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1. Introduction

The classification of closed 3d manifolds with “nice” decompositions into circles was given by Seifert [1] in terms of
principal Euler number b, orientability € and genus g of the underlying 2d orbifolds, and pairs of coprime integers (m;, n;)
called Seifert invariants. Hence, these manifolds were given the name Seifert manifolds.

Later, the classification was generalized by Orlik and Raymond [2,3] to circle actions on closed 3d manifolds allowing
fixed points and special exceptional orbits. Orlik and Raymond found that in their case the underlying 2d orbifolds have circle
boundaries contributed by the fixed points and special exceptional orbits. Hence, besides the four types of numeric data used
by Seifert, two more types of numeric data were introduced by Orlik and Raymond: the number f of fixed components and
the number s of special exceptional components. Then, Orlik and Raymond proved the following:

Theorem (Orlik-Raymond Classification of closed 3d S'-manifolds, [2,3]). Let S act effectively and smoothly on a closed,
connected smooth 3d manifold M. Then, the orbit invariants

{ba (67 gvas); (mh n])v R (ml» nl)}

determine M up to equivariant diffeomorphisms, subject to certain conditions. Conversely, any such set of invariants can be realized
as a closed 3d manifold with an effective S'-action.

The first goal of this paper is to further generalize the Orlik-Raymond Classification Theorem to circle actions on compact
3d manifolds, allowing boundaries. By the classification of circle actions on closed 2d manifolds, those boundaries have to
be tori T, spheres 2, projective planes RP? or Klein bottles K. Our approach relies on a careful discussion on the equivariant
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neighbourhoods of non-principal orbits and boundaries. Let t be the number of torus boundaries and G be a graph of cycles
to keep track of the boundary types S?, K, RP?, we get the following:

Theorem 3.1. Let the circle group S! act effectively and smoothly on a compact, connected 3d manifold M, possibly with boundary.
Then, the orbit invariants

{bv (67gaf7s7 t)7 (mls n])’ RN} (mlv nl); g}

consisting of numeric data and a graph of cycles, determine M up to equivariant diffeomorphisms, subject to certain conditions.
Conversely, any such set of invariants can be realized as a 3d manifold with an effective S'-action.

Using the Orlik-Raymond Theorem, one can compute the fundamental groups, ordinary homology and cohomology with
Z or Zj coefficients for closed 3d S '_manifolds, (cf.[4-7]). In this paper, we are instead interested in equivariant topological
invariants.

Hence, the second goal of this paper is to describe the Q-coefficient equivariant cohomology of compact 3d manifold M
with circle action. Our main strategy is to apply the equivariant Mayer-Vietoris sequence to a decomposition of the manifold
M into a fixed-point-free part and a neighbourhood of the fixed-point set. Then, we get

Theorem 4.2. Let M be a compact connected 3d manifold(possibly with boundary) with an effective S'-action, and F be its
fixed-point set(possibly empty), then there is a short exact sequence of cohomology groups in Q coefficients:

0 — H:(M) — H*(M/S") @ (Q[u] ®H*(F)) — H*(F) = 0

Using this theorem, we can describe the ring, module and vector-space structures of the equivariant cohomology H;‘1 (M)
in details. Furthermore, we will calculate equivariant Betti numbers and Poincaré series, and discuss a numeric condition for
equivariant formality.

2. S'-actions on 2d manifolds and closed 3d manifolds

In this section, we will recall the classification of effective S'-actions on closed manifolds in dimensions 2 and 3, which
will be crucial for our classification of effective S'-actions on 3d manifolds with boundaries. All these results are well known,
and can be found in greater details from the original papers by Orlik and Raymond [2,3] or the notes and books [4,8-10].

2.1. Some basic facts about group actions on manifolds

Throughout the paper, we always assume that a manifold M is compact, smooth and connected, and a group G is compact,
unless otherwise mentioned. For convenience, we will denote a G-action on M as G ~ M. The quotient M /G is called the orbit
space of the G-action on M. For any pointxin M, let G, = {g € G | g-x = x} be its stabilizer. We write M® = {x € M | Gy = G}
for the set of fixed points. If Gy = G for every x € M, we say that the G-action on M is trivial. If G, = {1} for every x € M, we
say that the G-action on M is free. If the intersection Nyc); Gy = {1}, we say that the G-action on M is effective. Throughout
this paper, group actions are usually assumed to be effective, unless otherwise mentioned.

For any orbit G - x, let V, be an orthogonal complement of T,(G - x) in TyM. The infinitesimal action of G, on T,M gives a
linear isotropy representation G, ~ V,. Then, the normal bundle of the orbit G - x can be written as

Gxg, Vi = {lg. v] | (g, v) ~ (gh, h~'v) for any h € G}

with a G-action induced from the canonical G-action on the left of the first factor of G x V,.
The following theorem, proved by Koszul [ 11], equivariantly identifies the normal bundle with the tubular neighbourhood
of an orbit G - x.

Theorem 2.1 (The slice theorem, [11]). There exists an equivariant exponential map
exp:GxgV — M

which is an equivariant diffeomorphism from an open neighbourhood of the zero section Gxg, {0} in Gxg,Vy to an equivariant
neighbourhood of G - x in M.

Thus, an equivariant neighbourhood of the orbit G - x can be specified in terms of the stabilizer G, and the isotropy
representation of G, on the normal vector space.

Similar to the ordinary non-equivariant case, the equivariant identification between normal bundles and neighbourhoods
generalizes beyond single orbit to submanifold and boundary, cf. Kankaanrinta [12].
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Theorem 2.2 (Equivariant tubular neighbourhood, [12]). Let N be a closed G-invariant submanifold of M, and E be the normal
G-vector bundle of N. There exists an equivariant exponential map

exp:E— M
which is an equivariant diffeomorphism from an open neighbourhood of the zero section in E to an equivariant tubular
neighbourhood of N in M.
Theorem 2.3 (Equivariant collaring neighbourhood, [12]). Suppose a compact manifold M has a G-action that extends compatibly
to its boundary M. There exists an equivariant exponential map

exp: oM x [0,00) — M

which is an equivariant diffeomorphism from an open neighbourhood of the boundary oM in oM x [0, c0) to an equivariant
collaring neighbourhood of oM in M.

Since we only consider S'-actions, there are three types of stabilizers, namely {1}, Z/m, S', whose resulting orbits will
be called principal, exceptional and singular, respectively.

Principal orbit Exceptional orbit Singular orbit
Stabilizers! {1} Im={en k=1,2...,m} S
OrbitS* - x st SY/Zm pt

Intuitively, exceptional orbits S'/Z,, are shorter than regular orbits S'. Singular orbits S'/S! = pt are exactly the fixed
points of the S'-action.

Direct applications of the Slice Theorem, together with the compactness of M, leads to the following facts (cf. Audin [9]
Secl.2):

Fact 2.1. If S! acts on a compact, connected manifold M, then

e For any subgroup H of S1, the set Mgy = {x € M | S} = H} of points with stabilizer H is a submanifold of M. Moreover,
S'/H acts freely on M.

e There is a unique subgroup Hy of S, such that the set M) is open and dense in M.

e The S'-action on M is effective if and only if the Hy in the previous statement is the identity group {1}.

e Ifthe S'-action on M is effective, then for every x € M, the isotropy representation S} ~ V, is also effective.

Furthermore, based on the Theorem of equivariant tubular neighbourhood, the classification of effective S'-manifolds in
low dimensions can be done by listing all the possible equivariant neighbourhoods and the obstructions of patching them
together to form a manifold. In dimension 1, there is only one compact effective S'-manifold, the circle S! itself with the
rotating action. In dimensions 2 and 3, this approach is also successful, as we will recall in the next subsections.

2.2. S'-actions on 2d manifolds

We begin by listing all the possible equivariant tubular neighbourhoods of orbits, which are the same as equivariant
normal bundles according to the Slice Theorem. Then, we try to patch these neighbourhoods together. The survey of this
topic follows closely from Audin ([9] Sec 1.3).

Notice that in dimension 2, for an exceptional orbit S!/Z,,, its isotropic representation is of dimension 1. But, there is only
. . . fl . . .
one such effective representation, namely the reflection Z, o R, which also forces the exceptional orbit to be S'/Z,.

