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a b s t r a c t

We consider 2n masses located at the vertices of two nested regular polyhedra with the
same number of vertices. Assuming that the masses in each polyhedron are equal, we
prove that for each ratio of the masses of the inner and the outer polyhedra there exists
a unique ratio of the length of the edges of the inner and the outer polyhedra such that the
configuration is central.
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1. Introduction

We consider the N-body problem in the `-dimensional space with ` = 2, 3,

miq̈i = −

N∑
j=1,j6=i

Gmimj
qi − qj

|qi − qj|
3
, i = 1, . . . ,N,

where qi ∈ R` is the position vector of the punctual mass mi in an inertial coordinate system and G is the gravitational
constant which can be taken equal to one by choosing conveniently the unit of time. We fix the center of mass∑N

i=1 miqi/
∑N

i=1 mi of the system at the origin of R`N . The configuration space of the N-body problem in R` is

E =

{
(q1, . . . , qN) ∈ R`N

:

N∑
i=1

miqi = 0, qi 6= qj, for i 6= j

}
.

Givenm1, . . . ,mN , a configuration (q1, . . . , qN) ∈ E is central if there exists a positive constant λ such that

q̈i = −λqi, i = 1, . . . ,N, (1)
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that is if the acceleration q̈i of each pointmassmi is proportional to its position qi relative to the center of mass of the system
and is directed towards the center of mass.

The central configurations of the N-body problem are important because they allow the computation of all the
homographic solutions; every motion starting and ending in a total collision is asymptotic to a central configuration, and
every parabolicmotion of theN bodies (i.e. theN bodies tend to infinity as the time tends to infinitywith zero radial velocity)
is asymptotic to a central configuration (see [9,2]); there is a relation between central configurations and the bifurcations of
the hypersurfaces of constant energy and angular momentum (see [10]); etc.

Two central configurations in R` are in the same class if there exist a rotation and a homothecy of R` which transform
one into the other.

The first known central configurations are the three classes of collinear central configurations for the 3-body problem
found in 1767 by Euler [3]. In 1772 Lagrange [6] proved that when N = 3, for each values of the masses m1, m2 and m3,
there are two classes of central configurations with the masses located at the vertices of an equilateral triangle. Those five
classes are all the classes of central configurations of the 3-body problem. Only partial results on central configurations are
known for N > 3.

A central configuration of R` is called planar if the configuration of the N bodies is contained in a plane, and it is called
spatial if there does not exist a plane containing the configuration of the N bodies.

The simplest known planar central configuration of the N-body problem for N > 2 is obtained by taking N equal masses
at the vertices of a regular N-gon. We cannot find in the literature who was the first in discovering such planar central
configurations. If we take N equal masses at the vertices of a regular polyhedron with N vertices, then we obtain a spatial
central configuration of the N-body problem (see [1]).

A homographic solution is a solution of the N-body problem such that at every time the configuration of the N bodies
is central. If the central configuration is planar, then there exist three types of homographic solutions, the homothetic, the
relative equilibrium and the composition of both. Let (q1, . . . qN) ∈ R2N be a planar central configuration. A homothetic
solution is of the form (%(t)q1, . . . , %(t)qN), and a relative equilibrium solution is of the form (A(t)q1, . . . , A(t)qN) where
A(t) =

(
cosωt sinωt

− sinωt cosωt

)
. For the spatial central configurations the unique possible homographic solutions are the

homothetic ones. For more details on homographic motions see Witner [11].
It is also known the existence of planar central configurations for the 2n-body problem where the masses are at the

vertices of two nested regular n-gons with a common center. In such configurations all the masses on the same n-gon
are equal but masses on different n-gons could be different. It seems that the first in studying these nested planar central
configurations was Longley [8] in 1907, later on in 1927 and 1929 Bilimovitch (see [4]), and in 1967 Klemplerer [5] also
studied them. More recently they have been also studied in [12,13].

We say that two regular polyhedra arenested if they have the samenumber of verticesn, the same center and the positions
of the vertices of the inner polyhedron ri and the ones of the outer polyhedron Ri satisfy the relation Ri = ρri for some scale
factor ρ > 1 and for all i = 1, . . . , n.

In this paper we shall prove that for convenient masses at the vertices of two nested regular polyhedra (see Fig. 1) we get
spatial central configurations for the 2n-body problem inR3. As in the planar case all themasses located at the vertices of the
same polyhedron must be equal, but masses on different polyhedra could be different. There are five regular polyhedra: the
tetrahedron, the octahedron, the cube, the icosahedron and the dodecahedron with 4, 6, 8, 12 and 20 vertices, respectively.
Some preliminary results in this direction restricted to the tetrahedron and octahedron can be found in [14,7]. Here we give
an unified analytic proof for all five regular polyhedra.

The nested regular tetrahedra (octahedra, cube, icosahedra and dodecahedra) central configurations are characterized in
Section 2 (3–6, respectively). The main results of these sections are summarized in the following theorem.

Theorem 1. We consider 2nmasses at the vertices of two nested regular polyhedra of n vertices, where n can be either 4, 6, 8, 12
or 20. Assume that the masses of the inner polyhedron are equal to m1 and the masses of the outer polyhedron are equal to m2.
Then given two arbitrary positive values of m1 and m2 there exists a unique value of the scale factor ρ of the nested polyhedra for
which this configuration is central.

Assume that qi = (xi, yi, zi) ∈ R3, then the equations of the spatial central configurations given by (1) can be written as

exi =

N∑
j=1,j6=i

mj(xi − xj)
((xi − xj)2 + (yi − yj)2 + (zi − zj)2)3/2

− λxi = 0,

eyi =

N∑
j=1,j6=i

mj(yi − yj)
((xi − xj)2 + (yi − yj)2 + (zi − zj)2)3/2

− λyi = 0,

ezi =

N∑
j=1,j6=i

mj(zi − zj)
((xi − xj)2 + (yi − yj)2 + (zi − zj)2)3/2

− λzi = 0,

(2)

for i = 1, . . . ,N .
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(a) Nested regular tetrahedra. (b) Nested regular octahedra. (c) Nested regular cube.

(d) Nested regular icosahedra. (e) Nested regular dodecahedra.

Fig. 1. Nested regular polyhedra.

2. Nested tetrahedra

In this section we study the spatial central configurations of the 8-body problem when the masses are located at the
vertices of two nested tetrahedra. Taking conveniently the unit of masses we can assume that all the masses of the inner
tetrahedron are equal to one. We also choose the unit of length in such a way that the edges of the inner tetrahedron have
length 2. Recall that the set of central configurations is invariant under homothecies.

