M+2T abGαβdµα(∇̆−

X̆
Y̆ )|Mdµβ (V−

b )|M , (5.2)

where Gαβ is the inverse of Gαβ
= ğ(dµα, dµβ )|M . This formula will be crucial in Section 7.

6. Generalized Kähler reduction

In the framework of [1] or [2], the reduction of a G-invariant generalized Kähler manifold M involves two stages: (i) a
G-invariant submanifoldM ⊂ M is singled out, possibly by the zero-level set of an equivariant map µ : M → h∗, where h∗

is the dual of a g-module h. At the same time, the bundle K overM , locally generated by {Va + ξa} and {dµα
}, is constructed.

Then K⊥ is again defined as the orthogonal complement of K in TM|M and one gets the important bundle KG
= K⊥

∩G(K⊥)
overM . (ii) If J1 preserves KG , i.e.,

J1KG
= KG, (6.1)

then KG/G naturally acquires two complex structures. Since KG/G can be identified with Ered, these are actually almost
generalized complex structures on Mred := M/G. Integrability of these structures stems from the general reduction theory
of Dirac structures.

We prefer to put things in another way: One can first realize the metric reduction from M to M . With this in place, we
are in the situation of Section 3 and can then realize the metric reduction from M to Mred. Now as before, there are two
connections τ± inM as a metric generalized principal G-bundle. Then Eq. (6.1) simply means J±τ± = τ±, i.e. J± preserve the
two distributions onM respectively, where J± are the underlying complex structures on M.

Although integrability of the reduced generalized Kähler structure in Mred is almost obvious from the more general
viewpoint,wewould like to provide another proof of this fact,which fits inwellwith our viewpoint towardsmetric reduction.
This approach is a bit more complicated and indirect, but may shed some new light on generalized Kähler reduction. Note
that in the following, a Courant algebroid E onM carrying an isotropic trivially extended G-action is understood as the basic
background.

Theorem 6.1 ([1,2]). LetM be a G-invariant generalized Kähler manifold and M a G-invariant submanifold such that J±τ± = τ±.
Then the generalized Kähler structure descends to the reduced manifold Mred.

Proof. As the reduced generalized Kähler structure is well understood in the literature, we only pay attention to the
integrability condition.

Since TMred is modelled on both τ+ and τ− onM , thus J±τ± = τ± implies thatMred has two almost complex structures J̃±.
The compatibility of J̃± with the reduced metric g̃ is also obvious. In this situation, according to [4], to obtain the conclusion,
we need to prove (i) ∇̃± J̃± = 0 and (ii) H̃ is of type (2, 1)+ (1, 2) w.r.t. both J̃±. Note that here ∇̃

± are the Bismut connections
onMred and H̃ is the curvature of the reduced metric splitting.
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W use X̆ to denote an extension of X+
∈ Γ (τ+) or X−

∈ Γ (τ−) to M and the Bismut connections in M are denoted by
∇̆

±. By Eq. (4.3) and an analogue of Eq. (4.4) for ∇̆
+, we have

(∇̃+

[X]
J̃+[Y ], [Z]) = (∇+

X− J+Y+, Z+) = (∇̆+

X̆
J+Y̆ , Z̆)|M

= (J+∇̆
+

X̆
Y̆ , Z̆)|M= −(∇̆+

X̆
Y̆ , J+Z̆)|M

= −(∇+

X−Y+, J+Z+) = −(∇̃+

[X]
[Y ], J̃+[Z])

= (J̃+∇̃
+

[X]
[Y ], [Z]),

where the fact ∇̆
+J+ = 0 is used. We thus have proved that ∇̃

+ J̃+ = 0. ∇̃− J̃− = 0 can be proved similarly.
To see that H̃ is of type (2, 1) + (1, 2) w.r.t. J̃+, since by Proposition 4.4

H̃([X], [Y ], [Z]) = (Ȟ|M+Ωa
+

∧ ξa)(X+, Y+, Z+),

and the curvature Ȟ of the metric splitting of E is of type (2, 1) + (1, 2) w.r.t. J+, we only need to prove Ωa
+
is of type (1, 1),

namely

Ωa
+
(X+, Y+) = 0

if X+, Y+
∈ (τ+ ⊗ C) ∩ T+

1,0M|M . Note that Ωa
+

= K badξ+

b , we should prove dξ+
a (X+, Y+) = 0. In fact,

dξ+

a (X+, Y+) = [dg(Va) + dξa](X+, Y+) = X+g(Va, Y+) − Y+g(Va, X+)

