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a b s t r a c t

In this paper, we study the representations for the filiform Lie superalgebras Lm,n, a
particular class of nilpotent Lie superalgebras. We determine the minimal dimension of
a faithful module over Lm,n using the theory of linear algebra. In addition, using themethod
of Feingold and Frenkel (1985), we construct some finite and infinite dimensional modules
over Lm,n on the Grassmann algebra and the mixed Clifford–Weyl algebra.
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0. Introduction

The concept of filiform Lie algebras (also called threadlike Lie algebras, see [1] and the AMS review of the paper [2])
was first introduced by Vergne [3] in her study of the reducibility of the varieties of nilpotent Lie algebras by using the
cohomology theory of Lie algebras. She proved that the subset of filiform Lie algebras is open in the varieties of nilpotent Lie
algebras which plays an important role in showing that the varieties are reducible in high dimensions. The study of filiform
Lie algebras has been the subject of a number of papers, [4–7] to name a few. In particular, Lie groups of lots of filiform Lie
algebras do not admit a left-invariant affine structure which are counterexamples for Milnor’s conjecture [8].

As a byproduct, in [3] Vergne showed the existence of only two naturally graded filiform Lie algebras, Lm and Qn, the
second existing only in even dimension. Among them, the first algebra (is called the model filiform Lie algebra) has been a
central research object for the last forty years. In particular, since its cohomology has been calculated in [9], which allowed
to describe its infinitesimal deformations in a precise way, thus by studying its deformations, lots of families of character-
istically nilpotent Lie algebras (that is, Lie algebras with only nilpotent derivations) have been constructed [10]. For more
information on characteristically nilpotent Lie algebras, see the survey paper [11].

The filiform Lie superalgebras, a particular class of nilpotent Lie superalgebras, were introduced by Gilg in [12], which
are super-analogue to the filiform Lie algebras. Analogous to what happens in the Lie case, where every filiform Lie algebra
can be obtained by an infinitesimal deformation of the model filiform Lie algebra Ln, one can prove that all filiform Lie
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superalgebras can be obtained by infinitesimal deformations of the model Lie superalgebra Lm,n [13]. The deformation
of filiform Lie superalgebras were further studied recently, see [14–16]. In particular, Khakimdjanov and Navarro gave a
complete classification of all the infinitesimal deformations of the model Lie superalgebra Lm,n in [17] which play a crucial
role in the theory of filiform Lie superalgebras.

However, less of work is done for the representations of filiform Lie (super)algebras. For a finite-dimensional Lie
(super)algebra g, we define the minimal dimension of faithful g-modules as

µ(g) = min{dim V | V is a faithful g-module}.

In [18,19], Burde considered the faithful representations of filiform Lie algebras, in which he obtained that for any (n + 1)-
dimensional filiform Lie algebra g, µ(g) ≥ n + 1 = µ(Ln) and also gave an upper bound for µ(g). When one considers a
similar problem in the super case, due to the lack of Lie’s Theorem, the situation is much more complicated. Even though
for the abelian Lie superalgebras with nontrivial odd part, this problem is still open. The third-named author determined
the minimal dimensions of faithful modules for Heisenberg Lie superalgebras and for purely odd Lie superalgebras in [20]
and [21]. To our knowledge, the minimal dimension of the faithful module for Lie superalgebra Lm,n is still unknown. In the
current paper, we determine the minimal dimensions of faithful modules for the filiform Lie superalgebras Lm,n:

Theorem 1. For the filiform Lie superalgebra Lm,n, we have

(1) µ(Lm,0) = m + 1;
(2) µ(Lm,n) = m + 2 if m ≥ n > 0;
(3) µ(L0,n) = n + 1 for n ≥ 1; µ(L1,n) = n + 1 for n ≥ 2;
(4) µ(Lm,n) = n + 2 if n > m ≥ 2.

The Clifford (or Weyl) algebras have natural representations on the exterior (or symmetric) algebras of polynomials
over half of generators. Those representations are important in quantum and statistical mechanics where the generators
are interpreted as operators which create or annihilate particles and satisfy Fermi (or Bose) statistics. Moreover, they have
deep connections with many other important algebras, such as extended affine Lie algebras, Kac–Moody algebras and the
Virasoro algebra, see [22–26]. In the last part of the paper, we use Clifford algebras, Weyl algebras and the mixed algebras
to construct some infinite-dimensional representations. In addition, we also construct a finite-dimensional representation
of Lm,n on the Grassmann algebra.

Throughout this paper, we write Z, N, Z+ and C for the sets of integers, positive integers, nonnegative integers and
complex numbers, respectively. Write Z2 for the two element field. Write eij for the standard matrix unit (1 at the spot (i, j)
and 0 elsewhere). All vector spaces, algebras and Lie (super)algebras are over C. Let |v| be the Z2-degree of v, where v is a
homogeneous element of a Z2-graded vector space V .

1. Preliminary remarks

For a Lie superalgebra L, we first recall the lower central series of L

L0 = L, Li+1
= [L, Li].