Proposition 2. Consider four equal masses m1 = m2 = m3 = m4 = 1 located at the vertices of a regular tetrahedron with
edge length 2 having positions (x1, y1, z1) = (−1, −1/

√
3, −1/

√
6), (x2, y2, z2) = (1, −1/

√
3, −1/

√
6), (x3, y3, z3) =

(0, 2/
√
3, −1/

√
6), and (x4, y4, z4) = (0, 0,

√
3/2). Consider four additional equal masses m5 = m6 = m7 = m8 = m at the

vertices of a second nested regular tetrahedron having positions (xi+4, yi+4, zi+4) = ρ(xi, yi, zi) for i = 1, . . . , 4 and ρ > 1 (see
Fig. 1(a)). Then the following statements hold.
(a) Such configuration is central for the spatial 8-body problem when

m = f8(ρ) =

(2/3)3/2

(ρ−1)2
−

ρ

2 +
2
√
2(3ρ+1)

(3ρ2+2ρ+3)3/2

−
1/2
ρ2 −

(2/3)3/2ρ
(ρ−1)2

+
2
√
2ρ(ρ+3)

(3ρ2+2ρ+3)3/2

,

and ρ > α = 1.8899915758445007 . . ., where α is the unique real solution of f8(ρ) = 0 for ρ > 1.
(b) For a fixed value of m > 0 there exists a unique ρ > α for which the nested regular tetrahedra is a central configuration.

Proof. It is easy to check that in the statement of Proposition 2 the positions and the values of the masses have been taken
so that the center of mass of the configuration is located at the origin.

We substitute the positions and the values of the masses into (2). After some computations we obtain that ex3 = ex4 =

ex7 = ex8 = ey4 = ey8 = 0, ex1 = −ex2, ex5 = −ex6, ey1 = ey2 = −ex2/
√
3, ey3 = 2ex2/

√
3, ey5 = ey6 = −ex6/

√
3,

ey7 = 2ex6/
√
3, ez1 = ez2 = ez3 = −ex2/

√
6, ez4 =

√
3/2ex2, ez5 = ez6 = ez7 = −ex6/

√
6 and ez8 =

√
3/2ex6. Therefore

system (2) is equivalent to system

ex2 = −λ +
1
2

−
(2/3)3/2m
(ρ − 1)2

+
2
√
2m(ρ + 3)

(3ρ2 + 2ρ + 3)3/2
= 0,

ex6 = −λρ +
m
2ρ2

+
(2/3)3/2

(ρ − 1)2
+

2
√
2(3ρ + 1)

(3ρ2 + 2ρ + 3)3/2
= 0.

(3)
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Solving system (3) with respect to the variables λ andmwe get λ = a(ρ)/f (ρ) andm = b(ρ)/f (ρ) where

a(ρ) = −
8/27

(ρ − 1)4
−

1/4
ρ2

+
8(3ρ2

+ 10ρ + 3)
(3ρ2 + 2ρ + 3)3

−
16/(3

√
3)

(ρ − 1)(3ρ2 + 2ρ + 3)3/2
,

b(ρ) =
(2/3)3/2

(ρ − 1)2
−

ρ

2
+

2
√
2(3ρ + 1)

(3ρ2 + 2ρ + 3)3/2
,

f (ρ) = −
1/2
ρ2

−
(2/3)3/2ρ
(ρ − 1)2

+
2
√
2ρ(ρ + 3)

(3ρ2 + 2ρ + 3)3/2
.

Since ρ > 1 and equation 3ρ2
+ 2ρ + 3 = 0 has no real solutions, a(ρ), b(ρ) and f (ρ) are well defined for ρ > 1. The

function f (ρ) has no real zeros when ρ > 1. Indeed f (ρ) can be written as

36
√
2(ρ − 1)2ρ3(ρ + 3) −

(
3ρ2

+ 2ρ + 3
)3/2 (

4
√
6ρ3

+ 9ρ2
− 18ρ + 9

)
18(ρ − 1)2ρ2

(
3ρ2 + 2ρ + 3

)3/2 .

So f (ρ) = 0 if and only if

36
√
2(ρ − 1)2ρ3(ρ + 3) =

(
3ρ2

+ 2ρ + 3
)3/2 (

4
√
6ρ3

+ 9ρ2
− 18ρ + 9

)
.

We transform this equation into a polynomial one by squaring both sides of the equality. Solving numerically the resulting
polynomial equation we see that there are no real solutions of f (ρ) = 0 with ρ > 1, in particular f (ρ) < 0 for ρ > 1.
Therefore λ andm are well defined for ρ > 1.

The solution of (3) gives a central configuration of the 8-body problem if and only if λ > 0 and m > 0. Next we analyze
the sign of λ andm for ρ > 1. The function a(ρ) can be written as

a(ρ) = −
a1(ρ) + a2(ρ)

108(ρ − 1)4ρ2
(
3ρ2 + 2ρ + 3

)9/2 ,

where

a1(ρ) = 192
√
3(ρ − 1)3ρ2 (

3ρ2
+ 2ρ + 3

)3
,

a2(ρ) =
(
3ρ2

+ 2ρ + 3
)3/2 (

729ρ10
− 1458ρ9

− 27ρ8
− 216ρ7

+ 24 642ρ6

− 30 956ρ5
+ 24 642ρ4

− 216ρ3
− 27ρ2

− 1458ρ + 729
)
.

We solve numerically the polynomial equation (a1(ρ))2 = (−a2(ρ))2 and we see that it has no real solutions. Therefore λ
is always different from zero. In particular it is positive for ρ > 1.

Finally b(ρ) can be written as

36
√
2(ρ − 1)2(3ρ + 1) −

(
3ρ2

+ 2ρ + 3
)3/2 (

9ρ3
− 18ρ2

+ 9ρ − 4
√
6
)

18(ρ − 1)2
(
3ρ2 + 2ρ + 3

)3/2 .

Solving numerically the equation(
36

√
2(ρ − 1)2(3ρ + 1)

)2
=

(
3ρ2

+ 2ρ + 3
)3 (

9ρ3
− 18ρ2

+ 9ρ − 4
√
6
)2

,

we see that it has only two real solutions with ρ > 1, these solutions are ρ = 1.6903479049860676 . . . and ρ = α =

1.8899915758445007 . . ., but ρ = α is the unique one that satisfies equation b(ρ) = 0. Furthermore, b(ρ) > 0 for
1 < ρ < α and b(ρ) < 0 for ρ > α, som < 0 for 1 < ρ < α, andm > 0 for ρ > α. This proves statement (a).

In order to prove statement (b) it is sufficient to prove that m is an increasing function of ρ for ρ > α. The derivative of
mwith respect to ρ is

dm
dρ

=
1

f (ρ)2

(
db
dρ

(ρ)f (ρ) − b(ρ)
df
dρ

(ρ)

)
(4)

where

db
dρ

(ρ) = −
12

√
2

(
3ρ2

+ 2ρ − 1
)(

3ρ2 + 2ρ + 3
)5/2 −

2(2/3)3/2

(ρ − 1)3
−

1
2

,

df
dρ

(ρ) =
(2/3)3/2(ρ + 1)

(ρ − 1)3
−

2
√
2

(
3ρ3

+ 17ρ2
− 3ρ − 9

)(
3ρ2 + 2ρ + 3

)5/2 +
1
ρ3

.
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We have seen that f (ρ) < 0 and b(ρ) < 0 for ρ > α. Since 3ρ2
+ 2ρ − 1 > 0 for ρ > 1, db/dρ is negative for ρ > 1.