− g(Va, [X+, Y+
]) + H̆|M (Va, X+, Y+)

=
√

−1X+ω+|M (V A
a , Y+) −

√
−1Y+ω+|M (V A

a , X+)

−
√

−1ω+|M (V A
a , [X+, Y+

]) + H̆|M (V A
a , X+, Y+),

where V A
a is the T+

0,1M-part of Va and we have used the following two facts: (i) ğ and J+ are compatible and ω+ = ğ J+; (ii) H̆
is of type (2, 1) + (1, 2) w.r.t. J+. Consequently we have

dξ+

a (X+, Y+) = −
√

−1d(ω+|M )(X+, Y+, V A
a ) + H̆|M (V A

a , X+, Y+)

= −
√

−1(dω+)|M (X+, Y+, V A
a ) + H̆|M (X+, Y+, V A

a )

= −(dω+)|M (J+X+, J+Y+, J+V A
a ) + H̆|M (X+, Y+, V A

a )

= (dc
+
ω+ + H̆)|M (X+, Y+, V A

a )
= 0,

where we have used the identity dc
+
ω+ + H̆ = 0 on M. Similarly, the curvature Ωa

−
of τ− is of type (1, 1) w.r.t. J̃− and H̃ is

of type (2, 1) + (1, 2) w.r.t. J̃−. □

Remark. The proof has some byproducts. It implies that M as a principal G-bundle over generalized Kähler manifold Mred
carries two connections τ± whose curvatures are of type (1, 1) w.r.t. J̃± respectively. Thus any associated complex vector
bundle W naturally has a biholomorphic structure, i.e.W is holomorphic simultaneously w.r.t. both of J̃±. Such vector bundles
play a basic role in the work [10] to find an analogue of Hermite–Einstein equations in the context of biHermitianmanifolds.
Thus generalized Kähler reduction actually provides examples of biholomorphic structures.

7. Generalized holomorphic structures from generalized Kä hler reduction

Generalized holomorphic vector bundles are analogues of holomorphic vector bundles in complex geometry. Due to
the observation in the end of Section 6, it is natural to ask whether generalized holomorphic vector bundles could arise as
byproducts of generalized Kähler reduction. The goal of this section ismainly to provide some examples to give an affirmative
answer to this question. We will continue to use notation in Section 6. Note that M ⊂ M is actually a metric generalized
principal G-bundle, carrying the pair (τ+, τ−) of connections. Let τ

0,1
± denote the −

√
−1-eigensubbundles of τ± ⊗Cw.r.t. J±

respectively.

Lemma 7.1. Any associated complex vector bundle W of M as a principal G-bundle is naturally generalized holomorphic if the
relative curvature R of the pair (τ+, τ−) satisfies

R([X], [Y ]) = 0, ∀[X] ∈ T+

0,1Mred, [Y ] ∈ T−

0,1Mred. (7.1)

Proof. Let ∇
W± be the connections inW determined by τ± inM . They can be combined to give a generalized connection D

in W in the sense of [9]. In fact, Since A ∈ Γ (Ered) can be uniquely written as

A = [X] + g̃([X]) + [Y ] − g̃([Y ])
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for some [X], [Y ] ∈ Γ (TMred) due to the decomposition Ered = V red
+

/G ⊕ V red
−

/G, we can define

DAs = ∇
W+

[X]
s + ∇

W−

[Y ]
s, s ∈ Γ (W ).

D can be additionally decomposed according to the decomposition Ered ⊗C = Lred1 ⊕ L̄red1 , where Lred1 is the
√

−1-eigenbundle
of the reduced generalized complex structure Jred1 of J1. Let ∂̄ be the L̄red1 -part of D. ∂̄ can be further decomposed as
∂̄ = δ̄++δ̄− where actually δ̄± are just the natural J̃±-holomorphic structures inW induced from∇

W±. Thus ∂̄ is a generalized
holomorphic structure iff Eq. (2.4) is satisfied. It is not hard to find this is exactly Eq. (7.1). □