In order to describe the super-nilindex of a Lie superalgebra L, we inductively define two sequences:

L00̄ = L0̄, Li+1
0̄

= [L0̄, L
i
0̄]

and

L01̄ = L1̄, Li+1
1̄

= [L0̄, L
i
1̄].

Then we have the fact that L is nilpotent if and only if there exists (m, n) ∈ N2 such that Lm
0̄

= 0 and Ln
1̄

= 0, for the details
see [13, Theorem 2.1].

By the above results, the super-nilindex can be defined as follows: Let L be a nilpotent Lie superalgebra, the super-nilindex
of L is the pair (m, n) of integers such that: Lm

0̄
= 0, Lm−1

0̄
≠ 0 and Ln

1̄
= 0, Ln−1

1̄
≠ 0. It is invariant up to isomorphisms. The

filiform Lie superalgebra (see [13]) is defined as follows:

Definition 1.1. Let L be a nilpotent Lie superalgebra. L is called filiform if its super-nilindex is (dim L0̄ − 1, dim L1̄).

Denote Fm,n the set of all filiform Lie superalgebras with super-nilindex (m, n). As for the filiform Lie algebra [9], there
is an adapted basis for a filiform Lie superalgebra:

For any L = L0̄ ⊕ L1̄ ∈ Fm,n, there exists a basis {X0, X1, . . . , Xm, Y1, Y2, . . . , Yn} of Lwith Xi ∈ L0̄ and Yi ∈ L1̄ such that:

[X0, Xi] = Xi+1, 1 ≤ i ≤ m − 1, [X0, Xm] = 0;
[X1, X2] ∈ spanC{Xi | 4 ≤ i ≤ m};

[X0, Yi] = Yi+1, 1 ≤ i ≤ n − 1, [X0, Yn] = 0.

The above result was given by Gilg in [13].
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Let Lm,n be a filiform Lie superalgebra with a homogeneous basis

{X0, X1, . . . , Xm | Y1, . . . , Yn}

and the Lie super-brackets given by

[X0, Xi] = Xi+1, 1 ≤ i ≤ m − 1, [X0, Yj] = Yj+1, 1 ≤ j ≤ n − 1,

where the other brackets vanish. We call Lm,n the model filiform Lie superalgebra and call {X0, X1, . . . , Xm, Y1, . . . , Yn} the
standard basis of Lm,n. The even part L0̄m,n is the model filiform Lie algebra (always denoted by Lm) and the odd part L1̄m,n is a
module of L0̄m,n.

2. Minimal faithful representations

In this section, we will prove Theorem 1. We also show that Lm,n is not the simplest filiform Lie superalgebra of Fm,n in
the sense of minimal faithful representations by providing an example.

We will show the theorem case by case. The first case in Theorem 1 follows from the following result (see [29] or [19,
Corollaries 2.6 and 2.8]).

Proposition 2.1. For themodel filiform Lie algebra Lm, we haveµ(Lm) = m+1. Moreover, the embedding ρ : Lm −→ gl(m+1)
given by

X0 −→

m−1
i=1

ei,i+1, Xi −→ em+1−i,m+1

for 1 ≤ i ≤ m, is a Lie algebra homomorphism.

Now we have the fact:

Lemma 2.2. If ρ : Lm −→ gl(r, s)0̄ is an injective homomorphism of Lie algebras, then r ≥ m+1 or s ≥ m+1, i.e., max(r, s) ≥

m + 1 = µ(Lm).

Proof. Since gl(r, s)0̄ = gl(r) ⊕ gl(s), we can write ρ = (ρ1, ρ2) such that

ρ(x) = diag(ρ1(x), ρ2(x))

with ρ1(x) ∈ gl(r) and ρ2(x) ∈ gl(s) for any x ∈ Lm. It is clear that ρ1 : Lm −→ gl(r) and ρ2 : Lm −→ gl(s) are Lie algebra
homomorphisms. By Proposition 2.1, it is enough to show that at least one of ρ1 and ρ2 is injective. Conversely suppose
there exist nonzero elements x, y ∈ Lm such that ρ1(x) = 0 and ρ2(y) = 0. Put x =

m
i=0 aiXi, where {X0, X1, . . . , Xm} is a

basis of Lm with nonzero brackets:

[X0, Xi] = Xi+1, 1 ≤ i ≤ m − 1.

If a0 ≠ 0, then ρ1(Xm) = a−1
0 [ρ1(x), ρ1(Xm−1)] = 0. Otherwise, take

k = min{i | ai ≠ 0, 1 ≤ i ≤ m}.

Then we have

ρ1(Xm) = a−1
k ρ1


(ad X0)

m−k(x)


= 0.

Similarly, we have ρ2(Xm) = 0. This contradicts the injectivity of ρ. �

Now we can get the second case in Theorem 1:

Corollary 2.3. µ(Lm,n) = m + 2 if m ≥ n > 0.