Finally, we solve equation df /dρ(ρ) = 0 by proceeding in a similar way as for the resolution of equation f (ρ) = 0 and we
see that this equation has no real zeros for ρ > 1. In particular, df /dρ(ρ) > 0 for ρ > 1. Therefore dm/dρ > 0 for ρ > α.
This proves statement (b). �

3. Nested octahedra

In this section we study the spatial central configurations of the 12-body problem when the masses are located at the
vertices of two nested octahedra. Taking conveniently the unit of masses we can assume that all the masses of the inner
octahedron are equal to one. We also choose the unit of length in such a way that the edges of the inner octahedron have
length 2.

Proposition 3. Consider six equal masses mi = 1 for i = 1, . . . , 6 at the vertices of a regular octahedron with edge length
2 having positions (x1, y1, z1) = (1, 0, 0), (x2, y2, z2) = (−1, 0, 0), (x3, y3, z3) = (0, 1, 0), (x4, y4, z4) = (0, −1, 0),
(x5, y5, z5) = (0, 0, 1), (x6, y6, z6) = (0, 0, −1). Consider six additional equal masses mi = m for i = 7, . . . , 12 at the
vertices of a second nested regular octahedron having positions (xi+6, yi+6, zi+6) = ρ(xi, yi, zi) for i = 1, . . . , 6 and ρ > 1 (see
Fig. 1(b)). Then the following statements hold.
(a) Such configuration is central for the spatial 12-body problem when

m = f12(ρ) =

4ρ

(ρ2+1)
3/2 −

(1+4
√
2)ρ

4 +
2(ρ2

+1)

(ρ2−1)
2

−
4ρ2

(ρ2−1)
2 +

4ρ

(ρ2+1)
3/2 −

1+4
√
2

4ρ2

,

and ρ > α = 1.7298565115043054 . . ., where α is the unique real solution of f12(ρ) = 0 for ρ > 1.
(b) For a fixed value of m > 0 there exists a unique ρ > α for which the nested regular octahedra is a central configuration.

Proof. It is easy to check that the center of mass of the configuration defined in Proposition 3 is at the origin. We substitute
the positions and the values of the masses into (2). After some computations we get that ex3 = ex4 = ex5 = ex6 = ex9 =

ex10 = ex11 = ex12 = ey1 = ey2 = ey5 = ey6 = ey7 = ey8 = ey11 = ey12 = ez1 = ez2 = ez3 = ez4 = ez7 = ez8 = ez9 =

ez10 = 0, ey3 = ez5 = ex1, ex2 = ey4 = ez6 = −ex1, ey9 = ez11 = ex7, and ex8 = ey10 = ez12 = −ex7. Therefore system (2)
is equivalent to system

ex1 =
4m(

ρ2 + 1
)3/2 −

4ρm(
ρ2 − 1

)2 − λ +
√
2 +

1
4

= 0,

ex7 =

(
1/4 +

√
2
)
m

ρ2
− λρ +

2
(
ρ2

+ 1
)(

ρ2 − 1
)2 +

4ρ(
ρ2 + 1

)3/2 = 0.

(5)

Solving system (5) with respect to the variables λ andmwe get λ = a(ρ)/f (ρ) andm = b(ρ)/f (ρ) where

a(ρ) =
16ρ(

ρ2 + 1
)3 −

8
(
ρ3

+ ρ
)(

ρ2 − 1
)4 −

8(
ρ2 − 1

) (
ρ2 + 1

)3/2 −
33 + 8

√
2

16ρ2
,

b(ρ) =
4ρ(

ρ2 + 1
)3/2 −

(
1 + 4

√
2
)

ρ

4
+

2
(
ρ2

+ 1
)(

ρ2 − 1
)2 ,

f (ρ) = −
4ρ2(

ρ2 − 1
)2 +

4ρ(
ρ2 + 1

)3/2 −
1 + 4

√
2

4ρ2
.

Since ρ > 1, a(ρ), b(ρ) and f (ρ) are well defined for ρ > 1. The function f (ρ) can be written as

f (ρ) =
f1(ρ) − f2(ρ)

4(ρ − 1)2ρ2(ρ + 1)2
(
ρ2 + 1

)3/2 ,

where

f1(ρ) = 16ρ3 (
ρ2

− 1
)2

,

f2(ρ) =
(
ρ2

+ 1
)3/2 ((

17 + 4
√
2
)

ρ4
− 2

(
1 + 4

√
2
)

ρ2
+ 1 + 4

√
2
)

.

Solving numerically the polynomial equation (f1(ρ))2 = (f2(ρ))2 we see that f (ρ) = 0 has no real solutionswhen ρ > 1,
in particular f (ρ) < 0 for ρ > 1. Therefore λ andm are well defined for ρ > 1.
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We can write

a(ρ) = −
a1(ρ) + a2(ρ)

16(ρ − 1)4ρ2(ρ + 1)4
(
ρ2 + 1

)9/2 ,

where

a1(ρ) = 128ρ2 (
ρ4

− 1
)3

,

a2(ρ) =
(
ρ2

+ 1
)3/2 ((

33 + 8
√
2
)

ρ14
−

(
33 + 8

√
2
)

ρ12
− 128ρ11

− 3
(
33 + 8

√
2
)

ρ10
+ 1536ρ9

+ 3
(
33 + 8

√
2
)

ρ8
− 768ρ7

+ 3
(
33 + 8

√
2
)

ρ6
+ 1536ρ5

− 3
(
33 + 8

√
2
)

ρ4
− 128ρ3

−

(
33 + 8

√
2
)

ρ2
+ 33 + 8

√
2
)

.

Solving numerically the polynomial equation (a1(ρ))2 = (−a2(ρ))2 we see that a(ρ) has no real solutions for ρ > 1.
Therefore λ is different from zero for ρ > 1. In particular it is positive for ρ > 1.

Finally we have

b(ρ) =
b1(ρ) − b2(ρ)

4(ρ − 1)2(ρ + 1)2
(
ρ2 + 1

)3/2
where

b1(ρ) = 16ρ
(
ρ2

− 1
)2

,

b2(ρ) =
(
ρ2

+ 1
)3/2 ((

1 + 4
√
2
)

ρ5
− 2

(
1 + 4

√
2
)

ρ3
− 8ρ2

+ 4
√
2ρ + ρ − 8

)
.

We solve numerically equation (b1(ρ))2 = (b2(ρ))2 and we see that it has only two real roots with ρ > 1, they are
ρ = 1.5419308914910530 . . . and ρ = α = 1.7298565115043054 . . ., but ρ = α is the unique one that satisfies equation
b(ρ) = 0. Furthermore, b(ρ) > 0 for 1 < ρ < α and b(ρ) < 0 for ρ > α, so m < 0 for 1 < ρ < α, and m > 0 for ρ > α.
This proves statement (a).

