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a b s t r a c t

We construct explicit examples of Dirac-harmonic maps (φ, ψ) between Riemannian
manifolds (M, g) and (N, g ′) which are non-trivial in the sense that φ is not harmonic.
When dim M = 2, we also produce examples where φ is harmonic, but not conformal,
and ψ is non-trivial.

© 2009 Published by Elsevier B.V.

1. Introduction

A Dirac-harmonic map is a pair that couples a map between Riemannian manifolds with a nonlinear spinor field along
that map [1]. Dirac-harmonicmaps arise from the supersymmetric nonlinear sigmamodel of quantum field theory [2]. They
are a generalization and combination of harmonic maps and harmonic spinors while preserving the essential properties of
the former.
Both harmonic maps and harmonic spinors have been extensively studied. See, for instance [3,4]. In particular, many non-
trivial examples of harmonic maps and harmonic spinors are known [5–7,3]. A harmonic map and a vanishing spinor, or
conversely a constant map and a harmonic spinor constitute an example of a Dirac-harmonic map. A natural question
then is whether there exist other examples that couple a map and a spinor in a non-trivial manner. The purpose of
this paper therefore is to manufacture non-trivial examples of Dirac-harmonic maps between Riemannian manifolds. For
hypersurfaces in a Riemannian manifold of constant sectional curvature, we prove the following:

Theorem 1. Let M be an n-dimensional manifold which is immersed in an (n + 1)-dimensional Riemannian manifold N(c) of
constant sectional curvature c. AssumeΦ is a harmonic spinor on M, and Ψ ∈ Γ (ΣM) satisfies

− 2cRe〈Φ, Ψ 〉ν = H, (1)

where H is the mean curvature vector field of φ, ν is the unit normal field of φ and ΣM is the spinor bundle of M. We define a
spinor field ψ along the immersion φ by

ψ = Σαεα · Ψ ⊗ φ∗(εα)+ Φ ⊗ ν

where εα is a local orthonormal basis of M.
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(i) If n = 2, φ is minimal and Ψ satisfies

ε1 · ∇ε1Ψ − ε2 · ∇ε2Ψ = λ1Φ (2)

where λ1 is the principal curvature in the principal direction ε1, then (φ, ψ) is Dirac-harmonic.
(ii) If n ≥ 3, φ is totally umbilical and Ψ is a twistor spinor satisfying

6∂Ψ = −
n〈H, ν〉
n− 2

Φ (3)

then (φ, ψ) is Dirac-harmonic.

Using Theorem 1, we can construct many Dirac-harmonic maps (φ, ψ) from Rn into Hn+1(−1) where n ≥ 3 and
φ : Rn → Hn+1(−1) is not harmonic (see Section 5, Example 3).
Finding explicit non-trivial explicit solutions of (2) and (3) turns out to be difficult. However in some special cases, we

are able to get the non-trivial solutions, as in Example 3.
Let us take a look at the following special case of (i) of Theorem 1: when Φ = 0, then (φ, ψ) is Dirac-harmonic if

φ : M → N(c) is minimal and Ψ is a twistor spinor. In fact, in the general case, we have the following:

Theorem 2. Let M be a Riemann surface andN aRiemannianmanifold. Assumeφ : M → N is a harmonicmap andΨ ∈ Γ (ΣM)
is a twistor spinor. We define a spinor field ψφ,Ψ along map φ by

ψφ,Ψ := Σαεα · Ψ ⊗ φ∗(εα) (4)

where εα (α = 1, 2) is a local orthonormal basis of M. Then (φ, ψφ,Ψ ) is a Dirac-harmonic map.

By using Theorem 2, we can manufacture Dirac-harmonic maps (φ, ψφ,Ψ ) from a surface for a (not necessarily
conformal) map φ (see Section 4). Theorem 2 generalizes the result of [1] that was derived for the special case when both
source and target manifolds are two-dimensional spheres.
Finally, by investigating spinor fields along a hypersurface with two constant principal curvatures in a Riemannian

manifold of constant curvature, we get Dirac-harmonic maps (φ, ψ) from surfaces for which φ is not harmonic (see
Sections 6 and 7).
Let us describe our construction. Let M := S1(r) × H1(

√
R2 + r2) be a hyperbolic surface of revolution (see Section 6

for definitions). Let a and b be arbitrary complex constants and m be an arbitrary non-negative integer. For each k ∈
{0, ±1, . . . ,±m}, let ck and dk be complex constants satisfying

Re(ad̄0 + b̄c0) =

√
R2 + r2(R2 + 2r2)

2rR
(5)

and

ad̄k + b̄c−k = 0. (6)

We obtain the following result (see Section 7):

Theorem 3. Let φ : M ↪→ H3(R) be an isometric immersion from M into a hyperbolic space and ψ ∈ Γ (ΣM ⊗ φ−1TH3(R))
defined by

ψ = ε1 · Ψ ⊗ φ∗(ε1)−
r2

R2 + r2
ε2 · Ψ ⊗ φ∗(ε2)+ χ ⊗ ν

where

ν(θ, t) = −

(√
R2 + r2

R
cos

θ

r
,

√
R2 + r2

R
sin

θ

r
,
r
R
sinh

t
√
R2 + r2

,
r
R
cosh

t
√
R2 + r2

)

is a unit normal vector of M, and χ =
(
a
b

)
Ψ (θ, t) = i

√
R2 + r2

rR
t
(
b
a

)
+

m∑
k=−m

ei
k
r θ

(
dke−

k
r t

cke
k
r t

)
are the spinors on M with respect to the ’’untwisted’’ spinor bundle on M satisfying (5) and (6). {ε1, ε2} is a local orthonormal
basis of M such that

ε1(θ, t) =
(
− sin

θ

r
, cos

θ

r
, 0, 0

)
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is a principal curvature
√
R2+r2

rR direction and

ε2(θ, t) =
(
0, 0, cosh

t
√
R2 + r2

, sinh
t

√
R2 + r2

)
is a principal curvature r

R
√
R2+r2

direction. Then (φ, ψ) is a Dirac-harmonic map fromM into H3(R) for which φ is not harmonic.

The proofs of our results are essentially of an algebraic nature. They carefully match the algebraic structure of the
curvature term in the Dirac-harmonic map equation, as displayed in the next section, with the special properties of twistor
spinors or those of particular submanifolds defined in terms of ambient curvature properties in spaces of constant curvature.

2. Dirac-harmonic maps

Let (N, h) be a Riemannian manifold of dimension n′, (M, g) be an n-dimensional Riemannian manifold with fixed spin
structure, ΣM its spinor bundle, on which we have a Hermitian metric 〈·, ·〉 induced by the Riemannian metric g(·, ·)
of M . Let φ be a smooth map from (M, g) to (N, h) and φ−1TN the pull-back bundle of TN by φ. On the twisted bundle
ΣM ⊗ φ−1TN there is a metric (still denoted by 〈·, ·〉) induced from the metrics onΣM and φ−1TN . There is also a natural
connection ∇̃ onΣM⊗φ−1TN induced from those onΣM and φ−1TN (which in turn come from the Levi-Civita connections
of (M, g) and (N, h), resp.).
For X ∈ Γ (TM), ξ ∈ Γ (ΣM), denote by X · ξ their Clifford product, which satisfies the skew-symmetry relation
〈X · ξ, η〉 = −〈ξ, X · η〉 (7)

as well as the Clifford relations
X · Y · ψ + Y · X · ψ = −2g(X, Y )ψ

for X, Y ∈ Γ (TM), ξ, η ∈ Γ (ΣM).
Let ψ be a section of the bundleΣM ⊗ φ−1TN . The Dirac operator along the map φ is defined as

6Dψ := εα · ∇̃εαψ
where εα is a local orthonormal basis ofM . For more details about the spin bundle and Dirac operator, we refer to [8,9].
Set
χ := {(φ, ψ) | φ ∈ C∞(M, N) and ψ ∈ C∞(ΣM ⊗ φ−1TN)}.