Proof. Suppose that Lm,n can be embedded into some gl(r, s), and denote themap by ρ. Then ρ|L1̄m,n
: L1̄m,n −→ gl(r, s)1̄ is an

injective map of vector spaces and ρ|
L0̄m,n

: L0̄m,n −→ gl(r, s)0̄ is an injective homomorphism of Lie algebras. Since rs ≠ 0 and
Lemma 2.2 implies that max(r, s) ≥ m + 1, whence r + s ≥ m + 2. We finish the proof by constructing a Lie superalgebra
homomorphism from Lm,n to gl(m + 1, 1) which is injective. Consider the linear map ϕ : Lm,n −→ gl(m + 1, 1) given by

X0 −→

m−1
i=1

ei,i+1, Xi −→ em+1−i,m+1, Yj −→ en+1−j,m+2

where 1 ≤ i ≤ m, 1 ≤ j ≤ n and {X0, X1, . . . , Xm, Y1, . . . , Yn} is the standard basis of Lm,n. It is easy to check that ϕ is an
injective homomorphism of Lie superalgebras. �
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Proposition 2.4. If m = 0 or 1 and m < n, then µ(Lm,n) = n + 1.

Proof. First, consider the case (m, n) = (0, 1). It is clear that µ(L0,1) ≥ 2, and the linear map ϕ : L0,1 −→ gl(1, 1) given by

X0 −→ I2, Y1 −→ e12

is an injective Lie superalgebra homomorphism. Whence µ(L0,1) = 2.
For n ≥ 2, the linear map ϕ : L1,n −→ gl(n, 1) given by

X0 −→

n−1
i=1

ei,i+1, X1 −→ In+1, Yi −→ en+1−i,n+1 for 1 ≤ i ≤ n

is an injective homomorphism of Lie superalgebras, thus µ(L0,n) ≤ µ(L1,n) ≤ n + 1. The first ‘‘≤’’ follows from the fact: If
L′ is a subalgebra of Lie (super)algebra L, then µ(L′) ≤ µ(L). Now consider µ(L0,n) and suppose ρ : L0,n −→ gl(r, s) is an
injective homomorphism of Lie superalgebras with

X0 −→


J 0
0 K


and Y1 −→


0 A
B 0


.

For a matrix T , denote Tl the operator which multiplies T on the left and Tr the operator which multiplies T on the right.
Then by induction we have

Yi = (ad X0)
i−1Y1 −→


0 (Jl − Kr)

i−1(A)

(Kl − Jr)i−1(B) 0


.

Without loss of generality, assume (Jl − Kr)
n−1(A) ≠ 0 and (Jl − Kr)

n(A) = 0. If
n−1

i=0 ai(Jl − Kr)
i(A) = 0 for ai ∈ C with

some aj ≠ 0, then (Jl − Kr)
n−1(A) = 0. Whence the linear map ϕ : L0,n −→ gl(r, s) given by

ϕ(X0) = ρ(X0) =


J 0
0 K


, ϕ(Y1) =


0 A
0 0


and ϕ(Yi) = (ad ϕ(X0))

i−1(ϕ(Y1))

is still an injective homomorphism of Lie superalgebras. Note that since [Yi, Yj] = 0 for 1 ≤ i, j ≤ n, we can view L0,n as a Lie
algebra if we forget itsZ2-grading, which is isomorphic to Ln. Thusϕ can induce amonomorphism ϕ̄ : L0,n(∼= Ln) → gl(r+s)
of Lie algebras such that ϕ̄(X0) = ϕ(X0) and ϕ̄(Yi) = ϕ(Yi), for 1 ≤ i ≤ n. Proposition 2.1 implies that r+s ≥ µ(Ln) = n+1.
Thus µ(L1,n) ≥ µ(L0,n) ≥ n + 1, which implies that µ(L0,n) = µ(L1,n) = n + 1. �

Now we consider the last case.

Proposition 2.5. µ(Lm,n) = n + 2 if n > m ≥ 2.

Proof. First consider the linear map ϕ : Lm,n −→ gl(n + 1, 1) given by

X0 −→

n−1
i=1

ei,i+1, Xi −→ em+1−i,n+1, Yj −→ en+1−j,n+2.

It is easy to check that ϕ is an injective homomorphism of Lie superalgebras. Whence µ(Lm,n) ≤ n + 2. On the other hand,
we have µ(Lm,n) ≥ µ(L0,n) = n + 1.

Suppose ρ : Lm,n −→ gl(r, s) is an injective Lie superalgebra homomorphism with r + s = n + 1 and

X0 −→


J 0
0 K


and Y1 −→


0 A
B 0


.

We can assume B = 0. Now assume the matrices J and K have the Jordan canonical forms, i.e., J = diag( J1, . . . , Jk) and
K = diag(K1, . . . , Kl) with

Ji =


λi 1 · · · 0 0
0 λi · · · 0 0
...

...
. . .

...
...

0 0 · · · λi 1
0 0 · · · 0 λi

 , Kj =


ηj 1 · · · 0 0
0 ηj · · · 0 0
...

...
. . .

