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a b s t r a c t

A generalized conic is a set of points with the same average distance from the pointset
Γ in the Euclidean coordinate space. The measuring of the average distance is realized
via integration over Γ as the set of foci. Using generalized conics we give a process for
constructing convex bodies which are invariant under a fixed subgroup G of the orthogonal
group in Rn. The motivation is to present the existence of non-Euclidean Minkowski
functionals with G ⊂ O(n) in the linear isometry group provided that the closure of G
is not transitive on the unit sphere. As an application, consider Rn as the tangent space
at a point of a connected Riemannian manifold M and G as the holonomy group. If the
holonomy group is not transitive on the unit sphere in the tangent space, then the Lévi-
Civita connection is (re)metrizable in the sense that there is a smooth collection of non-
Euclidean Minkowski functionals on the tangent spaces such that it is invariant under
parallel transport with respect to the Lévi-Civita connection (according to Berger’s list of
possible Riemannian holonomy groups, all of them are transitive on the unit sphere in the
tangent space except in the case where the manifold is a symmetric space of rank ≥ 2).
We present the (re)metrizability theorem in a more general context of metrical linear
connectionswith a torsion tensor that is not necessarily vanishing. This allows us to declare
eight classes of manifolds equipped with an invariant smooth collection of Minkowski
functionals on the tangent spaces. They are called Berwald manifolds in a general sense.

© 2010 Elsevier B.V. All rights reserved.

1. Examples and basic properties

Let Γ be a subset of the Euclidean coordinate space Rn. The norm and distance of the elements of the space are defined
with the help of the canonical inner product as usual. A generalized conic is a set of points with the same average distance
from the pointset Γ . If Γ = {γ1, . . . , γm} is finite, then the average distance can be calculated as the arithmetic mean

F(x) :=
d(x, γ1) + · · · + d(x, γm)

m
of distances from the points γi. Hypersurfaces of the form F(x) = const. are called polyellipses or polyellipsoids [1–3]. It
is natural to take any other types of mean or their weighted versions instead of the standard arithmetic one. To include
hyperbolas in the competence of the generalization we can admit a simple weighted sum of distances instead of means.
Parabolas can be given as a special case if not only single points but also hyperplanes are admitted as elements of the set
of foci. The pure case of such a construction is presented in the following example. If Γ = {H1, . . . ,Hm} is a finite set of
hyperplanes in Rn, then the average distance can be calculated as the arithmetic mean

F(x) :=
d(x,H1) + · · · + d(x,Hm)

m
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of distances from the hyperplanes Hi. In particular let

e1 := (1, 0 . . . , 0), e2 := (0, 1, 0, . . . , 0), . . . , en := (0, . . . , 0, 1)

be the canonical basis and consider the hyperplanes

Hi := aff {e1, . . . , ei−1, ei+1, . . . , en}, where i = 1 . . . n.

Then

F(x) =
|x1| + · · · + |xn|

n
,

where x = (x1, . . . , xn) and hypersurfaces of the form F(x) = const. are just spheres with respect to the 1-norm. They can
also be considered as a generalization of conics. In the case of a non-finite set of geometric objects we can use integration
over the set of foci to calculate the average distance.

Definition 1. Let Γ be a bounded orientable submanifold in Rn such that vol Γ < ∞ with respect to the induced Rieman-
nian volume form dγ . The average distance is measured as the integral

F(x) :=
1

vol Γ

∫
Γ

γ → d(x, γ ) dγ .

Hypersurfaces of the form F(x) = const. are called generalized conicswith foci γ ∈ Γ .

Remark 1. In this sense generalized conics are ‘‘limits’’ of sequences of polyellipses or polyellipsoids. To generalize the pure
case of hyperplanes in a similar way we can use the submanifolds of Grassmannians. By taking submanifolds of the product
Rn with Grassmannians or flag manifolds [4], mixed cases can also be presented.

Theorem 1. F is a convex function satisfying the growth condition

lim inf
|x|→∞

F(x)
|x|

> 0,

where |x| is the Euclidean norm of x.

Proof. Convexity is clear because the integrand is a convex function of the variable x for any fixed element γ ∈ Γ . Since Γ

is bounded, we can define the constant K := supγ∈Γ |γ |. Then

d(x, γ )

|x|
≥ 1 −

K
|x|

≥ 1 −
1
n

holds on the neighbourhood |x| > nK of ∞ for any γ ∈ Γ . Therefore

lim inf
|x|→∞

F(x)
|x|

≥ 1 > 0

as was to be stated. �

Corollary 1 ([5]). The levels of the function F are bounded.

Corollary 2. F has a global minimizer.

Proof. The statement follows from the Weierstrass’s theorem [6]: if all the level sets of a continuous function defined on a
non-empty, closed set in Rn are bounded, then it has a global minimizer. �

Let

γ : [0, 2π ] → R3, γ (t) := (cos t, sin t, 0)

be the unit circle in the xy-coordinate plane and

F(x, y, z) :=
1
2π

∫ 2π

0


(x − cos t)2 + (y − sin t)2 + z2 dt.