To provide concrete examples, we specify to the case of Hamiltonian generalized Kähler manifolds introduced by Lin and
Tolman in [11]. Let M be a G-invariant generalized Kähler manifold. The extended G-action is called Hamiltonian if there is
an equivariant map µ : M → g∗ (g∗ carries the coadjoint action) such that

J2(Va + ξa) = dµa, a = 1, 2, . . . , dimg (7.2)

where µa = µ(ea). According to Lemma 4.2 in [12], in terms of the biHermitian data, Eq. (7.2) is equivalent to

J+V+

a = J−V−

a = −ğ−1dµa. (7.3)

If G acts freely on M = µ−1(0), then Eq. (6.1) naturally follows and Mred = µ−1(0)/G carries a reduced generalized Kähler
structure [11] .

Recall that we use X̆ ∈ Γ (TM ⊗ C) to denote an extension of vector field X+
∈ Γ (τ+ ⊗ C) or X−

∈ Γ (τ− ⊗ C) on M .

Theorem 7.2. Assume the extended G-action on generalized Kähler manifold M is Hamiltonian. Then Eq. (7.1) is satisfied if

dµ(∇̆−

X̆
Y̆ )|M= 0, (7.4)

for any X+
∈ Γ (τ 0,1

+ ) and Y−
∈ Γ (τ 0,1

− ).

Remark. Eq. (7.4) means ∇̆
−

X̆
Y̆ should be tangent toM .

Proof. As the result is obviously independent of which extensions we choose, we can safely assume that X̆ ∈ Γ (T+

0,1M) and
Y̆ ∈ Γ (T−

0,1M).
Due to Eq. (7.3), for any Z ∈ Γ (T−

0,1M) we have

ğ(Z, V−

a ) =
√

−1dµa(Z).

Since ∇̆
−J− = 0, we have ∇̆

−

X̆
Y̆ ∈ Γ (T−

0,1M) and thus

ğ(∇̆−

X̆
Y̆ , V−

a ) =
√

−1dµa(∇̆−

X̆
Y̆ ).

Substituting this result in Eq. (5.2), we find Ra([X], [Y ]) is of the form

Ra([X], [Y ]) = −2
√

−1T ab(δcb +
√

−1Scb )dµc(∇̆−

X̆
Y̆ )|M ,

for some real-valued functions Scb onM . The conclusion immediately follows. □

We are now in a position to construct some generalized holomorphic bundles by generalized Kähler reduction. Here
we content ourselves with a family of generalized holomorphic line bundles on CP2 equipped with certain non-trivial
generalized Kähler structures. We follow the ideas of [4,11] to deform the standard Kähler structure on C3 (as a generalized
Kähler manifold) to new S1-invariant generalized Kähler structures while keeping the standard symplectic structure fixed.
Applying the Marsden–Weinstein reduction to the symplectic structure then gives non-trivial generalized Kähler structures
on CP2. By choosing the deformations properly, we would obtain metric generalized principal S1-bundles over CP2 whose
associated line bundles are generalized holomorphic.

Let us recall the deformation theory of [4] in some detail. Given a generalized Kähler structure on M and ϵ ∈ Γ (∧2L̄1),
define Lϵ

1 = {X + ιXϵ|X ∈ L1}. For ϵ small enough, Lϵ
1 is an almost generalized complex structure. The integrability condition

of this deformation is the Maurer–Cartan equation

dL1ϵ +
1
2
[ϵ, ϵ]S = 0, (7.5)

where [·, ·]S is the Schouten bracket induced from the Lie algebroid L1. Note that since L1 = L+ ⊕ L− and L2 = L+ ⊕ L̄−, to
keep L2 fixed we should take ϵ ∈ Γ (L̄+ ⊗ L̄−).

The standard Kähler structure on C3. Let M = C3 with its canonical complex structure J and Kähler structure
ω =

√
−1

∑3
i=0 dzi ∧ dz̄i. Let Ei = ∂zi + dz̄i, Fi = ∂zi − dz̄i, i = 0, 1, 2. We have two complex vector bundles L+ = span{Ēi}

and L− = span{F̄i} overM. Viewed as a generalized Kähler manifold,M has L1 = L+ ⊕L− and L2 = L+ ⊕ L̄− as the associated
two generalized complex structures. A pure spinor of L1 is ϕ1 = dz0dz1dz2 and a pure spinor of L2 is ϕ2 = e−

√
−1ω . Note that
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in the present setting dL1 is just the classical Dolbeault operator associated to J and from the biHermitian viewpoint, we have
chosen J+ = J− = J .

