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1. Introduction

It has been known that integrable systems are closely related to the motions of curves or surfaces. There have been
many works devoted to this subject. About the relationship between integrable systems and motions of curves in the plane,
Goldstein and Petrich [1] in an intriguing paper showed that the celebrated mKdV equation naturally arises from inextensible
motion of curves in Euclidean geometry, where “naturally” means that the normal velocity in the curve flow is the derivative
of curvature of the curve with respect to the arc-length. It was of great interest that Nakayama, Segur and Wadati [2] set
up a correspondence between mKdV hierarchy and inextensible motions of plane curves in Euclidean geometry. Later, it
was also shown that the KdV hierarchy [3,4], Burgers hierarchy [5,6] and Sawada-Kotera hierarchy [7] naturally arise from
inextensible motions of plane curves in centro-affine geometry, similarity geometry and affine geometry, respectively. They
can be regarded as a centro-affine version, similarity version and affine version of the mKdV hierarchy.

As compared to the integrable motions of plane curves, it is of great interest to study motions of space curves in various
geometric settings. The pioneering work concerning the relationship between integrable systems and invariant curve
motions is due to Hasimoto [8]. He showed that the vortex filament flow is related to the non-linear Schrédinger equation via
the so-called Hasimoto transformation. Indeed, the Schrédinger flow is an inextensible motion of space curves in Euclidean
geometry. Lamb [9] used the Hasimoto transformation to connect other motions of curves to the mKdV and sine-Gordon
equations. Lakshmanan [10] interpreted the dynamics of a nonlinear string of fixed length in R3 through consideration of
the motion of an arbitrary rigid body along it, deriving the AKNS spectral problem without spectral parameter. Langer and
Perline [11] showed that the dynamics of a non-stretching vortex filament in R? gives the NLS hierarchy. Motions of curves
on S? and S3 were considered by Doliwa and Santini [12]. Langer et al. [13] obtained the system of mKdV equations from
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inextensible motions of space curves in Euclidean geometries. Nakayama [14,15] showed that the defocusing nonlinear
Schrédinger equation and a coupled system of KdV equations and their hyperbolic type arise from motions of curves in
hyperboloids in the Minkowski space. In [6], integrable motions of space curves in similarity geometries were also studied,
a coupled system of mKdV-Burgers hierarchy and their higher-dimensional extension were obtained. The well-known
Boussinesq equation can be obtained from the inextensible motion of space curves in affine geometry and centro-affine
geometries [7].

It is also of great interest to study motions of curves in various Manifolds and Homogeneous spaces. A number of
integrable systems were obtained in [ 16-32]. More interestingly, the Hamiltonian structure can be identified clearly from the
invariant geometric flows, which provides a nice geometric interpretation for Hamiltonian structure to integrable systems.

To obtain higher-dimensional integrable systems from invariant curves or surface motions in various geometries,
Lakshmanan, Myrzakulov et al. [33-38] studied motions of curves in Euclidean geometries by adding an extra space variable;
many higher-dimensional integrable systems can be obtained in this way. This provides a geometric interpretation for
higher-dimensional integrable systems, although it is not natural.

It has been known that there are three integrable fifth-order evolution equations of the form

up = us + auus + bujuy + cv’uy

where a, b and c are constants, u(t, x) is a function of t and x, which are the fifth-order KdV equation, the Sawada-Kotera
equation and the Kaup-Kupershmidt equation. The fifth-order KdV equation and the Sawada-Kotera equation have been
shown to associate with inextensible motions of curves respectively in centro-affine geometry and affine geometry. So a
question arises: Does the Kaup-Kupershmidt equation arise from a motion of curves in certain geometries?

The purpose of this paper is to investigate the relationship between integrable systems and inextensible motions of
curves in two-, three- and four-dimensional projective geometries. The paper is outlined as follows: In Section 2, we give a
brief account of projective differential geometry of curves. In Section 3, we discuss the inextensible motion of plane curves
in the two-dimensional projective geometry P2. It will be shown that the Kaup-Kupershmidt hierarchy naturally arises from
such motion flow. In Section 4, we consider motion of curves in the three-dimensional projective geometry P>, a coupled
Kaup-Kupershmidt and KdV system is obtained. Motion of curves in the four-dimensional projective geometry P is studied
in Section 5. Finally, Section 6 gives concluding remarks on this work.

2. Projective differential geometry of curves

Projective differential geometry is an old subject; earlier work on this topic can be traced back to [39]. From Klein’s
Erlanger program, it is the study of the differential geometry which is invariant with respect to the projective group,
i.e. homography.