The surface of the form F(x, y, z) =
8
2π is a generalized conicwith foci S1 in the Euclidean spaceR3. It is obviously a revolution

surface with generatrix∫ 2π

0


cos2 t + (y − sin t)2 + z2 dt = 8

in the yz-coordinate plane.



Cs. Vincze, Á. Nagy / Journal of Geometry and Physics 61 (2011) 815–828 817

z

0.8

0.4

0

-0.4

-0.8

y

10.50-0.5-1

Fig. 1. The generatrix and its approximating ellipse.

Lemma 1. The surface F(x, y, z) =
8
2π is not an ellipsoid.

Proof. It is enough to prove that the generatrix∫ 2π

0


cos2 t + (y − sin t)2 + z2 dt = 8

is not an ellipse in the yz-coordinate plane. If y = 0, then we have that

z = ±


8
2π

2

− 1.

On the other hand, if z = 0, then the solutions of the equation∫ 2π

0


cos2 t + (y − sin t)2 dt = 8

are just y = ±1. Therefore the only possible ellipse has the parametric form

y(s) = cos s and z(s) =


8
2π

2

− 1 sin s.

Fig. 1 shows the generatrix (pointstyle) and its approximating ellipse. Consider the auxiliary function

v(s) :=

∫ 2π

0


cos2 t + (y(s) − sin t)2 + z2(s) dt.

It can be written in the form

v(s) = 4h(s)
∫ π

2

0


1 − r2(s) sin2 t dt = 4h(s)E(r(s)),

where

E(r) :=

∫ π
2

0


1 − r2 sin2 t dt, 0 < r < 1

is the complete elliptic integral of the second kind,

h(s) :=


(1 + y(s))2 + z2(s) and

1
4
r2(s) :=

y(s)
h2(s)

> 0

provided that −
π
2 < s < π

2 . In terms of the Gaussian hypergeometric function

E(r) =
π

2
F


−
1
2
,
1
2
; 1; r2


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and Richards’ result, [7] states that

E(r) ≥
π

2
Mp(1,


1 − r2), where p =

3
2

and Mp(x, y) :=


xp + yp

2

 1
p

is the pth power mean of its arguments; see also [8]. Thus we have

v(s) ≥ 2πh(s)Mp(1,

1 − r2(s)).

Consider the function

g(s) := 2πh(s)Mp(1,

1 − r2(s)), 0 ≤ s ≤ 2π

having the properties

g
π

2


= 8, g ′

π

2


= 0 and g ′′

π

2


> 0.

Here we prove that g2 attains its local minimum at s =
π
2 . With the help of a straightforward calculation, we have

1
4π2

(g2)′
π

2


= (h2)′

π

2


−

1
2
h2
π

2


(r2)′

π

2


D2M2

p (1, 1)

and
1

4π2
(g2)′′

π

2


= (h2)′′

π

2


−

1
2
(h2)′

π

2


D2M2

p (1, 1)(r
2)′
π

2


−

1
4
h2
π

2


D2M2

p (1, 1)


2(r2)′′ + (r2)′

π

2


(r2)′

π

2



+
1
4
h2
π

2


D2D2Mp(1, 1)(r2)′

π

2


(r2)′

π

2


,

where

h2
π

2


=


8
2π

2

, (h2)′
π

2


= −2, (h2)′′

π

2


= 2


2 −


8
2π

2


and

D2M2
p (1, 1) = 1, D2D2M2

p (1, 1) =
p
2
.

On the other hand,

r2(s)h2(s) = 4 cos s

which means that

r2
π

2


= 0, (r2)′

π

2


h2
π

2


= −4, and (r2)′′

π

2


h4
π

2


= 8(h2)′

π

2


.

We have
1

4π2
(g2)′

π

2


= 0

and
1

4π2
(g2)′′

π

2


= (h2)′′

π

2


− (4 − 2p)h−2

π

2


= (h2)′′

π

2


− h−2

π

2


> 0

as can be easily seen. Therefore the function g attains its localminimum at s =
π
2 and theremust be a parameter 0 < s∗ < π

2
such that

8 < g(s∗) ≤ v(s∗),

i.e. v(s) is not a constant function. �

Definition 2. Let K be a convex body containing the origin in its interior. TheMinkowski functional L induced by K is defined
as

L(x) := inf{t | x ∈ tK}, where tK := {tk | k ∈ K}

for any positive real number t . The functional L is called smooth if it is smooth except at the origin.Minkowski spaces are real
vector spaces equipped with a Minkowski functional.
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Remark 2. The functional L was first defined by H. Minkowski to provide a method of obtaining a norm together with a
topology in very general linear spaces [9]. It is well-known that L is positive homogeneous of order 1 which means that
L(tx) = tL(x) for all positive real numbers t . Due to the convexity of K , it is subadditive: L(x+y) ≤ L(x)+ L(y). Subadditivity
together with homogeneity implies convexity as well. The symmetry of K with respect to the origin is equivalent to the
absolute homogeneity (reversibility) L(x) = L(−x). In general it is omitted as a too rigid requirement from the viewpoint
of applications; see e.g. the so-called Funk metric [10] constructed by changing the base point of the vectors in the interior
of K .