On χ , we consider the following functional

L(φ, ψ) :=
1
2

∫
M

[
|dφ|2 + 〈ψ, 6Dψ〉

]∗
1M .

This functional couples the two fields φ andψ because the operator 6D depends on themap φ. The Euler–Lagrange equations
of L(φ, ψ) then also couple the two fields; they are:

τ(φ) = R(φ, ψ) (8)
and

6Dψ = 0 (9)
where τ(φ) := trace∇dφ is the tension field of the map φ andR(φ, ψ) is defined by

R(φ, ψ) =
1
2
Rijkl〈ψ

k, ∇φj · ψ l〉
∂

∂yi
,

where

ψ = ψ i ⊗
∂

∂yi
,

(dφ)] = ∇φi ⊗
∂

∂yi
,

Rφ
−1TN

(
∂

∂yk
,
∂

∂yl

)
∂

∂yj
= Rijkl

∂

∂yi

where ] : T ∗M⊗φ−1TN → TM⊗φ−1TN is the standard (‘‘musical’’) isomorphism obtained from the Riemannian metric g .
Solutions (φ, ψ) to (8) and (9) are called Dirac-harmonic maps fromM into N [10].
We now start with some differential geometric identities: Let εα be a local orthonormal basis ofM . By using the Clifford

relations we have

εα · εβ · ψ = (−1)δαβ+1εβ · εα · ψ =
{
−ψ, α = β
−εβ · εα · ψ, α 6= β

(10)

for ψ ∈ Γ (ΣM).
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Lemma 2.1. R(φ, ψ) ∈ Γ (φ−1TN); in particular, it is real.

Proof. For any (not necessarily orthonormal) frame {εi} on φ−1TN , we put

ψ = ψa ⊗ εa, (11)

(dφ)] = ∇φa ⊗ εa, (12)

Rφ
−1TN(εa, εb)εc = Rdabcεd

where ] : T ∗M ⊗ φ−1TN → TM ⊗ φ−1TN is the musical isomorphism as before. Take

εa = uia
∂

∂yi
,

then

ψ i = uiaψ
a, ∇φi = uia∇φ

a, ujau
k
ba
l
cR
i
jkl = R

d
abcu

i
d.

A simple calculation gives following

Rijkl〈ψ
k, ∇φj · ψ l〉

∂

∂yi
= Rabcd (φ(x)) 〈ψ

c, ∇φb · ψd〉εa (φ(x)) . (13)

It follows that the definition ofR(φ, ψ) is independent of the choice of frame. Moreover, from the skew-symmetry of Rijkl
with respect to the induces k and l, we have

1
2
Rijkl〈ψk, ∇φj · ψ l〉 =

1
2
Rijkl〈∇φ

j
· ψ l, ψk〉

=
1
2
Rijlk〈∇φ

j
· ψk, ψ l〉

= −
1
2
Rijkl〈∇φ

j
· ψk, ψ l〉 =

1
2
Rijkl〈ψ

k, ∇φj · ψ l〉.

It follows thatR(φ, ψ) is well-defined vector field on φ−1TN , i.e,R(φ, ψ) ∈ Γ (φ−1TN). �

A spinor (field) Ψ ∈ Γ (ΣM) is called a twistor spinor if Ψ belongs to the kernel of the twistor operator, equivalently,

∇XΨ +
1
n
X · 6∂Ψ = 0 ∀X ∈ Γ (TM)

where n is the dimension of Riemannian manifold M , ΣM is the associated spinor bundle of M and 6 ∂ is the usual Dirac
operator (cf. [11–13,26]).
In fact the concept of a twistor spinor (in particular, a Killing spinor) is motivated by theories from physics, like general

relativity, 11-dimensional (resp. 10-dimensional) supergravity theory, supersymmetry (see, for example [14–16]).

3. Dirac-harmonic maps from surfaces I

In this section, we consider two-dimensional Riemannian manifolds (M, g). Since a metric on a two-dimensional
Riemannian manifold defines a conformal structure, we then also have the structure of a Riemann surface. In fact, since
the functional L and its critical points, the Dirac-harmonic maps are conformally invariant (see [1]), in our subsequent
considerations, we only need the conformal structure in place of the full Riemannian metric g .

Lemma 3.1. Let Ψ be a section of ΣM. Then 〈εα · Ψ , εβ · εγ · Ψ 〉 is purely imaginary for any α, β, γ where εα (α = 1, 2) is
a local orthonormal basis of M.

Proof. For the Hermitian product 〈·, ·〉 on the spinor bundleΣM , we have

〈εα · Ψ , εβ · εγ · Ψ 〉 = 〈εβ · εγ · Ψ , εα · Ψ 〉

= −〈εγ · Ψ , εβ · εα · Ψ 〉

= −(−1)δαβ+1〈εγ · Ψ , εα · εβ · Ψ 〉

= (−1)δαβ+1〈εα · εγ · Ψ , εβ · Ψ 〉

= (−1)δαβ+1(−1)δγα+1〈εγ · εα · Ψ , εβ · Ψ 〉

= (−1)δαβ+δγα 〈εγ · εα · Ψ , εβ · Ψ 〉

= −(−1)δαβ+δγα 〈εα · Ψ , εγ · εβ · Ψ 〉
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= −(−1)δβγ+1(−1)δαβ+δγα 〈εα · Ψ , εβ · εγ · Ψ 〉

= (−1)δαβ+δβγ+δγα 〈εα · Ψ , εβ · εγ · Ψ 〉 = −〈εα · Ψ , εβ · εγ · Ψ 〉

where we have used (7) and (10). It follows that

Re〈εα · Ψ , εβ · εγ · Ψ 〉 = 0. �

Proposition 3.2. For a map φ : (M, g)→ (N, h) and a spinor Ψ ∈ Γ (ΣM), we define a spinor field ψφ,Ψ along the map by
(4). Then
(i)R(φ, ψφ,Ψ ) ≡ 0;
(ii) 6Dψφ,Ψ = −Ψ ⊗ τ(φ) − 2(∇εαΨ +

1
2εα· 6 ∂Ψ )⊗ φ∗(εα) where εα (α = 1, 2), as always, is a local orthonormal basis

of M.

Remark. (a) The Dirac-harmonicity of (φ, ψφ,Ψ ) implies the harmonicity of φ by (i) and (8).
(b) (∇εαΨ +

1
2εα· 6∂Ψ )⊗ φ∗(εα) is globally defined.

Proof of Proposition 3.2. (i) Define local vector fields ∇φi onM by

∇φi := (dφ)](dyi)

where {dyi} is the natural local dual basis on N . By using (4), we have

ψ i := ψφ,Ψ (dyi) = ∇φi · Ψ .