...
...

0 0 · · · ηj 1
0 0 · · · 0 ηj

 .

Rewrite A = (Aij)k×l in block form. Then for 1 ≤ t ≤ n, we have

( Jl − Kr)
t(A) =


( Ji)l − (Kj)r

tAij


k×l

.
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Suppose that

( Ji)l − (Kj)r

n−1Aij ≠ 0 and

( Ji)l − (Kj)r

nAij = 0 for some 1 ≤ i ≤ k, 1 ≤ j ≤ l. Since we can subtract a
scalar matrix λiIr+s from ϕ(X0), we take λi = 0. Note that

Ji ·


( Ji)l − (Kj)r
n−1Aij


=


( Ji)l − (Kj)r

n−1Aij


· Kj

implies ηj = 0 or

( Ji)l − (Kj)r

n−1Aij = 0. Since

n−1
t=0

(−1)n−t−1

n − 1

t


J ti AijK n−1−t

j =

( Ji)l − (Kj)r

n−1Aij ≠ 0,

we have rank( Ji) + rank(Kj) ≥ n − 1. As r + s = n + 1, we have

J =


0 1 · · · 0 0
0 0 · · · 0 0
...

...
. . .

...
...

0 0 · · · 0 1
0 0 · · · 0 0


r×r

, K =


0 1 · · · 0 0
0 0 · · · 0 0
...

...
. . .

...
...

0 0 · · · 0 1
0 0 · · · 0 0


s×s

and

Yi = (ad X0)
i−1Y1 −→


0 ( Jl − Kr)

i−1(A)
0 0


,


0 Ai
0 0


where A = (aij)r×s and Ai =

i−1
t=0(−1)i−1−t

i−1
t


J tAK i−1−t . In particlular, we obtain

0 ≠ (−1)n−rAn =


n − 1
r − 1


J r−1AK s−1

=


n − 1
r − 1


e1rAe1s =


n − 1
r − 1


ar1e1s,

i.e; ar1 ≠ 0. Since [X0, Xm] = 0 and [X0, Xm−1] = Xm, we have

Xm −→


r−1
t=1

bt J t 0

0
s−1
t=1

ctK t

 .

Suppose bi = ci = 0 for 1 ≤ i ≤ α − 1. Then we have
r−1
t=α

bt J tAn−α − An−α

s−1
t=β

ctK t

=

n−α−1
u=0

r−1
t=α

(−1)n−α−1−u

n − α − 1

u


bt J t+uAK n−α−1−u

−

n−α−1
v=0

s−1
t=α

(−1)n−α−1−v


n − α − 1

v


ct JvAK n−α−1−v+t

= (−1)s−1

r + s − α − 2
r − α − 1


bαar1e1,s − (−1)s−α−1


r + s − α − 2

r − 1


cαar1e1,s +


i≠1 or j≠s

λijeij.

For the last ‘‘=’’, considering the last second term, then the terms including e1s are
n−α−1
u=0

r−1
t=α

(−1)n−α−1−u

n − α − 1

u


bte1,t+u+1Aes−(n−α−1−u),s

−

n−α−1
v=0

s−1
t=α

(−1)n−α−1−v


n − α − 1

v


cte1,1+vAes−(n−α−1−v+t),s.

Since t + u + 1 ≤ r and n − α − 1 − u ≤ s − 1 = n − r , we have u + α + 1 ≥ r ≥ t + u + 1. On the other hand, t ≥ α.
Hence, t = α and u = r − α − 1. For the second one, we have 1 + v ≤ r and n − α − 1 − v + t ≤ s − 1 = n − r . Thus
1 + v ≤ r ≤ 1 + v + α − t . On the other hand, t ≥ α. Hence, t = α and v = r − 1. So the coefficient of e1s is

(−1)n−α−1−(r−α−1)

n − α − 1
r − α − 1


bαar1 − (−1)n−α−1−(r−1)


n − α − 1

r − 1


cαar1.
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Whence, [Xm, Yn−α] = 0 implies
r + s − α − 2
r − α − 1


bα + (−1)α+1


r + s − α − 2

r − 1


cα = 0. (2.1)

Similarly, [Xm, Yn−α−1] = 0 implies that
r + s − α − 3
r − α − 1


bα + (−1)α+1


r + s − α − 3

r − 1


cα = 0. (2.2)

Solve Eqs. (2.1) and (2.2), then we can get bα = cα = 0. Now by induction and noticing that n > m, we have ρ(Xm) = 0,
which is a contradiction. �

Proposition 2.6. The model filiform Lie superalgebra Lm,n can be embedded in gl(r, s) with r + s = µ(Lm,n) and r ≥ s ≥ 1 if
and only if r ≥ m + 1.

Proof. The ‘‘only if’’ part follows from Lemma 2.2.
For the ‘‘if’’ part, we only need to construct the embedding case by case.