Definition 3. By a linear isometry with respect to the Minkowski functional Lwe mean a linear mapping ϕ:Rn
→ Rn such

that L ◦ ϕ = L.

Corollary 3. The generalized conic F(x, y, z) =
8
2π induces a non-Euclidean Minkowski functional containing the Euclidean

isometries leaving S1 invariant in its linear isometry group.

Proof. It is clear that conics together with the induced Minkowski functionals L inherit all of the symmetry properties of
the set of foci. On the other hand, Lemma 1 shows that L induced by the conic F(x, y, z) =

8
2π cannot arise from any inner

product on the Euclidean space. �

Remark 3. In general the group of linear isometries of a non-Euclidean Minkowski space is trivial. In the following sections
we present results like Corollary 3 on the existence of Minkowski functionals with a given subgroup G ⊂ O(n) in the linear
isometry group. Therefore we have examples of geometric spaces with richer and richer linear isometry groups up to the
Euclidean geometry.

2. The case of reducible subgroups

Let G ⊂ O(n) be the subgroup of the orthogonal transformations in the Euclidean space Rn. If G is reducible and n = 2we
can always find a finite invariant set of points Γ = {±x1, ±x2, } under the elements of G. This is clear because the invariant
subspace must be of dimension 1, together with its orthogonal complement. Their Euclidean unit vectors form the set of Γ .
We can choose the origin as one of the foci too. Therefore any polyellipse with foci Γ induces a non-Euclidean Minkowski
functional L such that G is the subgroup of the linear isometries with respect to L. If the dimension is greater than or equal
to 3, then, by the reducibility of G, we can take one of the Euclidean unit spheres

S1 ⊂ S2 ⊂ · · · ⊂ Sn−2

as the invariant set under the elements of G (in the case of a one-dimensional invariant subspace, consider its orthogonal
complement). Sn−1 as the set of foci gives conics which are invariant under the whole orthogonal group because of the
invariance of the set of their foci. Therefore they are spheres of dimension n − 1. In the case of S1 at least one of the
generalized conics is different from the ellipsoids centered at the origin as Lemma 1 says, by taking R3 in Rn as a natural
subspace if necessary. In what follows we are going to discuss the case of Sk in general using some recent results on the
Gaussian hypergeometric function [7] and elliptic integrals [8].

Let n ≥ 4 and 2 ≤ k ≤ n − 2 be fixed integers. To express Sk ⊂ Rn in a parametric form consider the mapping

ρk−1:H → Sk−1 ⊂ Rk
× Rn−k, where H ⊂ Rk−1 and ρk−1(u) = (ρ(u), 0)

which gives the points of the sphere Sk−1 by taking Rk in Rn as a natural subspace. Then

ρk:H ×


−

π

2
,
π

2


→ Sk ⊂ Rk+1

× Rn−(k+1), ρk(u, v) = (ρ(u) cos(v), sin(v), 0).

Since the determinants of the first fundamental forms of Sk−1 and Sk are related by the formula

det gij(u, v) = (cos2(v))k−1 det hij(u),

we have that for all x ∈ Rn,

Fk(x) :=
1

Vol Sk

∫
Sk

γ → d(x, γ ) dγ and∫
Sk

γ → d(x, γ ) dγ =

∫
Sk−1

γ →

∫ π
2

−
π
2


D(x, γ , v) cosk−1(v) dv


dγ ,

where

D(x, γ , v) :=

k−
i=1

(xi − γ i cos(v))2 + (xk+1
− sin(v))2 + (xk+2)2 + · · · + (xn)2.
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Consider the intersections of conics of the form Fk(x) = const. with the plane

x1 = · · · = xk−1
= 0 and xk+3

= · · · = xn = 0.

They are the level sets of the function

fk(y, z) =

∫ π
2

−
π
2


1 + y2 + z2 − 2y sin t cosk−1 t dt

with variables y := xk and z := xk+1, respectively. For the sake of simplicity let l := k − 1; then

fk(1, 0) =
2l+2

· l!
1 · 3 · · · · · (2l + 1)

as we can see with the help of the following calculations.