As for a singular orbit, i.e. a fixed point with stabilizer S!, its isotropic representation is of dimension 2. The only effective
Sl-representation of real dimension 2 is the rotation S’ kel

So, we can summarize the list of all possible equivariant tubular neighbourhoods:

Principal orbit Exceptional orbit Singular orbit

Stabilizer S, (1} 7 st
Orbit S* - x st sz, pt
Isotropic representation {1} ~ R Zy reﬂ\eft R sTRe ¢
Equivariant neighbourhood ~ S! x (—1,1) STxz,(—1,1) D={(xy)|x*+y* <1}
U e \gyﬂ h
Cylinder Mobius band Disk
Orbit neighbourhood (-1.1) 0. 1) 0. 1)

u/st
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To form a 2-dimensional closed manifold with effective S'-action, we now just need to patch those equivariant pieces
ST x (=1, 1), S'xz,(—1, 1), D together by closing boundaries.

N + N = @ T? Torus

+ = 52 Sphere

+ @ = é RP?  Projective plane
— —

In the above list of 2-dimensional closed manifolds with effective S'-action, the projective plane RP? and Klein bottle K
are non-orientable due to the existence of exceptional orbits S!/Z,, but the torus T2 and the sphere S? are orientable.

Given a 2d compact connected effective S'-manifold M, we can count its fixed points and exceptional orbits as f and s,
respectively. If we allow M to have boundary, we can count the number of boundary components as b. Similarly, since the
orbit space M/S' is a compact connected 1d manifold which is either a circle S! or an interval I, we can count the boundaries
of M/S" as b. Then, we have the classification of the 2d compact connected effective S'-manifolds:

Theorem 2.4 (Numeric classification of 2d S'-manifolds). Given a 2d compact connected effective S L_manifold M, possibly with
boundary, the integers (b, f, s) determine M up to S'-diffeomorphism, and so do the integers (b, f, s).

Proof. We have seen that there are three 2d effective S'-manifolds with boundary: cylinder, disk and Mébius band, and
four 2d effective S'-manifolds without boundary: torus, sphere, projective plane and Klein bottle. The counting of boundary
components as b is straightforward.

To compute (f, s), we first do this for cylinder, f = 0, s = 0; disk, f = 1, s = 0; Mobius band, f = 0, s = 1. For any one
of the four closed 2d S'-manifolds, we just add the (f, s)-vectors of its two patches.

To understand the orbit spaces, we use the standard expressions for disk, D; cylinder, S x [—1, 1]; sphere, S?; torus,
S1 x S1. Their orbit spaces are [0, 1], [—1, 1], [—1, 1] and S, respectively.

For the orbit spaces of the rest types of the manifolds, notice that for a compact group G and a compact subgroup H that
acts on a space V, there is a relation between the G-orbit space and H-orbit space: (GxyV)/G = V /H. So, the M&bius band,
projective plane and Klein bottle, written, respectively, as S' xz,[—1, 1],5?/Z, and S' xz,S' will have S'-orbit spaces [0, 1],
[0, 1] and [0, ], respectively.

Here is the complete list of the numeric data (b, b, f, s):

Manifold Topological Orbit space  #3(M/S')  #3dM #MS' #M%
M expression M/S? b b f s
Disk D [0, 1] 2 1 1 0
Cylinder ST x [-1,1] [—1,1] 2 2 0 0
Mébius band STxz,[-1,11 [0, 1] 2 1 0 1
Sphere 52 [-1,1] 2 0 2 0
Projective plane  S%/Z, [0, 1] 2 0 1 1
Torus St x St st 0 0 0 0
Klein bottle S1xz,S! [0, ] 2 0 0 2

From the above list, we see that different diffeomorphism types of 2d effective connected S I_manifolds have different
(b, f, s)-vectors, together with different (b, f, s)-vectors, hence the claim of the theorem follows. 0O

Remark 2.1. Though the integer (b, f, s)-vector or (b, f, s)-vector classifies all the 2d effective connected S'-manifolds, their
values are limited to the seven cases.

Remark 2.2. For 2d effective S'-manifolds without boundary, the (f, s)-vector is enough to give the classification.

Remark 2.3. The author learned this folklore classification theorem from Audin’s book ([9] Sec 1.3). The numeric version
here is just a simple corollary.
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2.3. S'-actions on closed 3d manifolds

The idea of classifying effective S!-actions in dimension 3 is the same as in dimension 2 by listing all the possible
equivariant tubular neighbourhoods of non-principal orbits, and then try to patch them together. But, one more dimension
for the isotropic representations provides a longer list of equivariant tubular neighbourhoods.

2.3.1. Equivariant tubular neighbourhoods of principal orbits

For a point x of principal type, its isotropy group is the identity group {1} with a trivial isotropic representation {1} ~ R?.
So, an equivariant tubular neighbourhood of S! - x can be written as S' x mbD =S 1 % D, with the S'-action concentrating
entirely on the S'-factor. So, the orbit space of this tubular neighbourhood is (S' x D)/S! = §!/S! x D = D, a smooth local
chart.

2.3.2. Equivariant tubular neighbourhoods of exceptional orbits )

The union of exceptional orbits will be denoted as E. For an exceptional orbit S'/Z,, with stabilizer Z,, = {esz]a, k =
1,2, ..., m}, its isotropic representation of Z,, is 2-dimensional. Such a 2-dimensional effective Z,,-representation could
preserve the orientation by rotating:

/- ReC: et oz = (eZ”Tki)”z
where the orbit invariants (m, n), also called Seifert invariants, are coprime positive integers, and 0 < n < m. The resulting
equivariant tubular neighbourhood is S x, D, whose orbit space is an orbifold disk

(§'x7,,D)/S' = D/Zn

where the central orbifold point pt/Z,, corresponds to the exceptional orbit S!/Z,.

2.3.3. Equivariant tubular neighbourhoods of special exceptional orbits
Besides rotating, a 2-dimensional effective Z,,-representation could also reverse the orientation by reflection:
Z, "R oo (x,y) = (=X, y).
This case requires the Z, to be Z,. Because of the reverse of orientation, we call such an orbit S'/Z; a special exceptional
orbit. The union of all such special exceptional orbits will be denoted as SE.
Ifwe use the opensquare I xI = {(x,y) | —1 < x, y < 1}asaneighbourhood in R?, an equivariant tubular neighbourhood

of the special exceptional orbit S'/Z, can be written as S' xz,(I x 1), the orbit space by Z, of the solid torus S 1x (I xI). Note

that the reflection Z, T T et (x,y) = (—x, y) only affects the first I-factor, so we can split the second I-factor out

of the orbit space S'xz, (I x I):
S'xz,(I x 1) = S" x (I x I)/(e”, x,y) ~ (=€, —x,y)
- (51 x 1/(e”, x) ~ (—e, —x)) I = Méb x I

where we write Méb for short of the Mobius band S x 7, I.

Because the set of points with stabilizer Z; in the Mébius band S' xz,I is Mob(z,) = S xz, {0} = S'/Z, acircle, the set of
points with stabilizer Z; in Méb x I is (M6b x I)z,) = S'/Z, x I of dimension 2. Thus, if a 3d S'-manifold M has a special
exceptional orbit S!/Z;, then the connected component of Mz, that contains this orbit will be of dimension 2 and is acted
freely by S'/Z,, hence has to be S/Z, x S! according to the list of 2d S'-manifolds.

Now, an equivariant tubular neighbourhood of this torus S'/Z, x S' will be a bundle of Mébius band over S!, which is
actually a product bundle Méb x S, cf. Raymond [2].

Notice that the S'-action concentrates entirely on the factor of Mébius band, so the orbit space is (Méb x I)/S! =
Méb/S! x I = [0, 1) x I with a boundary circle {0} x S.

2.3.4. Equivariant tubular neighbourhoods of fixed points

The set of fixed points will be denoted as F. For a fixed point x with stabilizer S, its isotropic representation is of dimension
3. There is only one such effective 3-dimensional S'-representation S! ~ C @ R by acting on the C-factor rotationally and
acting on the R-factor trivially.

So, an equivariant tubular neighbourhood of x can be written as D x I, with fixed point set {0} x I, an interval. We
can continue to glue along this fixed interval to form S', a connected component of the fixed point set. Now, an enlarged
equivariant tubular neighbourhood of the fixed circle S' is going to be a disk bundle over the S!, which is actually a product
bundle D x S', cf. Raymond [2].