S1 acts on M by scaling:

eiθ · (z0, z1, z2) = (eiθ z0, eiθ z1, eiθ z2).

The infinitesimal action of S1 is generated by the vector field

∂θ =
√

−1
2∑

i=0

(zi∂zi − z̄i∂z̄i ).

Then µ =
∑2

i=0 |zi|2 − 1 is a moment map. By Kähler reduction, µ−1(0)/S1 is a Kähler manifold. This is the canonical Kähler
structure on the projective plane CP2.

Deformations of the Kähler structure.We choose

ϵ =
1
2
(

2∑
i=0

fiEi) ∧ (
2∑

j=0

gjFj),

where fi, gi are homogeneous polynomials of z0, z1 and z2 to be determined. Since fi, gi are holomorphic, the integrability
condition (7.5) accounts to the following equations:{∑2

p=0 fp(gk∂zpgq − gq∂zpgk) = 0,∑2
p=0 gp(fk∂zp fq − fq∂zp fk) = 0.

(7.6)

There are many solutions to these equations. We list two as follows: (i) g0 = g1 = f1 = f2 = 0, g2 = 1 and f0 = z20 ; (ii)
gi = 1, i = 0, 1, 2 and

f0 = (z1 − z0)(z2 − z0), f1 = (z0 − z1)(z2 − z1), f2 = (z0 − z2)(z1 − z2). (7.7)

Note that deformations associated to the two solutions are both S1-invariant. Sincewe are only concernedwith the behaviour
of ϵ over M = µ−1(0) = S5, we can simply multiply ϵ by a nonzero complex number λ such that |λ| is small enough and
then Lϵ

1 and L2 together define a generalized Kähler structure on a bounded neighbourhood ofM in C3.
In the following, for simplicity, we will set g0 = g1 = g2 = 1. In this case, the first equation of (7.6) holds trivially and

the second equation can be written in a more compact form:
2∑

p=0

∂zp (
fq
fk
) = 0.

Thus we can choose fi to be functions of z1 − z0 and z2 − z0, e.g. our solution (ii) is such a choice. To make ϵ be S1-invariant,
we additionally require fi to be of degree 2. Now we have

Lϵ
+

= span{Ēi + fi
2∑

p=0

Fp}, Lϵ
−

= span{F̄i +
2∑

p=0

fpEp},

and Lϵ
1 = Lϵ

+
⊕ Lϵ

−
, L2 = Lϵ

+
⊕ L̄ϵ

−
. Let Jϵ

±
be the underlying complex structures. Accordingly,

T+

0,1M = span{∂z̄i + fi
2∑

p=0

∂zp}, T−

0,1M = span{∂z̄i +

2∑
p=0

fp∂zp}.

It should be pointed out that generally with the above form of Lϵ
1 and L2, we are not in the metric splitting, but this will

not bother usmuch. Though Eq. (2.2) is written in themetric splitting, other splittings are equally fine, because B-transforms
will not affect the tangent part of the equation, which is essential to obtain Bismut connections.

The reduced generalized Kähler structure. We content ourselves with a glance at the reduced generalized Kähler
structure, for we are more interested in the generalized holomorphic line bundles produced by the reduction procedure.
The reduced generalized Kähler structure can be described conveniently in terms of pure spinors. We refer the interested
reader to [13] for a detailed account of pure spinors in the setting of generalized reduction.

A pure spinor of Lϵ
1 is ϕϵ

1 = e−ϵ
· ϕ1. To find a pure spinor for its reduction J̃ϵ

1 on CP2, roughly speaking, one simply pulls
back ϕϵ

1 to M = S5 and then pushes it forward to the quotient M/S1 (i.e. contraction with ∂θ on M). The two stages can be
exchanged. Thus one first contracts ϕϵ

1 with ∂θ on M and then pulls back the result to S5. By ‘roughly’, we mean actually
before pulled back, ι∂θ

ϕϵ
1 should be scaled to be S1-invariant. The scaling cannot be realized globally, and when it breaks

down, type-jumping of J̃ϵ
1 occurs. A generic point on CP2 is of type 0 for J̃ϵ

1, and for a point on the type-jumping locus, the
type jumps to 2. A similar and more detailed analysis of some reduced generalized Kähler structures on CP2 can be found
in [1]. Our argument above is along the same line of [1].
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To determine the type-jumping locus of J̃ϵ
1, we take the 0-form component of ι∂θ

ϕϵ
1 . This produces a section ρ of the dual

bundle of the pure spinor line bundle of J̃ϵ
1. The zero-locus of ρ is precisely the type-jumping locus, which is singled out by

the following homogeneous equation of degree 3:

z0(f1 − f2) + z1(f2 − f0) + z2(f0 − f1) = 0.