In order to prove statement (b) we proceed as in Section 2. The derivative dm/dρ is given by (4) where

db
dρ

(ρ) = −
4ρ

(
ρ2

+ 3
)(

ρ2 − 1
)3 −

8ρ2
− 4(

ρ2 + 1
)5/2 −

√
2 −

1
4
,

df
dρ

(ρ) =
4 − 8ρ2(
ρ2 + 1

)5/2 +
8

(
ρ3

+ ρ
)(

ρ2 − 1
)3 +

1 + 4
√
2

2ρ3
.

As above f (ρ) < 0 and b(ρ) < 0 for ρ > α. Since 8ρ2
− 4 > 0 for ρ > 1, db/dρ is negative for ρ > 1. We solve equation

df /dρ(ρ) = 0 by proceeding in a similar way as for the resolution of equation f (ρ) = 0 and we get that it has no real
solutions for ρ > 1, in particular df /dρ(ρ) > 0 for ρ > 1. Therefore m is increasing for ρ > α. This proves statement
(b). �

4. Nested cube

In this section we study the spatial central configurations of the 16-body problem when the masses are located at the
vertices of two nested cubes. Taking conveniently the unit of masses we can assume that all the masses of the inner cube
are equal to one. We also choose the unit of length in such a way that the edges of the inner cube have length 2.

Proposition 4. Consider eight equal masses mi = 1 for i = 1, . . . , 8 at the vertices of a regular cube with edge length 2 having
positions (x1, y1, z1) = (1, 1, 1), (x2, y2, z2) = (1, 1, −1), (x3, y3, z3) = (1, −1, 1), (x4, y4, z4) = (−1, 1, 1), (x5, y5, z5) =

(1, −1, −1), (x6, y6, z6) = (−1, 1, −1), (x7, y7, z7) = (−1, −1, 1), and (x8, y8, z8) = (−1, −1, −1). Consider eight
additional equal masses mi = m for i = 9, . . . , 16 at the vertices of a second nested regular cube having positions
(xi+8, yi+8, zi+8) = ρ(xi, yi, zi) for i = 1, . . . , 8 and ρ > 1 (see Fig. 1(c)). Then the following statements hold.
(a) Such configuration is central for the spatial 16-body problem when m = b(ρ)/f (ρ) where

b(ρ) = −
1
72

(
18 + 9

√
2 + 2

√
3
)

ρ +
2

(
ρ2

+ 1
)

3
√
3

(
ρ2 − 1

)2 +
3ρ − 1(

3ρ2 − 2ρ + 3
)3/2 +

3ρ + 1(
3ρ2 + 2ρ + 3

)3/2 ,

f (ρ) = −
18 + 9

√
2 + 2

√
3

72ρ2
−

4ρ2

3
√
3

(
ρ2 − 1

)2 −
(ρ − 3)ρ(

3ρ2 − 2ρ + 3
)3/2 +

(ρ + 3)ρ(
3ρ2 + 2ρ + 3

)3/2 ,

and ρ > α = 1.643646762940176 . . . where α is the unique real solution of b(ρ) = 0 for ρ > 1.
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(b) For a fixed value of m > 0 there exists a unique ρ > α for which the nested regular cube is a central configuration.

Proof. It is easy to check that the center of mass of the configuration defined in Proposition 4 is at the origin. We substitute
the positions and the values of the masses into (2). After some computations we obtain that ex2 = ex3 = ex5 = ey1 =

ey2 = ey4 = ey6 = ez1 = ez3 = ez4 = ez7 = ex1, ex4 = ex6 = ex7 = ex8 = ey3 = ey5 = ey7 = ey8 = ez2 =

ez5 = ez6 = ez8 = −ex1, ex10 = ex11 = ex13 = ey9 = ey10 = ey12 = ey14 = ez9 = ez11 = ez12 = ez15 = ex9, and
ex12 = ex14 = ex15 = ex16 = ey11 = ey13 = ey15 = ey16 = ez10 = ez13 = ez14 = ez16 = −ex9. Therefore system (2) is
equivalent to system

ex1 =
1
72

(
18 + 9

√
2 + 2

√
3
)

− λ −
4mρ

3
√
3

(
ρ2 − 1

)2 −
m(ρ − 3)(

3ρ2 − 2ρ + 3
)3/2 +

m(ρ + 3)(
3ρ2 + 2ρ + 3

)3/2 = 0,

ex9 =

(
18 + 9

√
2 + 2

√
3
)
m

72ρ2
− λρ +

2
(
ρ2

+ 1
)

3
√
3

(
ρ2 − 1

)2 +
3ρ − 1(

3ρ2 − 2ρ + 3
)3/2 +

3ρ + 1(
3ρ2 + 2ρ + 3

)3/2 = 0.

(6)

Solving system (6) with respect to the variables λ andmwe get λ = a(ρ)/f (ρ) andm = b(ρ)/f (ρ) where

a(ρ) = −
83 + 54

√
2 + 12

√
3 + 6

√
6

864ρ2
−

8
(
ρ3

+ ρ
)

27
(
ρ2 − 1

)4 +
3ρ2

+ 10ρ + 3(
3ρ2 + 2ρ + 3

)3 −
3ρ2

− 10ρ + 3(
3ρ2 − 2ρ + 3

)3
−

2(ρ + 3)

3
√
3

(
ρ2 − 1

) (
3ρ2 − 2ρ + 3

)3/2 +
2(ρ − 3)

3
√
3

(
ρ2 − 1

) (
3ρ2 + 2ρ + 3

)3/2
+

16ρ(
3ρ2 − 2ρ + 3

)3/2 (
3ρ2 + 2ρ + 3

)3/2 .

Since ρ > 1 and equations 3ρ2
+ 2ρ + 3 = 0 and 3ρ2

− 2ρ + 3 = 0 have no real solutions, a(ρ), b(ρ) and f (ρ) are well
defined for ρ > 1. Next we find the real zeros of f (ρ) when ρ > 1. The function f (ρ) can be written as

f1(ρ)/
(
72(ρ − 1)2ρ2(ρ + 1)2

(
3ρ2

− 2ρ + 3
)3/2 (

3ρ2
+ 2ρ + 3

)3/2)
where f1(ρ) is given by

72
(
ρ2

− 1
)2

ρ3
[
(ρ + 3)

(
3ρ2

− 2ρ + 3
)3/2

− (ρ − 3)
(
3ρ2

+ 2ρ + 3
)3/2]

−
(
3ρ2

− 2ρ + 3
)3/2 (

3ρ2
+ 2ρ + 3

)3/2 ((
18 + 9

√
2 + 34

√
3
)

ρ4

− 2
(
18 + 9

√
2 + 2

√
3
)

ρ2
+ 18 + 9

√
2 + 2

√
3
)

.

Then f (ρ) = 0 if and only f1(ρ) = 0. Notice that equation f1(ρ) = 0 can be written as

g1(ρ)
√
G1(ρ) + g2(ρ)

√
G2(ρ) = g3(ρ)

√
G1(ρ)G2(ρ).

Squaring both sides of this equation we get

g1(ρ)2G1(ρ) + g2(ρ)2G2(ρ) − g3(ρ)2G1(ρ)G2(ρ) = −2g1(ρ)g2(ρ)
√
G1(ρ)G2(ρ).