Set dφ = φiαθ
α
⊗

∂

∂yi
where θα is the dual basis for εα . Then ∇φi =

∑
φiαεα and

〈ψk, ∇φj · ψ l〉 = φkαφ
j
βφ
l
γ 〈εα · Ψ , εβ · εγ · Ψ 〉.

Together with Lemma 3.1, we conclude that Rijkl〈ψ
k, ∇φj · ψ l〉 is purely imaginary. On the other hand, from the proof of

Lemma 2.1, Rijkl〈ψ
k, ∇φj · ψ l〉must be real, and hence

R(φ, ψφ,Ψ ) ≡
1
2
Rijkl〈ψ

k, ∇φj · ψ l〉
∂

∂yi
≡ 0.

(ii) By using (10) we have

∇εαΨ +
1
2
εα· 6∂Ψ = ∇εαΨ +

1
2
εα ·

[
Σεβ · ∇εβΨ

]
=


1
2
(∇ε1Ψ + ε1 · ε2 · ∇ε2Ψ ), α = 1

1
2
(∇ε2Ψ − ε1 · ε2 · ∇ε1Ψ ), α = 2

. (14)

We choose a local orthonormal frame field εα such that ∇εαεβ = 0 at x ∈ M . Then

6Dψφ,Ψ = εβ · ∇̃εβψφ,Ψ

= εβ · ∇̃εβ (εα · Ψ ⊗ φ∗(εα))

= εβ ·
[
∇εβ (εα · Ψ )⊗ φ∗(εα)+ εα · Ψ ⊗∇εβ (φ∗(εα))

]
= εβ ·

[
((∇εβ (εα) · Ψ + εα · ∇εβΨ )⊗ φ∗(εα)+ εα · Ψ ⊗∇εβ (φ∗(εα)))

]
= εβ · εα ·

{
∇εβΨ ⊗ φ∗(εα)+ Ψ ⊗∇εβ (φ∗(εα))

}
= (Σα=β +Σα 6=β)εβ · εα ·

{
∇εβΨ ⊗ φ∗(εα)+ Ψ ⊗∇εβ (φ∗(εα))

}
= (I)+ (II). (15)

where

(I) = εα · εα ·
{
∇εαΨ ⊗ φ∗(εα)+ Ψ ⊗∇εα (φ∗(εα))

}
= −

{
∇εαΨ ⊗ φ∗(εα)+ Ψ ⊗

[
∇εα (φ∗(εα))− φ∗(∇εα (φ∗(εα)))

]}
= −

{
∇εαΨ ⊗ φ∗(εα)+ Ψ ⊗ τ(φ)

}
(16)
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and

(II) = ε1 · ε2 ·
{
∇ε1Ψ ⊗ φ∗(ε2)+ Ψ ⊗∇ε1(φ∗(ε2))

}
+ ε2 · ε1 ·

{
∇ε2Ψ ⊗ φ∗(ε1)+ Ψ ⊗∇ε2(φ∗(ε1))

}
= ε1 · ε2 ·

{
∇ε1Ψ ⊗ φ∗(ε2)−∇ε2Ψ ⊗ φ∗(ε1)+ Ψ ⊗∇ε1(φ∗(ε2))− Ψ ⊗∇ε2(φ∗(ε1))

}
= ε1 · ε2 ·

{
∇ε1Ψ ⊗ φ∗(ε2)−∇ε2Ψ ⊗ φ∗(ε1)

}
(17)

here we have used the following

∇ε1(φ∗(ε2)) = (∇ε1φ∗)(ε2) = (∇ε2φ∗)(ε1) = ∇ε2(φ∗(ε1)).

Substituting (16) and (17) into (15) yields

6Dψφ,Ψ = −
{
∇εαΨ ⊗ φ∗(εα)+ Ψ ⊗ τ(φ)

}
+ ε1 · ε2 ·

{
∇ε1Ψ ⊗ φ∗(ε2)−∇ε2Ψ ⊗ φ∗(ε1)

}
= −Ψ ⊗ τ(φ)− (∇ε1Ψ + ε1 · ε2 · ∇ε2Ψ )⊗ φ∗(ε1)+ (ε1 · ε2 · ∇ε1Ψ −∇ε2Ψ )⊗ φ∗(ε2). (18)

Plugging (14) into (18) yields (ii). �

4. Proof of Theorem 2 and examples

Proof of Theorem 2. By using (i) of Proposition 3.2 and the harmonicity of φ we have

R(φ, ψφ,Ψ ) ≡ 0 ≡ τ(φ).

Thus, (φ, ψφ,Ψ ) satisfies (8). On the other hand, since Ψ is a twistor spinor and n = 2 we get

∇εαΨ +
1
2
εα· 6∂Ψ = 0.

Plugging this into the equation in (ii) of Proposition 3.2 yields 6Dψφ,Ψ = 0. It follows that (φ, ψφ,Ψ ) satisfies (9), and hence
(φ, ψφ,Ψ ) is a Dirac-harmonic map. �

Corollary 4.1. Let ψφ,Ψ be defined by (4) from a branched minimal conformal immersion φ : M ↪→ N and a twistor spinor
Ψ ∈ Γ (ΣM). Then (φ, ψφ,Ψ ) is a Dirac-harmonic map.

This corollary comes from the fact that a conformalmap from a Riemann surface is harmonic if and only if it is a branched
minimal immersion [17]. Say that an almost Hermitian manifold (N, h, J) is (1, 2)-symplectic if

∇
N
Z̄ W ∈ Γ (T

1, 0N) for every Z, W ∈ Γ (T 1, 0N).

Lichnerowicz proved in [18] that any holomorphic map from a cosymplectic manifold to a (1, 2)-symplectic manifold is
harmonic. Since a Riemann surface is automatically cosymplectic, we have the following:

Corollary 4.2. Let ψφ,Ψ be defined by (4) from a holomorphic map φ : M → N and a twistor spinor Ψ ∈ Γ (ΣM) where N is
a (1, 2)-symplectic manifold. Then (φ, ψφ,Ψ ) is a Dirac-harmonic map.

Example 1 (Non-conformal Dirac-harmonic Maps). Suppose that R2 is given the metric ds2 = 2dzdz̄, where z = x+ iy is the
standard complex coordinate, and let e0, . . . , en be a unitary basis of Cn+1. Define φ : R2 → CPn by

φ(z) =

[
n∑
j=0

rj exp(µjz − µjz)ej

]
where r0, . . . , rn are strictly positive real numbers and µ0, . . . , µn are complex numbers of unit modulus satisfying

n∑
j=0

r2j = 1,
n∑
j=0

rjµj = 0.

Then φ is a harmonic map [17,19]. In particular, φ is totally real, and it is conformal if and only if
n∑
j=0

rjµ2j = 0.

Let us consider a twistor spinor Ψ : R2 → ∆2 = C2 on R2 (cf [20]). According to Example 1 of [11] the set of all twistor
spinors on R2 is given by

Ψ (z) = Ψ0 −
1
2
z · Ψ1
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with Ψ0, Ψ1 ∈ ∆2. From Theorem 2, we obtain that (φ, ψφ,Ψ ) is a Dirac-harmonic map from R2 into CPn where

ψφ,Ψ := Σαεα · Ψ ⊗ φ∗(εα)

where εα (α = 1, 2) is a local orthonormal basis ofM . Furthermore, φ is non-conformal if
∑n
j=0 rjµ

2
j 6= 0.