Notice that the S'-action concentrates entirely on the D-factor, so the orbit spaceis (D x S1)/S' = D/S? xS' = [0, 1) x S!
with a boundary circle {0} x S'.
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2.3.5. Patching: from local to global
First, we can summarize all the local pictures into a list

Principal Exceptional Special exceptional Singular
Stabilizer S (1} Zm Z st
Isotropic representation {1}~ C Zm RS C 7, "N R2 sU'RcoRr
Orbit S* - x st S/ s')z, pt
Equivariant neighbourhood S'xD S1x4,, D Méb x I DxI
Orbit neighbourhood D D/Zm [0,1) x I [0,1) x I
Component of orbits of same type S/ §'/zZy x S! pt x S!
Enlarged equivariant neighbourhood S'xz,,D Méb x S! D xS'
Enlarged orbit neighbourhood D/Zm [0,1) x S! [0,1) x S!

From the above list, we see that, passing to the orbit space, the local neighbourhood of an exceptional orbit S!/Z,,
contributes to an orbifold neighbourhood D/Z,,. Both the local neighbourhoods of special exceptional orbits and the local
neighbourhoods of fixed circles give rise to half closed, half open annuli [0, 1) x S! with circle boundaries {0} x S'.

Theorem 2.5 (Orbit space of closed 3d S'-manifold, [2,3]). For a compact closed 3d effective S'-manifold M, the orbit space
M* = M/S' is a 2d orbifold surface, possibly with boundaries. The orbifold surface M* has finite number of interior orbifold
points with Seifert invariants {(my, n1), ..., (my, n;)}, and boundary dM* = F U SE /S coming from the fixed circles and special
exceptional orbits.

To express M* = M /S! and its orbifold points into numeric data, let us denote € as the orientability of the 2d orbit space
M* = M/S!, g the genus, (f, s) the numbers of circles formed from fixed circles and components of special exceptional
orbits, respectively.

As for the total space M, after specifying the neighbourhoods of non-principal orbits, there is an obstruction integer b
of finding a cross section over the principal part of the orbit space. The theorem by Orlik and Raymond says that, these
invariants completely classify the 3d S'-manifolds, after adding some constraints within these invariants. The following
version is taken from Orlik’s lecture notes [8].

Theorem 2.6 (Equivariant classification of closed 3d S'-manifolds, [2,3]). Let S act effectively and smoothly on a closed, connected
smooth 3d manifold M. Then, the orbit invariants

{b: (e g.fo ) (my, my), ... (my, mp)}
determine M up to equivariant diffeomorphisms, subject to the following conditions:

(1) b=0,if f+5s>0
beZif f +s=0and e = o, orientable
b € Z,, if f + s = 0 and € = n, non-orientable
b=0,if f+s=0,¢ =nand m; = 2 for some i
2)0<n<my, (m, nj)=1life=o0
0<m< 3, (m, m)=1ife=n.

Conversely, any such set of invariants can be realized as a closed 3d manifold with an effective S'-action.

Remark 2.4. Raymond’s idea of proving this classification theorem is as follows: given any two closed 3d S '_manifolds M, M
with the same orbit invariants, firstly we can establish an orbifold diffeomorphism between M/S! and M/S'. Secondly, we
can lift this orbifold diffeomorphism to E UF USE — E UF U SE between the three types of non-principal orbits and extend
this map to a tubular neighbourhood of the non-principal orbits. Finally, we can extend this map to all the principal orbits
using local cross sections, which actually gives a global S!-diffeomorphism if the principal Euler numbers b, b are the same.

Remark 2.5. When M has neither fixed point nor special exceptional orbit, i.e. f = s = 0, then this is the case of Seifert
manifolds.

Remark 2.6. The invariants in M = {b; (e,8.f,s); (my, nq), ..., (m, nl)} mostly come from the orbit space M* = M/S!
except the invariant b. Therefore, the constraint (b = 0, if f + s > 0) says that if the orbifold M* has boundaries, then
M = {b = 0;(e,g.f,s); (my, ny), ..., (my, nl)} is determined by the orbifold M/S! and the assignment of its boundary
circles being either from fixed components or special exceptional components.

Remark 2.7. The above classification is up to equivariant diffeomorphisms. But, Orlik and Raymond also discussed in certain
conditions, more than one S'-actions can appear on the same 3d manifold.



248 C. He / Journal of Geometry and Physics 120 (2017 ) 242-261

Fig. 1. Cylinder S x [0, 1) flattened as annulus.

S

52/81

Fig. 2. One-side-open rectangle [—1, 1] x [0, 1).

For an orientable S'-manifold M, the orbit space M* = M/S! will be orientable, i.e. ¢ = o, and there will be no special
exceptional orbits, i.e. s = 0.

Corollary 2.1 (Classification of closed orientable 3d S'-manifolds, [2,3]). If a closed 3d S'-manifold is oriented and the S'-action
preserves the orientation. Then, the orbit invariants

{b:(e =0,g.f.s=0): (my, my),....(my, np)}
determine M up to equivariant diffeomorphisms, subject to the following conditions:

(1) b=0,iff >0
beZiff=0
(2) 0<n <m, (m,-, ni) =1

3. Sl-actions on 3d manifolds with boundaries

Let M3 be a compact connected 3d manifold with an effective S'-action that extends compatibly to its non-empty
boundary dM. Combining the classification of S'-actions on closed 2d and 3d manifolds, we can generalize the Orlik-
Raymond classification theorem to S'-actions on 3d manifolds with boundaries.

3.1. Equivariant collaring and tubular neighbourhoods

Similar to the case of 3d S'-manifolds without boundary, we will first give a complete description of the equivariant
neighbourhoods of boundaries and non-principal orbits.

3.1.1. Collaring neighbourhoods of boundaries and their orbit spaces

Theorem 2.3 of equivariant collaring neighbourhood says that for any S!-invariant boundary component B in M, an
equivariant collaring neighbourhood of B in M looks like B x [0, 1), whose orbit space is B/S! x [0, 1).

We have seen in the discussion of 2d closed S'-manifolds that there are four of them up to equivariant diffeomorphisms:
T2, S%, K, RP? which will appear as boundaries of 3d S'-manifolds.

The non-principal orbits appearing in T2, S2, K, RP? are either fixed points or S'/Z, with isotropy representation being a
reflection, hence a special exceptional orbit. Therefore, among the union of the non-principal orbits E U F USE, the boundary
oM is separated from the exceptional orbits E, but could possibly have common points with the fixed points and special
exceptional orbits F U SE.

More explicitly, each boundary component T? has an equivariant collaring neighbourhood T2 x [0, 1) consisting of only
principal orbits. The orbit space T?/S! x [0, 1) = S! x [0, 1) is a half closed, half open annulus with a circle boundary (see
Fig. 1): where the boundary circle is the orbit space T?/S! = S

Each boundary component S? has an equivariant collaring neighbourhood S? x [0, 1) with the two fixed poles N, S
attached to the two fixed intervals N x [0, 1), S x [0, 1), respectively. The orbit space $2/S! x [0, 1) = [—1, 1] x [0, 1)is an
open manifold with 3 boundaries and 2 corners (see Fig. 2):

where the bottom interval is the orbit space S?/S', the left and right intervals come from the two fixed intervals
N x [0, 1), S x [0, 1), the two corner points are the two poles N, S.

Each boundary component RP? has an equivariant collaring neighbourhood RP? x [0, 1) with a fixed point p and the orbit
S1/7, attached to a fixed interval p x [0, 1) and a special exceptional component S'/Z; x [0, 1) respectively. The orbit space
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RP2/S"

Fig. 3. One-side-open rectangle [0, 1] x [0, 1).

|

K/S1
Fig. 4. One-side-open rectangle [0, 7] x [0, 1).

D/S?
L ——

~—
D/S!

Fig. 5. One-side-open rectangle [0, 1) x [0, 1].

RP?/S' % [0, 1) = [0, 1] x [0, 1) is an open manifold with 3 boundaries and 2 corners (see Fig. 3): where the bottom interval
is the orbit space RP?/S', the left interval is the fixed interval p x [0, 1) with the corner point p, and the right interval comes
from the orbit space (S'/Z, x [0, 1))/S! with the other corner point.

Each boundary component K has an equivariant collaring neighbourhood K x [0, 1) with the two S!/Z,-orbits attached
to special exceptional components S!/Z, x [0, 1), respectively. The orbit space K/S! x [0, 1) = [0, =] x [0, 1) is an open
manifold with 3 boundaries and 2 corners (see Fig. 4): where the bottom interval is the orbit space K /S, the left and right
intervals come from the orbit spaces (S'/Z, x [0, 1))/S! with corner points.