Let us first give an account of projective differential geometry P? of plane curves [39-42]. Let A be a point of y
parametrized by s with projective coordinates x(s), x{(s) and x, (s). Denote it by A = [xo(s), X{(5), x2(s)]7. The coordinates
x; of A satisfy the third order differential equation

Z/// Z// Z/ z _ 0
A/// A// A/ A - .
It can be written as
2" +pz" +qZ +1rz=0 (2.1)
where
. |A/// A/ A| . |A/// A// A| _ |A/// A// A/|
T JAYA A 4= A" A’ Al T AVAA|C

It is necessary to assume that |A” A’ A| # 0, which is equivalent to that the curve has no inflection points. Eq. (2.1) defines
a class of curves projectively equal to each other and to the curve y, but it does not necessarily give all curves projectively
equal to y. In fact, if we change A to A = A(s)A, we obtain a new equation (2.1) which from the same curve y, also defines
curves that are projectively equal to it. This also applies to the change of parameter s — 5 = f(s). This allows us to simplify
Eq. (2.1). We look for two functions A(s) and f(s) in order to eliminate the terms in z’ and z” in the equation. We shall see
that there are infinitely many possible ways, as s is only defined up to homography.

Now, we want to transform the equation

A" +pA"+qA +rA=0 (2.2)
to the equation of the form

A" +FA=0 (2.3)
by the transformations

A=1A  5=f0,
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provided f (s) and A(s) satisfy the system
3 ()»/ f//) _ 3)»” 6)\’ f// fw 3f//2

o f

where 7 satisfies

A A f/ f/ + f/2

=4, (2.4)

- T e 4 4P =r. (2.5)
From the above expression, we also have

-lf/// 3f//2 1 5 1 , 1
27 Tapr Tl TPt 20

The left hand side of (2.6) is the Schwarzian of s with respect to s. Once s is known we deduce A by the first one of (2.4). It is
easily to see that s is defined only up to homography since the Schwarzian is invariant under homography.
If we take into account the expression of s and of A(s) in (2.5), this reduces to

== 1pat p o+ 2pp + <p = H) 27)
3 27 2 3 6 ’ '

which can be written as
rds® = Hds>.

Thus we have
do =F3d5s = H3ds.

Notice that H involves derivatives of the fourth order; it is easy to check that the arc-length is invariant under the projective
transformation group.

Using the projective arc-length o to parametrize the curve y, and noting the expression (2.4) for p, Eq. (2.2) has no terms
in d?A/do?, so Eq. (2.2) can be written in the form

d*A dA
$+2Kd70'+hA=0. (2.8)

The quantities h and « are invariant with respect to a projective transformation, but they are not independent, since for any
parameter s, we must have

do = H3ds.

In particular, if we have do = ds, that is to say H = 1 which, taking into account Eq. (2.6), enables us to write
h=K«"+1.

Hence if the curve is parametrized by arc-length, Eq. (2.8) becomes

d’A dA ,

This leaves only one invariant « in the equation, and it is the projective curvature introduced previously. The Schwarzian
{s}, of s with respect to ¢ is given by

o 1
{S}G_EK

and we can deduce
Kk = 2{5),.

To determine x we need the following result.

Proposition 2.1. Given two functions x(s) and y(s) of the same variable s, we have

{y}xdxz =[{y)s — {X}s]d52~
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Applying this proposition to x(s) = o (s) and y(s) = 5(s), we obtain
{8}sdo?® = [{5}; — {o}slds*.

Hence, taking into account the expression of «, we have

_ z{g}sd_o {20}3
&)
Since {5}, is known, we need to compute {o };. In fact, we have
do 1
— = H3.
ds
Deriving logarithmically
O.// _ 1 H/
o’ 3H

and a further derivative yields

" O,//2 1H” 1 H/Z

o o¢? 3H 3H
Thus we have

10" 3 O,//Z 1H" 7 H/Z

Oy =—-—— — — = —— = ——.
tols 206 40”7 6H 36H?2

Plugging them into the expression for «, we get

(2.10)

]HH 7H/2
3H 18H? |’

-2 1 / 2 1
k=H3|—-=p ——p +§q—**+*
It is readily checked that the projective curvature is related to the affine curvature of the curve y via
¢ —% d) 1¢/// 7 ¢// 2
Kk=\= ————z—+ == ,
() [5-55%(%)

where the 7 denotes the derivative with respect to the affine arc-length.
The Frenet frame of the curve is the moving frame of P? denoted by A, AV, A®¥), defined by the following formulas

A — dj
do’
d’A
A® = — + kA

It gives a moving frame of P2, where the point AV is the tangent to the curve in A and the line (A, A®) is the projective
normal. Notice that det(A, AV, A®) = 1. The following Frenet formulas are an immediate consequence of the definition of
the Frenet frame and the third-order differential equation (2.8):

A 0 1 0 A
AV =« o 1)[A?]. (2.11)
A® -1 « 0 A®
Now the Frenet frame is given by
) dA _1dA
AV()=—=H3—,
do ds
P TR T LI L
s)=—+KkA= —_— = = — + kA
do? dsz 3 ds

It is easy to verify the fundamental theorem for curves in P2,

Theorem 2.1. Given a continuous function « (o) on a closed interval a < o < b. Then there exists a unique plane curve up to
the homography, its arc-length is o and curvature is k (o).