(1) Form ≥ n ≥ 0, the embedding is given in Proposition 2.1 and in the proof of Corollary 2.3.
(2) Form = 0, n = 1, the embedding is given in Proposition 2.4.
(3) For L1,n with n ≥ 2, we have that the linear map ρ : L1,n −→ gl(r, s) given by:

X0 −→ diag(Jr×r , Js×s), X1 −→ In+1, Yj −→

j−1
t=0

(−1)j−t−1

j − 1
t


er−t,r+j−t

is an injective Lie superalgebra homomorphism (we always assume eij = 0 if i < 0 or j < 0 hereafter). Notice that L0,n
is a subalgebra of L1,n, whence we have the embedding ρ|L0,n for L0,n.

(4) For n > m ≥ 2, we can define the linear map ρ : Lm,n −→ gl(r, s) with r + s = n + 2 by

X0 −→ diag(Jr×r , Js×s), Xi −→ em+1−i,r , Yj −→

j−1
t=0

(−1)j−t−1

j − 1
t


er−t−1,r+j−t

which is an embedding. �

Remark 2.7. (1) Since we have the Lie superalgebra isomorphism gl(r, s) ∼= gl(s, r), Proposition 2.6 gives a description of
the possible super-dimensions of the minimal faithful representations of Lm,n.

(2) For anym, n, denote r = max(m+ 1, n+ 1). Then we have the injective Lie superalgebra homomorphism ρ : Lm,n −→

gl(r, 1) given by

X0 −→

r−2
t=1

et,t+1, Xi −→ em+1−i,r , Yj −→ en+1−j,r+1

for 1 ≤ i ≤ m and 1 ≤ j ≤ n.

In Lie algebra case, from [19, Proposition 2.5] we know that for nilpotent Lie algebra n of classm,µ(n) ≥ m+1 = µ(Lm).
In particular, Lm is the simplest filiform Lie algebra among all the filiform Lie algebras with dimensionm + 1 in the sense of
minimal faithful representations. But in super case, we have the following example:

Example 1. In gl(3, 1), we take

X0 = −e12 − e23, X1 = e12, X2 = e13, Y1 = e34, Y2 = −e24, Y3 = e14,

then [Yi, Yj] = 0 for all 1 ≤ i, j ≤ 3 and

[X0, X1] = X2, [X0, X2] = 0, [X0, Y1] = Y2, [X0, Y2] = Y3, [X0, Y3] = 0,
[X1, X2] = [X1, Y1] = [X1, Y3] = [X2, Y2] = [X2, Y3] = 0, −[X1, Y2] = Y3 = [X2, Y1].

Then L = spanC{X0, X1, X2, Y1, Y2, Y3} is a subalgebra of gl(3, 1). On the other hand, L is a filiform Lie superalgebra with
super-nilindex (2, 3) which is listed in [12] ((4) in F2,3). Now we get µ(L2,3) = 5 > 4 ≥ µ(L). Indeed, µ(L) = 4 since
µ(L) ≥ µ(L2,0) + 1 = 4.

Whence, in the sense ofminimal faithful representations, Lm,n is not always the simplest filiform Lie superalgebra inFm,n.
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Form, n ∈ N, let L(m,n) be the Lie algebra with a basis

{X0, X1, . . . , Xm, Y1, . . . , Yn}

and the Lie brackets given by

[X0, Xi] = Xi+1, 1 ≤ i ≤ m − 1, [X0, Yj] = Yj+1, 1 ≤ j ≤ n − 1,

where the other brackets vanish. If we forget the Z2-grading of Lm,n, then Lm,n is a Lie algebra which is isomorphic to L(m,n).
But the representations of Lm,n and L(m,n) are different, such as we have that µ(L(m,1)) = m + 1 ≠ m + 2 = µ(Lm,1) for
m ≥ 2.

3. Representations of Lm,n

3.1. Lie’s Theorem for Lm,n

In general, the Lie’s Theorem does not hold for Lie superalgebras. But for Lm,n we have the following result:

Proposition 3.1. Every finite-dimensional irreducible representation of Lm,n has dimension one.

Proof. Suppose V is a finite-dimensional irreducible representation of Lm,n.We prove the result in the following three steps:

(1) If m ≥ 2. Since Xm is a linear transformation on the finite-dimensional vector space V , there is λ ∈ C such that Vλ =

{v ∈ V | Xmv = λv} is nonzero. As Xm is in the center of Lm,n, we have that Vλ = V . This implies that under certain
basis of V , Xm becomes the scalar matrix λIV . On the other hand, [X0, Xm−1] = Xm implies that the trace of Xm is zero,
i.e., λ = 0 and Xm acts on V trivially. Then V is also irreducible over Lm−1,n ∼= Lm,n/CXm. Inductively, we have that V is
an irreducible representation over L1,n.

(2) In L1,n, X1 is a trivial central element. This implies that if V is an irreducible representation over L1,n then it is also irre-
ducible over the subalgebra L0,n.