3.1.2. Tubular neighbourhoods of non-principal orbits and their orbit spaces
Equivariant tubular neighbourhoods of an exceptional orbit S!/Z,,, a fixed circle S! or a special exceptional component
S1/Z, x S* will still be S'x 7 D, D x ST or Méb x S! respectively, the same as we see in the case of 3d S'-manifolds without
boundary. The orbit spaces of these neighbourhoods provide orbifold chart D/Z,, and annulus charts [0, 1) x S! for M/S'.
Suppose a fixed component F; has common points with the boundary dM. As a 1d compact manifold with boundary, F; has
to be aninterval, denoted as [0, 1].Its equivariant tubular neighbourhood will be D x [0, 1], with boundary (D x [0, 1])NOM =
D x {0} UD x {1}. The orbit space

(D x [0,1])/S" =D/S' x [0, 1] = [0, 1) x [0, 1]

is an open manifold with 3 boundaries and 2 corners (see Fig. 5): where the left interval is the fixed interval F;, the bottom
and top intervals come from the orbit space of the boundary D x {0} UD x {1}.

Similarly, suppose a special exceptional connected component SE; has common points with the boundary dM. As a 2d
compact principal S!/Z,-manifold with boundary, SE; has to be a cylinder S'/Z, x [0, 1], according to the classification
theorem in dimension 2. Its equivariant tubular neighbourhood will be Méb x [0, 1], with boundary (M6b x [0, 1])N oM =
Mob x {0} U M&b x {1}. The orbit space

(M&b x [0, 1])/S" = M&b/S" x [0, 1] =[0, 1) x [0, 1]

is an open manifold with 3 boundaries and 2 corners (see Fig. 6): where the left interval comes from the orbit space SEj/Sl,
the bottom and top intervals come from the orbit space of the boundary Méb x {0} U Méb x {1}.

3.2. Orbit spaces and classifications of 3d s'-manifolds with boundaries

Using the discussion of local orbit spaces, we have the following theorem about orbit space of 3d S'-manifolds with
boundaries:
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Méb/ St
SEj/S1

Msb/S!

Fig. 6. One-side-open rectangle [0, 1) x [0, 1].

Proposition 3.1 (Orbit space of 3d S'-manifold). For a compact connected 3d effective S'-manifold M possibly with boundary,
the orbit space M* = M/S' is a 2d orbifold surface, possibly with boundary and corners. The orbifold surface M* has a finite
number of interior orbifold points E/S' with Seifert invariants {(mq, ny), ..., (my;, n;)}. Moreover, it has boundary dM* =
FUSE/S' U (0M)/S! and corner points 9*M* = (F U SE/S')N (dM)/S".

Proof. This follows from the previous local discussions. O

Remark 3.1. The notation 3?M* for corners is because in dimension 2, corners are boundary of the boundary.

Ifwe trace the boundaries of the orbit space M* = M/S, the circle boundaries of M* are formed from either T? boundaries
of M, or fixed components and special exceptional components in M that do not meet dM. While the interval boundaries of
M* are formed from either S?, K, RP? boundaries of M, or fixed components and special exceptional components in M that
meet oM. At the meeting points, corners of M* are formed and connect intervals into cycles.

The orbit invariants of an S'-manifold M with non-empty boundary can be given as follows:

€: 0if M* = M/S' is orientable, or n otherwise

g: the genus of the quotient orbifold surface M*

f: the number of fixed components in M not touching oM

s: the number of special exceptional components in M not touching aM

t: the number of T2 boundaries of M

G: the graph of cycles whose edges and vertices are, respectively, the interval boundaries and corner points of M*.
Along with the edges, we will also record the types of these edges formed from S2, K, RP? boundaries of M, or fixed
components and special exceptional components in M that meet dM.

e (mq, ny),...,(my, n)): the Seifert invariants.

Remark 3.2. When an S'-manifold M? is closed, there is the invariant b denoting the Euler number of the principal part of
M. As we will see shortly, we can include the invariant b back by setting b = 0 for S'-manifolds with boundaries.

Condition 3.1. Taking into account the types of edges, every cycle in the graph ¢ must satisfy the following conditions of
type distributions (for example, see Fig. 7):

(1) Every type-F edge connects edges of type-S? or type-RP>

(2) Every type-SE edge connects edges of types-K or type-RP?

(3) Every type-S? edge connects type-F edges

(4) Every type-K edge connects type-SE edges

(5) Every type-RP? edge connects one edge of type-F and one edge of type-SE.

K
) SE SE
RP?
s RP? RP?
S F SE
<> F F
F RP? S?

Fig. 7. Examples of cycles satisfying the condition of type distributions.

A simple counting of the numbers of vertices in type F and SE, respectively, gives the following:
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Proposition 3.2. Given a graph G constructed as above from an S'-manifold M® with non-empty boundary, let s,, k, r be the
numbers of edges formed from S, K, RP? boundaries of M, and let f’, s’ be the numbers of edges formed from fixed components
and special exceptional components of M, respectively. Then, there are numeric relations:

2f =2sp+1
2s' =2k +r.

In particular, the number r of RP? boundaries of M is even.

Remark 3.3. The above counting is valid not only for the entire graph G, but also for each cycle in G.

Now, we can give the classification of 3d S'-manifolds with boundary

Theorem 3.1 (Classification of 3d S'-manifolds with boundary). Let S' act effectively and smoothly on a compact, connected 3d
manifold M with boundary. Then, the orbit invariants

{(€7g5f3$7 t)7 (m17 n1)7 RN (ml» nl); g}

consisting of numeric data and a graph of cycles, determine M up to equivariant diffeomorphisms, subject to the following
conditions:

(1) 0 < n; <my, (M, n;) = 1if € = o, orientable
0<n< % (m;, n;) = 1if € = n, non-orientable
(2) The graph G satisfies the Condition 3.1 of distribution of edge types

Conversely, any such set of invariants can be realized by an effective S'-action on a compact 3d manifold with boundary.

Proof. The proof of this non-closed case is similar to the closed case in Raymond’s paper [2]. Given orbit invariants
{(e, g.f,s, t);(mq, n1),...,(my, ng; g}, we firstly recover the boundary from the data {t, G} and the non-principal orbits
from the data {(f, s); (ms, ny), ..., (m;, n); G}, where t is the number of T? boundaries and g records the distributions of
S2, K, RP? boundaries and their nearby fixed components and special exceptional components. Secondly, we enlarge the
boundary and non-principal orbits to their neighbourhoods using the local description given in the previous subsection.
Finally, we take a surface N with orientability €, genus g and (f + s + t + number of cycles in G) disks deleted. The circle
bundle over 9N is inherited from our second step, and can be extended over the entire N uniquely up to equivariant
diffeomorphisms because the obstruction of doing so is H(N, Z) = 0. These three steps realize the given orbit invariants
{(s, g.f,s, t);(mq, ny),...,(my, ng; g} uniquely up to equivariant diffeomorphisms. O

Remark 3.4. If we add the b = 0 to the case of 3d S'-manifolds with boundary, we can synthesize the cases with or without
boundary into one single theorem.

4. Equivariant cohomology of 3d s'-manifolds

The classification of 3d S'-manifolds (possibly with boundaries) in terms of numeric invariants and graphs gives us an
S'-equivariant stratification of every such manifold and enables us to calculate all kinds of topological data. For example,
the fundamental groups, ordinary homology and cohomology with Z or Z, coefficients have been computed extensively
for closed 3d S'-manifolds in literature [4-7], and now can be generalized to 3d S!-manifolds with boundaries, using the
classification Theorems 2.6 and 3.1. But, not much has been discussed for S'-equivariant cohomology, which is the goal of
the current section.

In the following subsections, we will first prove our core Theorem 4.2 in full generality. When we explore more delicate
computational invariants, we will try to keep the presentation of results in a manageable way.

4.1. Some basic facts about equivariant cohomology

In the following discussion, the coefficient of cohomology will always be Q unless otherwise mentioned. For a group
action of G on M, the equivariant cohomology ring is defined using the Borel construction Hi(M) = H*(EGx¢M), where
H*(—) is the ordinary simplicial cohomology theory, EG is the universal principal G-bundle and EGxM is the associated
bundle with fibre M. The pull-back 7* : H:(pt) —> HE(M) of the trivial map 7 : M — pt gives Hj(M) a module structure
of the ring HZ(pt).