It follows from the fundamental Theorem 2.1 that the curves with constant projective curvature fall in three categories:
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1. The general parabola: y = x™, m & {2, % —1};
2. The logarithmic spiral: p = ™, m # 0;
3. The exponential: y = e*.
Similarly, we can establish the theory of the curves in n-dimensional projective geometry P" [42]. In the three-
dimensional case, we obtain the Serrent-Frenet formulas for curves in P [42]

0 1 0 O

?1 ) 3 0 1 0 ‘:\1 )

A 16 A

A@ = 5 e 0 1 A | (2.12)
3 3

A o —T —g 3k A

where « and t are the projective curvatures of the curves in P2, In the four-dimensional case, the Serrent-Frenet formulas
read as [42]

A 0 1 0 0 0 A
AV 4 0 1 o0 of(A?
AP =] 264 6,y 0 1 0]|]A?], (2.13)
A® 104k, 108 6k 0 1||A®
A(4) 24K3 8K2 48 4K1 0 A(4)
o

where k1, k» and k3 are the projective curvatures of the curves in P%. The curves are determined uniquely by the curvatures
K1, k2 and k3 up to the projective transformation group.

3. Motion of curves in two-dimensional projective geometry P?

In this section, we consider inextensible motion of curves in two-dimensional projective geometry P? by using the
previous frame structure to obtain the Kaup-Kupershmidt hierarchy.
For convenience, instead of A by y in (2.11), we have the Serret-Frenet formulas in P>

4 0 1 0 14
y(;) =« 0 1 y(;) , (3.1)
y@ -1 « 0/ \,®
where o (p, t) is the projective arc-length and « is the projective curvature of the curve y(t, o), p is a free parameter,
independent of time t. One may parametrize the curve y by
[y, yP, y?1=1. (3.2)
The projective curve flow in P? is governed by

ye=Fy + Gy + Hy®, (3.3)

where F, G and H depend on the projective curvature x and its derivatives.
Let L be the perimeter for a closed curve, then

L= fgdp,

where g = do /dp. Normally, we require that the curve is not inextensible and the arc-length does not depend on time t.
In view of the formula for the projective arc-length, this is the case if d/dt[y, y, y®] = 0. At the same time, using the
projective Serret-Frenet formula (3.1), one can readily find

&t 1 1
— =F+4+ G, + -H,, + -«H.
g 3 3

Using it, one obtains the time variation of the perimeter
% = % (F—l—Ga + le, + 1KH) do.
dt 3 3

So the inextensibility condition means

1

1

; (34)
= -G, — -Hyss — -KkH.
3 3
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The first equation in (3.4) means that the perimeter for a closed curve is invariant under the motion (3.3), and the second
one means that the arc-length o commutes with time t.

In view of Egs. (3.1) and (3.3), one obtains the time evolution of the frame in two-dimensional projective geometry

14 F G H Yy
vyl =(Fh G Hi)[rP], (3.5)
@ F, G Hy) \y®

Y
where F, G, H, F;, G; and H;, i = 1, 2 are functions of curvature « to be determined.
Egs. (3.1) and (3.5) are compatible, that is to say

14 Y

yol =[]

r e P/
one has

Fi=F, +«xG—H,
G =F+ G, +«H,
Hi = G+ H,,
F, = —xt — kF + Fi, + kG; — Hq,
Gy = Fy — kG+ Gyy + kHq,
Hy = Gy — kH + Hy,,
and

—F + kFy — F,; — kG, + Hy, =0,
ki =F +G— kG + Gye +«Hy, (3.6)
G, +H —«H; +Hy, =0.

Clearing up and simplifying the above equations, one arrives at the following equations

1 1
F = _Ga — EHUU — gKH,

G= iHacua - EKHGU - (iKa + 1) Ha - 1(Kmr - 4K2)H - 187][(’600’ - 4K2)Ha]
18 9 18 2 9 97 ’

Fi=F;, +«G—H,

G =F+G, +«H,

Hy =G+ H,, (3.7)
1 1 3 1 1 ,
FZZ_EF(T(J'_EGO'(TO'_G_EKHO'O'_§(3KU+])H(7_ EK(T(T_K H,

GZ :2Fo' +GO'O' +KG+2KH0' +(KO' - 1)H7
HZ :F+2Ga +Hm1s

3 1 3 3 1
kKt = =Fo6 + =Gyoo + 2kGy + kG + —kHyy + = (ke — 1)Hy + —k4oH.
2 2 2 2 2
Substituting F and G into the last equation of system (3.7), we obtain the evolution equation satisfied by the curvature «
ke = —182H,,, (3.8)

where
2 = 3% — 12632 — 36k,92 — 49,502 + 36K202 — 35K000 05 + 120Kk 35 — 13K0000
+ 82k koo + 69k% — 3263 + 27 — (20000 — 206Ks05 — 50Kg Koo + 40Kk, ), 1 + 258, Mgy — 4ic?).

Indeed, taking x = — %E, we arrive at

6 ~ a4 S, O 202, 39, ~ 13
£2 =0, +6kd; + 18k,9, + EKUUBJ +9k“0; + jlcmmag + 30kks 05 + ?K{m{m
41

~ 69 _, ~3 ~ ~ 25 ~2~ T U ~2
+ ?K/cm, + ZKU + 4> 4+ 27 + | Ksoooo + SKKoge + 7KUKC,(, +5k%s ) 0, + 5""3" (Koo + 2K7).
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It is the recursion operator of the Kaup-Kupershmidt equation [43]

Kt = Kooooo — 10kKoge — 25KeKeo + 20Kk, . (3.9)

Its integrability has been explored extensively.
Letting H, = —(1/18)£2" 'k, we get the Kaup-Kupershmidt hierarchy

ki = 2"y, n>1.

