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a b s t r a c t

We present noncommutative topology as a basis for noncommutative geometry phrased
completely in terms of partially ordered sets with operations. In this note we introduce
a noncommutative space-time starting from a dynamical system of noncommutative
topologies based on the notion of temporal points. At every moment a commutative
topological space is constructed and it is shown to approximate the noncommutative space
in sheaf theoretical terms; this so calledmoment space should be the spacewhere observed
phenomena should be described, the commutative shadow of the noncommutative space
is to be thought of as the usual space-time.

© 2008 Elsevier B.V. All rights reserved.

0. Introduction

Recent developments in noncommutative geometry deal with different notions including: noncommutative manifolds
[2,3], noncommutative (quantized) algebras, [4,5], or general quantization-deformations, [6,9]. In these theories the actual
geometric objects are left as virtual objects and the results deal with noncommutative algebras or some categories thought
of as rings of functions or categories of modules. In the approach of [1] a noncommutative topology is used and sheaf theory
on a noncommutative topology replaces function theory to some extent. The noncommutativity of the topology and space
is characterized by the lack of geometric points in the sense that there are not enough ‘‘points’’ in the space to identify the
opens as sets of points, contrasting the set-theory based (commutative) geometrywith its function theory and corresponding
analysis. Yet, aiming at application in Physics, a suitable noncommutative model of space should allow explicit calculation
and some level of geometric reasoning, making use of point coordinates in terms of real or complex numbers unavoidable.
In the model we propose, one of the examples being a candidate for noncommutative space–time, we start from a

dynamical system of noncommutative topologies. All structural properties will depend only on a few intuitive axioms at
the level of ordered structures. We start from a totally ordered set T and suitably connected noncommutative topological
spaces Λt , t ∈ T . At each t ∈ T we construct a new spectral space, called the moment space at t , which is in fact a
commutative space. Then we view (pre-)sheaves on noncommutative topologies fitting together in what should be called
dynamical geometry and connect them to sheaves on the moment spaces. The idea that those commutative moment spaces
present us with a useful approximation of noncommutative space is reflected in one of themain results of this paper stating
that the stalks at points of the moment space at t ∈ T equal stalks at a ‘‘point’’ of some Λt ′ , t ′ ∈ T in some prescribed
T -interval containing t . The philosophy here is that there may not exist enough geometric points in the noncommutative
geometry of Λt but it works in the moment space because the latter encodes dynamical information in some T -interval
containing t . The construction is abstract and can be extended to further levels of generality and abstraction, however for
possible application in physics only one case is of real interest . . . reality. To literally realize the noncommutative space we
would think of T as amultidimensional irreversible time (with a suitable notion of dimension) of ‘‘dimension’’ big enough to
make up for themissing geometric points in the noncommutative spacesΛt , t ∈ T , so that the T -size explains the difference
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in dimension between the noncommutative space or the moment spaces and the geometric dimension of its space of points
that appears as the commutative shadowof thenoncommutative space in the sense of [1]. The commutative shadow (defined
as the lattice of idempotents in a noncommutative topology) may be thought of as the abstract space where mathematical
reasoning will take place, that is to say: space–time with its own ‘‘abstract’’ time appearing as a reversible relativistic time.
The moment space is the commutative space where the mathematics of observed and measured objects takes place and
because observing andmeasuring takes time this moment space has to encode dynamical data. Allowing ourselves a slogan:
observation creates space from time ! Thinking of a smallest possible observable in space, let us say a point standing still
in space, it is in different Λt , t ∈ T nevertheless, and therefore in the commutative shadow it appears as a string; on the
other hand viewed in the moment space(s) it appears as a string of temporal points (not geometric points, see explanation
in the paper) that is a string of opens in the commutative moment spaces to be thought of as a tube or higher-dimensional
string, a brane perhaps? Obviously this suggests a link to M-theory that appears from the mathematical formalism, based
on simple axioms solely dealing with partial ordered structures, describing the transfer between commutative shadows and
themoment space. The difference between these two commutative worlds describing a noncommutative space (a next step
of approximation of reality) is marked by the uncertainty principle whereby the noncommutative of measured objects in
the moment space in fact reflects the ‘‘noncommutativity of reality’’ in the dynamic model (it makes sense to view it as a
kind of quantum commutativity, in fact it is linked to the almost commutativity of the Weyl algebra with respect to the
Bernstein filtration, see [1]).
The noncommutative space in the dynamic model may be viewed as a spatial-temporal deformation of its commutative

shadow and the construction of moment space as a dequantization i.e. a converse to quantization. Basic new ingredients are
noncommutative topologies and mainly generalized Stone spaces. The latter generalize the idea of constructing the Stone
space for the lattice of closed linear subspaces for a Hilbert space H . The quantization–dequantization technique should
also allow tracing of certain physical aspects like: observables, spectral families, . . . . The final section is devoted to this and
Γ -spectral families, for some totally ordered group Γ , are just separated filtrations on a noncommutative topology; for a
Hilbert spaceH this yields a nice relation to (pseudo-)valuation theory via the appearance of pseudo-places on the projective
Hilbert space P(H) of H .
There are many mathematical issues connected to the topic of the paper (we refer to [7] for more detail) most of those

unfinished or at an initial stage of development. The bold idea behind this paper was to try to make noncommutative
geometry real and to to propose a construction thatwould also allow concrete calculations in a commutative approximation;
in any case author believes that the mathematics developed also has enough interest in its own right, while philosophy in
the background of it may be thought provoking.

1. Preliminaries on noncommutative topology

We consider (partially ordered) Λ with 0 and 1. When Λ is equipped with operations ∧ and ∨, we say that Λ is a
noncommutative topology if the following axioms hold:
(i) for x, y ∈ Λ, x∧ y ≤ x and x∧ y ≤ y and x∧ 1 = 1∧ x = x, x∧ 0 = 0∧ x = 0, moreover x∧ · · · ∧ x = 0 if and only if
x = 0.

(ii) For x, y, z ∈ Λ, x ∧ y ∧ z = (x ∧ y) ∧ z = x ∧ (y ∧ z), and if x ≤ y then z ∧ x ≤ z ∧ y, x ∧ z ≤ y ∧ z.
(iii) Properties similar to (i) and (ii) with respect to ∨, in particular x ∨ x ∨ · · · ∨ x = 1 if and only if x = 1.
(iv) Let id∧(Λ) = {λ ∈ Λ, λ∧λ = λ}; for x ∈ id∧(Λ) and x ≤ z we have: x∨ (x∧ z) ≤ (x∨ x)∧ z, x∨ (z∧ x) ≤ (x∨ z)∧ x.
(v) For x ∈ Λ and λ1, . . . , λn ∈ Λ such that 1 = λ1∨· · ·∨λn, we have x = (x∧λ1)∨· · ·∨(x∧λn) = (λ1∧x)∨· · ·∨(λn∧x).

There are left (right) versions of this definition as introduced in [1], but we do not go into this here. In fact we restrict
attention to the situationwhere∨ is a commutative operation andΛ is∨-complete i.e. for an arbitrary familyF of elements
in Λ, ∨F exists in Λ, where ∨F is characterized by the property: λ ≤ ∨F for all λ ∈ F and if λ ≤ µ for all λ ∈ F then
∨F ≤ µ.
In case only (v) is droppedwe callΛ a skew topology; this is sometimes interesting e.g. the lattice L(H) of a Hilbert space

H is a skew topology and condition (v) does not hold! Here L(H) is the lattice of closed linear subspaces of H with respect
to intersection and closure of the sum. The definition of a noncommutative topology allows λ ∨ λ 6= λ, λ ∧ λ 6= λ, in fact
this is the main aspect pf noncommutativity. Let us write id∧(Λ) = {λ ∈ Λ, λ ∧ λ = λ}, id∨(Λ) = {λ ∈ Λ, λ ∨ λ = λ}.
The restriction to abelian ∨ (most interesting examples are like this) entails that id∧(Λ) is closed under the operation ∨.
Moreover on id∧(Λ) we introduce a new operation ∧. defined by σ∧. τ = ∨{γ ∈ id∧(Λ), γ ≤ σ ∧ τ } for σ , τ ∈ id∧(Λ).
Let us write SL(Λ) for the set id∧(Λ)with the operations∧. and∨; then SL(Λ) is easily checked to be again a skew topology
(with ∨ commutative and being ∨-complete). We refer to SL(Λ) as the commutative shadow ofΛ.