Example 2 (Dirac-harmonic Sequence). For each p = 0, . . . , n, let φp : S2 → CPn be given by

φp[z0, z1] =
[
fp, 0(z0/z1), . . . , fp, n(z0/z1)

]
where [z0, z1] ∈ CP1 = S2, and for r = 0, . . . , n, fp, r(z) is given by

fp, r(z) =
p !

(1+ zz̄)p
√
Cnr z

r−p
∑
k

(−1)kC rp−kC
n−r
k (zz̄)k

where

Cnr =
n(n− 1) · · · (n− r + 1)

r!
.

Then φp is a conformal minimal immersion (therefore it is a harmonic map) with induced metric

ds2p =
n+ 2p(n− p)
(1+ zz̄)2

dzdz̄.

According to Theorem 7 of [11] the twistor spinors on (S2, ds2p) are given by

Ψ (z) =
Ψ0 + z · Ψ1
√
1+ zz̄

where Ψ0, Ψ1 ∈ ∆2 are constants and where we identify the new and old spin bundles as in [11]. Thus we obtain a Dirac-
harmonic sequence (φp, ψφp,Ψ ) from S

2 into CPn (cf. [21]) where

ψφp,Ψ := Σαεα · Ψ ⊗ φp∗(εα).

5. Dirac-harmonic maps from Riemannian manifolds

In this section, we are going to construct Dirac-harmonic maps (φ, ψ) for which φ is not harmonic.
Let (N, h) be a Riemannian manifold of dimension n′, (M, g) be an n-dimensional Riemannian manifold with fixed spin

structure, ΣM its spinor bundle, with induced Hermitian metric 〈·, ·〉. Let φ : M ↪→ N be an isometric immersion which
means that the natural induced Riemannianmetric onM from the ambient spaceN coincideswith the original one onM . We
identifyM with its immersed image in N . For each x ∈ M the tangent space TxN can be decomposed into a direct sum of TxM
and its orthogonal complement T⊥x M . Such a decomposition is differentiable. Thus, we have an orthogonal decomposition
of the tangent bundle TN alongM

TN|M = φ−1TN = TM ⊕ T⊥M.
For a global sectionR(φ, ψ) on φ−1TN (see Section 2), we have

R(φ, ψ) = RT (φ, ψ)+RN(φ, ψ)

where
RT (φ, ψ) ∈ Γ (TM), RN(φ, ψ) ∈ Γ (T⊥M).

Similarly, for 6Dψ ∈ Γ (ΣM ⊗ φ−1TN), we have
6Dψ =6DTψ+ 6DNψ

where
6DTψ ∈ Γ (ΣM ⊗ TM), 6DNψ ∈ Γ (ΣM ⊗ T⊥M).

The mean curvature vector ofM in N is

H =
1
n
τ(φ) ∈ Γ (T⊥M)

where τ(φ) is the tension field of the map φ. Hence we have the following:

Lemma 5.1. Let φ : M ↪→ N be an isometric immersion with the mean curvature vector H and ψ ∈ Γ (ΣM ⊗ φ−1TN). Then
(φ, ψ) is a Dirac-harmonic map from M into N if and only if
(i)RT (φ, ψ) = 0;
(ii)RN(φ, ψ) = nH where n = dim M;
(iii) 6DTψ = 0;
(iv) 6DNψ = 0.
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In this section we shall be using the following ranges of indices:

1 ≤ α, β, . . . ,≤ n, n+ 1 ≤ s, t, . . . ,≤ n′, 1 ≤ i, j, . . . ,≤ n′.

Choose a local frame field {εi} of φ−1TN such that {εα} lies in the tangent bundle TM and {εs} in the normal bundle T⊥M
ofM . By using (12) we have

∇φj =

n∑
α=1

δjαεα. (19)

Plugging (19) into (13) yields

R(φ, ψ) =
1
2
Riαkl (x) 〈ψ

k, εα · ψ
l
〉εi (x) . (20)

Choose a local orthonormal frame field {εα} near x ∈ M with ∇εαεβ |x = 0. By (11) we have

6Dψ = 6D(ψ i ⊗ εi)

= εα · ∇̃εα (ψ
i
⊗ εi)

= εα ·
[
(∇εαψ

i)⊗ εi + ψ
i
⊗∇εαεi

]
= (εα · ∇εαψ

i)⊗ εi + εα ·
[
ψβ
⊗∇εαεβ + ψ

s
⊗∇εαεs

]
= 6∂ψ i ⊗ εi + εα · ψ

s
⊗∇εαεs (21)

at x.
Let Aν be the shape operator and ∇⊥X the normal connection of M in N where X denotes a tangent vector of M and ν a

normal vector toM . Then

∇εαεs = −Aεsεα +∇
⊥

εα
εs. (22)

Let B be the second fundamental form ofM in N . Then B satisfies the Weingarten equation

〈B(X, Y ), ν〉 = 〈Aν(X), Y 〉 (23)

where X, Y ∈ Γ (TM). By using (22) and (23) we have

∇εαεs = −〈B(εα, εβ), εs〉εβ +∇
⊥

εα
εs. (24)

By plugging (24) into (21) we obtain

6Dψ =6∂ψ i ⊗ εi − 〈B(εα, εβ), εs〉εα · ψ s ⊗ εβ + εα · ψ s ⊗∇⊥εαεs. (25)

Let (· · ·)T and (· · ·)N denote the orthogonal projection into the tangent bundle ΣM ⊗ TM and the normal bundle
ΣM ⊗ T⊥M respectively.

Lemma 5.2. Let ψT be defined by

ψT = Σαεα · Ψ ⊗ φ∗(εα)

from an isometric immersion φ : M ↪→ N and a spinor Ψ ∈ Γ (ΣM) where εα is a local orthonormal basis on M. Then

6DTψ = −
[
2∇εβΨ + εβ · 6∂Ψ + 〈B(εα, εβ), εs〉εα · ψ

s]
⊗ εβ (26)

where ψN = Σsψ s ⊗ εs. In particular, if N = N(c) is a Riemannian manifold of constant curvature c, then

RT (φ, ψ) = 0,
RN(φ, ψ) = −2ncRe〈ψ s, Ψ 〉εs

where n = dim M.

Proof. Choose a local orthonormal frame field {εα} near x ∈ M with ∇εαεβ |x = 0.

6∂ψα
= 6∂(εα · Ψ )

= εβ · ∇εβ (εα · Ψ )

= εβ
[
(∇εβ εα) · Ψ + εα · ∇εβΨ

]
= εβ · εα · ∇εβΨ

= −∇εαΨ −
∑
β 6=α

εα · εβ · ∇εβΨ

= −2∇εαΨ − εα· 6∂Ψ . (27)
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Substituting (27) into (25) and taking the tangent projection yield (26). Now we assume that N := N(c) is of constant
curvature c. Then the components of the Riemannian curvature tensor of N satisfy

Rijkl = c(δ
i
kδjl − δ

i
lδjk).

From which together with (20) we obtain

R(φ, ψ) = c(δikδαl − δ
i
lδαk)Re〈ψ

k, εα · ψ
l
〉εi

= c
[
Re〈ψ i, εα · ψα

〉 − Re〈ψα, εα · ψ
i
〉
]
εi

= 2cRe〈ψ i, εα · ψα
〉εi.