Taking H = —18«, we arrive at the seventh-order Kaup-Kupershmidt equation

224
Kt = Kooooooo — 14KKsoooo — 4KoKoooo — 84KooKooo + 56/(2160(7(, + 252k KksKoy + 70K3 - TK3KU + 27k, .

4. Motion of curves in three-dimensional projective geometry P3

Now we study the motion of space curves in three-dimensional projective geometry P>.
In three-dimensional projective geometry, the Serret-Frenet formulas for curves read as [42]

0 1 0 0

7(/1) 3k 0 1 0 Jfl)
14 16 Y
=|1_-= 4 0o 1 . 4.1
yz; > Ijl yz; -
4 o -7 3 3k 0 Y

The three-dimensional projective curve flow is governed by
ve=Ey +FyD +Gy® + Hy®, (4.2)

where E, F, G and H are velocities of the curve motion, depending on the projective curvatures «, T and their derivatives
with respect to the projective arc-length o.

In terms of (4.1) and (4.2), the time evolution of the frame in three-dimensional projective geometry is given by

E F G H\ [V

(1 (1)
y _|Ei Fi G Hy 14
y 2) “|E, F G, H, y @ | (4.3)
y?), B B G H) \y®

whereE, F, G, H,E;, F;, G;and H;, i = 1, 2, 3 are functions of the curvatures, to be determined.
The commutativity condition 9, d; = 9,9, leads to the following equations

16
By = E; +3¢F — —G —7H,

4
F1:E+FG+4KG—EH,

G =F+ G, + 3kH,
Hi =G+ H,,

16
E2 = —3I(t — 3kE +Ela +3ICF1 - ?61 — 'L'H],

4
F, = Ey — 3«F + Fi, + 4kG; — §H1,

Gz :F] _BKG+G](7 +3KH1,
Hy = Gy — 3kH + Hy,,

16 16
Es = ?E — 4kE1 4 Ey +3KF2 - ?Gz — TH>,
16 4
F3 = Ez — 4Kt + ?F — 4KF1 -|—F2<7 +4ICGZ — gHz,
16
G3 = F2 + ?G— 4KG] + GZU +3KH2,

16
H3 = Gz + ?H _4KH1 +H20’
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and

4 4
Es + tF + §F1 — 3kF) + F35 + 4kG3 — §H3 =0,
4
G3 + tH + ng —3KH2 +H30 = 0,
1 4
Kt = g(F3 + G+ gG] — 3KG2 + G3o‘ + 3KH3),

4 16
Tt = —1E — gE] + 3KE2 — E30’ — 3KF3 + ?Gg + 'L'H3.
Simplifying the above equations, one has the following equations
3 1 3
E= _EF” — Goo — 2kG — ZH‘”G — 2kH, — EKJH — —H,

1 5 5 1 8, 1 LT/ 8 , 1

F = EGGUJU — gKCUU - éKU +1 GU — EKUU - 5/( + ET G— 80 EKUU — gK + gf Ga
1 5 5 1 1 4 , 1

+ ﬂHoaofra - échU(TO + _EKU + g H(TU - gKotr - §K + ET Hrr — 3kH

a1 [ (] 42 " Vi 1 Sen
- “Roo T 5 T oo . o |
o [\6"° 73" T12 3"

16
Eq :EU+3KF—?G—TH,

4
Fi=E+F, +4G— H,
Gy =F + G, + 3«H,

H; =G+ H,,

g lp 20, 3. .3 . 24 6. 3 . 3. ER A I
= —FEi; — —«kE— — —kFi — —=F— —=G; — —kGy — —G3, — —1G— —7 —H, — —«Hs,
710" 10 107710 " 25 251007 107 10 10 'T252 1002

4
F2 :E] —3KF+F](7 +4KG] — gH],

Gz = F] — 3G+ G]a + 3KH1,
Hz = G] - 3I(H+H16,

16 16
E3 = ?E - 4I(E] +E20‘ + 3KF2 — ?GZ — THz,

S PR NS PO VD W U A SO SRR B B
10 10 10 10 25 25 10 10 10 10 25 10
Gs=F + 1?6G — 4k Gy 4+ Gyy + 3cHs,
H; =G, + ?H — 4icHq + Hag,
Ky = _lFaaa + 2cF; + ko F — lcaaaa + 2kGoo + | K6 — §> Go — iHaaaaa - (3Ka + 3) Hoo
2 2 5 20 2 5

9 12, N 2 u 3 18 N 3 u
— | =Kkoo — —K =T |Hy — | =Koo0 — —KK, — T, ,
5% 5 5 5 %7 5 710

1 2
Tt = 6F,, +4tF, + t,F — EGMMM + 10« Gypo0 + (25/(0 + g> Gooo + R4ksy — 32c? + 67)Gyo