1.1. Lemma (cf. [1] or [7] 2.2.3. and 2.2.5)

If Λ is a skew topology ∨-complete with respect to a commutative operation ∨, then SL(Λ) is a lattice satisfying the
modular inequality.
A subset X ⊂ Λ is directed if for every x, y ∈ X there is a z ∈ X such that z ≤ x, z ≤ y; we say that X is a filter

in Λ if it is directed and for x ∈ X , x ≤ y yields y ∈ X . Two directed sets A and B in Λ are equivalent if they define the
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same filter A = B where for any directed set A we put A = {λ ∈ Λ, there is an a ∈ A such that a ≤ λ}. Let D(Λ) be the
set of directed subsets in Λ and we write A ∼ B when the directed subsets A and B are equivalent, we write [A] for the
equivalence class of A and let C(Λ) be the set of classes of directed subsets of Λ. We introduce a partial order in C(Λ) by
putting A ≤ B if B ⊂ A and write [A] ≤ [B] for the partial order on D(Λ) induced by the foregoing. For A and B in D(Λ)
define A∧̇B = {a ∧ b, a ∈ A, b ∈ B}, A∨̇B = {a ∨ b, a ∈ A, b ∈ B} and: [A] ∧ [B] = [A∧̇B], [A] ∨ [B] = [A∨̇B].
The lattice L(H)mentioned before is its own commutative shadow, even though it is not distributive (hence the failure

of condition v. as above it means that the geometry of L(H) is in some sense still commutative and only by looking at
words in the projection operators PU for U ∈ L(H) does one arrive at a noncommutative situation (a linear basis for the
algebra of bounded linear operatorsL(H)). The lattice of torsion theories for a ring or in fact for any abelian category is the
commutative shadow of a noncommutative topology obtained by looking at the left exact preradicals, see [7] for full detail.
An interesting specific example of a skew topology is obtained by taking the poset of reflexive relationsRr(A) on some set
A, that is the subsets of A× A containing the diagonal∆(A) in A× A. For ∨we take the intersection of such subsets and for
∧ the composition, that is to say for relations ρ1, ρ2 on Awe let ρ1 ∧ ρ2 be given by the subset of A× A consisting of (a, a′′)
for which there exists an a′ ∈ A such that (a, a′) ∈ ρ1 and (a′, a′′) ∈ ρ2. The commutative shadow of this is given by the
reflexive transitive relations, Rr,t(A).

1.2. Lemma

IfΛ is a skew topology, resp. a noncommutative topology, then so is C(Λ)with respect to the partial order and operations
∧ and ∨ as defined above. The canonical mapΛ→ C(Λ), λ 7→ [{λ}] is a map of skew topologies.
We simplify notations by writing [{λ}] = [λ] and call such an element classical in C(Λ).
A directed set A inΛ is idempotently directed if for every a ∈ A there exists an a′ ∈ A∩ id∧(Λ) such that a′ ≤ a; in this

case [A] ∈ i∧(C(Λ)) but these elements of C(Λ)may be thought of as obtained from a directed set having a cofinal subset of
‘‘commutative’’ opens (the idempotents belonging to the commutative shadow S((Λ)). We write Id∧(C(Λ)) for the subset
of id∧(C(Λ)) consisting of the classes of idempotently directed subsets ofΛ; the elements [A] of Id∧(Id∧(C(Λ))) are called
strongly idempotents. We identifyΛ and the image ofΛ→ C(Λ), then observe that Id∧(C(Λ)) ∩ Λ = id∧(Λ). We shall
write

∏
(Λ) for the skew (noncommutative) topology obtained by taking∧-finite bracketed expression P(∧,∨, xi) in terms

of strong idempotents xi ∈ Id∧(C(Λ)); similarly wewrite T (Λ) for the skew (noncommutative) topology obtained by taking
∧-finite bracketed expressions p(∧,∨, λi) in idempotents λi ∈ id∧(Λ).
It is not hard to verify:

∏
(Λ) =

∏
(T (Λ)), sowe justwrite

∏
to denote this.Moreover C(T (Λ)) satisfies the same axioms

((i)–(v)) asΛ and T (Λ) but with respect to Id∧(C(Λ)). The ‘‘strong’’ commutative shadow of
∏
is obtained by restricting

∧. on id∧(C(Λ)) to Id∧(C(Λ)) and viewing SLs(
∏
) as the lattice structure induced on Id∧(C(Λ)), where s in the notation

refers to ‘‘strong’’.

1.3. Lemma

IfΛ is a ∨-complete noncommutative topology such that ∨ is commutative then: SLs(
∏
) = C(SL(Λ)).

1.4. Definition. Generalized stone topology

Consider a skew topology Λ and C(Λ). For λ ∈ Λ, let Oλ ⊂ C(Λ) be given by Oλ = {[A], λ ∈ A}. It is very easy to
verify: Oλ∧µ ⊂ Oλ ∩ Oµ,Oλ∨µ ⊃ Oλ ∪ Oµ, hence the Oλ define a basis for a topology on C(Λ) termed: generalized Stone
topology. This definition obtains a more classical meaning in terms of points and sets when related to suitable point-spectra
constructed in C(Λ).
We say that [A] in C(Λ) is aminimal point of Λ if A is a maximal filter, i.e. A 6= Λ but if A $ B where B is a filter then

B = Λ; it follows that a minimal point is necessarily in id∧(C(Λ)) and it is indeed a minimal nonzero element of the poset
C(Λ). An irreducible point [A] ofΛ is characterized by either one of the following equivalent properties:

(i) [A] ≤ ∨{[Aα], α ∈ A} yields [A] ≤ [Aα] for some α ∈ A.
(ii) If ∨{λα, α ∈ A} ∈ A then λα ∈ A for some α ∈ A.

More general types of points may be considered, e.g. the elements of a so-called quantum-basis, cf [7], but we need not go
into this here. Under some suitable condition often (but not always) present in examples, the irreducible points in Id∧(C(Λ))
are exactly those that are ∨-irreducible in C(Λ) (e.g. ifΛ satisfies the weak FDI property, cf. [1], Proposition 5.9.).
Define the (irreducible) point-spectrum by putting: Sp(Λ) = {[p], [p] an (irreducible) point of Λ}. Put p(λ) = {[p] ∈

Sp(Λ), [p] ≤ [λ]} for λ ∈ Λ, then p(λ ∧ µ) ⊂ p(λ) ∩ p(µ), p(λ ∨ µ) = p(λ) ∪ p(µ). Thus the p(λ) define a basis for a
topology on Sp(λ) called the point-topology. Write SP(Λ) for Sp(Λ) ∩ Id∧(C(Λ)) and refer to this as the Point-spectrum
(capital P). For λ ∈ Λwe consider P(λ) = {[P] ∈ SP(Λ), [P] ≤ [λ]} and this indices the Point-topology on SP(Λ); this time
we even have P(λ∧µ) = P(λ)∩ P(µ) and this time we even have P(λ∧µ) = P(λ)∩ P(µ) and this defines a topology on
SP(SL(C(Λ))). Similar constructionsmay be applied to theminimal point-spectrumQSp(Λ) on Sp(Λ) the generalized Stone
topology is nothing but the point-topology. In the foregoingΛmay be replaced by T (Λ) or

∏
(Λ) with topologies induced
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by the generalized Stone topology on the point spectra always again being called: generalized Stone topology. Finally the
generalized Stone topology can also be defined on the commutative shadow SL(Λ), which is a modular lattice, and then we
obtain QSP(SL(Λ)), where the topology induced on QSP(SL(Λ)) is exactly the Stone topology of the Stone space of SL(Λ).
In the special case Λ = L(H) (only a skew topology) the generalized Stone space defined on QSP(L(H)) is exactly the

classical Stone space as used in Gelfand duality theory for L(H). Warning: L(H) does not satisfy the axiom v. and whereas
QSP(L(H)) is rather big, Sp(L(H)) = SP(L(H)) is empty! Moreover over L(H) there are no sheaves but there will be many
sheaves over C(L(H))making sheafification of a separated presheaf over L(H) possible over QSP(L(H)).
The foregoing fixes a context for results in the sequel, however the methods in Sections 2–4 are rather generic and can

be applied to other notions of noncommutative spaces.