Squaring again both sides of the last equation we get a polynomial equation. We solve it numerically and we see that it has
a unique real solution ρ = 4.26968682884071 . . . with ρ > 1 which is not a solution of the initial equation f1(ρ) = 0.
Therefore f (ρ) = 0 has no real solutions with ρ > 1 and consequently λ and m are well defined for ρ > 1. Moreover
f (ρ) < 0 for ρ > 1.

Repeating the same arguments for b(ρ) we see that b(ρ) has a unique real zero when ρ > 1 which is given by
ρ = α = 1.643646762940176 . . .. Furthermore, b(ρ) > 0 for 1 < ρ < α and b(ρ) < 0 for ρ > α, so m < 0 for
1 < ρ < α, andm > 0 for ρ > α.

Let a1(ρ) be the numerator of a(ρ). It is easy to check that a1(ρ) = 0 can be written as

g1(ρ)
√
G1(ρ) + g2(ρ)

√
G2(ρ) = g3(ρ)

√
G1(ρ)G2(ρ) + g4(ρ).

Squaring both sides of this equation we get

g1(ρ)2G1(ρ) + g2(ρ)2G2(ρ) − g3(ρ)2G1(ρ)G2(ρ) − g4(ρ)2

= −(2g1(ρ)g2(ρ) + 2g3(ρ)g4(ρ))
√
G1(ρ)G2(ρ).

Squaring again both sides of the last equation we get a polynomial equation. We solve it numerically and we see that it has
no real solutions with ρ > 1. Therefore a(ρ) is different from zero for ρ > 1. This proves statement (a).
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Now we prove statement (b). The derivative dm/dρ is given by (4) where

db
dρ

(ρ) = −
4ρ

(
ρ2

+ 3
)

3
√
3

(
ρ2 − 1

)3 −
18ρ2

− 12ρ − 6(
3ρ2 − 2ρ + 3

)5/2 −
6

(
3ρ2

+ 2ρ − 1
)(

3ρ2 + 2ρ + 3
)5/2 −

1
72

(
18 + 9

√
2 + 2

√
3
)

,

df
dρ

(ρ) =
8ρ

(
ρ2

+ 1
)

3
√
3

(
ρ2 − 1

)3 −
3ρ3

+ 17ρ2
− 3ρ − 9(

3ρ2 + 2ρ + 3
)5/2 +

3ρ3
− 17ρ2

− 3ρ + 9(
3ρ2 − 2ρ + 3

)5/2 +
18 + 9

√
2 + 2

√
3

36ρ3
.

We have seen that f (ρ) < 0 and b(ρ) < 0 for ρ > α. Since 18ρ2
− 12ρ − 6 > 0 and 3ρ2

+ 2ρ − 1 > 0 for ρ > 1, db/dρ is
negative for ρ > 1. Finally, we solve equation df /dρ(ρ) = 0 by proceeding in a similar way as for the resolution of equation
f (ρ) = 0 and we get that it has no real zeros for ρ > 1, in particular df /dρ(ρ) > 0 for ρ > 1. Therefore dm/dρ > 0 for
ρ > α. This proves statement (b). �

5. Nested icosahedra

In this section we study the spatial central configurations of the 24-body problem when the masses are located at the
vertices of two nested icosahedra. Taking conveniently the unit of masses we can assume that all the masses of the inner
icosahedron are equal to one. We also choose the unit of length in such a way that the edges of the inner icosahedron have
length 2.

Proposition 5. Consider twelve equal masses mi = 1 for i = 1, . . . , 12 located at the vertices of a regular icosahedron with
edge length 2 having positions (x1, y1, z1) = (0, 1, φ), (x2, y2, z2) = (0, 1, −φ), (x3, y3, z3) = (0, −1, φ), (x4, y4, z4) =

(0, −1, −φ), (x5, y5, z5) = (1, φ, 0), (x6, y6, z6) = (1, −φ, 0), (x7, y7, z7) = (−1, φ, 0), (x8, y8, z8) = (−1, −φ, 0),
(x9, y9, z9) = (φ, 0, 1), (x10, y10, z10) = (φ, 0, −1), (x11, y11, z11) = (−φ, 0, 1), and (x12, y12, z12) = (−φ, 0, −1), where
φ = (1 +

√
5)/2 is the golden ratio. Consider twelve additional equal masses mi = m for i = 12, . . . , 24 at the vertices of

a second nested regular icosahedron having positions (xi+12, yi+12, zi+12) = ρ(xi, yi, zi) for i = 1, . . . , 12 and ρ > 1 (see
Fig. 1(d)). Then the following statements hold.

(a) Such configuration is central for the spatial 24-body problem when m = b(ρ)/f (ρ) where

b(ρ) =
2
√
5 − 2

√
5

(
ρ2

+ 1
)

5
(
ρ2 − 1

)2 −

2
√
2

(√
5 − 5ρ

)
(
ϕρ2 − 4φρ + ϕ

)3/2 +

2
√
2

(
5ρ +

√
5
)

(
ϕρ2 + 4φρ + ϕ

)3/2 −
1
20

(
5
√
5 +

√
5 − 2

√
5
)

ρ,

f (ρ) = −
4
√
5 − 2

√
5ρ2

5
(
ρ2 − 1

)2 −

2
√
2

(√
5ρ − 5

)
ρ(

ϕρ2 − 4φρ + ϕ
)3/2 +

2
√
2

(√
5ρ + 5

)
ρ(

ϕρ2 + 4φρ + ϕ
)3/2 −

5
√
5 +

√
5 − 2

√
5

20ρ2
,

ϕ = 5 +
√
5 and ρ > α = 1.549351115672993 . . . where α is the unique real solution of b(ρ) = 0.

(b) For a fixed value of m > 0 there exists a unique ρ > α for which the nested regular icosahedra is a central configuration.

Proof. It is easy to check that the center of mass of the configuration defined in Proposition 5 is at the origin. We substitute
the positions and the values of the masses into (2). After some computations we get that ex1 = ex2 = ex3 = ex4 = ex13 =

ex14 = ex15 = ex16 = ey9 = ey10 = ey11 = ey12 = ey21 = ey22 = ey23 = ey24 = ez5 = ez6 = ez7 = ez8 = ez17 =

ez18 = ez19 = ez20 = 0, ex6 = ey1 = ey2 = ez9 = ez11 = ex5, ex7 = ex8 = ey3 = ey4 = ez10 = ez12 = −ex5,
ex9 = ex10 = ey5 = ey7 = ez1 = ez3 = φex5, ex11 = ex12 = ey6 = ey8 = ez2 = ez4 = −φex5, ex18 = ey13 = ey14 =

ez21 = ez23 = ex17, ex19 = ex20 = ey15 = ey16 = ez22 = ez24 = −ex17, ex21 = ex22 = ey17 = ey19 = ez13 = ez15 = φex17,
and ex23 = ex24 = ey18 = ey20 = ez14 = ez16 = −φex17. Therefore system (2) is equivalent to system

ex5 = −λ −

2
√
2m

(√
5ρ − 5

)
(
ϕρ2 − 4φρ + ϕ

)3/2 +

2
√
2m

(√
5ρ + 5

)
(
ϕρ2 + 4φρ + ϕ

)3/2 −
4
√
5 − 2

√
5mρ

5
(
ρ2 − 1

)2 +
1
20

(
5
√
5 +

√
5 − 2

√
5
)

,

ex17 =

(
5
√
5 +

√
5 − 2

√
5
)
m

20ρ2
− λρ +

2
√
5 − 2

√
5

(
ρ2

+ 1
)

5
(
ρ2 − 1

)2 −

2
√
2

(√
5 − 5ρ

)
(
ϕρ2 − 4φρ + ϕ

)3/2 +

2
√
2

(
5ρ +

√
5
)

(
ϕρ2 + 4φρ + ϕ

)3/2 .