In general, the equivariant cohomology Hi(M) is not the same as the ordinary cohomology H*(M/G) of the orbit space
M/G. If we choose any fibre inclusion ¢ : M — EG x M and pass to the orbit spacest : M/G — EGxsM, then the pull-back
U HY(M) = H*(EGx¢M) — H*(M/G) gives a natural map between Hi(M) and H*(M /G).

We will need some basic facts to compute equivariant cohomology, see any of the expository surveys [13,14] for details.

The first set of facts is about equivariant cohomology of homogeneous space, i.e. space with one single orbit:
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Fact 4.1. Let G be a compact Lie group, and H a closed Lie subgroup. Denote BG = EG/G and BH = EH /H for the classifying space
of G-bundles and H-bundles, respectively. Then,

e Hi(pt) = H*(EG/G) = H*(BG)
e HE(G/H) = Hyj(pt) = H*(BH)

The second set of facts is about equivariant cohomology of extremal types of group actions:

Fact4.2. Let a compact Lie group G act on a compact manifold M.

o Ifthe action G ~ M is free, then H:(M) = H*(M/G).
o Ifthe action G ~ M is trivial, then H{(M) = H*(M) ® H}(pt).

In particular, when G = S, there are three types of orbits: S', S!/Z,, S/S'. For a principal orbit, H;, (S1) = H*(pt). For
an exceptional orbit S'/Z,,, the classifying space BZ,, = S*/Z,, is the infinite Lens space with cohomology in Q-coefficient
the same as H*(pt). For a fixed point S'/S1, the classifying space BS! = CP is the infinite projective space with cohomology
Q[u] a polynomial ring, where the parameter u is the generator of H2(CP') in degree 2.

Principal orbit Exceptional orbit Singular orbit
Orbit © st SYZm st/st
H:(0,Q)  H*(pt.Q) H*(pt, Q) Qlu]

The third set of facts enables us to compute equivariant cohomology by deforming, cutting and pasting, similar to the
computation in ordinary cohomology:

Fact4.3. Let Uy, U, be two G-spaces, and A, B be two G-subspaces of a G-space X.

Homotopy invariance If ¢ : U; = U, is a G-homotopic equivalence, then ¢* : Hi(U,) = HZ(Uq) is an isomorphism.
Mayer-Vietoris sequence If X = A° U B° is the union of interiors of A and B, then there is a long exact sequence:

. — HL(X) — Hi(A) ® H.(B) — HL(ANB) > HH(X) —> .-

Remark 4.1. Besides the Borel model of equivariant cohomology, there are also Cartan model and Weil model (cf. Guillemin-
Sternberg [ 15]) using equivariant de Rham theory. In this paper, we prefer the Borel model because the homotopy invariance
and Mayer-Vietoris sequence are more natural for the Borel model, from the topological rather than the differential point
of view.

The fourth set of facts deals with equivariant cohomology of product spaces:

Fact4.4. Let G ~ M and H ~ N be two group actions on manifolds. Then, for the product action G x H ~ M x N, we get
HE,y(M x N) = HE(M) ® Hj5(N).
Especially, for the product action G ~ M x N where G acts on N trivially, we get

HA(M x N) = H:(M) ® H*(N).

4.2. A short exact sequence

Let S' act effectively on a compact connected 3d manifold M, possibly with boundary. We will compute the equivariant
cohomology group H;‘1 (M, Q) by cutting and pasting, with the help of the classification theorem from previous sections.

As we have seen from the previous computation of HZ,(0O) for each S _orbit O, the S'-equivariant cohomology in Q
coefficient does not distinguish principal orbit S' from exceptional orbit S'/Z,, or special exceptional orbit S'/Z,. However,
there is big difference between the S'-equivariant cohomology of fixed point and non-fixed orbit.

If a 3d S'-manifold M does not have fixed points, we would hope that its S'-equivariant cohomology is the ordinary
cohomology of the orbit space M/S!. Actually, a more general statement is true due to Satake [ 16]. The version here is taken
from Duistermaat’s lecture notes [17].

Definition 4.1. An action of a compact Lie group G on a manifold M is locally free, if for every x € M, the isotropy group G
is finite.

Theorem 4.1 (Satake [16]). If a compact Lie group G acts locally freely on a compact manifold M, then M /G is an orbifold, and
H:(M, R) = H*(M/G, R).



C. He / Journal of Geometry and Physics 120 (2017) 242-261 253

We can certainly apply the Theorem of Satake to our special case of S'-actions. However, there is a subtlety in Satake’s
definition of H*(M/S?, R) for the orbifold M /S! in terms of orbifold differential forms (cf. [16,17]). Moreover, because of the
use of differential forms, the above theorem is originally stated for R-coefficients not for Q-coefficients.

In our definition of H*(M/S!, Q), we will simply use the ordinary simplicial cohomology for the topological space M /S
by forgetting its orbifold structure.

Our method of calculating equivariant cohomology is based on the equivariant Mayer-Vietoris sequence and induction
on the number of non-principal components which is finite because of the compactness of M.

Proposition 4.1. Let S act effectively on a compact connected 3d manifold M, possibly with boundary. If M does not have fixed
points, then H}, (M, Q) = H*(M/S!, Q).

Proof. We will proceed by induction on the number of non-principal components.

To begin with, suppose M does not have non-principal component. Since we assume there is no fixed point, then S! acts
on M freely and hence H, (M) = H*(M/S").

Now, suppose the proposition is true for any 3d fixed-point-free S'-manifold with k > 0 non-principal components, and
suppose M has k + 1 non-principal components. Let C be a non-principal component together with an equivariant tubular
neighbourhood N, then the complement M’ = M ~ N has k non-principal components and HS’“1 (M") = H*(M’/S") according
to our assumption. Let us also denote L = M’ N N.

The equivariant Mayer-Vietoris sequence for the union M = M’ U N and the ordinary Mayer-Vietoris sequence for the
union M/S' = M’/S' U N/S! gives

HT (M) @ HyT'(N) ——— HT (1) —— HL (M) ——— HA(M') @ H, (N) —— H (1)

| | l | |

H*=Y(M'/SY)Y @ H*1(N/S") — H*~Y(L/S') — H*(M/S') — H*(M'/S') ® H*(N/S') — H*(L/S")

where the second and the fifth vertical maps are isomorphisms, because the intersection L = M’ N N does not touch non-
principal orbits and consists of only principal orbits.

According to the Five Lemma in homological algebra, in order to prove that the middle vertical map is an isomorphism,
we now need to prove the first and the fourth maps are isomorphisms. But, we already have the isomorphism H;‘I(M’) =
H*(M’/S1). So, we only need to prove H} (N) = H*(N/Sh).

In the 3d fixed-point-free S'-manifold M, according to our detailed discussion in Section 3.1, there are three cases for
a non-fixed, non-principal component C, its equivariant neighbourhood N and orbit space N/S'. Note that, for each case,
there is an equivariant deformation retraction N >~ C, so we have HS*](N ) = H;‘](C ). Also, recall that we have calculated

H,(S"/Zn, Q) = H(pt, Q).

c S Zm S1/Zy x S' SV)zZy x 1
N Sy, D? Mob x S? Méb x I
N/S! D?/Zm Ixs! IxI

HE (N) = HE(C) - H*(pr) H*(S") HX(I)
H*(N/S") H*(D?/Zn)  H*(S") H*(I)

For the second and the third case, it is clear that H;‘l (N) = H*(N/S"). For the first case, the orbit space D?/Z,,, viewed as
an ice-cream cone, has a deformation retract to the cone’s tip pt, so H;‘l (N) = H*(pt) = H*(D?/Zy) = H*(N/S"). O

If a 3d S'-manifold M has fixed points, then the number of fixed components will be finite due to the compactness of
M, and every fixed component is either a circle S' or an interval I according to our discussion in the previous Sections 2
and 3. The calculation of S! equivariant cohomology of a general 3d S'-manifold M will be carried out by doing induction
on the number of connected components of these fixed points. The beginning case of no fixed points is just the previous
Proposition 4.1.

Suppose now that an S'-manifold M has k > 0 connected components of fixed points. Let us choose any such connected
component F, with its equivariant neighbourhood N. If F = S',then N = D x S'; if F = I, then N = D x I. In both cases,
N = D x F.If we set the complement M’ = M ~ N, then M is attached equivariantly by M’ and N = D x F along S x F. The
Mayer-Vietoris sequence of equivariant cohomology groups then gives

— H5(M,Q) = Hj(M', Q) @ H;(D x F, Q) - H4(S' x F,Q) - Hi (M, Q) — .