2. Dynamical noncommutative topology

We propose to construct space as a dynamical noncommutative topological space and defining geometrical objects as
existing over someparameter-intervals. Noncommutative continuity is introduced via the variation of an external parameter
in a totally ordered set T (if onewants to consider this as a kind of time, fine . . . but then this time is an index, not a dimension).
This is philosophically satisfying because momentary observations which are only abstractly possible (real measurement
takes time) put us in the discrete-versus-continuous situation of noncommutative geometry, as well as quantum theory.
Let T be a totally ordered set and for every t ∈ T we give a noncommutative space Λt . This can have several meanings,

in the sequel we take this to mean that Λt is the generalized Stone space constructed on C(Xt) for some skew topology Xt
as in Section 1. This is just to fix ideas, in fact one could just as well restrict to topologies induced by the generalized Stone
topology on point spectra of any type, see also Section 1 or [1], or take pattern topologies as introduced in [1,7], or go to
other theories and take quantales etc . . . . For t ≤ t ′ in T we have ϕtt ′ : Λt → Λt ′ which are poset maps respecting ∧ and
∨; when t = t ′ we take ϕtt = 1Λt to be the identity of Λt and when t ≤ t

′
≤ t ′′ then we demand that ϕt ′t ′′ ◦ ϕtt ′ = ϕtt ′′ ,

where notation for composition of maps is conventional i.e. writing the one acting last first. If At ⊂ Λt is a directed set then
ϕtt ′(At) ⊂ Λt ′ , for t ≤ t ′, is again a directed set.
It is easily verified that if we start from a system {Xt ,Ψtt ′ , T } defined as above, we obtain a similar system {C(Xt),Ψ ett ′ , T }

where Ψ ett ′ : C(Xt)→ C(Xt ′) is given by putting: Ψ ett ′([A]) = [Ψtt ′(A)], for [A] ∈ C(Xt) and t ∈ t
′ in T . In case it is interesting

to viewΛt as coming from some Xt via C(Xt)we may restrict attention to systems given by ϕtt ′ , t ≤ t ′ in T , stemming from
ψtt ′ on Xt by extension as indicated above. Note that not every system {C(Xt), ϕtt ′ , T } has to derive from a system {Xt , ψtt ′ , T }
in general.

2.1. Lemma

Any system of poset maps ϕtt ′ , t ≤ t ′ in T , defines a system of poset maps ϕett ′ , t ≤ t
′ in T . If the maps ϕtt ′ respect the

operations ∧ and ∨ in theΛt then so does ϕett ′ for C(Λt), t ∈ T . In this situation ϕtt ′ maps ∧-idempotent elements ofΛt to
∧-idempotent elements ofΛt ′ (also∨-idempotent to∨-idempotent) moreover if [At ] is strongly idempotent in C(Λt) then
[ϕtt ′(At)] is a strongly idempotent element of C(Λt ′), for every t ≤ t ′ in T ,

Proof. First statements follow obviously from: for directed sets A and B,

ϕett ′([A] ∧ [B]) = ϕ
e
tt ′([A∧̇B]) = [ϕtt ′(A∧̇B)] = [ϕtt ′(A)∧̇ϕtt ′(B)] = [ϕtt ′(A)] ∧ [ϕtt ′(B)]

for t ≤ t ′ in T . Similar with respect to ∨, using ∨̇. In case λ ∈ Λt is idempotent inΛt then ϕtt ′(λ)∧ ϕtt ′(λ) = ϕtt ′(λ∧ λ) =
ϕtt ′(λ) for t ≤ t ′ in T . Finally if A is idempotently directed look at ϕtt ′(a) for a ∈ At ; by assumption there exists some
µ ∈ id∧(Λt) such that µ ≤ a, thus ϕtt ′(µ) ≤ ϕtt ′(a) and ϕtt ′(µ) ∈ id∧(ϕtt ′(At)), for t ≤ t ′ in T . Consequently ϕtt ′(At) is
idempotently directed too. �

The skew topology
∏
t , introduced after Lemma 1.2. is called the pattern topology of Xt , i.e. it is obtained by taking all

∧-finite bracketed expressions with respect to ∨ and ∧ in the letters of Id∧(C(Λt)).

2.2. Corollary

The system {Λt , ϕtt ′T } induces a system {
∏
t , ϕtt ′ |

∏
t , T }, satisfying the same properties, on the pattern topologies.

In general the ϕtt ′ , t ≤ t ′, do not map points ofΛt to points ofΛt ′ , t ≤ t ′, neither does ϕtt ′ respect the operation∧. of the
commutative shadow SL(Λt), i.e. the ϕtt ′ do not necessarily induce a system on the commutative shadows.

2.3. Axioms for dynamical noncommutative topology (DNT)

A system {Λt , ϕtt ′ , T } is called a DNT if the following five conditions are satisfied:

DNT.1 Writing 0, resp. 1, for the minimal, resp. maximal element of Λt (we shall assume these exist throughout) then
ϕtt ′(0) = 0, ϕtt ′(1) = 1 for all t ≤ t ′ in T .
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DNT.2 For all t ∈ T , ϕtt = 1Λt and for t ≤ t
′
≤ t ′′ in T , ϕt ′t ′′ ◦ ϕtt ′ = ϕtt ′′ . Moreover, all ϕtt ′ preserve∧ and∨. Hence DNT.1.

and 2. just restate that {Λt , ϕtt ′ , T } is as before.
DNT.3 If for some t ∈ T , 0 < x < y inΛt , then there is a t < t1 in T such that for z1 ∈ Λt1 satisfying ϕtt1(x) < z1 < ϕtt1(y)

there is a z ∈ Λt , x < z < y, such that ϕtt1(z) = z1.
DNT.4 For every t ∈ T and 0 < x < z < y inΛt there exist t1, t2 ∈ T such that t1 < t < t2 and for every t ′ ∈]t1, t2[we have

either t ≤ t ′ and ϕtt ′(x) < ϕtt ′(z) < ϕtt ′(y), or t ′ ≤ t and then if x′ < y′ inΛt ′ exist such that ϕt ′t(x′) = x, ϕt ′t(y′) = y
then there also exist z ′ inΛt ′ such that x′ < z ′ < y′ and ϕt ′t(z ′) = z. Taking the special case y = 1 and y′ = 1 then
we see that a nontrivial strict relation inΛt is valid in an open T -interval containing t .

DNT.5 T -local unambiguity. In the situation of DNT.3, resp. DNT.4, the t1 ∈ T , resp. t1 and t2, may be chosen such that z ∈ Λt
is the unique element such that ϕtt1(z) = z1, resp. x

′, y′, z ′ in Λt , are the unique elements such that ϕt ′t(z ′) = z,
ϕt ′t(y′) = y, ϕt ′t(x′) = x, or when t ≤ t ′ the x, y, z, are unique elements mapping to ϕtt ′(z), ϕtt ′(y), ytt ′(x) resp.

Since we are able to take finite intersection of open T -intervals in the totally ordered set T , we may extend the foregoing
to finite chains of 0 < x1 < x2 < · · · < xn, n ≥ 3.
Observe that the axioms allow that non-interacting elements, i.e. x such that 0 < x < 1 is the only order relation it is

involved in, may appear and disappear momentarily. Here disappearing means going to 0 under all ϕtt ′ , t ≤ t ′, if x ∈ Λt .
Very often properties studied are only preserved in some T -interval, in particular this happens oftenwhen trying to derive

a property of a related system from another one thatmay be globally defined for T . This leads to an interesting phenomenon,
already encoding some aspect of the moment-spaces to be defined later.
The DNT axioms are set-theoretical properties phrased in terms of noncommutative Λt and disregarding where these

come from and how the transition maps ϕtt ′ are obtained. When trying to construct such systems for Λt deriving from
noncommutative algebras it is immediately clear that it is not that easy to realize the main axiom making everything
expressible in temporal points. In the noncommutative algebraic geometry checking that something is a point comes down
to checkingwhether a certain localization is corresponding to a prime torsion theory: to guarantee that a certain localization
becomes a prime localization under some transition mapmay not be a very restricting condition but it is hard to verify. This
should be easier in situations where some extra information is available from some associated commutative objects e.g.
for almost commutative algebras (including Weyl algebras, rings of differential operators or varieties, . . . ) the quantum-site
obtained by passing to microlocalizations (by completing localizations suitably) yields a commutative topology, see [1] for
detail. On the other hand dealing with systems of Noetherian algebras presents no problem because for such rings every
torsion theory is covered by prime torsion theories. It is important to keep in mind that in general points are in C(Λt) not
in Λt and DNT will afterwards be viewed as systems of generalized Stone spaces; this explains also the introduction of
traditional system in 3.1. hereafter.

2.4. Definition of observed truth

A statement in terms of finitely many ingredients of a DNT and depending on parametrization by t ∈ T is said to be an
observed truth at t0 ∈ T if there is an open T -interval ]t1, t2[ containing t0, such that the statement holds for parameter
values in this interval. The notion ‘‘statement’’ may be understood in any desired generality, most often wemay understand
it as an expression in some predicate logic. Hereafter the statements are always simple mathematical formulas.
It seems that mathematical statements about a DNT turn into ‘‘observed truth’’ when one tries to check them in the

commutative shadow, meaning on the negative side that many global (over T ) properties of a DNT cannot be established
globally over T in the commutative world.
The noncommutative topologies Λt considered in the sequel will be such that ∨ is commutative and ∨ of arbitrary

families exist; in fact one may restrict to so-called ‘‘virtual topologies’’ as introduced in [7]; here we do not need to assume
axiom (v) with respect to global covers, we may want to restrict to this case when needed. We refer to the special case
mentioned as a DVT.