208 1
+ (11/{606 — 96k K, + ?I{ + 4‘L’6> Go + CKovoo — 32kK5e — 32/(3 + 20k, + T56 )G — EHUMWW

11 11 19 18 116 , 14
+ ?KH(TG(TGU + 7’(0 - = Ho(ro(r + — Koo + —«"+ ?t HU(TU

5 5 5
" 1 " 348 244 n 27 Ho 4 " 272 456k, 4+ 43(2 4 576 ,
— AlRooo I o I —Ts oo ~Roooo I oo o — KT — —
10/{ 5 KK, 5 K 10 K 5 KK, K Ky SK 5 K
3 78 177
- 12 + Too HO' + _EKO'O'O'O'O' + ?KKC'O'O + ?KUKGJ + 18K¢7¢7 + 2K¢7t

864 , 8 1
— — KKy — KTy + —Tooo | H.
5 5 10
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Substituting the expression for F into the equations for the projective curvatures « and 7, one obtains the following
equations

K A B Gy
(), %) () =

1 5 2 2 1 -1 1 -1
A =21+ grw + — 3 Ty 0y + ra — 5/(1 — 6/6[,8(, T+ Egz(raao ),

1 . 8 ., 29 53 104, (9 27 .
591 + —‘[Qz 80 - %3” + gKBU + 7’((’80 + fKUJ - FK + EKUJU — ?KKU 80

> 0, 'k + 3 +l ¥ + Pz Lo S 4 (2 2 L
—K, Le t T, T, - —K — — —Ky — — | T — —k 70y,
-3 ooe 77 \24% " 6" " 10% 12° 5 12°7° °°°

1, 1 3 20 28\ ., 5 5 64 , 208
Ay = 10, + =70, — | —«kT+ 3 0y — | 10k T + 5/{1’,, 0y — | OKgoT + —KgTy — —K°T — —K

where

By

3 12 3 6 3 5
4, 4 1 64 8, 5 -1 _
+ §‘L' — gfcwgr + gfcwt(, — ?/mar — 20k, — 5/{ T, + 6”0 a9, 108 '(2k50 — 16K2% + 1),
5 Lo D (141 Naa (70010, 14) 0 (2 o 196 5, 5
= —0,+ =19 — | =k — =7 — 7k + —kT + — — | —x« KoT — —K° 4+ —KT,
720776 7 \5° 247)%° 73 5)%7 \5 70" 7° 5 6
37 \., [28 588 5 32, 104 41 2,
— ET 8(, — ?KUUU + 3/(0(77,' — ?KKJ + EKUTU — ?K T — TK — %TU + §T 8(, — ZK(TUGU
2 | 332 1 LR 0 56 AL 292 C
— —KgooT + —KKoog — —KgoTo + —KKsT K Ky — —K —K° Ty — —KT — —To0
3 5 6 3 v 5 3 15
5 3 78 177 864 23 1 _1
- Etto - 10 Kooooo — ?KKO‘(TO‘ - TKUKUJ + ?K Ko + 10/(0‘5 + ?K‘E(T - Efaaa a(}'

1
- Er(,(f;w(,*1((z,<(,(, — 162 + 1)d, + 20k),

where
1 .4 4 , 49 5y 35 13 41 23 ,
21 = —ﬂa(, + k0, + 3k,0, + EKUUBH — 670 + Exwgag 20k K50y + Km,m, — ?KKUU — 7/(”
32, 6 (1 10 25 40 . 1 . .
+ ?K - g + 8’(00000 - ?KKUGU - ?KGKU(T + ?K Ko 8(7 - g’(oag (K(ra — 8Kk )

is the recursion operator of the Kaup-Kupershmidt equation, and
2, =92 — 4k — 2K,9; "
is the recursion operator of the KdV equation.

Letting G = 6, H = 0, one gets the following system

1
Kt = Kooooo — ZOKKO'UO' - SOK(TK(T(T + SOKZKG + ~Tooo — 2’(.[0 — Ko T,
2 (4.5)
Tt = —8KpooT — 2Kg5 Ty + 120k, + 128k kT — 57T, + 16/{210,

which can be written as
Kt = Kooooo — 20KKoge — S0KsKye + 80Kk, + %(ag — 4Kk — 2K, Bgl)r(,,
T = — (2K + 5T — 16k?)7, — 87(3% — 4k — 2k, 3, Dk, + (80K T + 120)K, .
Note that
Kt = Kooooo — 20KKsoo — 50Ky Koo + 80k2K,
is the fifth-order Kaup-Kupershmidt equation and E)g — 4k — 2K50, 1 is the recursion operator of the KdV equation
Kt = Kggo — BK K.