fk(1, 0) =

∫ π
2

−
π
2


2(1 − sin t) cosl t dt =

√
2
∫ π

2

−
π
2


cos

t
2

− sin
t
2


cosl t dt

=
√
2
∫ π

2

−
π
2


cos

t
2

− sin
t
2


cos2

t
2

− sin2 t
2

l

dt

= 2
√
2
∫ π

4

−
π
4

(cos x − sin x)

cos2 x − sin2 x

l
dx

= 2
√
2
∫ π

4

−
π
4

cos x

cos2 x − sin2 x

l
dx = 2

√
2
∫ π

4

−
π
4

cos x

1 − 2 sin2 x

l
dx

because − sin x = sin(−x). Here∫
cos x


1 − 2 sin2 x

l
dx =

∫
cos x

l−
i=0


l
i


(−2)l−i(sin x)2(l−i) dx

=

l−
i=0


l
i


(−2)l−i

∫
cos x(sin x)2(l−i) dx

=

l−
i=0

1
2(l − i) + 1


l
i


(−2)l−i(sin x)2(l−i)+1

= sin x
l−

i=0

1
2l + 1 − 2i


l
i


(−2 sin2 x)l−i

and thus

fk(1, 0) = 4
l−

i=0

1
2l + 1 − 2i


l
i


(−1)l−i

= 4
1

2l + 1

l−
i=0

2l + 1
2l + 1 − 2i


l
i


(−1)l−i

= 4
1

2l + 1

l−
i=0


l
i


(−1)l−i

+ 4
1

2l + 1

l−
i=0

2i
2l + 1 − 2i


l
i


(−1)l−i

= 4
2

2l + 1

l−
i=1

i
2l + 1 − 2i

l!
i!(l − i)!

(−1)l−i

= 4
2l

2l + 1

l−
i=1

1
2l + 1 − 2i

(l − 1)!
(i − 1)!(l − i)!

(−1)l−i

= 4
2l

2l + 1

l−1−
i=0

1
2l + 1 − 2i − 2


l − 1
i


(−1)l−1−i
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= 4
2l

2l + 1
2(l − 1)

2l + 1 − 2

l−2−
i=0

1
2l + 1 − 2i − 4


l − 2
i


(−1)l−2−i

= · · ·

=
2l+2

· l!
1 · 3 · · · · · (2l + 1)

as was to be proved.

Lemma 2. The hypersurface Fk(x) =
c(l)

Vol Sk
where

c(l) :=
2l+2

· l!
1 · 3 · · · · · (2l + 1)

, and l = k − 1

is not an ellipsoid.

Proof. It is enough to prove that the generatrix∫ π
2

−
π
2


1 + y2 + z2 − 2y sin t cosl t dt = c(l)

is not an ellipse in the yz-coordinate plane. If y = 0 we have that
1 + z2

∫ π
2

−
π
2

cosl t dt = c(l).

Case I. If l is odd, i.e. k is even, then∫ π
2

−
π
2

cosl t dt = 2
(l − 1)!!

l!!
,

where

0!! := 1, (l − 1)!! := (l − 1) · (l − 3) · (l − 5) · · · · · 2 and
l!! := l · (l − 2) · (l − 4) · · · · · 1.

Therefore the only possible ellipse has the parametric form

y(s) = cos s and z(s) = b(l) sin s

with

b(l) :=


c2(l)l!!2

4(l − 1)!!2
− 1.

Case II. If l is even, i.e. k is odd, then∫ π
2

−
π
2

cosl t dt = π
(l − 1)!!

l!!
.

Therefore the only possible ellipse has the parametric form

y(s) = cos s and z(s) = b(l) sin s

with

b(l) :=


c2(l)l!!2

π2(l − 1)!!2
− 1.

Consider the auxiliary function

vl(s) :=

∫ π
2

−
π
2


1 + y2(s) + z2(s) − 2y(s) sin t cosl t dt.

It can be written in the form

vl(s) = 2lh(s)
Γ 2
 l+1

2


Γ (l + 1)

F


−
1
2
,
l + 1
2

, l + 1, r2(s)


,
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Fig. 2. The case of l = 1, 3 and 5.

where

F(a, b; c; z) :=
Γ (c)

Γ (b)Γ (c − b)

∫ 1

0
(1 − uz)−aub−1(1 − u)c−b−1 du, |z| < 1

is the Gaussian hypergeometric function,

h(s) :=


(1 + y(s))2 + z2(s) and

1
4
r2(s) :=

y(s)
h2(s)

.

Using the identities

Γ (m) = (m − 1)!, Γ


1
2


=

√
π, and Γ (z + 1) = zΓ (z)

we have

2l Γ
2
 l+1

2


Γ (l + 1)

=
c(l)

b2(l) + 1
.

On the other hand, for any parameter −
π
2 < s < π

2 Richards’ result [7] states that

F 2


−
1
2
,
l + 1
2

, l + 1, r2(s)


≥ Mp(1,

1 − r2(s)), where p =

2l + 3
l + 2

.

Therefore

vl(s) ≥ h(s)
c(l)

b2(l) + 1
Mp(1,


1 − r2(s)).

Fig. 2 shows the function(s)

g(s) := h(s)
1

b2(l) + 1
Mp(1,


1 − r2(s)), 0 ≤ s ≤ 2π

for l = 1, 3 and 5 (or k = 2, 4 and 6).
It has the properties

g
π

2


= 1, g ′

π

2


= 0 and g ′′

π

2


> 0.