(7)

Solving system (7) with respect to the variables λ andmwe get λ = a(ρ)/f (ρ) andm = b(ρ)/f (ρ) where a(ρ) is given
by

8
(
2
√
5 − 5

) (
ρ2

+ 1
)
ρ

25
(
ρ2 − 1

)4 −

65 −
√
5 + 5

√
5

(
5 − 2

√
5
)

200ρ2
−

4
√
10 − 4

√
5

(√
5ρ + 5

)
5

(
ρ2 − 1

) (
ϕρ2 − 4φρ + ϕ

)3/2
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+

4
√
10 − 4

√
5

(√
5ρ − 5

)
5

(
ρ2 − 1

) (
ϕρ2 + 4φρ + ϕ

)3/2 −

40
(√

5ρ2
− 6ρ +

√
5
)

(
ϕρ2 − 4φρ + ϕ

)3 +

40
(√

5ρ2
+ 6ρ +

√
5
)

(
ϕρ2 + 4φρ + ϕ

)3
+

320ρ(
ϕρ2 − 4φρ + ϕ

)3/2 (
ϕρ2 + 4φρ + ϕ

)3/2 .

Since ρ > 1 and equations ϕρ2
+4φρ +ϕ = 0, and ϕρ2

−4φρ +ϕ = 0 = 0 have no real solutions, a(ρ), b(ρ) and f (ρ)
are well defined for ρ > 1. We proceed as in Section 4 and after doing a lot of tedious computations we prove that f (ρ) < 0
for ρ > 1, so λ andm are well defined for ρ > 1. We also prove that a(ρ) has no real zeros when ρ > 1 and that b(ρ) has a
unique real zero when ρ > 1 which is given by ρ = α = 1.549351115672993 . . .. Furthermore, b(ρ) > 0 for 1 < ρ < α
and b(ρ) < 0 for ρ > α, som < 0 for 1 < ρ < α, andm > 0 for ρ > α. This proves statement (a).

Now we prove statement (b). The derivative dm/dρ is given by (4) where

db
dρ

(ρ) = −
4
√
5 − 2

√
5ρ

(
ρ2

+ 3
)

5
(
ρ2 − 1

)3 −
4
√
2

(
5ϕρ2

− 20φρ − ϕ
)(

ϕρ2 − 4φρ + ϕ
)5/2 −

4
√
2

(
5ϕρ2

+ 20φρ − ϕ
)(

ϕρ2 + 4φρ + ϕ
)5/2

−
1
20

(
5
√
5 +

√
5 − 2

√
5
)

,

df
dρ

(ρ) =
8
√
5 − 2

√
5ρ

(
ρ2

+ 1
)

5
(
ρ2 − 1

)3 +
2
√
2

(
10φρ3

− 9ϕρ2
− 10φρ + 5ϕ

)(
ϕρ2 − 4φρ + ϕ

)5/2
−

2
√
2

(
10φρ3

+ 9ϕρ2
− 10φρ − 5ϕ

)(
ϕρ2 + 4φρ + ϕ

)5/2 +
5
√
5 +

√
5 − 2

√
5

10ρ3
.

We have seen that f (ρ) < 0 and b(ρ) < 0 for ρ > α. We solve equations db/dρ(ρ) = 0 and df /dρ(ρ) = 0 by proceeding
in a similar way as for the resolution of equation f (ρ) = 0 and we get that they have no real solutions with ρ > 1. In
particular, db/dρ(ρ) < 0 and df /dρ(ρ) > 0 for ρ > 1. Therefore dm/dρ > 0 for ρ > α. This proves statement (b). �

6. Nested dodecahedra

In this section we study the spatial central configurations of the 40-body problem when the masses are located at the
vertices of two nested dodecahedra. Taking conveniently the unit of masses we can assume that all the masses of the inner
dodecahedron are equal to one. We also choose the unit of length in such a way that the edges of the inner dodecahedron
have length 2.

Proposition 6. Consider twenty equal masses mi = 1 for i = 1, . . . , 20 located at the vertices of a regular dodecahedron
with edge length 2 having positions (x1, y1, z1) = (1, 1, 1), (x2, y2, z2) = (−1, 1, 1), (x3, y3, z3) = (1, −1, 1), (x4, y4, z4) =

(1, 1, −1), (x5, y5, z5) = (−1, −1, 1), (x6, y6, z6) = (−1, 1, −1), (x7, y7, z7) = (1, −1, −1), (x8, y8, z8) = (−1, −1, −1),
(x9, y9, z9) = (0, 1/φ, φ), (x10, y10, z10) = (0, −1/φ, φ), (x11, y11, z11) = (0, 1/φ, −φ), (x12, y12, z12) = (0, −1/φ, −φ),
(x13, y13, z13) = (1/φ, φ, 0), (x14, y14, z14) = (−1/φ, φ, 0), (x15, y15, z15) = (1/φ, −φ, 0), (x16, y16, z16) = (−1/φ, −φ, 0),
(x17, y17, z17) = (φ, 0, 1/φ), (x18, y18, z18) = (−φ, 0, 1/φ), (x19, y19, z19) = (φ, 0, −1/φ), and (x20, y20, z20) =

(−φ, 0, −1/φ), where φ = (1+
√
5)/2 is the golden ratio. Consider twenty additional equal masses mi = m for i = 21, . . . , 40

at the vertices of a second nested regular dodecahedron having positions (xi+20, yi+20, zi+20) = ρ(xi, yi, zi) for i = 1, . . . , 20
and ρ > 1 (see Fig. 1(e)). Then the following statements hold.
(a) Such configuration is central for the spatial 40-body problem when m = b(ρ)/f (ρ) where

b(ρ) = −
1
36

(
18 + 9

√
2 +

√
3 + 9

√
5
)

ρ +
2

(
ρ2

+ 1
)

3
√
3

(
ρ2 − 1

)2 +
6ρ − 2(

3ρ2 − 2ρ + 3
)3/2 +

6ρ + 2(
3ρ2 + 2ρ + 3

)3/2
+

6φρ −
√
5 − 5

2φ
(
3ρ2 − 2

√
5ρ + 3

)3/2 +
3ρ +

√
5(

3ρ2 + 2
√
5ρ + 3

)3/2 ,

f (ρ) = −
4ρ2

3
√
3

(
ρ2 − 1

)2 −
2(ρ − 3)ρ(

3ρ2 − 2ρ + 3
)3/2 +

2(ρ + 3)ρ(
3ρ2 + 2ρ + 3

)3/2
−

((
5 +

√
5
)

ρ − 6φ
)

ρ

2φ
(
3ρ2 − 2

√
5ρ + 3

)3/2 +

((
5 +

√
5
)

ρ + 6φ
)

ρ

2φ
(
3ρ2 + 2

√
5ρ + 3

)3/2 −
18 + 9

√
2 +

√
3 + 9

√
5

36ρ2

and ρ > α = 1.462226054217616 . . . where α is the unique real solution of b(ρ) = 0.
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(b) For a fixed value of m > 0 there exists a unique ρ > α for which the nested regular dodecahedra is a central configuration.