This can also be found using the type formula in [11]. For example, if we choose the solution (7.7) the type-jumping locus
consists of three lines in CP2: z0 = z1, z0 = z2 and z1 = z2 with a joint-point [1 : 1 : 1]. The type-jumping locus can be
viewed as a degenerate elliptic curve.

Generalized holomorphic structures from reduction. We now check that M = S5 as a metric generalized principal
S1-bundle really gives its associated line bundles a generalized holomorphic structure, i.e., Eq. (7.4) does hold for the present
setting.

Let us find τ
0,1
± first. Due to the proof of Theorem 7.2, we only need to find Z in T±

0,1M such that dµ(Z) = 0. Denote
z = z0 + z1 + z2 and F = F0 + F1 + F2. The image of g on τ

0,1
+ is spanned by

A1 := −(z1 + f1z̄)(Ē0 + f0F ) + (z0 + f0z̄)(Ē1 + f1F )

and

A2 := −(z2 + f2z̄)(Ē0 + f0F ) + (z0 + f0z̄)(Ē2 + f2F )

on S5. Denote h = f0z̄0 + f1z̄1 + f2z̄2 and C = f0E0 + f1E1 + f2E2. The image of −g on τ
0,1
− is spanned by

B1 := −(z1 + h)(F̄0 + C) + (z0 + h)(F̄1 + C)

and

B2 := −(z2 + h)(F̄0 + C) + (z0 + h)(F̄2 + C)

on S5. By abuse of notation, we also use Ai, Bi to denote their extensions on M with the same expressions.
What left is to check that the tangent part of [Ai, Bj]

− is tangent toM for i, j = 1,2 according to Theorem 7.2 and Eq. (2.2).
Wewill only compute [A1, B1]

− and [A2, B1]
− and the details are included in the appendix. The computation of [A1, B2]

− and
[A2, B2]

− is similar and left to the interested reader.
The tangent part of [A1, B1]

− is3

(z1 + f1z̄)(z1 − z0)
2∑

q=0

∂zq f0∂z̄q + 2f0(z1 + f1z̄)(∂z̄0 − ∂z̄1 )

+ (z0 + f0z̄)(z0 − z1)
2∑

q=0

∂zq f1∂z̄q + 2f1(z0 + f0z̄)(∂z̄1 − ∂z̄0 ).

Its contraction with dµ is, up a common factor z1 − z0,

(z1 + f1z̄)
2∑

q=0

zq∂zq f0 − 2f0(z1 + f1z̄)

− (z0 + f0z̄)
2∑

q=0

zq∂zq f1 + 2f1(z0 + f0z̄)

= (z1 + f1z̄)(
2∑

q=0

zq∂zq f0 − 2f0) − (z0 + f0z̄)(
2∑

q=0

zq∂zq f1 − 2f1)

= 0,

where the last equality is due to the fact that f0 and f1 are homogeneous functions of degree 2.
Similarly, the tangent part of [A2, B1]

− is

(z2 + f2z̄)(z1 − z0)
2∑

q=0

∂zq f0∂z̄q + 2f0(z2 + f2z̄)(∂z̄0 − ∂z̄1 )

− (z0 + f0z̄)(z1 − z0)
2∑

q=0

∂zq f2∂z̄q + 2f2(z0 + f0z̄)(∂z̄1 − ∂z̄0 ).