Here we prove that g2 attains its local minimum at s =
π
2 . Using the same computation as in the proof of Lemma 1,

(g2)′
π

2


= 0
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and

(g2)′′
π

2


=

1
b2(l) + 1


(h2)′′

π

2


− (4 − 2p)h−2

π

2


=

2
b2(l) + 1


1 − b2(l) −

1
l + 2

1
1 + b2(l)


.

The proof of the inequality

1 − b2(l) −
1

l + 2
1

1 + b2(l)
> 0 (1)

can be divided into the following steps.
First step. Inequality (1) is obviously equivalent to

(2 − (b2(l) + 1))(b2(l) + 1)(l + 2) > 1

which can be directly seen in the case of l = 1, 2. Suppose, on the contrary, that

(2 − (b2(l) + 1))(b2(l) + 1)(l + 2) ≤ 1

for some integer l and choose the smallest one. Then l > 2 and

(2 − (b2(l − 2) + 1))(b2(l − 2) + 1)l > 1.

Therefore

(2 − (b2(l) + 1))(b2(l) + 1)(l + 2)
(2 − (b2(l − 2) + 1))(b2(l − 2) + 1)l

≤ 1.

Second step. To present a contradiction it is enough to prove that

(2 − (b2(l + 2) + 1))(b2(l + 2) + 1)(l + 4)
(2 − (b2(l) + 1))(b2(l) + 1)(l + 2)

> 1 (2)

for any integer l > 0. Here

b2(l + 2) + 1
b2(l) + 1

=
24(l + 2)2(l + 2)2

(2l + 3)2(2l + 5)2
=

(2l + 4)2(2l + 4)2

(2l + 3)2(2l + 5)2
=

(2l + 4)4

((2l + 4)2 − 1)2

and inequality (2) can be written in the following equivalent forms:

(2 − (b2(l + 2) + 1))(2l + 4)4(l + 4) > (2 − (b2(l) + 1))((2l + 4)2 − 1)2(l + 2),

i.e.

2(2l + 4)4(l + 4) − (b2(l + 2) + 1)(2l + 4)4(l + 4) > 2((2l + 4)2 − 1)2(l + 2) − (b2(l) + 1)((2l + 4)2 − 1)2(l + 2)

and thus

2(2l + 4)4(l + 4) − 2((2l + 4)2 − 1)2(l + 2) − (b2(l + 2) + 1)(2l + 4)4(l + 4)
> −(b2(l) + 1)((2l + 4)2 − 1)2(l + 2).

With the help of further computations,

(b2(l + 2) + 1)(2l + 4)4(l + 4)
(b2(l) + 1)((2l + 4)2 − 1)2(l + 2)

− 2
(2l + 4)4(l + 4) − ((2l + 4)2 − 1)2(l + 2)

(b2(l) + 1)((2l + 4)2 − 1)2(l + 2)
< 1,

i.e.

2
(2l + 4)4(l + 4) − ((2l + 4)2 − 1)2(l + 2)

(b2(l) + 1)((2l + 4)2 − 1)2(l + 2)
>

(2l + 4)8(l + 4) − ((2l + 4)2 − 1)4(l + 2)
((2l + 4)2 − 1)4(l + 2)

and thus

2((2l + 4)2 − 1)2
(2l + 4)4(l + 4) − ((2l + 4)2 − 1)2(l + 2)
(2l + 4)8(l + 4) − ((2l + 4)2 − 1)4(l + 2)

> b2(l) + 1. (3)

Third step. To prove inequality (3)we use an induction on l. The cases l = 1 and 2 can be directly seen. Suppose that inequality
(3) is true up to the integer l − 2, where l ≥ 4, i.e.

2((2l)2 − 1)2
(2l)4(l + 2) − ((2l)2 − 1)2l
(2l)8(l + 2) − ((2l)2 − 1)4l

> b2(l − 2) + 1.
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Multiplying both sides by (2l)4

((2l)2−1)
2 we have

2(2l)4
(2l)4(l + 2) − ((2l)2 − 1)2l
(2l)8(l + 2) − ((2l)2 − 1)4l

> b2(l) + 1

and it is enough to prove that for any integer l ≥ 2,

2((2l + 4)2 − 1)2
(2l + 4)4(l + 4) − ((2l + 4)2 − 1)2(l + 2)
(2l + 4)8(l + 4) − ((2l + 4)2 − 1)4(l + 2)

> 2(2l)4
(2l)4(l + 2) − ((2l)2 − 1)2l
(2l)8(l + 2) − ((2l)2 − 1)4l

which is equivalent to the inequality p(l) > 0, where

p(x) := 327680x12 + 3571712x11 + 15024128x10 + 27283456x9 + 4449280x8 − 64296448x7 − 101394944x6

− 51257536x5 + 9134912x4 + 14982848x3 + 2259712x2 − 1054590x − 258300.