Proof. It is easy to check that the center of mass of the configuration defined in Proposition 6 is at the origin. We substitute
the positions and the values of the masses into (2). After some computations we obtain that ex9 = ex10 = ex11 = ex12 =

ex29 = ex30 = ex31 = ex32 = ey17 = ey18 = ey19 = ey20 = ey37 = ey38 = ey39 = ey40 = ez13 = ez14 = ez15 =

ez16 = ez33 = ez34 = ez35 = ez36 = 0, ex3 = ex4 = ex7 = ey1 = ey2 = ey4 = ey6 = ez1 = ez2 = ez3 = ez5 = ex1,
ex2 = ex5 = ex6 = ex8 = ey3 = ey5 = ey7 = ey8 = ez4 = ez6 = ez7 = ez8 = −ex1, ex13 = ex15 = ey9 = ey11 = ez17 =

ez18 = ex1/φ, ex14 = ex16 = ey10 = ey12 = ez19 = ez20 = −ex1/φ, ex17 = ex19 = ey13 = ey14 = ez9 = ez10 = φex1,
ex18 = ex20 = ey15 = ey16 = ez11 = ez12 = −φex1, ex23 = ex24 = ex27 = ey21 = ey22 = ey24 = ey26 = ez21 = ez22 =

ez23 = ez25 = ex21, ex22 = ex25 = ex26 = ex28 = ey23 = ey25 = ey27 = ey28 = ez24 = ez26 = ez27 = ez28 = −ex21,
ex33 = ex35 = ey29 = ey31 = ez37 = ez38 = ex21/φ, ex34 = ex36 = ey30 = ey32 = ez39 = ez40 = −ex21/φ,
ex37 = ex39 = ey33 = ey34 = ez29 = ez30 = φex21 and ex38 = ex40 = ey35 = ey36 = ez31 = ez32 = −φex21.
Therefore system (2) is equivalent to system

ex1 = −λ −

m
((

5 +
√
5
)

ρ − 6φ
)

2φ
(
3ρ2 − 2

√
5ρ + 3

)3/2 +

m
((

5 +
√
5
)

ρ + 6φ
)

2φ
(
3ρ2 + 2

√
5ρ + 3

)3/2

−
2m(ρ − 3)

(3ρ2 − 2ρ + 3)3/2
+

2m(ρ + 3)
(3ρ2 + 2ρ + 3)3/2

−
4mρ

3
√
3

(
ρ2 − 1

)2 +
1
36

(
18 + 9

√
2 +

√
3 + 9

√
5
)

,

ex21 = −λρ +
2

(
ρ2

+ 1
)

3
√
3

(
ρ2 − 1

)2 +
6φρ −

√
5 − 5

2φ
(
3ρ2 − 2

√
5ρ + 3

)3/2

+
3ρ +

√
5(

3ρ2 + 2
√
5ρ + 3

)3/2 +
6ρ − 2

(3ρ2 − 2ρ + 3)3/2
+

6ρ + 2
(3ρ2 + 2ρ + 3)3/2

+

(
18 + 9

√
2 +

√
3 + 9

√
5
)
m

36ρ2
.

(8)

Solving system (8) with respect to the variables λ andmwe get λ = a(ρ)/f (ρ) andm = b(ρ)/f (ρ) where

a(ρ) =
4(ρ − 3)

3
√
3

(
ρ2 − 1

) (
3ρ2 + 2ρ + 3

)3/2 +
4

(
3ρ2

+ 10ρ + 3
)(

3ρ2 + 2ρ + 3
)3 −

4
(
3ρ2

− 2
(
1 + 2

√
5
)

ρ + 3
)

φ
(
3ρ2 + 2ρ + 3

)3/2 (
3ρ2 − 2

√
5ρ + 3

)3/2

+

4
(
3ρ2

+

(
2 + 4

√
5
)

ρ + 3
)

φ
(
3ρ2 − 2ρ + 3

)3/2 (
3ρ2 + 2

√
5ρ + 3

)3/2 −

2
(
3

(
3 +

√
5
)

ρ2
− 2

(
7 + 5

√
5
)

ρ + 3
(
3 +

√
5
))

φ
(
3ρ2 − 2ρ + 3

)3/2 (
3ρ2 − 2

√
5ρ + 3

)3/2

+

2
(
3

(
3 +

√
5
)

ρ2
+ 2

(
7 + 5

√
5
)

ρ + 3
(
3 +

√
5
))

φ
(
3ρ2 + 2ρ + 3

)3/2 (
3ρ2 + 2

√
5ρ + 3

)3/2 +

3
(
5 +

√
5
)

ρ2
+ 28φρ + 3

(
5 +

√
5
)

2φ
(
3ρ2 + 2

√
5ρ + 3

)3

−

3
(
5 + 3

√
5
)

ρ2
− 14

(
3 +

√
5
)

ρ + 9
√
5 + 15(

3 +
√
5
) (

3ρ2 − 2
√
5ρ + 3

)3 −
8

(
ρ3

+ ρ
)

27
(
ρ2 − 1

)4 −
4(ρ + 3)

3
√
3

(
ρ2 − 1

) (
3ρ2 − 2ρ + 3

)3/2
−

(
5 +

√
5
)

ρ + 6φ

3
√
3φ

(
ρ2 − 1

) (
3ρ2 − 2

√
5ρ + 3

)3/2 +

(
5 +

√
5
)

ρ − 6φ

3
√
3φ

(
ρ2 − 1

) (
3ρ2 + 2

√
5ρ + 3

)3/2

+
8ρ(

3ρ2 − 2
√
5ρ + 3

)3/2 (
3ρ2 + 2

√
5ρ + 3

)3/2 +
64ρ(

3ρ2 − 2ρ + 3
)3/2 (

3ρ2 + 2ρ + 3
)3/2

−
149 + 54

√
2 + 6

√
3 + 54

√
5 + 3

√
6 + 27

√
10 + 3

√
15

216ρ2
−

4
(
3ρ2

− 10ρ + 3
)(

3ρ2 − 2ρ + 3
)3 .