So the system (4.5) can be regarded as a coupled Kaup-Kupershmidt-KdV system.
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5. Motion of curves in four-dimensional projective geometry P*

In four-dimensional projective geometry, the Serret-Frenet formulas for curves read as [42]

0 1 0

4 0 0\ /vy
y M 4kq 0 1 0 O y M
yP| =1 264 66 0 1 of]|y?]|. (5.1)
y® 104k, 108 6x; 0 1] |y®
y@ . \24ks 8k, 48 4k, o) \y®@

The four-dimensional projective curve flow is governed by

ve=Ey +Fy +Gy@ +Hy® + 1y @, (52)

where E, F,G, H and L are velocities, depending on the projective curvatures «;,i = 1, 2, 3.
In terms of (5.1) and (5.2), the time evolution in four-dimensional projective geometry is given by

E F G H 1

14 Ey Fi G Hy I 14

)/(2) = E2 Fz Gz H2 L2 ]/(2) (53)
y® Es F3 G3 Hz L3]|y®

y (4) . Es F4 G4 Hy L4 )/(4)

whereE,F,G,H, L, E;, F;, G, Hyand L;, i = 1, 2, 3, 4 are functions of k;, i = 1, 2, 3, to be determined.
The commutativity condition d,d; = 9,d,, leads to the following equations

Ey = E; + 4k1F + 264G 4 104k,H + 24«3,

Fi = E 4+ F; + 6k1G + 108H + 8«;,L,

Gy =F 4+ G, + 6k1H + 48L,

Hi =G+ Hy + 4k4L,

Li=H+L,,

Ey = —4ky — 4k1E + E15 + 4k1Fy + 264Gy + 104x,H, + 24ksL4,

F, = E1 — 4«1F + Fi5 + 6k1G1 4+ 108H; 4+ 8«31,

G, = F; — 4k1G 4 Gy, + 6k1H, + 48L4,

Hy = G — 4k1H + His + 4K1L4,

Ly = Hy — 41l + Ly,

E3 = —264E — 6k1E1 + Eop + 4k1F> + 264G, + 104k,H; + 24k3L,,
F3 = —6k1; + E; — 264F — 6k1F; 4 Fo5 4 6k1G, 4 108H, + 8k, L,
G3 = F, — 264G — 6k1Gy 4+ Gy + 6k1Hy 4 48L,,

H; = Gy — 264H — 6k1H; + Hyy + 41 Ly,

Ly = Hy — 264L — 6k1L1 + Loy ,

Eqs = —104ky: — 104k,E — 108E1 — 6k1E; + E3s + 4k1F5 4 264G3 4 104k,Hs 4 24k3Ls,
Fy = E5 — 104k,F — 108F; — 6k1F; + F35 + 6k1G3 + 108H3 + 8k,Ls,
G4 = —6k1; + F3 — 104k,G — 108Gy — 6k1Gy + G3; + 6k1H3 4 48L3,
Hy = G3 — 104k;H — 108H; — 6k1H; + H3, + 4k4Ls,

Ly = H3 — 104«,L — 108L; — 6k1Ly + L3,,
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and
F4 — 24K3G — 8/{26] — 4862 — 4K1G3 + G4o' + 6K1H4 + 48L4 = 0,
Hy — 24K3L — 8K2L1 — 48L2 — 4K1L3 + Ly = 0,

! E + 1E 66F ! Fi+ 1F 26 G+39G+ 1G
Kie = ——K 3050 = = F = ¥ —Fy — —k — —G3,
1t 5 1 20 1 5 _lO 11 20 2 5 2 5 1 20 3,
6 24 12
—§K3H+*K2H1+3H2+ K1H3+ H4a+ K3L1 + K2L2+ L3+ K1L4, (5.4)
54
13 o F 27E 3 E, + 1 E 3 i F 1 F 3F
Ky = ——kE— —E1 — —« — — —KF — =
2 142 7 087 T sg 1 T g e T gt T g T 7
+ ! ——F4 + 33G + 3 G + 13 H; + 27H -I— 3 L + L L
e+ — —K 1~ 1« Takelss
112 4 14 3 56 144 2113 28 4 3L3 2L4

1 1 3
k3 = —i3E — §K251 —2E, — 6K1E3 + E4a + K1F4 + 1164 + *K2H4 + K3ly.

Simplifying the above equations, one has the followmg equations
16 32 64 32 67 318 429 7338
7Foaaa - 7K1Fao — | —Kie — 1260 Fa - 7K100F + 7600’00’0’ - 7KIGOUO — | —/—Kioe — —— Gao
5 5 5 5 10 5 5 5

219 ) 38 51 286
- ?Klaa - 224K1 - 448/(2 Ga - ?chaa - 224K1Kla - 224K20 G+ OHO'O'O'O'O'O' - ?K‘IHUOGG

1146 21 , 1408
- 57K10 + ? Hcroa + ?Klaa + 224K1 + 5 K2 Hoa

138 656 48
+ ?Khnfo + 224K1K10 + 13080K1 + ?KZU + ]20/(3 H + Klamm' + 8856’(10'

112 33 38 144 2004
- ?KZUJ + 72K3O’ H + EL(YO'(TO'(TO'O' - ?Klem'(nr + | —KKi6g — — Lm’ra(r