2.5. Proposition

Let {Λt , ϕtt ′ , T } be a DVT and let SL(Λt) be the commutative shadow of Λt with maps ϕtt ′ : SL(Λt) → SL(Λt ′), t ≤ t ′
in T , just being the restrictions of the ϕtt ′ (using same notation). Then the statement that {SL(Λt), ϕtt ′ , T } is a DVT too is an
observed truth at every t0 ∈ T .

Proof. All ϕtt ′ map∧-idempotents to∧-idempotents, cf. Lemma 2.1., so DNT.1. is obvious. For DNT.2 we have to check that
ϕtt ′ preserves ∧. on id∧(Λt), since ∨. = ∨ now we have nothing to check for ∨. . Look at t0 ∈ T , ϕt0t : Λt0 → Λt and σ , τ in
id∧(Λt0). If σ < τ then ϕt0t(σ ) ≤ ϕt0t(τ ) and ϕt0t(σ )∧. ϕt0t(τ ) = ϕt0t(σ ) = ϕt0t(σ∧. τ), interchange the role of σ and τ in
case τ < σ . So we may assume σ and τ to be incomparable. Restricting t to a suitable T -interval (DNT 5) we may assume
that ϕt0t(σ ) 6= ϕt0t(τ ). Assume ϕt0t(σ∧. τ) < ϕt0t(σ )∧. ϕt0t(τ ).
If ϕt0t(σ∧. ϕt0t(τ ) = ϕt0t(σ )) (a similar argument will hold if σ and τ are interchanged) then ϕt0t(σ ) ≤ ϕt0t(τ ), hence

ϕt0t(σ ) < ϕt0t(τ ). Using DNT.5 again, taking t close enough to t0, we obtain σ∧. τ < σ1 < τ such that ϕt0t(σ∧. τ) <
ϕt0t(σ1) = ϕt0t(σ ) < ϕt0t(τ ). Passing to [t0, t] small enough in order to have unambiguity for ϕt0t(σ ), we arrive at
σ1 = σ , contradicting the incomparability of σ and τ . Therefore we arrive at strict relations: ϕt0t(σ∧. τ) < ϕt0t(σ )∧.
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ϕt0t(τ ) < ϕt0t(σ ), ϕt0t(τ ). We may moreover assume (DNT.3) that t is close enough to t0 so that there is a z ∈ Λt0
such that σ∧. τ < σ, τ and ϕt0t(z) = ϕt0t(σ )∧. ϕt0t(τ ). If z is not ∧-idempotent, then σ∧. τ < z ∧ z < σ would lead
to ϕt0t(z ∧ z) = ϕt0t(σ )∧. σt0t(τ ) because ϕt0t respects ∧ and the latter is idempotent in Λt ; then ϕt0t(z) = ϕt0t(z ∧ z)
but the unambiguity guaranteed by the choice of t close enough to t0 (DNT.5) then yields z = z ∧ z or z ∈ id∧(Λt0).
Thus z = σ∧. τ by definition, a contradiction. Consequently, for t in some small enough T -interval containing t0 we have
obtained:ϕt0t(σ∧. τ) = ϕt0t(σ )∧. ϕt0t(τ ), thus DNT.2 is an observed truth. To checkDNT.3, takeσ < τ in id∧(Λt1), t < t1 such
that z1 ∈ id∧(Λt1) exists such that we have ϕtt1(σ ) < z1 < ϕtt1(τ ). Now by DNT.3. for {Λt , ϕtt ′ , T } there is a z ∈ Λt , z < τ ,
such that ϕtt1(z) = z1, and DNT.5 for (Λt , ϕtt ′ , T }, used as in foregoing part of the proof, yields ϕtt1(z) = z1 with z also ∧-
idempotent inΛt , for t1 close enough to t . The proof of DNT.4 follows in the sameway and DNT.5 is equally obvious because
unambiguity in a suitable T -interval allows to pull back idempotency. Therefore all DNT-axioms hold for {SL(Λt), ϕtt ′ , τ ) in
a suitable T -interval, hence we have the observed truth statement that {SL(Λt), ϕtt ′ , T } is DNT. �

Now fix a notion of point i.e. either minimal point or irreducible point as in Section 1. We say that λt ∈ Λt is a temporal
point if t ∈]t0, t1[ such that for some t ′ ∈]t0, t1[ there is a point pt ′ ∈ Λt ′ such that: either t ≤ t ′ and ϕtt ′(λt) = pt ′ , or t ′ ≤ t
and ϕt ′t(pt ′) = λt ; in the first case we say λt is a future point, in the second case a past point. The system {Λt , ϕtt ′ , T }
is said to be temporally pointed if for every t ∈ T and λt ,∈ Λt there exists a family of temporal points {pα,t;α ∈ T } in
Λt such that λt is covered by it, i.e. λt = ∨{pα,t , α ∈ A}. Write TP (Λt) for the set of temporal points of Λt , if we write
Spec(Λt) = {pt ′ point in Λt ′ , pt ′ defines a temporal point of Λt} then TP (Λt) may also be written as TSpec(Λt) (note
TSpec(Λt) is inΛt but Spec(Λt) not).
We need to build in more ‘‘continuity’’ aspects in the DVT-axioms without using functions or extra assumptions on T e.g.

that it should be a group. A temporary pointed system {Λt , ϕtt ′ , T } is a space continuum if the following conditions hold:

SC.1 There is a minimal closed interval Tt containing t in T such that TSpec(Λt) has support in It . The set of points in Λt ′
with t ′ ∈ It , representing temporary points in Λt is then called the minimal spectrum for TSpec(Λt), denoted by
Spec(Λt , It).

SC.2 For any open T -interval I such that It ⊂ I there exists an open T -interval I∗t with t ∈ I
∗
t , such that for t

′
∈ I∗t we have

It ′ ⊂ I .
SC.3 For intervals [t1, t2] and [t3, t4] we write [t1, t2] < [t3, t4] if t1 ≤ t3 and t2 ≤ t4 (similarly for open intervals). If t ≤ t ′

in T then It < It ′ . This provides an ‘‘orientation’’ of the variation of the minimal spectra!
SC.4 Local Preservation of Directed Sets. For given t ≤ t ′ in It and any directed set At in Λt , the subset {γt ∈ At , there

exists ξt < γt in At such that ϕtt ′(ξt) < ϕtt ′(γt)} is cofinal in At (defines the same limit [At ]). For t ′′ ≤ t in It there is a
directed set At ′′ inΛt ′′ mapped by ϕt ′′t to a cofinal subset of At .

A subset J of T is relative open around t ∈ T if it is intersection of It and an open T -interval. For x = (. . . , xt , . . .) ∈∏
t∈T Λt we put sup(x) = {t ∈ T , xt 6= 0}. We say that such an x is topologically accessible if all xt ′ t ∈ sup(x), are classical

i.e. xt = [χt ] (for some χt ∈ Xt and Λt = C(Xt). In case we do not consider Λt as coming from some Xt the condition
becomes void. An x as before is said to be t-accessible if sup(x) = J is relative open around t and for all t ′ ≤ t ′′ in J we
have ϕt ′t ′′(xt ′) ≤ xt ′′ . WhenΛt has enough points i.e. if It = {t}, then the points in an open for the point topology would be
characterized by {p, p ≤ [χt ]} = U(χt) for some χt ∈ Xt . WhenΛt does not have enough points thenwe have tomodify the
definition of point spectrum and point topology correspondingly. If x = (. . . , xt , . . .) is t accessible and pt ′ ∈ Spec(Λt , It)
then we say pt ′ ∈ x if t ′ ∈ J = sup(x) and there exists an open T -interval J1 ⊂ J with t ′ ∈ J1 such that for t ′′ ∈ J1 we have: if
t ′ ≤ t ′′ then pt ′′ = ϕt ′t ′′(pt ′) ≤ xt ′′ , or if t ′′ ≤ t ′ there is a pt ′′ ∈ Λt ′′ such that ϕt ′′t ′(pt ′′) = pt ′ , pt ′′ ≤ xt ′′ , i.e. {pt ′′ , t ′′ ∈ J1} is
the restriction of a temporal point representing pt ′ defined over a bigger T -interval ]t0, t1[ containing both t ′ and t (note: J1
need not contain t).

2.6. Theorem

The empty set together with the sets Ut(x) = {pt ′ , pt ′ ∈ x for some t ′ ∈ It} ⊂ Spec(Λt , It), x being t-accessible in∏
t∈T Λt , form a topology on Spec(Λt , It), called spectral topology at t ∈ T .