Since ρ > 1 and equations 3ρ2
+ 2

√
5ρ + 3 = 0, 3ρ2

− 2
√
5ρ + 3 = 0, 3ρ2

+ 2ρ + 3 = 0, and 3ρ2
− 2ρ + 3 = 0 have

no real solutions, a(ρ), b(ρ) and f (ρ) are well defined for ρ > 1. We solve equations a(ρ) = 0, b(ρ) = 0 and f (ρ) = 0 in
a similar way as in the previous sections (see the Appendix) and we see that f (ρ) and a(ρ) are negative for ρ > 1, and that
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there exists α = 1.462226054217616 . . . such that b(ρ) is negative for ρ > α, and positive for 1 < ρ < α. Therefore λ > 0
for ρ > 1,m < 0 for 1 < ρ < α, andm > 0 for ρ > α. This proves statement (a).

Now we prove statement (b). The derivative dm/dρ is given by (4) where

db
dρ

(ρ) = −
4ρ

(
ρ2

+ 3
)

3
√
3

(
ρ2 − 1

)3 −
36ρ2

− 24ρ − 12(
3ρ2 − 2ρ + 3

)5/2 −
12

(
3ρ2

+ 2ρ − 1
)(

3ρ2 + 2ρ + 3
)5/2

−

3
(
6φρ2

− 2
(
5 +

√
5
)

ρ + 2φ
)

φ
(
3ρ2 − 2

√
5ρ + 3

)5/2 −

6
(
3ρ2

+ 2
√
5ρ + 1

)
(
3ρ2 + 2

√
5ρ + 3

)5/2 −
1
36

(
18 + 9

√
2 +

√
3 + 9

√
5
)

,

df
dρ

(ρ) =
8ρ

(
ρ2

+ 1
)

3
√
3

(
ρ2 − 1

)3 −
2

(
3ρ3

+ 17ρ2
− 3ρ − 9

)(
3ρ2 + 2ρ + 3

)5/2 +
2

(
3ρ3

− 17ρ2
− 3ρ + 9

)(
3ρ2 − 2ρ + 3

)5/2 +
18 + 9

√
2 +

√
3 + 9

√
5

18ρ3

−

3
(
5 +

√
5
)

ρ3
+ 26φρ2

− 3
(
5 +

√
5
)

ρ − 18φ

2φ
(
3ρ2 + 2

√
5ρ + 3

)5/2

+

3
(
5 +

√
5
)

ρ3
− 26φρ2

− 3
(
5 +

√
5
)

ρ + 18φ

2φ
(
3ρ2 − 2

√
5ρ + 3

)5/2 .

We have seen that f (ρ) < 0 and b(ρ) < 0 for ρ > α. We solve numerically equations db/dρ(ρ) = 0 and df /dρ(ρ) = 0
(see the Appendix) and we get that they have no real solutions with ρ > 1. In particular, db/dρ(ρ) < 0 and df /dρ(ρ) > 0
for ρ > 1. Therefore dm/dρ > 0 for ρ > α. This proves statement (b). �
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Appendix

In this appendix we analyze the resolution of equations of the form F(ρ) = 0 when F is a rational function containing
radicals. These type of equations are solved by the following steps.

(1) We eliminate the fractions by multiplying equation F(ρ) = 0 by the least common denominator of F(ρ).
(2) We eliminate the radicals of the resulting equation by isolating in a convenient way one or more radicals on one side of

the equation and squaring both sides of the equation. If the resulting equation still contains radicals, then we repeat the
process again. In the end we obtain a polynomial equation.

(3) We find numerically all the solutions of the polynomial equation obtained in step (2).
(4) We check which of these solutions are really solutions of the initial equation F(ρ) = 0.

Next we detail how to group the radicals in step (2) for each type of equation that appears in this work.

(a) Equations with one radical: α1
√
a + α2 = 0. We eliminate the radicals by applying step (2) in the following way

(α1
√
a)2 = (−α2)

2.

(b) Equations of the form α1
√
a + α2

√
b + α3

√
a
√
b = 0. Applying step (2) in the following way we obtain an equation

with one radical

(α1
√
a + α2

√
b)2 = (−α3

√
a
√
b)2,

we obtain an equation with one radical of the form β1
√
a
√
b + β2 = 0.

(c) Equations of the form α1
√
a + α2

√
b + α3

√
a
√
b + α4 = 0 can be reduced directly to an equation with one radical by

applying step (2) in the following way

(α1
√
a + α2

√
b)2 = (−α3

√
a
√
b − α4)

2.

(d) Equations of the form α1
√
b
√
c
√
d + α2

√
a
√
c
√
d + α3

√
a
√
b
√
d + α4

√
a
√
b
√
c + α5

√
a
√
b
√
c
√
d = 0. Applying step

(2) by grouping the terms in the following way

(α1
√
b
√
c
√
d + α2

√
a
√
c
√
d)2 = (−α3

√
a
√
b
√
d − α4

√
a
√
b
√
c − α5

√
a
√
b
√
c
√
d)2,
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we obtain an equation of the form β1
√
c + β2

√
d + β3

√
a
√
b + β4

√
c
√
d + β5 = 0. Applying step (2) to this equation

in the following way

(β1
√
c + β2

√
d + β4

√
c
√
d + β5)

2
= (−β3

√
a
√
b)2,

we obtain an equation with three radicals of the form γ1
√
c +γ2

√
d+γ3

√
c
√
d+γ4 = 0. These types of equations have

been analyzed in item (c).
(f) Equations of the formα1

√
a
√
b
√
c
√
d+α2

√
b
√
c
√
d+α3

√
a
√
c
√
d+α4

√
a
√
b
√
d+α5

√
a
√
b
√
c+α6

√
c
√
d+α7

√
b
√
d+

α8
√
b
√
c + α9

√
a
√
d + α10

√
a
√
c + α11

√
a
√
b = 0. We apply step (2) by grouping the terms in the following way

(α2
√
b
√
c
√
d + α3

√
a
√
c
√
d + α4

√
a
√
b
√
d + α5

√
a
√
b
√
c)2

= (−α6
√
c
√
d − α7

√
b
√
d − α8

√
b
√
c − α9

√
a
√
d − α10

√
a
√
c − α11

√
a
√
b − α1

√
a
√
b
√
c
√
d)2.

The resulting equation is of the form β1
√
a
√
b + β2

√
a
√
c + β3

√
a
√
d + β4

√
b
√
c + β5

√
b
√
d + β6

√
c
√
d +

β7
√
a
√
b
√
c
√
d + β8 = 0. We apply step (2) by grouping the terms in the following way

(β1
√
a
√
b + β2

√
a
√
c + β3

√
a
√
d + β7

√
a
√
b
√
c
√
d)2 = (−β4

√
b
√
c − β5

√
b
√
d − β6

√
c
√
d − β8)

2.

We obtain an equation of the form γ1
√
b
√
c + γ2

√
b
√
d+ γ3

√
c
√
d+ γ4 = 0. Finally, we apply step (2) by grouping the

terms in the following way

(γ1
√
b
√
c + γ3

√
c
√
d)2 = (−γ2

√
b
√
d + γ4)

2.

and we obtain an equation of the form δ1
√
b
√
d + δ2 = 0.
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