(3) Assume that V is a finite-dimensional irreducible representation over L0,n for n ≥ 2. Since Yn is a linear transformation
on V , hence there is µ ∈ C such that Vµ = {v ∈ V | Ynv = µv} is nonzero. If µ ≠ 0, then consider the subspace
V ′

µ = Vµ ⊕ V−µ. It is easy to check that V ′
µ is a nonzero L0,n-submodule of V . Whence V = V ′

µ. Suppose {v1, v2, . . . , vr}

is a basis of Vµ and vi = ui + wi for ui ∈ V0̄ and wi ∈ V1̄. Since

µui + µwi = µvi = Ynvi = Ynui + Ynwi,

we have Ynui = µwi and Ynwi = µui. Moreover, Yn(ui − wi) = −µ(ui − wi) and {u1, . . . , ur , w1, . . . , wr} are linearly
independent. This implies that dim Vµ ≤ dim V−µ. Similarly, we have dim Vµ ≥ dim V−µ, i.e., we get dim Vµ = dim V−µ.
Furthermore, we know that {u1, . . . , ur , w1, . . . , wr} is a homogeneous basis of V . Under this basis

Yn =


0 µIr

µIr 0


.

Assume

X0 =


A 0
0 B


and Yn−1 =


0 C
D 0


.

Then [X0, Yn] = 0 implies that A = B. Now
0 µIr

µIr 0


= Yn = [X0, Yn−1] =


0 AC − CA

AD − DA 0


.

By the fact tr(AC − CA) = 0, we get µ = 0, which is a contradiction. Whence µ = 0, V0 = V and YnV = 0. Moreover,
we have V is also irreducible over L0,n−1 ∼= L0,n/CYn. By induction again, we have V is irreducible over the abelian Lie
superalgebra L0,1, thus V has dimension one. �

Remark 3.2. Proposition 3.1 also follows from [27, Proposition 5.2.4] given by Kac where he used a ‘big’ Theorem to imply
the proposition. Here, we give a fundamental proof of Lie’s Theorem on Lm,n by using the theory of linear algebra as what
we did in Section 2.

3.2. Some representations

If ρ : Lm,n −→ gl(r, s) is a Lie superalgebra homomorphism, then every representation over gl(r, s) becomes a represen-
tation over Lm,n through ρ. Whence we can get lots of representations for Lm,n by considering representations over gl(r, s)
such as the representations constructed in [24,28]. In this section, we would not consider all of them. We just give some
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interesting examples instead.
In this subsection, we fix m, n ∈ Z+ and denote r = max(m + 1, n + 1). Let us construct the representations for Lm,n.

Since all of L0,0, L0,1, L1,0 and L1,1 are abelian Lie (super)algebras, hence we always assume r ≥ 3.
Let R be an associative algebra. Let ρ = ±1. We define a ρ-bracket on R as follows:

{a, b}ρ = ab + ρba, a, b ∈ R.

It is easy to see that

{a, b}ρ = ρ{b, a}ρ and [ab, c] = a{b, c}ρ − ρ{a, c}ρb

for a, b, c ∈ R where [a, b] = {a, b}−1 is the Lie bracket. Sometimes, we write {a, b}− = {a, b}−1 and {a, b}+ = {a, b}+1.
Indeed, we have the more useful identity:

[ab, cd] = a{b, c}ρd − ρac{b, d}ρ + {a, c}ρdb − ρc{a, d}ρb.

3.2.1. Finite-dimensional representations
Let Λ(r) be the Grassmann algebra with r variables {x1, x2, . . . , xr}. Wemay view Λ(r) as a Z2-graded algebra by letting

|xi| = 1̄ for 1 ≤ i ≤ r . We identify xi with the left multiplication given by xi itself and write ∂
∂xi

for the partial differential
operator with respect to xi. Then, in gl(Λ(r)), we have

{xi, xj}+ =


∂

∂xi
,

∂

∂xj


+

= 0 and

xi,

∂

∂xj


+

= δij.

Now define the following linear operators on Λ(r):

e0 =

r−2
t=1

xt
∂

∂xt+1
, ei = xm+1−i

∂

∂xr
, fj = xn+1−j

and

e′

0 = −

r−2
t=1

xt+1
∂

∂xt
, e′

i = xr
∂

∂xm+1−i
, f ′

j =
∂

∂xn+1−j
.

Theorem 2. Λ(r) becomes an Lm,n-module under the actions given by

Xi −→ ei, Yj −→ fj

or

Xi −→ e′

i, Yj −→ f ′

j

for 0 ≤ i ≤ m and 1 ≤ j ≤ n.

Proof. Let us check the commutative relations case by case. First, we have

[e0, ei] =

r−2
t=1


xt

∂

∂xt+1
, xm+1−i

∂

∂xr


=

r−2
t=1


δt+1,m+1−ixt

∂

∂xr
− δt,rxm+1−i

∂

∂xt+1



=


xm+1−(i+1)

∂

∂xr
= ei+1 if 1 ≤ i ≤ m − 1

0 if i = m

[ei, ej] =


xm+1−i

∂

∂xr
, xm+1−j

∂

∂xr


= 0

[e0, fj] =

r−2
t=1


xt

∂

∂xt+1
, xn+1−j


=

r−2
t=1

δt+1,n+1−jxt =


xn+1−(j+1) = fj+1 if 1 ≤ j ≤ n − 1
0 if j = n

[ei, fj] =


xm+1−i

∂

∂xr
, xn+1−j


= 0.
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At last, we have

{fi, fj}+ = {xn+1−i, xn+1−j}+ = 0.