Proof. Consider x 6= y both t-accessible with respective T -intervals J , resp. J ′ contained in It . If pt ′ ∈ Ut(x) ∩ Ut(y) then
t ′ ∈ J ∩ J ′ and for every t1 ∈ J , pt1 ≤ xt1 , for every t2 ∈ J

′, pt2 ≤ yt2 . Of course the interval J ∩ J
′ is relative open around t . If

t ′ ≤ t ′′ with t ′′ ∈ J ∩ J ′ then ot ′′ = ϕt ′t ′′(pt ′) is idempotent inΛt ′′ because pt ′ is inΛt ′ as it is a point. Hence we obtain:

pt ′′ = pt ′′ ∧ pt ′′ ≤ xt ′′ ∧ yt ′′ .

Obviously for all t ′′ ≤ t ′′′ in J ∧ J ′ we do have: ϕt ′′t ′′′(xt ′′ ∧ yt ′′) ≤ xt ′′′ ∧ yt ′′′ . On the other hand, for t ′′ ≤ t ′ we obtain:
ϕt ′′t ′(pt ′′) = pt ′ and therefore pt ′ ≤ ϕt ′′t ′(xt ′′) ≤ xt ′ , as well as pt ′ ≤ ϕt ′′t ′(yt ′′) ≤ yt ′ . Hence, again by idempotency of pt ′ in
Λt ′ we arrive at pt ′ ≤ xt ′ ∧ yt ′ . By restricting J ∩ J ′ to the interval obtained by allowing only those t ′′ ≤ t ′ which belong to
an (open) unambiguity interval for pt ′ we arrive at a relative open around t , say J ′′ ⊂ J ∩ J ′, containing t ′.
Now for pt ′′ with t ′′ ∈ J ′′ it follows that pt ′′ is idempotent because both pt ′′ and pt ′′ ∧ pt ′′ map to pt ′ via ϕt ′′t ′ for t ′′ ≤ t ′

(other t ′′ in J ′′ are no problem). Thus for t ′′ in J ′′ we do arrive at pt ′′ ≤ xt ′′ ∧ yt ′′ . Define w by putting wt ′′ = xt ′′ ∧ yt ′′ for
t ′′ ∈ J ′′. Clearly,w is t-accessible and pt ′ ∈ Ut(w). Conversely if pt ′ ∈ Ut(w) then pt ′ ∈ Ut(x)∩Ut(y) is clear because J ′′ used
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in the definition of w is open in J ∩ J ′. Now we look at a union of Ui,t = Ut(xi) for i ∈ J and each xi being A-accessible with
corresponding relative open interval Ji in It . Define w over the ‘‘interval’’ J = ∪i{Ji, i ∈ J} by putting wt = ∨{xi,t , i ∈ J}
for t ∈ J . It is clear that J is relative open around t and for all t1 ≤ t2 in J we have ϕt1t2(wt1) ≤ wt2 because ϕt,t2 respects
arbitrary ∨. Now pt ′ ∈ w means that pt ′′ ≤ ∨{xi,t ′′ , i ∈ J} for t ′′ in some relative open containing t ′, say J1 ⊂ J . We use
relative open sets in T because It was closed and there are two situations to consider concerning t ′ ∈ It . First if t ′ is the
lowest element of It then for all t ′′ ∈ J1 we have that pt ′′ = ϕt ′t ′′(pt ′) ≤ ϕt ′t ′′(∨{xi,t ′ , i ∈ J}) and for all t ′ ≤ t1 ≤ t ′′ we also
obtain: pt1 ≤ ϕt ′t1(∨{xi,t ′ , i ∈ J}) and pt ′′ ≤ ϕt1t ′′(∨{xt,t1 , i ∈ J}). Otherwise, if t ′ is not the lowest element of It then we
may restrict J1 to be an open interval ]t0, t ′0[ containing t

′ with t0 ∈ J . The same reasoning as in the first case yields for all
t ′′ ∈]t0, t ′0[ so that: pt ′′ ≤ ϕt0t ′′(∨{xi,t0 , τ ∈ J}) and for any t ′ ≤ t1 ≤ t ′′pt ′′ ≤ ϕt1t ′′(∨{xi,t1 , i ∈ J}) = ∨{ϕt1t ′′(xi,t1), i ∈ J}.
Since t ′ ∈ J1 we obtain pt ′ ≤ ∨{ϕt1t ′(xi,t1), i ∈ J} for all t1 ∈ [t0, t

′
].

Since pt ′ is a point in Λt ′ there is an i0 ∈ J such that pt ′ ≤ ϕt0t ′(xi0,t0) and therefore we have that pt ′ ≤ ϕt1t ′(xi0,t1) with
t1 ∈ [t0, t ′], the gain being that i0 does not depend on t1 here! Now for t ′′ ≥ t ′ in J1 ∩ Ji0 (note that this is not empty because
xi0 is nonzero at t0 because pt ′ ≤ ϕt0t ′′(xi0,t0) would then make pt ′ zero and we do not look at the zero (the empty set) as a
point ofΛt ) we obtain:

pt ′′ = ϕt ′t ′′(pt ′) ≤ ϕt ′t ′′(xi0,t ′) ≤ xi0,t ′′ . (∗)

In the other situation t ′′ ≤ t ′ in J1 ∩ Ji0 we have ϕt ′′t ′(pt ′′) = pt ′ , ϕt ′′t ′(xi0,t ′′) ≤ xi0,t ′ . By restricting J1 ∩ Ji0 further so that
the t ′′ ≤ t ′ are only varying in an (open) unambiguity interval for pt ′ , say J2 ⊂ J1 ∩ Ji0 , we arrive at one of two cases: either
pt ′′ = xi0,t ′′ or else pt ′′ 6= xi0,t ′′ and also pt ′ < xi0,t ′ . In the first case pt ′ ∈ xi0 follows because pt1 = ϕt ′′t1(xi0,t ′′) ≤ xi0,t1 for
t1 in ]t ′′, 1[ ∩ J2, the latter interval containing t ′ is relative open again. In the second case we may look at pt ′ < xi0,t ′ < 1,
hence there exists a zt ′′ such that pt ′′ < zt ′′ < 1 and ϕt ′′t ′(zt ′′) = xi0,t ′ . Again we have to distinguish two cases, first
ϕt ′′t ′(xi0t ′′) = xi0,t ′ or ϕt ′′t ′(xi0,t ′′) < xi0,t ′ .
In the first case zt ′′ and xi0,t ′′ map to the same element via ϕt ′′t ′ , hence up to restricting the interval further such that t

′′

stays within an unambiguity interval for xi0,t ′ , we may conclude zt ′′ = xi0,t ′′ in this case and then pt ′′ < xi0,t ′′ . In the second
case we may look at: pt ′ ≤ ϕt ′′t ′(xi0,t ′′) < xi0,t ′ < 1 (where the first inequality stems from (∗) above). Again restricting
the interval further (but open) we find a z ′t ′′ in Λt ′′ such that xi,t ′′ < z ′t ′′ < 1 such that ϕt ′′t ′(z ′t ′′) = xi0,t ′ . Since we are
dealing with the case pt ′′ 6= xi0,t ′′ and we are in an unambiguity interval for pt ′ it follows that pt ′ < ϕt ′′t ′(xi0,t ′′). Look at:
pt ′ < ϕt ′′t ′(xi0,t ′′) < xi0,t ′ with ϕt ′′t ′(pt ′′) = pt ′ and ϕt ′′t ′(z

′

t ′′) = xi0,t ′ ; by restricting the interval (open) further if necessary
we obtain the existence of z ′′t ′′ such that, pt ′′ < z

′′
′′ < z ′t ′′ such that ϕt ′′t ′(z

′′

t ′′) = ϕt ′′t ′(xi0,t ′′). Finally restricting again the
t ′′ ≤ t ′ to vary in an unambiguity interval for ϕt ′′t ′(xi0,t ′′) it follows that z

′′

t ′′ = xzi0,t ′′ and hence z
′′

t ′′ ≥ pt ′′ yields xi0,t ′′ ≥ pt ′′
for t ′′ in a suitable relative open around t containing t ′. This also in the case we arrive at pt ′ ∈ xi0 or pt ′ ∈ Ut(xi0). It follows
that Ut(w) = U{Ui,t , i ∈ J} establishing that arbitrary unions of opens are open. By taking Ut(1) we obtain the whole
spectrum at t as an open too. �

In case a DNTwould be obtained from a systemof algebramorphisms in some suitable systemof algebras the constructed
moment spaces need not correspond to algebra spectra so one should not expect that some commutative algebras or
algebras with a commutative geometry (for example twisted homogeneous coordinate rings) are approximating the
noncommutative algebras definingΛt , t ∈ T .