It follows that

RT (φ, ψ) = 2cRe〈ψβ , εα · ψ
α
〉εβ

= 2cRe〈εβ · Ψ , εα · εα · Ψ 〉εβ
= −2cRe〈εβ · Ψ , Ψ 〉εβ = 0 (28)

and

RN(φ, ψ) = 2cRe〈ψ s, εα · ψα
〉εs

= 2cRe〈ψ s, εα · εα · Ψ 〉εs
= −2cRe〈ψ s, Ψ 〉εs.

Here we have used

〈εβ · Ψ , Ψ 〉 = −〈εβ · Ψ , Ψ 〉. �

We call a spinorΦ harmonic if it satisfies the Dirac equation without potential [6],
6∂Φ = 0

where 6∂ is the usual Dirac operator [12].
In the rest of this section, we discuss hypersurfaces in a Riemannian manifold.

Lemma 5.3. Let φ : M ↪→ N be an isometric immersion with codimension 1 and ψ ∈ Γ (ΣM ⊗ φ−1TN) defined by

ψ = Σαεα · Ψ ⊗ φ∗(εα)+ Φ ⊗ ν

where ν is unit normal vector of M, Ψ , Φ ∈ Γ (ΣM) and εα is a local orthonormal basis of M. Then

(i) 6DTψ = 0

if and only if for each β

2εβ · ∇εβΨ− 6∂Ψ = λβΦ (29)

where λβ is the principal curvature of M in the direction εβ ;

(ii) 6DNψ = 0

if and only if Φ is a harmonic spinor.

Proof. It is easy to see that

〈B(εα, εβ), ν〉εα · Φ ⊗ εβ

is globally defined. Choose an adapted orthonormal frame ofM such that

〈B(εα, εβ), ν〉 = λαδαβ

where λα is the principal curvature of φ. Plugging this into (26) yields

6DTψ = −(2∇εβΨ + εβ · 6∂Ψ + λβεβ · Φ)⊗ εβ .

It follow that 6DTψ = 0 if and only if

2∇εβΨ + εβ · 6∂Ψ = −λβεβ · Φ (30)

for each β . From (10), we see that (30) holds if and only if (29) holds for each β . �

(ii) Note thatM is a hypersurface. It follows that ∇⊥ν = 0. Plugging this into (25) yields
6DNψ =6∂Φ ⊗ ν + εα · Φ ⊗∇⊥εαν =6∂Φ ⊗ ν

which immediately implies (ii).
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Corollary 5.4. Let φ : M ↪→ N be an isometric immersion with codimension 1. If (φ, ψ) is a Dirac-harmonic map then Φ is a
harmonic spinor where

ψ = Σαεα · Ψ ⊗ φ∗(εα)+ Φ ⊗ ν

where ν is unit normal vector of M, Ψ , Φ ∈ Γ (ΣM) and εα is a local orthonormal basis of M.

Proof of Theorem 1. (ii) For a totally umbilical hypersurfaceM , we can assume that

λ1 = λ2 = · · · = λn = 〈H, ν〉 (31)

where λα is the principal curvature of M . Note that Ψ is a twistor spinor. Hence from [11, page 23, Theorem 2] the spinor
field X · ∇Xψ does not depend on the unit vector field X . Together with (3), we obtain

ε1 · ∇ε1Ψ = · · · = εn · ∇εnΨ =
1
n
6∂Ψ = −

〈H, ν〉
n− 2

Φ

where n = dim M . It follows that

2εβ · ∇εβΨ− 6∂Ψ = −
2〈H, ν〉
n− 2

Φ +
n〈H, ν〉
n− 2

Φ = 〈H, ν〉Φ.

Now (ii) can be obtained from (31), Lemmas 5.1–5.3 immediately.
(i) For a minimal immersion φ, we can assume that

λ1 = −λ2. (32)

On the other hand,

2ε1 · ∇ε1Ψ− 6∂Ψ = −[2ε2 · ∇ε2Ψ− 6∂Ψ ].

Together with (2) and (32) we get (29) for β = 1, 2. Now (i) can be obtained from Lemmas 5.1–5.3 immediately. �

Example 3. We consider a totally umbilical hypersurface Rn in a hyperbolic space form Hn+1(−1) where n ≥ 3. We recall
the corresponding construction: For any two vectors X and Y in Rn+2, we set

g(X, Y ) =
n+1∑
i=1

X iY i − Xn+2Y n+2.

We define

Hn+1(−1) = {x ∈ Rn+2 | xn+2 > 0, g(x, x) = −1}.

Then Hn+1(−1) is a connected simply-connected hypersurface of Rn+2 and the restriction of g to the tangent space of
Hn+1(−1) yields a complete Riemannian metric of constant curvature−1.
Consider the following small spheres [22]

Rn := {x ∈ Hn+1(−1) | xn+2 = xn+1 + 1}.

Then the inclusion map φ : Rn ↪→ Hn+1(−1) is a totally umbilical isometric immersion with respect to the induced metric.
Furthermore its sharp operator is A = Id [23], that is, its principal curvatures satisfy that

λ1 = · · · = λn = 1.

It follows that H = ν. We take a constantΦ ∈ ∆n where

∆n = C2
k
for n = 2k, 2k+ 1

is the vector space of complex n spinors (cf. [12]). Then Φ is a harmonic spinor on Rn. Let us consider a twistor spinor
Ψ : Rn → ∆n on Rn satisfying

6∂Ψ = −
n
n− 2

Φ

where n ≥ 3. Now we integrate the twistor equation

0 = ∇XΨ +
1
n
X · 6∂Ψ

= ∇XΨ −
1
n
X ·
(
n
n− 2

Φ

)
= ∇XΨ +

1
2− n

X · Φ
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along the line {sX | 0 ≤ s ≤ 1}, i.e.

Ψ (X)− Ψ (0) = (Ψ ◦ σ)(1)− (Ψ ◦ σ)(0)

=

∫ 1

0

d(Ψ ◦ σ)
ds

ds

=

∫ 1

0
(∇XΨ )ds

=

∫ 1

0

1
n− 2

X · Φds =
1
n− 2

X · Φ

where σ(s) := sX and Ψ (0) ∈ ∆n is constant (cf. [11]). It is easy to see that the solutions of the equation 6∂Ψ = − n
n−2Φ are

given by Ψ (X) = Ψ (0) + 1
n−2X · Φ (cf.[11, P29, Example 1]). Now we will find Ψ0 := Ψ (0) such that (1) holds. Note that

〈Φ, X · Φ〉 is purely imaginary. Hence

〈Φ, Ψ 〉 =

〈
Φ, Ψ0 +

1
n− 2

X · Φ
〉

= 〈Φ, Ψ0〉 +
1
n− 2

〈Φ, X · Φ〉 = 〈Φ, Ψ0〉 +
1
n− 2

Im〈Φ, X · Φ〉.

It is easy to see that (1) holds whenΦ, Ψ0 ∈ ∆n satisfy

Re〈Φ, Ψ0〉 =
1
2
. (33)

Thus we obtain that (φ, ψ) is a Dirac-harmonic map from Rn into Hn+1(−1)where

ψ(X) = εα ·
(
Ψ0 +

1
n− 2

X · Φ
)
⊗ φ∗εα + Φ ⊗ ν

andΦ, Ψ0 satisfy (33).