Since p(2) > 0 and

p′(2) > 0, p′′(2) > 0, . . . , p6(2) > 0 and p7(2) > 0,

the inequality p(l) > 0 is satisfied for any integer l ≥ 2 as was to be proved.
Therefore g attains its local minimum at s =

π
2 and there must be a parameter 0 < s∗ < π

2 such that

1 < g(s∗) ≤
v(s∗)
c(l)

,

i.e. v(s) is not a constant function. �

Corollary 4. The generalized conic Fk(x) =
c(l)

Vol Sk
where

c(l) :=
2l+2

· l!
1 · 3 · · · · · (2l + 1)

, and l = k − 1

induces a non-Euclidean Minkowski functional containing the Euclidean isometries leaving Sk invariant in its linear isometry
group.

3. The case of irreducible subgroups

Surprisingly this case is almost trivial, in view of the following lemma. As we have seen above, the key step of the
construction is to find an invariant set under G as the foci of a generalized conic. It is natural to consider the orbits of the
points with respect to G.

Lemma 3. For any irreducible closed subgroup G the origin is an interior point of the convex hull of non-trivial orbits.

Proof. First of all note that the convex hulls of the orbits are invariant under G and all of them are closed and, consequently,
it is a compact subsets. If G is irreducible and the origin is not a point of the convex hull of a non-trivial orbit, then we can
use a simple nearest-point-type argumentation to present a contradiction as follows: taking the uniquely determined point
of the convex hull nearest to the origin it can be easily seen that it must be a fixed point of any element of G. This contradicts
the irreducibility. If the origin is not in the interior of the convex hull we can consider the common part H of supporting
hyperplanes at the origin. It is not an empty set because the origin does not belong to any non-trivial orbit and thus, by the
Krein–Milmann theorem, cannot be an extremal point of the convex hull. H is obviously an invariant linear subspace under
Gwhich contradicts the irreducibility. �

Note that if one of the convex hulls of a non-trivial orbit is an ellipsoid (as a body) centered at the origin, then it must
be a ball in the Euclidean sense according to the irreducibility of G. Then G is transitive on the unit sphere, and all of the
possible Minkowski functionals must be Euclidean. In any other case, Lemma 3 shows that the convex hulls of the orbits
themselves induce possible Minkowski functionals (in the case of non-closed subgroups we can argue with the transitivity
of the closure.)

Corollary 5. If G is non-transitive on the unit sphere, closed and irreducible, then the convex hull of any non-trivial orbit induces
a non-Euclidean Minkowski functional L such that G is the subgroup of the linear isometries with respect to L.

Integration can be used to avoid singularities, as the following example shows. Consider the group of the symmetries of
the square

[−1, 1] × [−1, 1]
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centered at the origin in the Euclidean plane. The convex hulls of all of the non-trivial orbits are polygons, i.e. the boundary
of the convex hull always has singularities. The orbit

Γ = {(−1, −1), (1, −1), (1, 1), (−1, 1)}
induces the supremum norm

|(x, y)| :=
1

√
2
max{|x|, |y|}.

To avoid the singularities at the vertices consider the function

F(x, y) :=
1
4

∫ 1

−1

∫ 1

−1


(x − t)2 + (y − s)2 ds dt.

The curves of the form F(x, y) = const. are just generalized conics with foci conv Γ . The following calculation shows that
at least one of them is not a circle (the irreducibility implies that the invariant ellipses must be circles). According to the
symmetric role of the variables x, t and y, s, respectively, we can calculate the coordinates

D1F(x, y) =
1
4

∫ 1

−1

∫ 1

−1

x − t
(x − t)2 + (y − s)2

ds dt,

D2F(x, y) =
1
4

∫ 1

−1

∫ 1

−1

y − s
(x − t)2 + (y − s)2

ds dt

of the gradient vector field. Here

D1F(x, y) = −
1
8
[(s − y)


(x − 1)2 + (y − s)2 + (x − 1)2 ln((s − y) +


(x − 1)2 + (y − s)2)

+ (s − y)


(x + 1)2 + (y − s)2 + (x + 1)2 ln((s − y)

+


(x + 1)2 + (y − s)2)]1

−1 and D2F(x, y) = D1F(y, x).
Using these formulas consider the auxiliary function

v(x, y) := yD1F(x, y) − xD2F(x, y)
to measure the difference between the gradient vectors of the family of generalized conics and circles. We have

v(2, 1) = −2
√
13 +

9
2
ln 3 −

9
2
ln(−2 +

√
13) +

1
2
ln(−2 +

√
5) − 8 ln 2 + 4 ln(−3 +

√
13) + 4 ln(

√
5 + 1) + 8

which is obviously different from zero. The general case is discussed via the following theorem for the alternatives.

Definition 4. Let G be a closed subgroup; let z ∈ Sn−1 be a fixed point and consider its orbit Γz . The minimax point of Γz is
such a point z∗ on the sphere that the minimum

a := min
|y|=1

max
γ

d(y, γ )

is attained, where the maximum is taken on the convex hull conv Γz .

