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a b s t r a c t

Given a polynomial P of partial derivatives of the Kähler metric, we prove a simple crite-
rion in terms of the coefficients for P to be an invariant polynomial, i.e. invariant under
the transformation of coordinates. As applications, we prove an explicit composition for-
mula for covariant differential operators under a canonical basis, also known as invariant
differential operators in the case of bounded symmetric domains. We also prove a general
explicit formula of star products on Kähler manifolds.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Let ds2 = gijdxidxj be the metric tensor in a local frame on a Riemannian manifold. Consider the algebra generated
by partial derivatives of the metric {gijα}|α|≥1, it can be shown that all polynomials in the variables {gijα} invariant under
coordinate transformations, arise from complete contractions of covariant differentiations of curvature tensors. The proof
requires H. Weyl’s classical invariant theory for orthogonal groups by restriction to the normal coordinate systems. Weyl’s
invariant theory also played an important role in Liu’s remarkable proof [1,2] ofWitten’s formula about intersection numbers
ofmoduli spaces of principal bundles on a compact Riemann surface.Weyl’s invariant theory also has important applications
in Atiyah–Singer index theory (cf. [3]) and in Fefferman’s program [4].

On the other hand, a natural question is: given a polynomial P in the variables {gijα}, find a criterion solely in terms of the
coefficients of P to determinewhether P is invariant. This problem is still vague in general. In this paper, we give a somewhat
satisfactory solution for Kähler manifolds.

Let (M, g) be a Kähler manifold of dimension nwith Kähler form

ωg =

√
−1
2π

n
i,j=1

gijdzi ∧ dzj.

Thanks to the Kähler condition, we can canonically associate a polynomial in the variables {gījα}|α|≥1 to a semistable digraph
H , such that each vertex represents a partial derivative of gīj and each edge represents the contraction of a pair of indices.
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Let


H c(H)H be a linear combination of semistable graphs. In Corollary 3.6, we shall give a simple criterion to characterize
its invariantness. Similar criterion will be proved for covariant differential operators in Corollary 4.7.

Recall that a covariant differential operator Tβ1···βp f/β1···βp is constructed through contractions of curvature tensors,

Tβ1···βp = g∗∗
· · · g∗∗R∗∗∗∗/∗···∗ · · · R∗∗∗∗/∗···∗.

Their linear combinations obviously form an algebra R under the Leibnitz rule of covariant derivatives. However, we do not
have a canonical basis in terms of covariant derivatives of curvature tensors, due to additional relations like Bianchi identities
and Ricci formulae. On the other hand, the polynomials in {gījα} associated to stable graphs form a canonical basis of R. In
Theorem 4.10, we will prove an explicit composition formula under this basis. On a bounded symmetric domain Ω of rank
r , Engliš [5] proved that R is equal to the algebra D(Ω) of invariant differential operators. It is well known that D(Ω) is a
commutative algebra freely generated by r algebraically independent elements. It is an interesting and important problem
to construct a set of generators explicitly (see [6–10]). In particular, Engliš [11] gave a set of generators using coefficients in
the asymptotic expansion of the Berezin transform. From [12], Engliš’ generators can be expressed in terms of a summation
over graphs (cf. Eq. (22)).

The motivation of this paper comes from deformation quantization. Deformation quantization on a symplectic man-
ifold M was introduced in the pioneering work of Bayen et al. [13] as a deformation of the usual pointwise product of
C∞(M) into a noncommutative associative ⋆-product of the formal series C∞(M)[[ν]]. The celebrated work of Kontsevich
[14,15] completely solved existence and classification of star-products up to gauge equivalence on general Poisson mani-
folds. Kontsevich’s quantization formula was written as a summation over labeled directed graphs with two distinguished
vertices and the coefficients are certain integrals over configuration spaces. Comprehensive surveys of deformation quan-
tization can be found in [16] for Poisson manifolds, and [17] for Kähler manifolds.

Let us restrict to Kähler manifolds (M, g). A (differential) star product is an associative C[[ν]]-bilinear product ⋆ such
that ∀f1, f2 ∈ C∞(M),

f1 ⋆ f2 =

∞
j=0

ν jCj(f1, f2), (1)

where the C-bilinear bidifferential operators Cj satisfy

C0(f1, f2) = f1f2, C1(f1, f2) − C1(f2, f1) = i{f1, f2}, (2)

with the Poisson bracket {f1, f2} given by

{f1, f2} = igkl̄


∂ f1
∂zk

∂ f2
∂ z̄ l

−
∂ f2
∂zk

∂ f1
∂ z̄ l


. (3)

According to [18,19], a star product has the property of separation of variables (Wick type), if it satisfies f ⋆ h = f · h and
h ⋆ g = h · g for any locally defined antiholomorphic function f , holomorphic function g and an arbitrary function h. If the
role of holomorphic and antiholomorphic variables are swapped, we call it a star product of anti-Wick type.

There are earlier constructions of ⋆-products on restricted types of Kählermanifolds in [20–22]. Karabegov [18] solved the
classification of deformation quantizations with separation of variables for Kähler manifolds. Schlichenmaier [23] showed
that the Berezin–Toeplitz quantization gives rise to a star product, which turns out to be a very important quantization with
many applications. See e.g. [24–31].