However, since the S'-action on D x F and S! x F concentrates on their first components, respectively, we have
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H2,(D x F) ——— H,(S" x F)

®H* )4)1_1* ®H* )

Qlu] ® H*(F) ———— H*(F f)@a—f(0) -«

where the upper 2 vertical isomorphisms are because of the cohomology of product spaces, the lower left vertical
isomorphism is because of homotopy between D and pt, and the lower right vertical isomorphism is because the S! is a
principal orbit.

The bottom map is obviously surjective, so is the top map H;‘l(D X F) — H;l (S' x F). This means that the long exact

sequence actually stops at H* (M )EBH*1 (DXF)— H;‘] (S' x F) — 0.We then conclude that the long exact sequence reduces
into the following short exact sequence

0~ HA(M) > HA(M) @ (Qlul @ H'(F)) — H'(F) - 0

where we have replaced the H* (D x F)and H* (S' x F) by Q[u] ® H*(F) and H*(F), respectively.

We can now consider all the k components of fixed points Fy, F5, ..., F, together with their equivariant tubular
neighbourhood Ny, No, ..., Ng.If we set the complement M, = M ~. U;N;, an S!-manifold without fixed points, then there
is a short exact sequence of cohomology groups:

0 —> Hy, (M) — H;,(M.) @ @i(Qlul © H*(F)) > @iH*(F) > 0 (1)
Since M, is fixed-point-free, H;"1 (M,, Q) = H*(M,/S', Q) by Proposition 4.1. To understand the orbit space M, /S, we can

compare it with the orbit space M /S,

Lemma 4.1. Following the above notation, the two orbit spaces M,/S' and M/S' are topologically homotopic. Especially,
H*(M,/S', Q) = H*(M/S", Q).

Proof. Since the majority of M,/S! and M/S! is isomorphic, we only need to check what happens in an equivariant
neighbourhood N near an S'-fixed component F of M.

Let N’ be an equivariant neighbourhood slightly larger than N. If we choose local S' equ1var1ant coordinates properly, we
canwrite N =D; x Fand N = D; x F, where D and D1 are 2-dimensional disks of radii 1 and 1 such that S! acts on the

disks by standard rotation.
Now N’ N = (D1 ~ D%) x F and N’ = D¢ x F are equivariant neighbourhoods of M, = M \. N and M, respectively. Their

orbit spaces by the S'-action give neighbourhoods (N’ . N)/S' and N'/S! of M, /S! and M /S', respectively.
However,

(N~ N)/S' = ((Dl N D%)/Sl) X F = [%, 1) x F
and

N'/S! = (Dl/Sl) x F=0,1)x F
are homotopic. Thus, M, /S! and M/S! are homotopic. O

Finally, we can combine all the above discussions and get the following:

Theorem 4.2. Let M be a compact connected 3d effective S'-manifold(possibly with boundary), and F be its fixed-point
set(possibly empty), then there is a short exact sequence of cohomology groups in Q coefficients:

0 — H: (M) — H*(M/S") & (@[u] ®H*(F)> — H*F)— 0 )

Proof. If the fixed-point set F is not empty, then we can use the short exact sequenceEq. (1), and the replacement
H;“l(MO) = H*(M,/S') = H*(M/S") because of the Lemma 4.1. If the fixed-point set F = & is empty, then H*(F) = 0.
We just use the Proposition 4.1 which says H;, (M) = H*(M/S"). O

Remark 4.2. To be more specific about the maps involved in the above short exact sequence (1):

(1) H;q (M) — H*(M/S")is the natural map between equivariant cohomology of M and ordinary cohomology of M /S’
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(2) H;“l (M) — Q[u] ® H*(F) is the equivariant restriction map from M to its fixed-point set F
(3) H*(M/S') — H*(F) s the restriction map from M/S! to its boundary formed by F
(4) Q[u] ® H*(F) — H*(F)is the evaluation map given by f(u) ® o +— f(0)a.

4.3. The ring and module structure

By the short exact sequence (1) of Theorem 4.2, we have the inclusion of cohomology groups: H;(M) — H*(M/S") @
(Q[u] QH*(F )). Since this inclusion is the direct sum of two restriction maps of cohomology rings, it preserves ring structure.
Therefore, we can describe the ring structure of H;‘l(M ) explicitly in terms of elements and constraints in H*(M/S') and
Qlu] ® H*(F).

For simplicity, we will focus on closed 3d S'-manifolds. If M does not have fixed points, then the Proposition 4.1 says that
its equivariant cohomology ring is the cohomology ring of the orbit space.

Thus, we will only be interested in the case where M has non-empty set of fixed points. According to the classification
theorem, we can write M = {b = 0;(e,g.f,s); (my, ny), ..., (my, n,)} with f > 0. Topologically, M/S! is a 2d surface of
genus g, with f + s > 0 boundary circles.

Let us first give a description of the involved cohomologies H*(M/S!) and Q[u] ® H*(F,).

The orbit space M/S! as a topological 2d surface of genus g, has f boundary circles U;_,F; from fixed components and
s boundary circles u;;lsE,- from the orbit spaces of special exceptional components. For a fixed circle F; = S, 1 < i < f,
we write H*(F;, Q) = Q8; ® Q6;, where §; and 6; are generators of H(F;, Z) and H'(F;, Z), respectively. Similarly, for
SE; = S',1 < j < s, we write H*(SE;, Q) = Qf4; ® Q6. If the orbit space M/S! is orientable, i.e. ¢ = o, though +6;
are both generators for H!(F;, Z), we only choose 6; compatible with the boundary orientation on F;. The same rule of choice
also applies to 6y;. Moreover, we can write Q[u] ® H*(F;) = Q[u]s; ® Q[u]6; such that every element of Q[u] ® H*(F;) can
be expressed as p;(u)§; + qi(u)6; for polynomials p;(u), p;(u) € Q[u].

Using the classic calculation of cohomology of 2d surfaces with boundaries, the cohomology H*(M/S!) has two different
descriptions according to whether M/S is orientable or not.

IfM/S' is an orientable surface of genus g with f +s > 0 boundary circles, then it is homotopic to a wedge of 2g +f +s—1
circles. Let us denote oy, Bx, 1 < k < g for the generators of H'(—) of the 2g circles used in the polygon presentation of the
surface M/S'. Then, we can write H*(M/S") as a sub-ring of Q8o & &%_, (Qax & Q) @ (@{:1@@) @ (®}_,Qb)+;), such that
every element of H*(M/S') can be expressed as D&g + >_ (Axa + Bifi) + Y_;Cifhi + ZijHQfﬂ- for D, A, By, G, Gr4j € Q,
under the constraint that )", (Ax + B) + Y_,Gi + >G4 = 0.

Moreover, we have the restriction maps to each fzixed circle F;:

Qul @ H*(F) = H*(F) :  pi(u)8; + qi(u)6; — pi(0)8; + q;(0)0;

and

g f s
H*(M/S") — H*(F): Déo+ Y (Ao +Bif)+ Y G+ > Cryjflryj > D + iy,
k=1 i=1 j=1

IfM /S is a non-orientable surface of genus g with f+s > 0boundary circles, then it is homotopic to a wedge of g+f +s—1
circles. We can denote oy, 1 < k < g for the generators of H'(—) of the g circles used in the polygon presentation of the
surface M/S'. The description of the cohomology H*(M/S') together with the restriction maps is similar to the orientable
case, with the only difference that there is no By, By for the non-orientable case.

Following the above notations, we get the following:

Theorem 4.3. For a closed 3d S'-manifold M = {b =0;(e =o0,8,f,8); (mq, n1),...,(my, n,)} with f > 0 and an orientable
orbit space M /S, an element of its equivariant cohomology H;"] (M) can be written as

g f s f
(D30 + D (Avetk + Bufi) + Y i+ D Craifyags Y (piCu)si + ai(u)on) ()

k=1 i=1 j=1 i=1
inH*(M/S") & @i(Q[u] ® H*(F,—)), under the relations
(1) 35 (A + B+ X, G + 351Gy =0
(2) p1(0) =p2(0)=---=pr(0) =D
(3) qi(0) = C; foreach i
Breaking the equivariant cohomology H;"1 (M) into different degrees, we have

o HY(M)=Q
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e H},(M)is a subgroup of H'(M/S") ® @;H'(F;) consisting of elements

g

f s f
(Z(Akak +BB)+ D GO+ Y G D Cﬁi)
i=1 =1 i=1

k=1

under the constraint Y 5_ (A + Bx) + Z{ZlC,- + Z;:]Cfﬂ» =0.
° H>2(M) @i(@[u]+ ® H*(Fi)) where Q[u] consists of polynomials without constant terms.