5 5
n 2346 1208 , 3376 2568 10748 10628 + 7800
Kioo — Ky — K o ——Klooo — ———K1K1e — ——— K20 K
25 777 25 17 25 2)Te0 25 7 s ! 25 !
108 1278 7848 204 10548
+ TK3 L ——K1ooo0 — ?Kkr — EK&T — TK]K]GU + 8208/{]0 + 60480 + 2688K]K2
10428 246 3216 6048
- 25 ———— Ko + 384K1 L + 25 —— Klooooo — ?lelmﬂr - 25 ——— KioK1o0 + 2520K100 + 768K1 Kio
3376 192
— ?Kzaga + 1792K10K2 + 1792/{]/(20 - 7/(300 L= O, (55)
and
K1 A] B] C] D] (F;U
K Ay By G Dy Ha , (5.6)
K3/, As B3 G D3/ \,”°
o
where
1
Al = —=82,
2
By = —-0, + 63,
9., (9 5 1 »
Cl = —%8” 2K10 — 63 (27/{106 36/{1 — 1]2/(2) - g(gxlgo‘o‘ — 54/(1/(10 — SKZU)BO- .
1. 5 X 22 62
Dl = —Ei)a — I(] - (5/{10— - 18)30 — 5(36K150— — 28/(1 — 56K2)8U — ?Iﬁgo—a — ?K]Klo—
102 , 252 48 24 »
- 36K1 - ?KZ(T - 6K3 — | Kloooo — 4K1K1z7<7 - 2/(10 - ?Kla - ?KZ(IU - ?K:‘;G 0

4 2.4 2 o (12 45Y 12 2, , 4 12 -
= — — =K —Klg — — o — | =——=K1ioo — —K K — | —Kico0 — ——K1K160 — K s
2 1Y4 35 lo 4 35 lo 35 1 2 35 loo 35 1*10 20 o
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D, =

As =
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99 ., 191 _, (619 747\ , (57 58 ,
—0) — — k10, — | ==kic + === ) 05 — | ==K166 — z=K7 — 10k | 05

1120 ° 280 560 280 70 35
(129 15 135 186 3462 )
Klooo — 7;K3 — — K20 — - Ki1K1oc — K1
560 14 14 35 35

3 58 , 264 20 3 »
- (%Kkﬂraa ~ 351K100 — 2Ky, — = Kio = — K200 — §Kaa> 9,
iBG—EK 84—1—(3/( —@>83+<81K —52K2+§K>32
1607 280 '° " \560 ' 280 /)" " \70° 1" 351" 772)%

927 30 1941 33 15
<%K1000 — o Kk + 0 + Tk + 7/(3) 0

261 166 31 , 1635 288 3 1208 127 5
<ﬁkmm ~ 35 K1K100 — T3 K0 + Ko + - 35 + 35 f1K2 — 3K + = 30 + 1890)

27 57 177 1107 432

+ <140K100000 - g’(l’(lamf - %Kla’(]oa + TK]O‘U + 35 K1K1a
634 66 9 ) »
+ 20k14k2 + 35 F1K20 ~ 3zK000 + —K300 ) 0, ',
35 14
9 101 5 211 687 4 423 737 , 212 3
700% + 1200°1% T (ﬁ'ﬁ“ - %) 0 + (200'““" T 35017 ﬁkz) %

567 6687 363 3667 69 2 2871 1903
<ﬁ'€1aaa - W’CIK]U + %Kl — WKZG + m&) <%Klaaaa — ﬁlﬁ/ﬁaa
1387 627 1248 , 7356 2729 33 1089

T 75 Mo T g e g it g ke T g Kaee gk 1485) 9+ Ja00* 1000
117 3903 3792 , 972 12 1116
- E’ﬁ’(lamr - ﬁxlalﬁaa + 175 K1 Kio — ¥K10'0' + 35K1K3 + 25 ——— K1K2¢
3312 , 27 3557 171 837 306 ,
+ 7 Kq + 444’(2 - %K&ro - W’Qoaa + 62K10K2 + (m’claoaoao - %Kloao - ﬁx]gg‘
3 31 213 2256 24
+ 300k, — 5¥3000 = 55 Ka0000 — oo KiKi0o00 + 175 k1Kl + 24K150ks + 3541630
+ 34Kk15Kk25 + 19296/{]/(1 — @Iﬁ K1 + ﬁK]Kz + 1056K2K1 )871
o K20 35 o 25 oKlooo 175 oo 175 1K100
—f35+£/<a +<6 —%>82+(48K b2 —8/()3
350 35 100 0™ 0 ) %o T\ 35"1er T 35k T o2 %
32 12 334 8 4 4 , 64 »
+ 35 K100 + 35€1K10 + =L + 5k3 + <35K10'Jm7 + 35€1K100 + 35K + 3 K10 +K3rr> 9, ",
B I (B - B (e - Bt )
1120% " 56 ! 8o " 280 )7 " \112°"" 35 g 2) %

479 2657 2689 585 75 145
<112K1000 - 7’(1’(10 - ?Kl - HKZU + — 14 3) 0 + 112K1m'rmr
2019 848 8612 3 65 3 20604

~ g KK1e0 = 55Kie = 55 Ko + 16«7 + 112k162 — - K200 = Ko + 3

41 249 3088 634 5

+ (280K1oaoao - E’ﬁ’ﬁaaa - ?lclaa - EKlaKlao + 16Kk7K15
112 112 169 6 .
+ 3 K1k + T3 K102 = S K00 — §K3aa> 0
= —387—1—&/( 85+<14O3K +@> 4 (ﬁx - ]97K2—@K> 3
160 ° ' 280 ' 560 7 ' 280 ) "\s60 7 35 ' 7 7
55 741 8989 153 5 5
- <16K1aaa + 70 ——K1K1e + Tlﬁ + WKZ" - ;Kg) 0