Consider the function

f :R → R, f (t) :=


0 if t ≤ a
(t − a)e−

1
t−a if t > a.

With the help of the standard calculus [4] it can be seen that this is a smooth convex function on the real line. Define
g(t) := t + f (t)

and take the functions

F(x) :=

∫
conv Γz

γ → d(x, γ ) dγ and F̃(x) :=

∫
conv Γz

γ → g(d(x, γ )) dγ .

It is clear that
c := F(z∗) = F̃(z∗).

On the other hand, one of the niveaus
F(x) = c and F̃(x) = c

must be different from the sphere except when the function
y ∈ Sn−1 → max

γ
d(y, γ )

is constant, where the maximum is taken on the convex hull conv Γz . Since Γz ⊂ Sn−1, it can be easily seen that this is
impossible unless conv Γz is the unit ball (and G is transitive). Therefore we have the following theorem for the alternatives.
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Theorem 2 (Theorem for the Alternatives). If G is non-transitive on the unit sphere, closed and irreducible, then one of the
hypersurfaces∫

conv Γz

γ → d(x, γ ) dγ = c and
∫
conv Γz

γ → g(d(x, γ )) dγ = c,

where c is the common value of the functions F and F̃ at the minimax point z∗, induces a non-Euclidean Minkowski functional L
such that G is the subgroup of the linear isometries with respect to L.

Remark 4. The following list [11] shows the compact connected Lie subgroups1 which are transitive on the Euclidean unit
sphere Sn−1 ⊂ Rn.

SO(n) SO(n) SO(n) SO(7) SO(8) SO(16)
– U(2k + 1) U(2k) – U(4) U(8)
– SU(2k + 1) SU(2k) – SU(4) SU(8)
– – Sp(k) – Sp(2) Sp(4)
– – Sp(k) · SO(2) – Sp(2) · SO(2) Sp(4) · SO(2)
– – Sp(k) · Sp(1) – Sp(2) · Sp(1) Sp(4) · Sp(1)
– – – G2 Spin(7) Spin(9)
n = 2k+1 ≠ 7 n = 2(2k + 1) n = 4k ≠ 8, 16 n = 7 n = 8 n = 16

In the case of these groups there are no alternatives to the Euclidean geometry. For the classification see [12–14].

4. The main result

Definition 5. Let Γ be a bounded orientable submanifold in Rn such that vol Γ < ∞ with respect to the induced Rieman-
nian volume form dγ . If g is a strictly monotone increasing convex function on the non-negative real numbers with initial
value g(0) = 0, then hypersurfaces of the form

1
vol Γ

∫
Γ

γ → g(d(x, γ )) dγ = c

are called generalized conics with foci γ ∈ Γ and g as a function of the alternative.

Theorem 3. The function

Fg(x) :=
1

vol Γ

∫
Γ

γ → g(d(x, γ )) dγ

is a convex function satisfying the growth condition

lim inf
|x|→∞

Fg(x)
|x|

> 0,

where |x| is the Euclidean norm of x.
Proof. The convexity is trivial. Since the growth condition is equivalent to having bounded level sets for any convex
function [6], we have that limr→∞

g(r)
r > 0 and thus

lim inf
|x|→∞

Fg(x)
|x|

=
1

vol Γ
lim inf
|x|→∞

∫
Γ

γ →
g(d(x, γ ))

d(γ , x)
d(γ , x)

|x|
dγ > 0

as was to be proved. �

Corollary 6 ([5]). The levels of the function Fg are bounded.

Corollary 7. Fg has a global minimizer.

Theorem 4 (The Main Theorem). If G ⊂ O(n) is reducible or it is a closed irreducible subgroup which is not transitive on the
Euclidean unit sphere in Rn, then there exists an invariant subset Γ under G together with a function g of an alternative such that
the generalized conic of the form

1
vol Γ

∫
Γ

γ → g(d(x, γ )) dγ = c

induces a non-Euclidean Minkowski functional containing G in its linear isometry group.

1 According to the Closed Subgroup Theorem [4], G (as a topologically closed subgroup) is a Lie subgroup. Since the orthogonal group is compact, so is G
with at most finitely many components; see the list above.
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5. Applications

. . . a manifold carries a structure invariant under parallel transport if and only if this structure is invariant at a single
point under the holonomy group.

M. Berger

I. Let now (M, γ ) be a connected Riemannian manifold and consider a point p ∈ M . If the closure of the holonomy group
at p is not transitive on the unit sphere in TpM , we can use Theorem 4 to construct a convex body (a generalized conic)
containing the origin in its interior such that it is invariant under the element of the holonomy group at p. This induces a
non-Euclidean Minkowski functional Lp in TpM having the elements of the holonomy group as linear isometries. Extending
this functional with the help of parallel transport with respect to the Riemannian structure, we have a smooth collection
of functionals such that it is invariant under parallel transport with respect to the Lévi-Civita connection. In a precise
terminology, manifolds having such a structure are (non-Riemannian) Berwald manifolds belonging to the special case of
Finsler manifolds: Finsler geometry is a non-Riemannian geometry . . . Instead of the Euclidean spheres in the tangent spaces, the
unit vectors form the boundary of general convex sets containing the origin in their interiors. (M. Berger).