Proof. The expression () of elements ofH;“1 (M) comes from the description of cohomologies H*(M/S') and Q[u] ® H*(F;).
The relations (1)(2)(3) are due to the Theorem 4.2 that H;I(M) is the kernel of the restriction map H*(M/S') ® ®; (Q[u] ®

H*(F,-)P — @;H*(F;). Thus, the images of restrictions are the same: p1(0) = p,(0) = --- = pf(0) = D, and ¢;(0) = G Since
the relations (1)(2)(3) only live in degree less than 2, we get the description of H;‘l (M) in different degrees. O

Remark 4.3. For a closed 3d S'-manifold M = {b = 0;(e =n,g,f,s); (my, ny),...,(my, n,)} with f > 0 and a non-
orientable orbit space M /S, the explicit expression of elements of H;‘1 (M) is almost the same as the oriented case, with the
only modification that there is no gy, By term.

Theorem 4.4. For a closed 3d S'-manifold M = {b = 0;(e,g,f,s); (mqy, ny),...,(my, nl)} with f > 0, the graded ring
structure of H;‘l (M) is as follows:

(1) HS(M) @ H, (M) —> HZ,(M) and HZ,(M) ® HY (M) —> H?, (M) are just scalar multiplication.

(2) Hl (M) ®H1 M) -2 Hszl(M)isazero map

(3) HY(M) ® H>2(M) = HZ*(M) fits into a commutative diagram:

HY, (M) @ HZ (M) HE (M)

(e H'®) @ (@ (e, @ H () — &i(Qlul, @ H(F))

where the left map is the restriction map H;l(M) — EB,HS‘1 (F;) = @®;H(F;) tensored with the identification H;z(M) =
EB,-(Q[uh ® H*(F,-)), and the bottom map is the component-wise multiplication in EB,-(Q[u] ® H*(Fi)).
(4) H>2(M) ® H>2( M) - H;Z(M) is just the component-wise multiplication of EB,~(Q[u]+ ® H*(Fi)).

Proof. We will explain the above breakdown one by one for the case when M/S! is orientable.

(1) This is clear.
(2) From Theorem 4.3, HL, (M) is generated by the basis «;, §;, 8;, which have zero cup product among them.
sl 1 ]
(3) Similar to the above remark, the H'(M/S!) component of H!, (M) c H'(M/S') @ @;H(F;) has zero cup-product. So,
sl
only the cup product involving @;H(F;) will survive.
(4) Since H;Z(M) = @,(Q[uh ® H*(F,-)), the cup product among H;Z(M) is inherited from &; (Q[u]Jr ® H*(F,-)).

The argument is exactly the same for the case when M /S’ is non-orientable, because of the Remark 4.3. O
Using the cup product of Theorem 4.4, we can now describe the H;l (pt)-module structure of HS*l (M).
Theorem 4.5. Following the notations of Theorem 4.4, for a closed 3d S'-manifold M with non-empty set of fixed points , the

forgetful map = : M — pt induces the map * H* (pt) = Q[u] — H} (M), with the image of the generator u being
) = > us; The generator u acts on H ( ) by multlplymg with * i u8 using the cup product of H;‘ (M).

Proof. u € Q[u] is of degree 2, so is 7*(u) € H;Z(M) = @ Q[u]l+ ® H*(F;) ). Hence, we only need to know the restriction
of 7*(u) from H, 5*1 (M)toH, 5*1 (F;) for each fixed circle F;. The commutative diagram of forgetful maps
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F,‘(—>M

Sl

pt

induces the commutative diagram of maps between equivariant cohomologies

HE(F) —— HZ (M)
\ ]n*

i
H;‘l(Pf)

Thus, the restriction of 7*(u) from H;‘](M) to H;‘l(Fi) is the image 7;*(u) via the map n;" : HS*1 (pt) = Qu] — HS*1(F,-) =
Q[u]8; ® Q[u]6;. Since F; is a fixed component of the S'-action on M, u € Q[u] acts trivially on H;‘l (F;) with 7/ (u) = ug;.
In conclusion, if we combine the contribution from all the fixed components F;, we get 7*(u) = ) _ud;. O

If a closed 3d S'-manifold M does not have fixed point, then the image 7*(u) is in HSZ1 (M) = H?>(M/S') by the
Proposition 4.1. In this case, a condition for 7*(u) = 0 is to make sure that H* (M /S') = 0.

Proposition 4.2. For a closed 3d fixed-point-free S'-manifold M = {b; (e,g,f = 0,s); (mq, n1),...,(my, n,)}, ife=nor
s > 0, then HSZI(M) = H*(M/S') = 0, hence 7*(u) = 0.

Proof. By the classic calculation of cohomology of surfaces. A sufficient condition for H2(M/S') = 0 is that M/S! is non-
orientable or has non-empty boundary, which corresponds to the condition: ¢ = nors > 0. O

If e = 0and s = 0, then this is exactly the case of oriented Seifert manifold. The image 7*(u) € HSZ1 (M) = H>(M/S1)is
calculated by Niederkriiger in his thesis (cf.[10] Theorem II1.13).

Theorem 4.6 (Niederkriiger, [10]). Given an oriented Seifert manifold M = {b; (e=o0,8,f =0,5s=0);(mq, nq),...,(my, n,)},
let I; be the unique solution of Iin; = 1 mod m;, 0 < l; < m; for each coprime pair (m;, n;). Then,

) =b+)y ’1’1— € HAM/S") = Q.
i=1 !

Remark 4.4. The rational number b+ »";_,l;/m; is exactly the orbifold Euler characteristic of the oriented Seifert manifold,
with integer b contributed by the principal orbits and fraction Zleli /m; contributed by the exceptional orbits.

4.4. The vector-space structure

Since we are working in Q-coefficient, the group structure of the equivariant cohomology HS*] (M) is simply the Q-vector-
space structure. In the short exact sequence (i), we note that the surjective map Q[u] ® H*(F) — H*(F) by sending a
polynomial f(u) € Q[u] to its constant term f(0), has a kernel Q[u]; ® H*(F), where Q[u] consists of polynomials without
constant terms.

Proposition 4.3. Let M be a compact connected 3d effective S'-manifold(possibly with boundary), and F be its fixed-point
set(possibly empty ), we get

H: (M) = H*(M/S") & (Q[u]+ ® H*(F)) as graded vector spaces
where Q[u] consists of polynomials without constant terms.

Proof. For a graded vector space, its isomorphism type is determined by the dimension at each grading. In order to prove
the proposition, we only need to show the dimension ofH;*1 (M) s the same as the dimension of H*(M/S1)® (@[u]Jr ®H*(F))
at each grading. From Theorem 4.2, we know that H;l (M) is the kernel of the surjective map H*(M/S!) ® (Q[u] ® H*(F)) —
H*(F). Write Q[u] = Q[ul; @ Q, then H*(M/S") & (Q[u] ® H*(F)) = H*(M/S") & (Qlu]+ ® H*(F)) & (Q ® H*(F)) where
the third summand Q ® H*(F) is isomorphic to H*(F), and hence the direct sum of the first two summands H*(M/S1),
Q[u]y+ ® H*(F) is isomorphic to H;‘1 (M) as graded vector spaces. O
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Remark 4.5. The above expression of H;Q(M ) as a direct sum usually does not preserve the ring structure, unless F = &,
i.e. M is fixed-point-free.

Remark 4.6. If the fixed-point set MS' = F = U;F; is non-empty, then the orbit space M /S! has boundaries, so H*>2(M/S!) =
0. Also, note Q[u]; ® H*(F;) has degrees at least 2. So, the above theorem says that when MS' # @, we have
(1) HE'(M) = H*(M/S") is determined by the orbit space and HJ;*(M) = & ((@[u]+ ® H*(F,-)) is determined by the
fixed-point set.
(2) Since H*(S') contributes to both even and odd degrees, but H*(I) only contributes to even degrees. We have #{F;, =
§'} = dimH},(M) and #{F; = I} = dim H}, (M) — dim H},,(M).