Remark. It is easy to prove that if ψT =
∑
εα · Ψ ⊗ φ∗(εα) and (φ, ψ) is Dirac-harmonic then n = 2 implies that H = 0.

Hence when dim M = 2,Φ = 0, (1) automatically holds, and (2) holds if and only if Ψ is a twistor spinor.

6. Hypersurfaces with constant principal curvatures in a Riemannian manifold of constant curvature

In this section, we consider first the following example. Equipped with the pseudo-Riemannian metric

ds2 = dx21 + · · · + dx
2
n+1 − dx

2
n+2,

Rn+2 becomesMinkowski space Rn+21 . We define (real) hyperbolic space

Hn+1(R) :=
{
x ∈ Rn+2 | q(x) = −R2, xn+2 > 0

}
where q(x) := x21 + · · · + x

2
n+1 − x

2
n+2. H

n+1(R) is a connected, simply-connected hypersurface of Rn+21 and the restriction
of ds2 to tangent vectors yields a (positive-definite) complete Riemannian metric in Hn+1(R) of constant sectional curvature
c = − 1

R2
. We now define a family of product hypersurfaces

M :=
{
x ∈ Hn+1(R) | x21 + · · · + x

2
k+1 = r

2}
= Sk(r)× Hn−k(

√
R2 + r2) (34)

for r > 0 and k = 1, . . . , n− 1. The induced metric onM is

ds2Sk(r) + ds
2

Hn−k(
√
R2+r2)

= r2ds2Sk(1) + (R
2
+ r2)ds2Hn−k(1). (35)

M has principal curvatures
√
R2+r2

rR with multiplicity k and r

R
√
R2+r2

with multiplicity n− k [24]. Therefore, the trace of the

shape operator ofM in Hn+1(R) is kR2+nr2

Rr
√
R2+r2

. We have the following:

Lemma 6.1. Let M := Sk(r)× Hn−k(
√
R2 + r2) be a hypersurface in Hn+1(R) ⊂ Rn+21 . Then

(i)M is non-minimal, therefore, φ : M # Hn+1(R) is not harmonic;
(ii)M has two constant principal curvatures, with constant multiplicities.
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In order to getting new non-trivial Dirac-harmonicmaps, we construct a spinor field along a hypersurfacewith two constant
principal curvatures in a Riemannian manifold of constant curvature. We shall be using the following ranges of indices:

1 ≤ i, j, . . . ,≤ k, k+ 1 ≤ r, s, . . . ,≤ n, 1 ≤ α, β, . . . ,≤ n.

Lemma 6.2. Let φ : Mn # Nn+1(c) be a hypersurface with two principal curvatures λ and µ in a Riemannian manifold of
constant curvature c, where λ has the multiplicity k and µ has the multiplicity n− k, and ψ ∈ Γ (ΣM ⊗ φ−1TN) is defined by

ψ = Σiεi · Ψ ⊗ φ∗(εi)+Σrεr · Φ ⊗ φ∗(εr)+ χ ⊗ ν

where ν is the unit normal vector of M, Ψ , Φ, χ ∈ Γ (ΣM) and εα is a local orthonormal basis of M such that εi is the
eigenvector of λ and εr is the eigenvector of µ. Then

RT (φ, ψ) = 2c [Re〈εi · Φ, Ψ 〉εi − Re〈εr · Φ, Ψ 〉εr ] ; (36)

RN(φ, ψ) = −2cRe〈χ, kΨ + (n− k)Φ〉ν; (37)

6DTψ = −(2∇εiΨ + εi· 6∂Ψ + λβεi · χ)⊗ εi − (2∇εrΦ + εr · 6∂Φ + µβεr · χ)⊗ εr; (38)

6DNψ = (6∂χ)⊗ ν. (39)

Proof. Denote the distributions of the spaces of principal vectors corresponding to λ and µ by Dλ and Dµ, i.e.

Dλ := {v ∈ TM | Av = λv} , Dµ := {v ∈ TM | Av = µv}

where A is the shape operator of φ. Then

εi ∈ Dλ, εr ∈ Dµ (40)

and ψ is well-defined. Note that the multiplicities of the two principal curvatures are constant. Thus Dλ and Dµ are
completely integrable [25]. In particular, we may choose a local orthonormal frame field {εi, εr} near x with ∇εαεβ |x = 0
and satisfying (40).
Denote ψT by

ψT = ψα
⊗ φ∗(εα).

Then

6∂ψ i = 6∂(εi · Ψ )

= εβ · ∇εβ (εi · Ψ )

= εβ
[
(∇εβ εi) · Ψ + εi · ∇εβΨ

]
= εβ · εi · ∇εβΨ

= −∇εiΨ −
∑
β 6=i

εi · εβ · ∇εβΨ

= −2∇εiΨ − εi· 6∂Ψ . (41)

Similarly we have

6∂ψ r = −2∇εrΦ − εr · 6∂Φ. (42)

By using (25), we have

6Dψ =6∂ψα
⊗ εα + (6∂χ)⊗ ν − 〈B(εα, εβ), ν〉εα · χ ⊗ εβ . (43)

Here we have used ∇⊥ν = 0. Plugging (41) and (42) into (43) and using the Weingarten equation yield

6Dψ = −
[
2∇εiΨ + εi· 6∂Ψ + B(εα, εi), ν〉 εα · χ

]
⊗ εi

−
[
2∇εrΦ + εr · 6∂Φ + B(εα, εr), ν〉 εα · χ

]
⊗ εr + (6∂χ)⊗ ν

= −(2∇εiΨ + εi· 6∂Ψ + λβεi · χ)⊗ εi − (2∇εrΦ + εr · 6∂Φ + µβεr · χ)⊗ εr + (6∂χ)⊗ ν.

Thus we obtain (38) and (39).
Note that Nn+1(c) has constant sectional curvature c. Consider εα, ν as a local orthonormal frame field of φ−1TN . By

simple calculations, we have

RT (φ, ψ) = 2cRe〈ψβ , εα · ψ
α
〉εβ , (44)

RN(φ, ψ) = 2cRe〈χ, εα · ψα
〉ν. (45)
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By using the skew-symmetry relation of the Clifford product and the property of Hermitian metric we have

Re〈ψ i, εj · ψ j〉 = Re〈εi · Ψ , εj · εj · Ψ 〉 = −Re〈εi · Ψ , Ψ 〉 = 0, (46)

Re〈ψ i, εr · ψ r〉 = −Re〈εi · Ψ , Φ〉
= Re〈Ψ , εi · Φ〉
= Re〈εi · Φ, Ψ 〉 = Re〈εi · Φ, Ψ 〉. (47)

Similarly, we have

Re〈ψ r , εi · ψ i〉 = −Re〈εr · Φ, Ψ 〉, (48)

Re〈ψ r , εs · ψ s〉 = 0. (49)

Substituting (46)–(49) into (44) yields

RT (φ, ψ) = 2cRe〈ψ i, εj · ψ j〉εi + 2cRe〈ψ i, εr · ψ r〉εi + 2cRe〈ψ r , εi · ψ i〉εr + 2cRe〈ψ r , εs · ψ s〉εr
= 2c (Re〈εi · Φ, Ψ 〉εi − Re〈εr · Φ, Ψ 〉εr) .