Theorem 5. If the closure of the holonomy group of a connected Riemannian manifold is not transitive on the unit sphere in the
tangent space, then its Lévi-Civita connection is strictly Berwald metrizable by generalized conics with respect to the Riemannian
structure.

Recall that by a theorem due to Borel and Lichnerowicz the restricted holonomy group (themaximal connected subgroup
containing the identity) is a closed subgroup in the orthogonal group. Since the holonomy group has at most countable
components, the closedness depends on their number (finite or not). Simons [15] proved that if M is a locally irreducible
Riemannianmanifold such that the restricted holonomy group is not transitive on the unit sphere in the tangent space, then
we have a locally symmetric space of rank ≥ 2. Then the holonomy group is contained in the group G of all orthogonal
transformations leaving the curvature tensor invariant at a single point of the manifold. G is obviously a closed subgroup
and, if the curvature does not vanish, then its maximal connected subgroup containing the identity coincides with the
restricted holonomy group [15]. Therefore the holonomy group has at most as many components as G and it is closed;
see also [16]. This means that the closure operator in Theorem 5 can be omitted in the case of both reducible Riemannian
manifolds (automatically) and locally irreducible Riemannian manifolds with non-vanishing curvature tensor. To complete
this panoramic view, recall that Bieberbach’s theorem states that the holonomy group is finite in the case of a compact flat
Riemannian manifold.
II. The next step is the generalization of Theorem 5 in the following sense. Let (M, γ ) be a connected Riemannian manifold
and consider a point p ∈ M . If the closure of the holonomy group at p of a metrical but not necessarily torsion free linear
connection ∇ is not transitive on the unit sphere in TpM , we can use Theorem 4 to construct a convex body (a generalized
conic) containing the origin in its interior such that it is invariant under the element of the holonomy group at p. This induces
a non-EuclideanMinkowski functional Lp in TpM having the elements of the holonomy group as linear isometries. Extending
this functional with the help of parallel transport with respect to the Riemannian structure, we have a smooth collection
of functionals such that it is invariant under parallel transport with respect to the connection ∇ . In a precise terminology,
manifolds having such a structure are (non-Riemannian) generalized Berwald manifolds.

Theorem 6. Let M be a connected Riemannian manifold; if the closure of the holonomy group of a metrical (but not necessarily
torsion free) linear connection ∇ is not transitive on the unit sphere in the tangent space, then ∇ is strictly Berwald metrizable, in
a general sense, by generalized conics with respect to the Riemannian structure.

Conversely, if M is a generalized Berwald manifold (a manifold equipped with a smooth collection of Minkowski
functionals invariant under parallel transport of a linear connection ∇ on the base manifold) with respect to the linear
connection∇ , then∇ is Riemann-metrizable [17]. Themost important special cases are locallyMinkowskimanifolds (∇ with
zero torsion and vanishing curvature tensor), Berwald manifolds (∇ with zero torsion) and (exact) Wagner manifolds [18],
where the torsion is of the form

T =
1
2
(1 ⊗ dα − dα ⊗ 1)

for some globally defined smooth function α:M → R on the base manifold; see also [19].
III. It is well-known that metrical linear connections are uniquely determined by the torsion tensor. Taking the canonical
decomposition

T (X, Y ) :=


T (X, Y ) −

1
n − 1

(T̃ (X)Y − T̃ (Y )X)


+

1
n − 1

(T̃ (X)Y − T̃ (Y )X),

the traceless part

T (X, Y ) −
1

n − 1
(T̃ (X)Y − T̃ (Y )X)
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is automatically zero in the case of n = 2. In the case of n ≥ 3 the traceless part can be divided into two further components
by separating off the axial (or totally antisymmetric) part, which means that its lowered tensor with respect to the
Riemannian metric is totally antisymmetric. Following Agricola and Friedrich [20], we then have eight classes of linear
connections with torsion together with eight classes of generalized Berwaldmanifolds depending onwhether the canonical
part of the torsion is identically zero or not. The most important special cases are:

i. Classical Berwald manifolds with T = 0.
ii. Exact Wagner manifolds with vanishing traceless part and an exact trace tensor

T̃ =
n − 1
2

dα

in the torsion (we can speak about closed Wagner manifolds via the requirement of a closed trace tensor). The geometric
meaning is the global (local) conformal equivalence [21] to a Berwald manifold via the exponent of the function α.

If the torsion tensor has only the pure axial (antisymmetric) component, then the linear connection has the same geodesics
(as pointsets) as the Lévi-Civita connection and vice versa [20]. Therefore we have as one of the important special cases:

iii. Projectively Berwaldmanifoldswith only the pure antisymmetric part in the torsion. The geometricmeaning is obviously
the projective equivalence to a Berwald manifold.
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