4.5. Equivariant Betti numbers and Poincaré series

Given an S'-manifold M, we can calculate its equivariant Betti numbers b’s‘1 = dim Hé‘l (M) and the equivariant Poincaré
series P (x) = Y ;2 bk k.

When a closed 3d S'-manifold M has neither fixed points nor special exceptional orbits, i.e. f = s = 0, also called Seifert
manifold, its orbit space M /S! is a closed 2d orbifold of genus g. By Proposition 4.1, H;‘l (M, Q) = H*(M/S', Q) and the classic
calculation of cohomology of closed surfaces, we have

Proposition 4.4. For a closed 3d S'-manifold M without fixed points nor special exceptional orbits, i.e. M = {b; (e,8,.f=0,s=
0); (mq, nq), ..., (my, nl)}, the equivariant Poincaré series are 1+ 2gx + x? if M is orientable, or 1+ gx if M is non-orientable.

When the set of fixed points or special exceptional orbits is non-empty, we will get the following:

Theorem 4.7. For a closed 3d S'-manifold M = {b; (¢, g.f,s); (my, m), ..., (my, n)} with f + s > O(hence b = 0), its
equivariant Betti numbers are
b =1
pl — 28 +f+s—1 ife=o
ST g+ f+s—1 ife=n
bZi=f fork=>1
b?’l‘“ =f fork>1

with the equivariant Poincaré series

2
0 1+(2g+f+s—1)x+f-1_x
PG = Dbl = 2
k=0 T+(E+f+s—x+f —

ife=o

if e =n.
3 if

Proof. By Proposition 4.3, the equivariant cohomology of M is
H; (M) = H*M/SH @ @{:1 (Q[u]+ ® H*(F,-)) as graded vector spaces

where Q[u]. is the set of polynomials without constant terms and F = U{Fi is the union of fixed circles.

Note that, M/S! is a 2d surface of genus g with f + s > 0 boundaries. Its Poincaré series are 1 4+ (2g + f + s — 1)x if
€ =o,0r1+(g+f+s— 1)xife = n, using the classic result on the cohomology of 2d surface with boundary. For each
Q[uly ® H*(F;), 1 < i< f,itis easy to see that the Poincaré series are ]izxz S(14x) = 1"—_2)(

Then, we can calculate the equivariant Poincaré series P;VI’ (x) and equivariant Betti numbers b;‘l of M additively from those

of M/S'and F. O

4.6. Equivariant formality

Using the explicit description of the ring and module structures, we can determine when a closed 3d S!-manifold is
equivariantly formal in the following sense.

Definition 4.2. A G-action on a manifold M is equivariantly formal, if the equivariant cohomology Hi(M) is a free Hi(pt)-
module.
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When talking about equivariant formality, we will only be interested in the case of closed manifolds in this paper.

Theorem 4.8. A closed 3d S'-manifold M = {b; (e,8,f,s); (my, nq), ..., (m, nl)} is S'-equivariantly formal if and only if
f>0,b=0and

g=s=0o0rg=0,s=1 ife=o0
g=1,5s=0 ife=n.

Proof. For the necessity, when M is S'-equivariantly formal, H;* (M) is a free H*1 (pt)-module. Since the polynomial ring
H* (pt) = Q[u] is infinite dimensional, so is H;‘ (M). Therefore, it must have non- empty fixed-point set to generate elements
of degree to the infinity, so f > 0, and hence b = 0.

The polynomial ring Q[u], with u of degree 2, has non-decreasing Betti numbers in odd degrees and even degrees,
respectively. Hence, so does any free H;“l (pt) = Q[u]-module.

2k 2k+2
b < b fork >0

b+ < pH3 fork > 0.

Especially, we will verify b1 b3 by substituting our calculation of the Betti numbers b; from Theorem 4.7.

When ¢ = o, we get 2g+f+s 1 < f,orequivalently, 2g+s < 1. Here, s as the number of special exceptional components
in M, is non-negative; g as the genus of an orientable surface, is also non-negative. These constraints forceg = s = 0 or
g=0,s=1.

Whene = n,wegetg +f +s— 1 < f, or equivalently, g + s < 1. Here s again is non-negative. But g as the genus of a
non-orientable surface, is strictly positive. These constraints forceg = 1, s = 0.

For the sufﬁc1ency, let us first assume f > 0, b = 0.

Whene = 0, g = 0, s = 0, there are no a, B, 64; terms, by Theorem 4.3. Also, note that D5y + ZI 1Gi; can be
absorbed into ) _,(p;(u)8; + qi(u)6;) because of the relations(2)(3) in that theorem. Hence, there is a much nicer expression
of an element of the equivariant cohomology H;‘1 (M):

f
> (pilw)si + qi(w)es) € QLul ® H*(F)

i=0

under the relations:

P1(0) = p3(0) = - - = p;(0) and Z% =0.
This is indeed a free Q[u]-module, since we can find its Q[u]-module generators without extra relations:

f
Z 8 (1 term in deg 0)

01 —065, ..., 01— 6 (f —1termsindeg 1)
u(81 —62), ..., u(d1 — &) (f — 1terms in deg 2)

u Z 0; (1 term in deg 3).

Whene =0, g =0, s = 1, there are no ay, i terms and only one 6,1 term among the 6;; terms, by Theorem 4.3. Agaln
we can absorb D50+Z, 1Gi6;into Y (pi(u)8;+qi(u)d;). Moreover, the condition (1) in Theorem 4.3 says Cf.,1 +Zl 04i(0) =0,
so we can absorb G164 into ) _.q;(u)0;. Hence, every element of the equivariant cohomology H* (M) can be expressed as
follows:

f
D (piw)s; + ai(u)6s) € Qlul @ H*(F)

i=0

under the relations:

p1(0) = p2(0) = - - - = py(0).
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This is indeed a free Q[u]-module, since we can find its Q[u]-module generators without extra relations:

ZB,» (1term in deg 0)

01, ..., 6 (f terms in deg 1)
u(y —82), ..., u(dy — &) (f — 1terms in deg 2).

Whene = n, g = 1, s = 0, there is only one oy term among the «;’s, but no B, 6y terms, by Theorem 4.3 and the
remark next to it. Again, we can absorb D&y + Z{:] Gi6; into > (pi(u)8; + qi(u)6;). Moreover, the condition (1) in Theorem 4.3
saysAi; + Z{zoq,-(O) = 0, so we can absorb Aqe; into ) ,q;(u)6;. Hence, every element of the equivariant cohomology H;‘1 (M)
can be expressed as follows:

f
> (piw)si + qilu)) € Qlul ® H*(F)
i=0
under the relations:

p1(0) = p2(0) = - - - = py(0).
This is indeed a free Q[u]-module, since we can find its Q[u]-module generators without extra relations:
f
ZSi (1 term in deg 0)
61',_?. ., 6 (f terms in deg 1)
u(dy —82), ..., u(d1 — &) (f — 1termsindeg2). O

If we focus on the oriented case with € = 0, s = 0, then

Corollary 4.1. A closed oriented 3d S'-manifold M = {b; (e =o0,g,f,s=0);,(mq, ny),...,(my, n,)} is S-equivariantly formal
ifandonlyif f >0, b=0,g=5s=0.

When a closed 3d S'-manifold M satisfies {¢ = o, f > 0,b = 0, g = s = 0}, we get its Poincaré series using Theorem 4.7:
2

Pym:1+0—1y+ﬁ1_k

On the other hand, the enumeration of Q[u]-module generators in the above proof of Theorem 4.8 gives the Poincaré series
PU(X) = (14+(f — Ix+(f — 1 +x°) - PP(x)
=1+ —Ix+F -1 +2) -1+ +x"+--)
1+ —1x+(F —1x>+%°
1—x2 '
However, one can easily check that these two expressions are the same.
Similarly, when a closed 3d S'-manifold M satisfies {¢ = o,f > 0,b =0,g =0,s = 1}or{e =n,f > 0,b=0,g =
1, s = 0}, we get its Poincaré series using Theorem 4.7:
2
P(x)=1+fx+f- :
S 1—x
On the other hand, the enumeration of Q[u]-module generators in the above proof of Theorem 4.8 gives the Poincaré series
PA(X) = (14 fx+(f — 1) - PE(x)
= (1+x+0—1%) -1+ +x"+---)
14 fx+ (f — 1)x?
1—x2 '

One can also easily check that these two expressions are the same.
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