Finally, using (10) and (45) we obtain (37). �

7. Dirac-harmonic maps from surfaces II

In this section, we give first a useful criterion for a class of maps from surfaces into a three-dimensional Riemannian
manifold of constant curvature to be Dirac-harmonic. By using this criterion we manufacture Dirac-harmonic maps (φ, ψ)
from surfaces for which φ is not harmonic.

Theorem 7.1. Let φ : M2 # N3(c) be a surface with two principal curvatures λ and µ in a Riemannian manifold of constant
curvature c, where λ 6= µ, and let ψ ∈ Γ (ΣM ⊗ φ−1TN) be defined by

ψ = ε1 · Ψ ⊗ φ∗(ε1)−
µ

λ
ε2 · Ψ ⊗ φ∗(ε2)+ χ ⊗ ν

where ν is unit normal vector of M,Ψ , χ ∈ Γ (ΣM) and {ε1, ε2} is a local orthonormal basis of M such that ε1 is the eigenvector
of λ and ε2 is the eigenvector of µ. Then (φ, ψ) is a Dirac-harmonic map from M into N if and only if
(i) χ is a harmonic spinor;
(ii) c(µ

λ
− 1)Re〈χ, Ψ 〉ν = H;

(iii) ε1 · ∇ε1Ψ − ε2 · ∇ε2Ψ = λχ .
Proof. TakeΦ = −µ

λ
Ψ . Substituting this into (36) we get

RT (φ, ψ) = 2c
[
Re
〈
ε1 ·

(
−
µ

λ
Ψ

)
, Ψ

〉
ε1 − Re

〈
ε2 ·

(
−
µ

λ
Ψ

)
, Ψ

〉
ε2

]
= 2c

µ

λ
[Re〈ε2 · Ψ , Ψ 〉ε2 − Re〈ε1 · Ψ , Ψ 〉ε1] = 0.

Let us assume that (i) (ii) and (iii) hold. From (37) we have

RN(φ, ψ) = −2cRe
〈
χ, Ψ −

µ

λ
Ψ

〉
ν = 2c

(µ
λ
− 1

)
Re〈χ, Ψ 〉ν = 2H.

By using (39) we obtain

6DNψ = (6∂χ)⊗ ν = 0.

From (iii) we have

ε2 · ∇ε2

(
−
µ

λ
Ψ

)
− ε1 · ∇ε1

(
−
µ

λ
Ψ

)
=
µ

λ

[
ε1 · ∇ε1Ψ − ε2 · ∇ε2Ψ

]
= µχ.

Together with (38) and (iii) we have

6DTψ = −(2∇ε1Ψ + ε1· 6∂Ψ + λε1 · χ)⊗ ε1 −
(
2∇ε2

(
−
µ

λ
Ψ

)
+ ε2· 6∂

(
−
µ

λ
Ψ

)
+ µε2 · χ

)
⊗ ε2

= ε1 · (2ε1 · ∇ε1Ψ− 6∂Ψ − λχ)⊗ ε1 + ε2 ·
(
2ε2∇ε2

(
−
µ

λ
Ψ

)
− 6∂

(
−
µ

λ
Ψ

)
− µχ

)
⊗ ε2

= ε1 · (ε1 · ∇ε1Ψ − ε2 · ∇ε2Ψ − λχ)⊗ ε1 + ε2 ·
(
ε2 · ∇ε2

(
−
µ

λ
Ψ

)
− ε1 · ∇ε1

(
−
µ

λ
Ψ

)
− µχ

)
⊗ ε2

= (ε1 · 0)⊗ ε1 +
µ

λ
(ε2 · 0)⊗ ε2 = 0.

From Lemma 5.1 we see that (φ, ψ) is a Dirac-harmonic map.
Conversely, if (φ, ψ) is a Dirac-harmonic map, then it is easy to see from Lemma 5.1 that (i)–(iii) hold. �
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Remark. In fact φ : S1(r) × H1(
√
R2 + r2) ↪→ H3(R) has two constant principal curvatures λ and µ, where λ 6= µ (see

proof of Theorem 3 below).

Proof of Theorem 3. Let

M := S1(r)× H1(
√
R2 + r2) = {(x1, y1; x2, y2) | x21 + y

2
1 = r

2, x22 − y
2
2 = −(R

2
+ r2), y2 > 0}

be parameterized as

M = (R/2πrZ)× R

=

{(
r cos

θ

r
, r sin

θ

r
,
√
R2 + r2 sinh

t
√
R2 + r2

,
√
R2 + r2 cosh

t
√
R2 + r2

)
| (θ, t) ∈ [0, 2πr)× R

}
. (50)

The induced metric onM is the flat metric

dθ2 + dt2. (51)

Since 2
[
dim M
2

]
= 2, we use ’’two-component’’ spinors. We identify the ’’untwisted’’ spinor bundle on M with

[(R/2πrZ)× R] × C2, that is to say, the spinor on M is a single periodic spinor on R2 [11,9]. Let ε1 = ∂
∂θ
and ε2 = ∂

∂t .
Then ε1 and ε2 acting on spinor fields can be identified by multiplication with matrices [10,1]

σ1 =

(
0 1
−1 0

)
, σ2 =

(
0 i
i 0

)
, i =

√
−1. (52)

Since the metric (51) is flat, ∇ = d is the Levi-Civita connection on 1-forms. Hence we have

∇εα = εα (53)

onΣM [8,18].
We take a constant χ =

(
a
b

)
∈ C2. Then χ is a harmonic spinor onM . Let us consider a spinor

Ψ =

(
f
g

)
: (R/2πrZ)× R→ C2 (54)

onM satisfying

ε1 · ∇ε1Ψ − ε2 · ∇ε2Ψ = λχ (55)

where λ is a real constant. By using (52) and (53), (55) is equivalent to(
∂

∂θ
− i

∂

∂t

)
g = λa, (56)

−

(
∂

∂θ
+ i

∂

∂t

)
f = λb. (57)

For arbitrarym ∈ {0, 1, . . .}, we consider g : (R/2πrZ)× R→ C defined by

g(θ, t) =
m∑

k=−m

ei
k
r θgk(t). (58)

From (56) and (58) we have

λa =
∂g
∂θ
− i
∂g
∂t
=
i
r

m∑
k=−m

kei
k
r θgk(t)− i

m∑
k=−m

ei
k
r θg ′k(t) =

i
r

m∑
k=−m

ei
k
r θ
[
kgk(t)− rg ′k(t)

]
.

Hence we take gk satisfying{
−ig ′k(t) = λa for k = 0
kgk(t)− rg ′k(t) = 0 for k 6= 0. (59)

One can verify that

gk(t) :=
{
iλat + c0 for k = 0
cke

k
r t for k 6= 0
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satisfies (59). Plugging this into (58) yields

g(θ, t) =
m∑

k=−m

cke
k
r (t+iθ) + iλat. (60)

Similarly, the following function

f : (R/2πrZ)× R→ C

defined by

f (θ, t) =
m∑

k=−m

dke
k
r (−t+iθ) + iλbt (61)

satisfies (57). Plugging (60) and (61) into (54) yields

Ψ = iλt
(
b
a

)
+

m∑
k=−m

ei
k
r θ

(
dke−

k
r t

cke
k
r t

)
.