Similarly, we can prove the relations for e′

i and f ′

j . �

Remark 3.3. (1) From Section 2, we know µ(Lm,n) ≤ r + 1. On the other hand, we have that gl(Λ(r)) ∼= gl(2r−1, 2r−1) and
2r−1

≥ r + 1. Hence we can define more actions of Lm,n on Λ(r) and make it as an Lm,n-module, such as the following
actions:

X0 −→

r−2
t=1

xt
∂

∂xt+1
, Xi −→ x1xm+1−i, Yj −→ xn+1−j

or

X0 −→

r−2
t=1

xt
∂

∂xt+1
, Xi −→

∂

∂x1

∂

∂xm+1−i
, Yj −→

∂

∂xn+1−j

for 1 ≤ i ≤ m and 1 ≤ j ≤ n.
(2) From Proposition 3.1, we know that in either case in Theorem 2 the Lm,n-module is reducible and has a filtration. For

example, if r = 3 we have the following filtration in the first case

Λ(3) = Λ(3)0 ⊇ Λ(3)1 ⊇ Λ(3)2 ⊇ · · · ⊇ Λ(3)8 = 0

where

Λ(3)1 = spanC{x1, x2, x3, x1x2, x1x3, x2x3, x1x2x3}

Λ(3)2 = spanC{x1, x2, x1x2, x1x3, x2x3, x1x2x3}

Λ(3)3 = spanC{x1, x2, x1x2, x1x3, x1x2x3}

Λ(3)4 = spanC{x1, x2, x1x2, x1x2x3}

Λ(3)5 = spanC{x1, x2, x1x2} = Lm,nΛ(3)

Λ(3)6 = spanC{x1, x1x2}

Λ(3)7 = spanC{x1x2}

and Λ(3)i/Λ(3)i+1 is a trivial Lm,n-module for i = 0, 1, . . . , 7. Similarly, we have filtrations in the other cases.

3.2.2. Infinite-dimensional examples
Define a(r, ρ) to be the unital associative Clifford (resp. Weyl) algebra for ρ = 1 (resp. ρ = −1) with 2r generators

ai, a∗

i , 1 ≤ i ≤ r , subject to relations

{ai, aj}ρ = {a∗

i , a
∗

j }ρ = 0 and {ai, a∗

j }ρ = ρδij.

Let aτ (r, ρ) be the algebra obtained by adjoining to a(r, ρ) the generator e with relations {e, e}−ρ = 0 and

{ai, e}τ = 0 = {a∗

i , e}τ , for τ = ±1.

Then it is an extension of the algebra a(r, ρ).
Let a+

τ (r, ρ) be the left ideal generated by a∗

i for 1 ≤ i ≤ r . Now we can construct our operators on the infinite-
dimensional vector space

Vτ (r, ρ) = aτ (r, ρ)/a+

τ (r, ρ).

For any 1 ≤ i ≤ m and 1 ≤ j ≤ n, set

ẽ0 =

r−2
t=1

ata∗

t+1, ẽi = am+1−ia∗

r , f̃j = an+1−je

and

ẽ′

0 =

r−2
t=1

a∗

t at+1, ẽ′

i = ara∗

m+1−i, f̃ ′

j = a∗

n+1−je.



102 Q. Wang et al. / Journal of Geometry and Physics 97 (2015) 93–104

Theorem 3. Vτ (r, ρ) becomes a module of the Lie superalgebra Lm,n under the action given by

Xi −→ ẽi, Yj −→ f̃j

or

Xi −→ ẽ′

i, Yj −→ f̃ ′

j

for 0 ≤ i ≤ m and 1 ≤ j ≤ n. Moreover, the module is reducible in both cases.

Proof. We check the relations case by case:

[ẽ0, ẽi] =

r−2
t=1

[ata∗

t+1, am+1−ia∗

r ]

=

r−2
t=1


δt+1,m+1−iata∗

r − ρ2δt,ram+1−ia∗

t+1


=


am+1−(i+1)a∗

r = ẽi+1 if 1 ≤ i ≤ m − 1
0 if i = m

[ẽi, ẽj] = [am+1−ia∗

r , am+1−ja∗

r ] = 0

[ẽ0, f̃j] =

r−2
t=1

[ata∗

t+1, an+1−je]

=

r−2
t=1

δt+1,n+1−jate =


an+1−(j+1)e = f̃j+1 if 1 ≤ j ≤ n − 1
0 if j = n

[ẽi, f̃j] = [am+1−ia∗

r , an+1−je] = 0.