2.7. A possible relation to M-theory?

In noncommutative topology and derived point topologies the gen-topology appears naturally (and it is a classical
i.e. commutative topology (cf. [1])). Moreover continuity in the gen-topology also appears naturally in noncommutative
geometry of associative algebras butwedid not ask theϕtt ′ in theDNT-axioms to be continuous in the gen topology. However
onemay prove that in general ‘‘continuity of the ϕtt ′ in the gen-topologies ofΛt resp.Λt ′ is an observed truth! Consequently
for t ′ close enough to t the ϕtt ′ is continuous with respect to the gen-topologies (cf. [7]).
In themathematical theory allΛt may be different and there is no reason to aim at SL(Λt) nor Spec(Λt , It) to be invariant

under t-variation. From the point of view of Physics one may reason that only one case is important i.e. the case we see as
‘‘reality’’. This being the utmost special case it is then not far-fetched to assume that the dynamic noncommutative space
has as commutative shadow the abstract mathematical frame we reason in about reality. for example identified with 3-
or 4-dimensional space or space–time. Moreover there should be an observational mathematical frame where calculations
about measurements are executed, thus we let Spec(Λt , It) be identified to an 11-dimensional space (forM-theory) or any
other one fitting physical interpretations in some theory one chooses to believe in. An observed point in Spec(Λt , It) is
then given by a string of elements say pt ′ ∈ Λt ′ , t ′ ∈ J ⊂ It with pt ∈ Λt a temporal point. If pt ′ is a point then for all
t ′ ≤ t ′′, ϕt ′t ′′(pt ′) is idempotent so appears in the commutative shadow SL(Λt ′′). Hence an observed point in Spec(Λt , It)
appears as a string in the base space SL(Λt ′′)(t ′ ≤ t ′′), identified with n-dimensional space but the string may ‘‘start after’’ t
when the point was ‘‘observed’’. On the other hand, the assumption that the system (Λt , ϕtt ′ , T } is temporally pointed leads
to a decomposition of of every pt ′ into temporal points of Λt ′ realizing it as an open of Spec[Λt ′ , It ′ ]. Thus in the spectral
space (identified with a certain m-dimensional space say), the observed point appears as a ‘‘string’’ connecting opens i.e. a
possibly more dimensional string that can be thought of as a tube. The difference between the dimensionsm and n has to be
accounted for by the ‘‘rank’’ of T (e.g. if T were a group likeRd

+
, dwould be the rank) which allowed to create the extra points
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in Spec(Λt , It)when compared to SL(Λt). Note that evenwhen the ϕtt ′ do not necessarily definemaps between Spec(Λt , It)
and Spec(Λt ′ , It ′) or between SL(Λt) and SL(Λt ′), the given strings at theΛt-level do define sequences of elements or opens
in the Spec(Λt , It) resp. SL(Λt) that may be viewed as strings, resp. tubes. Two more intriguing observations:

(i) Identifying Spec(Λt , It) to one fixed commutative world and SL(Λt) to another allows strings and tubes to be open or
closed.

(ii) Only temporal points corresponding to future points can be non-idempotent, therefore all noncommutativity is due to
future points and uncertainty may be seen as an effect of the possibility that the interval needed to realize the temporal
point pt by a point pt ′′ ∈ Λt ′′ for t ≤ t ′′ is larger than the unambiguity interval for pt ′′ . Passing from a commutative
frame (SL(Λ)) to noncommutative (dynamical) geometry and phrasing theories and calculations in Spec(Λt , It) at the
price of having to work in higher dimension seems to fit quantum theories. Of course this is at the level of mathematical
formalism, for suitable interpretationswithin physics the physical entity connected to the notion of point in Spec(Λt , It)
should be the smallest possible, i.e. a kind of building block of everything, so that observing it as a point in the moment
spaces is acceptable; that these points are mathematically described as strings or higher-dimensional strings via the
noncommutative geometry is a ‘‘Deus exMachina’’ pointing at an unsuspected possibility of embeddingM-theory in our
approach. No further speculation about this here, perhaps specialists in string theory may be interested in investigating
further this formal incidence.

3. Moment presheaves and sheaves

Continuing the point of viewput forward in the short introduction to Section 2, points ormore precisely functions defined
in a set theoretic spirit, should be replaced by a generalization of ‘‘germs of functions’’ obtained from limit constructions
in classical topology terms to noncommutative structures. Thus the notion of point is replaced by an avatar of the notion
‘‘stalk’’ of a given sheaf, more correctly when different (pre)sheaves over a noncommutative space are being considered,
say with values in some nice category of objects C, then a ‘‘point’’ is a suitable limit functor on C-objects generalizing the
classical construction of localization (functor) at a point. Assuming that a suitable topological space and satisfactory sheaf
of ‘‘functions’’ on it have been identified, satisfactory in the sense that it allows to study the desired geometric phenomena
one is aiming at, then the notion of point via stalks should be suitable too. For example, prime ideals would be identified
via stalks of the structure sheaf of a commutative Noetherian ring without having to check a primeness condition of the
corresponding localization functor. More on the definition of noncommutative geometry via (localization) functors can be
found in [1] where it is introduced as a functor geometry over a noncommutative topology, also [8] and [10].
In this section we fix a category C allowing limits and colimits; we might restrict to Abelian or even Grothendieck

categories but that is not essential. In fact, the reader who wants to fix ideas on a concrete situation may choose to work in
the category of abelian groups.
For every t ∈ T ,Γt is a presheaf over Λt and for t ≤ t ′ in T there is a φtt ′ : Tt → Tt ′ , defined by morphisms in C as

follows:

(i) For λt ∈ Λt there is a φtt ′(λt) : Γt(λt)→ Γt ′(ϕtt ′(λt))
(ii) for µt ≤ λt inΛt we have commutative diagrams in C:

where we have written λt ′ , µt ′ for ϕtt ′(λt), resp. ϕtt ′(µt) and ρtλt′µt for the restriction morphism of Γt .
(iii) φtt(λt) = IΓt (λt ) for all t ∈ T , and for t ≤ t

′ and let t ′ ≤ t ′′ we have φt ′t ′′(φtt ′(Tt(λt))) = φtt ′′(Tt(λt)) for all λt ∈ Λt .

The system {Γt , φtt ′ , T } is called a (global) dynamical presheaf over the DNT {Λt , ϕtt ′ , T }.
Since sheaves on a noncommutative topology do not form a topos it is a problem to define a suitable sheafification i.e.:

can a presheafΓ onΛ be sheafified to a sheaf aΓ on the sameΛ via a suitable notion of ‘‘stalk’’, then allowing interpretations
in terms of ‘‘points’’? In fact, the axioms of DNT allow to give a solution to the sheafification problem at the price that the
sheaf aΓt has to be constructed over Spec(Λt , It)!
There are categorical methods of sheafification and a general theory of pretopologies and sieves does exist. In [7] we

point out some differences between different sheafifications, however when striving for a decent replacement for the use
of functions as well as sufficient level of geometric intuition in terms of ‘‘points’’ those general techniques do not yield the
desired structural results. The usefulness of our approach is highlighted by Theorem 3.4. expressing what I would call the
commutative approximation property of the moment spaces in terms of sheaf theory.
From hereon we let Λ = {Λt , ϕtt ′ , T } be a temporally pointed system which is a space continuum. We refer to

Yt = Spec(Λt , It)with its spectral topology as themoment space at t ∈ T .
For pt ′ ∈ Yt wemay calculate (in C): Γt ′,pt′ = lim−→ Γt ′(xt)where lim−→ is over xt ′ ∈ Λt ′ such that pt ′ ≤ xt ′ , and where

x = (. . . , xt , . . .) is t-accessible, in fact we have pt ′ ∈ x. In the foregoingwe did not demandΛ to derive from a system X and
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passing from Xt toΛt as a generalized Stone space or pattern topology via C(Xt). We preferred not to dwell upon the formal
comparison of dynamical theories for the Xt and the Λt . In order to keep trace of a possible original Xt if it was considered
in the construction ofΛt one may if desired use the following.

3.1. Definition

We say that ut ∈ Λt is classical if ut = [χt ] for χt ∈ Xt . If ut is classical then there is an open interval containing t in T ,
say L, such that for every t ′ ∈ L we have that ut ′ is classical, where for t ≤ t ′ we have ut ′ = ϕtt ′(ut) and for t ′ ≤ t, ut ′ is a
suitably chosen representative for ut , ϕt ′t(ut ′) = ut . Restricting further to an unambiguity interval of ut , the representations
ut ′ for t ′ in that interval are unique. Since points of Xt are by definition elements in C(Xt), the filter in Λt defined by that
point has a cofinal directed subset of classical elements. When in {Λt , ϕtt ′ , T } we restrict attention to classical x, i.e. every
xt classicalΛt , then we say that we look at a traditional system.