——Kioooo + —KiK1oo — =Ky + K10 + ——K{ — —_—Kik2 + — Ko + K3(T +

349 199 3, 121439 16 5 2232 293 60 2328 9
80 70 5 70 35 35 70 5 7
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17 159 67 n 89641 " 2032 , n 5344 4 664
- —~ Kilooooo — - K1Kicoo — —K1K1oo ——Kioo ——K1K1o —— K16k ——K1K2o
g ! 35 5 11 70 35 1T 105 T2 T 05 TR
10 12012 , 598 13368 " 99 27 n 248
— K1K3 — ———K{ — ——K2600 — ——K —K3050 ——Kioooooo —K10K20
R T 5 214 70" 7 72
249 864 80 1728 5 10188
~ 35 K1oK1000 + =K Koo + — KiKaoo — 10k1543 + 35 K1Kie T T KK F 40k2K106 — 2K1K35
23271 6032 177 25 97 _1
- %KlK]O'UO'U T’ﬁaaa - ?KZU - ¥K1a(r ﬁlﬁaaa - %KZUUGU a(y )
143 98 83 6 296 11357 55 2253 1929 , + 66 94
= ——30, — k10, — | —=—=K160 — ——— — | —«100 — K] + —«
’ 4200 ° 1400 ' \175° " 700 )7 \350 " 350 ' 175 )"
233 343 n 4201 5933 37 3
— | 55 Ktoo0 — S K20 ——K1— ——KiK1o — K
20 777 20 ° 14 ' 140 " 1400) %
8107 , 2981 412 18608 37724 n 46637 26637 41
- K < Koo — S Kioooo — Ko — K1K: ———KiKioo — T — K30
140 7 84 '’ 35 35 7 525 2 700 ! 5 140
28292 4 2 4 14843 N 8212 " 51372 , 152713 102922 N 494
- —k — K500 K Ko — Koo — K1K2e + —K1K
525 1) 420 "’ 25 27 175 ' 350 525 27T 351
23113 n 39101 134674 51598 , n 81 967 9
——- KicK1o0 K1K1coo — ——-Z- K16K2 — ———K{K1o —<K3oo — T Kiooooo o
175 7! 700 525 07T 175 17T 0877 T 140!
35356 2 1792 + 243 , + 487 53691 + 73 + 844
— —— K1k —— KK —K —Kiso00 — ——Kigo — K350 — Kok
105 1"1e 15 1K2 5 loo 28 20000 350 looo 20 3000 35 10K3
46896 7988 n 334 87302 1238 147587
— ——K1K1g — —— Kok —K1K3g — ——K1K2g0 — ——K1igo K ————K16K1oo
25 1" 10 25 1o K20 35 1K 3, 525 120 5 loo K2 2100 loRlooo
106382 , + 50563 4 431526 + 576 , 6272 , 1056 38376
— ———K{Kige + ———K1Kisooo K —K Ky — K3 — K2o
525 2100 17 Ty T s 2 s P 5 72
133 1152 4 26104 , 256 1271 19968
- Eklaaaaau 7’(] Kio — EK] Kilooo + %KZUUUU(T - mxlaaaaoaa - TKZO’U
6393 38 896 , 66904 23504 704
- ﬁ’claaoa + 7’(10’(30 + F’ﬁ Ko — f’ﬁa’@ao - EKIKZ(TO‘G - ?Klm'rKZ(r
1112 n 24 179436 " 2533 n 2216 n 2588
— —— KioooK —K1K3o0 — — - K1K1oo ——— K10K1o000 K1Kiooooo ———KiooK1000
15 17oen2 T g 175 ! 175 7! 525 ) 105 " 7!
+ 6272 n 1792 198336 , + 109824 + 6
KyK —K1K16K2 — K K =K
15 2K20 15 110 K2 175 1o 5 1o 5 30000
34144 , 228 120496 »
- Kig — = K30 — K1K16 K160 30’ ,
525 5 525

where 2 = ag — 4Kk — 2K150,; ! is the recursion operator of the KdV equation.
For a given (E, F, G, H, L), the motion of the curves in four-dimensional projective geometry is determined by Egs. (5.5)
and (5.6).

6. Concluding remarks

In this paper, we have carried out a study of inextensible motions of curves in two-, three- and four-dimensional
projective geometries. In fact, the Kaup-Kupershmidt hierarchy, a coupled Kaup-Kupershmidt-KdV system and their
extension can be obtained from such motions. So we can set up a correspondence between the Kaup-Kupershmidt hierarchy
and the inextensible motions of curves in projective geometry. Similarly, we can discuss motions of inextensible space curves
inP" (n > 5) and motions of surfaces in P" (n > 2); we believe that many 1+ 1- and 2 + 1-dimensional integrable systems
are associated with such motions.
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