Finally

{f̃i, f̃j}+ = {an+1−ie, an+1−je}+ = an+1−iean+1−je + an+1−jean+1−ie
= −τan+1−ian+1−j{e, e}−ρ = 0.

Similarly, we can prove the relations for ẽ′

i and f̃ ′

j . The irreducibility follows from that the module generated by e are proper
in both cases. �

Now let us consider the associative algebra α(r, ρ) generated by infinite many generators

{u(p)|p ∈ Z} ,

where u ∈ {ai, a∗

i | 1 ≤ i ≤ r} with the relations

{u(p), v(q)}ρ = {u, v}ρδp+q,0.

By the generating relations, we have

[ai(p)aj(q), ak(s)] = 0,
[ai(p)aj(q), a∗

k(s)] = −δikδp+s,0aj(q) + ρδjkδq+s,0ai(p),
[ai(p)a∗

j (q), ak(s)] = δjkδq+s,0ai(p),

[ai(p)a∗

j (q), a
∗

k(s)] = −δikδp+s,0a∗

j (q),

[a∗

i (p)a
∗

j (q), ak(s)] = δjkδq+s,0a∗

i (p) − ρδikδp+s,0a∗

j (q),

[a∗

i (p)a
∗

j (q), a
∗

k(s)] = 0

for p, q, s ∈ Z and 1 ≤ i, j, k ≤ r .
Let α+(r, ρ) be the subalgebra generated by ai(p), a∗

j (q), a
∗

k(0), for p, q > 0, and 1 ≤ i, j, k ≤ r . Let α−(r, ρ) be the
subalgebra generated by ai(p), a∗

j (q), ak(0), for p, q < 0, and 1 ≤ i, j, k ≤ r . Those generators in α+(r, ρ) are called anni-
hilation operators while those in α−(r, ρ) are called creation operators. LetV (r, ρ) be a simple α(r, ρ)-module containing
an element v0, called a‘‘vacuum vector’’, and satisfying α+(r, ρ)v0 = 0. So all annihilation operators kill v0 and V (r, ρ) ∼=

α−(r, ρ)v0.
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Now we are in the position to construct a class of fermions on V (r, 1). For any p = (p1, p2, p3) ∈ Z3, 1 ≤ i ≤ m and
1 ≤ j ≤ n set

e0(p) =

r−2
t=1


s∈Z

at(p1 − s)a∗

t+1(s),

ei(p) =


s∈Z

a1

p2 + ip1 − s


am+1−i(s),

fj(p) = an+1−j(p3 + jp1).

Theorem 4. For anyp = (p1, p2, p3) ∈ Z3,V (r, 1) becomes amodule of the Lie superalgebra Lm,n under the actionϕp : Lm,n −→

gl(V (r, 1)) given by

Xi −→ ei(p), Yj −→ fj(p)

for 0 ≤ i ≤ m and 1 ≤ j ≤ n.

Proof.

[e0(p), ei(p)] =

 r−2
t=1


s1∈Z

at(p1 − s1)a∗

t+1(s1),

s2∈Z

a1

p2 + ip1 − s2


am+1−i(s2)


=

r−2
t=1


s∈Z

δm−i+1,t+1a1

p2 + (i + 1)p1 − s


at(s)

=


s∈Z

a1

p2 + (i + 1)p1 − s


am−i(s) = ei+1(p) if 1 ≤ i ≤ m − 1

0 if i = m.

By a similar argument, we have

[ei(p), ej(p)] = [ei(p), fj(p)] = {fi(p), fj(p)}+ = 0

[e0(p), fj(p)] =


fj+1(p) if 1 ≤ j ≤ n − 1
0 if j = n.

WhenceV (r, 1) becomes an Lm,n-module under the action ϕp. �

Remark 3.4. (1) We can define the similar action onV (r, 1) as what we do in Theorems 2 and 3:

X0 −→

r−2
t=1


s∈Z

at(p1 − s)a∗

t+1(s),

Xi −→


s∈Z

am+1−i

p2 + ip1 − s


a∗

r (s),

Yj −→ an+1−j(p3 + jp1).

(2) Let us consider an extension of the algebra α(r, ρ). The generators

{e(p)|p ∈ Z} (3.1)

span an infinite-dimensional Clifford algebra or Weyl algebra with relations

{e(p), e(q)}−ρ = e(p)e(q) − ρe(q)e(p) = ρδp+q,0. (3.2)

Let ατ (r, ρ) denote the algebra obtained by adjoining to α(r, ρ) the generators (3.1) with relations (3.2) and

{ai(p), e(q)}τ = 0 = {a∗

i (p), e(q)}τ , for τ = ±1.

Let α+
τ (r, ρ) be the left ideal generated by e(s), ai(p), a∗

j (q), a
∗

k(0), for p, q, s > 0, and 1 ≤ i, j, k ≤ r . We have lots of
ways to define operators on the infinite-dimensional vector spaceVτ (r, ρ) = ατ (r, ρ)/α+

τ (r, ρ)

and make it as an Lm,n-module. The detail of constructions is left as an exercise for the reader.
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