3 Note that to obtain the expression, the equation
∑2

p=0 ∂zp fi = 0 is used.
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Its contraction with dµ is, up to a common factor z1 − z0,

(z2 + f2z̄)
2∑

q=0

zq∂zq f0 − 2f0(z2 + f2z̄)

− (z0 + f0z̄)
2∑

q=0

zq∂zq f2 + 2f2(z0 + f0z̄)

= (z2 + f2z̄)(
2∑

q=0

zq∂zq f0 − 2f0) − (z0 + f0z̄)(
2∑

q=0

zq∂zq f2 − 2f2)

= 0,

where the last equality is due to the fact that f0 and f2 are homogeneous functions of degree 2.
A similar computation shows the tangent parts of [A1, B2]

− and [A2, B2]
− are each tangent to M . Therefore, we have

checked that any associated line bundle ofM as a principal S1-bundle is generalized holomorphic.
The associated line bundle of the canonical representation of S1 is actually the tautological line bundle of CP2, and thus

its first Chern class is −[l], where [l] denotes the homology class represented by a line in CP2. But the first Chern class of
the canonical line bundle of J̃ϵ

1 is −3[l]. Therefore our construction really gives rise to new generalized holomorphic line
bundles.

It is expected that the approach illustratedhere could also be applied to construct generalizedholomorphic vector bundles
of higher rank. We will turn to this elsewhere in the future.
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Appendix

This appendix contains the detailed computation of [A1, B1]
− and [A2, B1]

−.
First a direct computation gives the following formula to be used later:

[Ēi + fiF , F̄j + C] =

2∑
q=0

∂zq fi(F̄q + C) −

2∑
q=0

∂zq fi(Ēq + fqF ).

Note that the result is independent of j.

[A1, B1]
−

= [(z1 + f1z̄)(Ē0 + f0F ), (z1 + h)(F̄0 + C)]−

− [(z1 + f1z̄)(Ē0 + f0F ), (z0 + h)(F̄1 + C)]−

− [(z0 + f0z̄)(Ē1 + f1F ), (z1 + h)(F̄0 + C)]−

+ [(z0 + f0z̄)(Ē1 + f1F ), (z0 + h)(F̄1 + C)]−

= (z1 + f1z̄)(z1 + h)Σ2
q=0∂zq f0(F̄q + C)

+ 2f0(z1 + f1z̄)(F̄0 + C) − 2f0(z1 + f1z̄)(F̄1 + C)
− (z1 + f1z̄)(z0 + h)Σ2

q=0∂zq f0(F̄q + C)

− (z0 + f0z̄)(z1 + h)Σ2
q=0∂zq f1(F̄q + C)

− 2f1(z0 + f0z̄)(F̄0 + C) + 2f1(z0 + f0z̄)(F̄1 + C)
+ (z0 + f0z̄)(z0 + h)Σ2

q=0∂zq f1(F̄q + C)

= (z1 + f1z̄)(z1 − z0)Σ2
q=0∂zq f0F̄q

+ 2f0(z1 + f1z̄)(F̄0 − F̄1)
+ (z0 + f0z̄)(z0 − z1)Σ2

q=0∂zq f1F̄q
+ 2f1(z0 + f0z̄)(F̄1 − F̄0).
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Similarly,

[A2, B1]
−

= [(z2 + f2z̄)(Ē0 + f0F ), (z1 + h)(F̄0 + C)]−

− [(z2 + f2z̄)(Ē0 + f0F ), (z0 + h)(F̄1 + C)]−

− [(z0 + f0z̄)(Ē2 + f2F ), (z1 + h)(F̄0 + C)]−

+ [(z0 + f0z̄)(Ē2 + f2F ), (z0 + h)(F̄1 + C)]−

= (z2 + f2z̄)(z1 + h)Σ2
q=0∂zq f0(F̄q + C)

+ 2f0(z2 + f2z̄)(F̄0 + C) − 2f0(z2 + f2z̄)(F̄1 + C)
− (z2 + f2z̄)(z0 + h)Σ2

q=0∂zq f0(F̄q + C)

− (z0 + f0z̄)(z1 + h)Σ2
q=0∂zq f2(F̄q + C)

− 2f2(z0 + f0z̄)(F̄0 + C) + 2f2(z0 + f0z̄)(F̄1 + C)
+ (z0 + f0z̄)(z0 + h)Σ2

q=0∂zq f2(F̄q + C)

= (z2 + f2z̄)(z1 − z0)Σ2
q=0∂zq f0F̄q

+ 2f0(z2 + f2z̄)(F̄0 − F̄1)
+ (z0 + f0z̄)(z0 − z1)Σ2

q=0∂zq f2F̄q
+ 2f2(z0 + f0z̄)(F̄1 − F̄0).
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