Consider φ : M = S1(r) × H1(
√
R2 + r2) ↪→ H3(R). Then H3(R) has constant sectional curvature c = − 1

R2
. The principal

curvatures of φ are (cf. Section 6)

λ =

√
R2 + r2

rR
, µ =

r

R
√
R2 + r2

and therefore the mean curvature of φ is

ξ =
R2 + 2r2

2Rr
√
R2 + r2

.

By a straightforward computation one obtains[
c
(
λ

µ
− 1

)]−1
ξ =

√
R2 + r2(R2 + 2r2)

2rR
.

Now we will find ck and dk such that (ii) in Theorem 7.1 holds.

〈χ, Ψ 〉 = a

(
iλbt +

m∑
k=−m

dke
k
r (−t+iθ)

)
+ b

(
iλat +

m∑
k=−m

cke
k
r (t+iθ)

)
= (I)+ (II)

where

(I) = aiλbt + biλat = −i(ab̄+ bā)λ = −2λiRe(ab̄),

(II) = a
m∑

k=−m

dke
k
r (−t+iθ) + b

m∑
k=−m

cke
k
r (t+iθ).

Note that (I) is purely imaginary. Hence

Re〈χ, Ψ 〉 = Re(II)

=

m∑
k=−m

Re
[
ad̄ke−

k
r (t+iθ)

]
+

m∑
k=−m

Re
[
bc̄ke

k
r (t−iθ)

]
=

m∑
k=−m

Re
[
ad̄ke−

k
r (t+iθ)

]
+

m∑
k=−m

Re
[
bc̄−ke−

k
r (t−iθ)

]
=

m∑
k=−m

Re
[
ad̄ke−i

k
r θ + bc̄−kei

k
r θ
]
e−

k
r t

=

m∑
k=−m

Re
[
(ad̄k + b̄c−k)e−i

k
r θ
]
e−

k
r t .

It follows that the sufficient conditions on ck and dk for (ii) in Theorem 7.1 to hold are

Re(ad̄0 + b̄c0) =

√
R2 + r2(R2 + 2r2)

2rR
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and

ad̄k + b̄c−k = 0

for k = ±1, . . . ,±m. �

Acknowledgements

The second authorwould like to thank theMax Planck Institute forMathematics in the Sciences, Leipzig, for its hospitality
during the preparation of this paper.
Second author was supported by the National Natural Science Foundation of China 10771004.
Third author was supported by IMPRS ‘‘Mathematics in the Sciences’’ and the Klaus Tschira Foundation.

References

[1] Q. Chen, J. Jost, J.Y. Li, G.F. Wang, Dirac-harmonic maps, Math. Z. 254 (2) (2006) 409–432.
[2] P. Deligne, et al. (Eds.), Quantum Fields and Strings: A Course for Mathematicians, Vol. I, AMS and Inst. Adv. Study, 1999.
[3] J. Eells, L. Lemaire, Another report on harmonic maps, Bull. London Math. Soc. 20 (5) (1988) 385–524. MR0956352 (89i:58027). Two reports on
harmonic maps, 69–208, World Sci. Publ., River Edge, NJ, 1995.

[4] N. Hitchin, Harmonic spinors, Adv. Math. 14 (1974) 1–55.
[5] C. Bär, Metrics with harmonic spinors, Geom. Funct. Anal. 6 (6) (1996) 899–942.
[6] C. Bär, On harmonic spinors. Gauge theories of gravitation (Jadwisin, 1997), Acta Phys. Polon. B 29 (4) (1998) 859–869.
[7] C. Bär, P. Schmutz, Harmonic spinors on Riemann surfaces, Ann. Global Anal. Geom. 10 (3) (1992) 263–273.
[8] J. Jost, Riemannian geometry and geometric analysis, in: Universitext, fifth edition, Springer-Verlag, Berlin, 2008.
[9] H.B. Lawson, M.-L. Michelsohn, Spin Geometry, in: PrincetonMathematical Series, vol. 38, Princeton University Press, Princeton, NJ, 1989, pp. xii+427.
[10] Q. Chen, J. Jost, G.F Wang, Liouville theorems for Dirac-harmonic maps, J. Math. Phys. 48 (2007) 113517.
[11] H. Baum, T. Friedrich, R. Grunewald, I. Kath, Twistor and Killing spinors on Riemannianmanifolds. Seminarberichte [Seminar Reports], 108. Humboldt

Universit?t, Sektion Mathematik, Berlin, 1990. pp. 179.
[12] T. Friedrich, Dirac Operators in Riemannian Geometry (Andreas Nestke, Trans.), in: Graduate Studies in Mathematics, vol. 25, American Mathematical

Society, Providence, RI, 2000, pp. xvi+195 (Original work published in German 1997).
[13] W. Kühnel, H.-B. Rademacher, Asymptotically Euclidean manifolds and twistor spinors, Commun. Math. Phys. 196 (1998) 67–76.
[14] B. Biran, F. Englert, B. deWit, H Nicolai, GaugedN = 8 supergravity and its breaking from spontaneous compactification, Phys. Lett. 124 (1983) 45–50.
[15] P. Candelas, G.T. Horowitz, A. Strominger, E. Witten, Vacuum configurations for superstrings, Nuclear Phys. B 258 (1) (1985) 46–74.
[16] E. Cremmer, B. Julia, J. Scherk, Supergravity in theory in 11 dimensions, Phys. Lett. 76 (1978) 409–412.
[17] J. Bolton, L.M. Woodward, Congruence theorems for harmonic maps from a Riemann surface into CPn and Sn , J. London Math. Soc. (2) 45 (2) (1992)

363–376.
[18] A. Lichnerowicz, Applications harmoniques et variétés Kähleriennes, Rend. Sem. Mat. Fis. Milano 39 (1969) 186–195 (in French).
[19] K. Kenmotsu, On minimal immersions of R2 into Pn(C), J. Math. Soc. Japan 37 (4) (1985) 665–682.
[20] J. Jost, G.F. Wang, C.Q. Zhou, Super-Liouville equations on closed Riemann surfaces, Comm. Partial Differential Equations 32 (7–9) (2007) 1103–1128.
[21] J. Bolton, G.R. Jensen, M. Rigoli, L.M. Woodward, On conformal minimal immersions of S2 into CPn , Math. Ann. 279 (4) (1988) 599–620.
[22] K. Sakamoto, Planar geodesic immersions, Tohoku Math. J. (2) 29 (1) (1977) 25–56.
[23] Z. Hou, Submanifolds of constant scalar curvature in a hyperbolic space form, Taiwanese J. Math. 3 (1) (1999) 55–72.
[24] P.J. Ryan, Hypersurfaces with parallel Ricci tensor, Osaka J. Math. 8 (1971) 251–259.
[25] T. Otsuki, Minimal hypersurfaces in a Riemannian manifold of constant curvature, Amer. J. Math. 92 (1970) 145–173.
[26] J. Lott, Eigenvalue bounds for the Dirac operator, Pacific J. Math. 125 (1) (1986) 117–126.


	Some explicit constructions of Dirac-harmonic maps
	Introduction
	Dirac-harmonic maps
	Dirac-harmonic maps from surfaces I
	Proof of Theorem 2 and examples
	Dirac-harmonic maps from Riemannian manifolds
	Hypersurfaces with constant principal curvatures in a Riemannian manifold of constant curvature
	Dirac-harmonic maps from surfaces II
	Acknowledgements
	References