3.2. Lemma

For a traditional space continuum with dynamical presheaf {Γt , φtt ′ , T }, the stalk for pt ′ ∈ Yt of Γt ′ is exactly Γt ′,pt′ as
defined above.

Proof. In calculating lim−→{Γt ′(ut ′), pt ′ ≤ ut ′}wemay restrict to classical ut ′ inΛt ′ . It now suffices to establish the existence
of a t-accessible y such that pt ′ ∈ y and yt ′ ≤ ut ′ . From pt ′ ∈ Ut(x) we obtain (. . . , xt ′ , . . .) with a relative open T -interval
J, t ′ ∈ J , such that pt ′′ ≤ xt ′′ for every t ′′ ∈ J . Since ut ′ and xt ′ are classical, so is ut ′ ∧ xt ′ and moreover pt ′ ≤ ut ′ ∧ xt ′ because
pt ′ is a point inΛt ′ (hence idempotent!). Let J1 be an open T -interval containing t ′ such that ut ′ ∧ xt ′ has a representative ut ′′
inΛt ′′ such that ϕt ′′t ′ = ut ′ ∧ xt ′ . Since xt ′ 6= ut ′ ∧ xt ′ may be assumed (otherwise put y = x) we arrive at pt ′′ ≤ ut ′′ < xt ′′ .
Using the intersection of J1 and the interval around t ′ allowing to select classical ut ′′ , call this interval J2, we put yt ′′ = ut ′′
for t ′′ ≤ t ′ in J2 and yt1 = xt1 for t

′ < t1 in J . Then y is t-accessible with respect to the relative open T -interval around t just
defined: we have yt ′ ≤ ut ′ and pt ′ ∈ y. Consequently: lim−→pt′ ≤ut′ Γt ′(ut ′) = lim−→pt′ ∈x Γt ′(xt ′). �

In the sequel we assume objects in C are sets but let us even restrict to abelian groups. Again let {Γt , φtt ′ , T } be a
dynamical presheaf over a traditional space continuum. On Yt we define a presheaf, with respect to the spectral topology,
by taking for P (Ut(x)) the abelian group in

∐
t ′∈It Γt

′(xt ′) formed by strings over sup(x) = {t ′ ∈ It , xt ′ 6= 0}. i.e.
{γt ′ , t ′ ∈ sup(x), φt ′′t ′(γt ′′) = γt ′ for t ′′ ≤ t ′ in sup(x)}. Let us write x < y if xt ′ ≤ yt ′ for all t ′ in It , in particular
x < y means sup(x) ⊂ sup(y). In sheaf theory sections are usually defined over non-empty opens, here it would mean
to exclude the o ∈ Λt at every t , and it makes sense to do that here as well. However one may define at every t ′ ∈ T ,
Γt ′(0) = lim−→{Γt ′(xt ′), xt ′ classical inΛt ′} and all statements made in the sequel will remain consistent, hence we may
disregard the special role of owithout harm. in the sequel.
If x < y thenwehave restrictionmorphismsρt

′

yt′ ,xt′
, : Γt ′(yt ′)→ Γt ′(xt ′). Commutativity of the diagrams in the beginning

of the section yield corresponding morphisms on the strings over the respective supports: ρy,x : P (Ut(y)) → P (Ut(x)).
For a point pt ′ we let η(pt ′) be the set of Ut(x) such that we have pt ′ ∈ Ut(x) i.e. pt ′ ∈ x; in particular t ′ ∈ Jx where Jx is
the relative open around t in the definition of x and consequently: t ′ ∈ ∩{sup(x), η(pt ′) contains Ut(x)}. For the dynamical
sheaf theory we may want to impose coherence conditions on the system assuming some relations between Γt ′′ and Γt ′ if
t ′ and t ′′ are close enough in T . We shall restrict here to only one extra assumption, in some sense dual to the unambiguity
interval assumption for the underlying DNT.

3.3. Definition

The dynamical presheaf {Γt , φtt ′ , T } on a traditional space continuum is locally temporally flabby at t ∈ T if for t-
accessible x such that pt ′ ∈ x and st ′ ∈ Γt ′(xt ′) there exists a t-accessible y < x with pt ′ ∈ y and a string s ∈ P (Ut(y))
such that st ′ = ρt

′

xt′ ,yt′
(st ′).

3.4. Theorem

To a dynamical presheaf on a traditional space continuum there corresponds for every t ∈ T a presheafPt on themoment
space Spec(Λt , It) with its spectral topology given by the Ut(x) for t accessible x. In case all Γt ′ , t ′ ∈ It , are separated
presheaves then Pt is separated too. The sheafification aPt of Pt on the moment space Spec(Λt , It) = Yt is called the
moment sheaf of spectral sheaf at t ∈ T . In case the dynamical presheaf is locally temporally flabby (LTF) then for any
point pt ′ ∈ Yt the stalk Pt,pt′ may be identified with Γt ′,pt′ .
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Proof. At every t ∈ T , Pt is the spectral presheaf constructed on Spec(Λt , It) with its spectral topology. Now suppose all
Γt are separated presheaves and look at a finite cover Ut(x) = Ut(x1) ∪ · · · ∪ Ut(xn) and a γ ∈ Γt(Ut(x)) such that for
i = 1, . . . , n, ρx.xi(γ ) = 0. We have seen before that the union Ut(x1)∪ · · · ∪Ut(xn) corresponds to the t accessible element
x1 ∧ · · · ∧ xn obtained as the string over sup(x1) ∧ · · · ∧ sup(xn) given by the x1,t ′ ∪ · · · ∪ xn.t ′ in Λt ′ . For all t ′ ∈ sup(x)
we obtain, in view of the compatibility diagrams for restrictions and φt ′t ′′ , t ′ ≤ tn : ρt

′

xt′ ,xi,t′
(γt ′) = 0, for i = 1, . . . , n. The

assumed separatedness of Γt ′ , for all t ′ then leads to γt ′ = 0 for all t ′ ∈ sup(x) and therefore γ = 0 as a string over sup(x).
Consequently Pt is separated, for all t ∈ T . In order to calculate the stalk at pt ′ ∈ Spec(Λt , It) for Pt we have to calculate:
lim−→pt′ ∈x Γt(Ut(x)) = Et ′ .
Starting with pt ′ ∈ x for some t-accessible x we have a representative γx ∈ Γt(Ut(x)) being a string over sup(x) and

the latter containing a relative open J(x) around t containing t ′. So an element et ′ in Et ′ may be viewed as given by a direct
family {γx, pt ′ ∈ x, ρx,y(γx) = γy for y < x}. At t ′, which is in sup(x) for all x appearing in the forgoing family (as Ut(x)
varies over η(pt ′)), we obtain {(γx)t ′ , pt ′ ≤ xt ′ , ρt

′

xt′ ,yt′
((γx)t ′) = (γy)t ′} which defines an element of Γt ′,pt′ , say et ′ . We have

a well-defined map πt ′ : Et ′ → Γt ′,pt′ , et ′ 7→ et ′ . Without further assumptions we therefore arrive at a sheaf aPt with stalk
Et ′ at pt ′ and a presheaf map Pt → aPt which is ‘‘injective’’ in case all Γt ′′ are separated. Now we have to make use of the
locally temporally flabbiness (LTF). Look at a germ st ′ ∈ (Γt ′)pt′ . In view of Lemma 3.2. there exists a t-accessible x such that
st ′ ∈ Γt ′((xt ′))with pt ′ ∈ x, in particular pt ′ ≤ xt ′ .
The LTF-condition allows to select a t-accessible y < x with pt ′ ∈ y together with a string, Es(y) ∈ P (Ut(y)) such that
Est ′(y) = ρt

′

xt′ ,yt′
(st ′). The element et ′ in Et ′ defined by the directed family obtained by taking restrictions of Est ′(y)has et ′ exactly

st ′ (note that t ′ supports all the restrictions of Est ′(y) because y varies in η(pt ′)). Thus πt ′ : Et ′ → Γt ′,pt′ is epimorphic. If et ′
and e′t ′ have the same image under πt ′ then there is a t-accessible y such that et ′ − e

′

t ′ is represented by the zero-string over
sup(y); in fact this follows by taking st ′ = 0 in the foregoing. Leading to a t-accessible y as above that may be restricted to a
t-accessible y′ defined by taking for sup(y′) the relative open J containing t ′ in the support of ywhere Est ′(y) = 0. Therefore,
πt ′ is also injective. �

Can one avoid a condition like LTF in the foregoing theorem? It seems that the idea of ‘‘germ’’ appearing in the notion
of stalks spatially needs an extension in the temporal direction, so probably some condition close to LTF is really necessary
here.

4. Some remarks on spectral families and observables

Let Γ be any totally ordered abelian group. On a noncommutative topology Λ we define a Γ -filtration by a family
{λα, α ∈ Γ } such that for α ≤ β in Γ , λα ≤ λβ in Λ and ∨{λα, α ∈ Γ } = 1. A Γ -filtration is said to be separated if from
γ = inf{γα, α ∈ A} in Γ it follows that λγ = ∧{λα, α ∈ A} and 0 = ∧{λγ , γ ∈ Γ }. A Γ -spectral family in Λ is just a
separated Γ -filtration, it may be seen as a map F : Γ → Λ, γ 7→ λγ , where F is a poset map satisfying the separatedness
condition. Note that by definition the order in ∧{λγ , γ ∈ Γ } does not matter but λγα need not be idempotent inΛ. Taking
Γ = R+ and Λ = L(H) the lattice of a Hilbert space H , we recover the usual notion of a spectral family. We say that a
Γ -spectral family onΛ is idempotent if λγ ∈ id∧(Λ) for every γ ∈ Γ .

Observation If Γ is indiscrete, i.e. for all γ ∈ Γ , γ = inf{τ , γ < τ } (example Γ = Rn
+
), then every Γ -spectral family is

idempotent.

4.1. Proposition

With notation as above:

(i) Let us consider a Γ -spectral family onΛ, then for γ , τ ∈ Γ : λγ ∧ λτ = λτ ∧ λγ = λδ , where δ = min{τ , γ }.
(ii) If the Γ -spectral family is idempotent then for γ , τ ∈ Γ , λγ ∧ λτ = λτ ∧ λγ and the Γ -spectral family on Γ is in fact a

Γ -spectral family of the commutative shadow SL(Λ).

Proof. Easy enough. �

A filtration F on a noncommutativeΛ is said to be right bounded if λγ = 1 for some γ ∈ Γ , F is left bounded if λδ = 0
for some δ ∈ Γ .
For a right bounded Γ -filtration F : Γ → Λ we may define for every µ ∈ Λ the induced filtration F |µ : Γ → Λ(µ)

where we use µ = 1∧(µ), Λ(µ) = {λ ∈ Λ, λ ≤ µ}. Note that F |µ need not be separated whenever F is, indeed if
δ = inf{δα, α ∈ A} in Γ then λδ = ∧{λδα , α ∈ A} in Γ then λδ = ∧{λδα , α ∈ A} but µ ∧ λδ , and ∧{µ ∧ λα, α ∈ A} need
not be equal in general.
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4.2. Proposition

If F defines a right bounded Γ -spectral family onΛ then F |µ is a spectral family ofΛ(µ) in each of the following cases:

a. µ ∈ id∧(Λ) and µ commutes with all λα, α ∈ Γ .
b. µ ∧ λα is idempotent for each α ∈ Γ .

Proof. Easy and straightforward. �

An element µwith property a. as above is called an F-centralizer ofΛ.

4.3. Corollary

In caseΛ is a lattice then for everyµ ∈ Λ a right boundedΓ -spectral family ofΛ induces a right bounded spectral family
onΛ(µ).
Let F be a Γ -spectral family on a noncommutativeΛ. To λ ∈ Λ associate σ(λ) ∈ Γ ∪{∞}where σ(λ) = inf{γ , λ ≤ λγ }

and we agree to write infφ = ∞. The map σ : Λ→ Γ ∪ {∞} is a generalization of the principal symbol map in the theory
of filtered rings and their associated graded rings. We refer to σ as the observable function of F .

Clearly : σ(λ ∧ µ) ≤ min{σ(λ), σ (µ)}
σ(λ ∨ µ) ≤ max{σ(λ), σ (µ)}.

The domain of σ is ∪{[0, λγ ], γ ∈ Γ } and observe that ∨{λγ , γ ∈ Γ } = 1 does not imply that D(σ ) = Λ (can even be
checked for Γ = R+,Λ = L(H)).
If F : T → L(H) is a Γ -spectral family and V ⊂ H a linear subspace, then we may define γ∨ ∈ Γ , γV = inf{γ ∈ Γ ,⊂

L(H)γ }, again putting infφ = ∞. The map ρ : L(H)→ Γ ∪ {∞},U 7→ ρ(U) = γU is well-defined. One easily verifies for ∪
and ∨ in H:

ρ(U + V ) ≤ max{ρ(U), ρ(V )}
ρ(U ∩ V ) ≤ min{ρ(U), ρ(V )}.

The function ρ defines a ρ defined on H by putting ρ(x) = ρ(Cx). We denote ρ again by ρ and call it the pseudo-place of
the Γ -spectral family. Then any Γ -spectral family defines a function on the projective Hilbert space P(H) described on the
lines in H by ρ : P(H)→ Γ ,Cv 7→ ρ(Cv), where we wrote Cv for Cv as an object in P(H).
The pseudo-place aspect of ρ translates to ρ in the following sense: Cw ⊂ Cv + Cu, then we have ρ(Cw) ≤

max{ρ(Cv), ρ(Cu)}.
A linear subspace U ⊂ H such that P(U) ⊂ ρ−1(] −∞, γ ]) allows for u 6= 0 in U : ρ(Cu) ≤ γ i.e. u ∈ L(H)γ . Hence, the

largest U in H such that P(U) is in ρ−1(] − ∞, γ ]) is exactly L(H)γ ; this means that the filtration F may be reconstructed
from the knowledge of ρ. One easily recovers the classical result that maximal abelian Von Neumann regular subalgebras
ofL(H) correspond bijectively to maximal distributive lattices in L(H). Since any Γ -spectral family is a directed set inΛ it
defines an element of C(Λ)which we call a Γ -point. The set of Γ -points ofΛ is denoted [Γ ] ⊂ C(Λ). We may for example
think of [R] ⊂ C(L(H)) as being identified via the Riemann–Stieltjes integral to the set of self-adjoint operators on H .
Let σ : Λ → Γ ∪ {∞} be the observable functions of a Γ -spectral family on Λ defined by F : Γ → Λ. Put

F : C(Λ) → Γ ∪ {∞}, [A] 7→ inf{γ ∈ Γ , λγ ∈ A}, A the filter of A. Then σ̂ is the observable corresponding to
the Γ -filtration on C(Λ) defined by [A]γ , where for γ ∈ Γ ,[A]γ is the class of the smallest filter containing λγ i.e. the
filter {µ ∈ Λ, λγ ≤ µ}. This is clearly a Γ -spectral family because in fact [A]γ < [λγ ]. We define [Γ ] ∩ Sp(Λ) =
Γ−Sp(Λ), [Γ ] ∩ QSp(Λ)[Γ ] ∩ QSp(Λ) = Γ − QSp(Λ) and similarly with p replaced by P when Id∧(C[Λ]) is considered
instead of id∧(C(Λ−)) (see Section 1).
In view of Proposition 4.1(i) a Γ -spectral family is contained in a sublattice (that is with commutative ∧) of the

noncommutative Λ, in fact {λγ , γ ∈ Γ } is such a sublattice. If Ab(Λ) is the set of maximal commutative sublattices
of Λ then every Γ -spectral family in Λ is a Γ -spectral family in some B ∈ Ab(Λ) (B refers to Boolean sector in case
Γ = R+,Λ = L(H)). The above remarks may be seen as a generalization of the result concerning maximal commutative
Von Neumann regular subalgebras inL(H) quoted above.
Γ -spectral families may be defined on the moment spaces Spec(Λt , Tt) in exactly the way described above as filtrations

{Ut(xγ ), γ ∈ Γ }, where each xγ is t-accessible, defining a separated Γ -filtration. For t ′′ ∈ It we may look at Vt(xγ ) =
{pt ′′ , pt ′′ ∈ Ut(xγ )}, again pt ′′ = ϕt ′t ′′(pt ′) or ϕt ′t ′′(pt ′) = pt ′′ depending whether t ′ ≤ t ′′ or t ′′ ≤ t ′. The family
{Vt(xγ ), γ ∈ Γ } need not (!) be a Γ -spectral family at t ′′ ∈ T . A stronger notion of dynamical spectral family may be
obtained by demanding the existence of stringwise spectral families in a relative open T -interval J around t . Then indeed at
t ′′ ∈ J ⊂ I(t) such a stringwise Γ -spectral family induces a γ -spectral family inΛt ′′ but not immediately on Spec(Λt ′′ , Itn)
unless amore stringent relation is put on Itn and its comparisonwith respect to It . We just point out the interesting problems
arising with respect to observables when passing to moment spaces but this is work in progress.
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