Feynman diagrams or directed graphs are effective tools in the construction and calculation of star products on
Kähler manifolds. See [32–34,12,35]. Inspired by work of Reshetikhin and Takhtajan [33], Gammelgaard [32] obtained a
remarkable universal formula in terms of acyclic graphs for a star product with separation of variables once a classifying
Karabegov form is given. Gammelgaard’s formula crucially relies on one’s ability of writing down explicit Karabegov forms, a
prototypical example is Karabegov–Schlichenmaier’s identification theorem [36]. In [37,12], we obtained an explicit formula
of Berezin star product in terms of strongly connected graphs, which was used to give a proof of an explicit formula of
Berezin–Toeplitz star product due to Gammelgaard, Karabegov and Schlichenmaier. Karabegov [34,38] recently gave a very
insightful algebraic proof of Gammelgaard’s formula and generalized it to deformation quantization of an endomorphism
bundle.

We will prove in Theorem 5.1 explicit formulae of star products whose Karabegov forms are summations over strongly
connected graphs.

2. Covariant tensors in semistable trees

Throughout this paper, a digraph or simply a graph G = (V , E) is defined to be a finite directed multigraph which is
permitted to have multi-edges and loops.
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A vertex v of a digraph G is called stable if deg−(v) ≥ 2, deg+(v) ≥ 2, i.e. both the inward and outward degrees of v are
no less than 2. A vertex v is called semistable if we have

deg−(v) ≥ 1, deg+(v) ≥ 1, deg−(v) + deg+(v) ≥ 3.

Definition 2.1. A decorated tree T is a directed tree that each vertex is decorated by a finite number of outward and inward
external legs, corresponding to unbarred and barred indices respectively. T is called semistable (resp. stable) if each vertex
is semistable (resp. stable). The inward (resp. outward) degree of a vertex v is defined to be the number of inward (resp.
outward) half-edges at v. Note that a half-edge may refer to the head or tail of an edge of T or an external leg.

Definition 2.2. A directed edge uv of a semistable decorated tree or a semistable digraph is called contractible if u ≠ v and
at least one of the following two conditions holds: (i) deg+(u) = 1; (ii) deg−(v) = 1.

Lemma 2.3. Let T be a semistable decorated tree. Denote by T ′ a tree obtained by contracting a finite number of contractible
edges in T . Then T ′ is also semistable and an edge in T ′ is contractible if and only if it is contractible in T .

Proof. Let uv be a contractible edge of T . Let T ′ be the tree obtained by contracting uv and p the new vertex merging u and
v. Then obviously degT ′ p ≥ 4. We also have deg−

T ′ p ≥ 1 and deg+

T ′ p ≥ 1, since u has at least one inward half-edge and v
has at least one outward half-edge. So we proved that T ′ is semistable.

Let e be an edge of T other than uv. If e is not incident to u or v, then it is obvious that e is contractible in T if and only if
it is contractible in T ′.

If e = vw is contractible in T , then there are two cases: (i) deg−

T w = deg−

T ′ w = 1; (ii) deg−

T w ≠ 1 and deg+

T v = 1. In
Case (i), it is obvious that e is also contractible in T ′. In Case (ii), we have deg−

T v ≥ 2, so the contractibility of uv in T implies
deg+

T u = 1, namely deg+

T ′ p = 1. Thus pw is contractible in T ′.
If e = vw is non-contractible in T , then deg−

T ′ w = deg−

T w ≥ 2 and deg+

T ′ p ≥ deg+

T v ≥ 2. So pw is non-contractible
in T ′.

The same argument works when e = wu. We conclude the proof. �

Definition 2.4. A semistable decorated tree T is called contractible if all of its edges are contractible. Denote by
Tg(a1 · · · ak|b̄1 · · · b̄m) the set of all contractible semistable decorated trees with external legs in the set {a1 · · · ak, b̄1 · · · b̄m}.
Denote by tk,m(n) the number of n-vertex trees in Tg(a1 · · · ak|b̄1 · · · b̄m). The first values of tk,m(n) were listed in Table 1 of
Appendix.

Denote by D(ga1 b̄1a2···ak b̄2···b̄m) the canonical invariant Weyl polynomial that equals ga1 b̄1a2···ak b̄2···b̄m at the center of a
normal coordinate system. A proof of the following theorem was outlined in [37, Section 2], where a contractible tree was
equivalently defined as an indecomposable admissible tree. Here we give a more direct proof.

Theorem 2.5. Let k,m ≥ 2. Then

D(ga1 b̄1a2···ak b̄2···b̄m) =


T∈Tg (a1···ak|b̄1···b̄m)

(−1)|V (T )|+1gT , (4)

where gT is the Weyl invariant associated to T .

Proof. Note that a contractible semistable tree with no less than two vertices must have a vertex which is not stable;
therefore the right-hand side of (4) is equal to ga1 b̄1a2···ak b̄2···b̄m at the center of a normal coordinate system. Thuswe need only
prove that the right-hand side of (4) is a covariant tensor with indices (a1 · · · ak, b̄1 · · · b̄m). Let φ be a local biholomorphic
mapping. Under the change of coordinates x → φ(x), we have

gīj(x) = gpq̄(φ(x))(∂iφp)(∂jφq) =

∂j̄φ̄ // ◦
∂iφ // ,

gījl(x) = gpq̄r(φ(x))(∂lφr)(∂iφp)(∂jφq) + gpq̄(φ(x))(∂ilφp)(∂jφq)

= ∂j̄φ̄ // ◦
∂lφ

//
∂iφ

OO
+

∂j̄φ̄ // ◦
∂ilφ //

The graphical expressions will make the proof much easier. In general, it is not difficult to see that

ga1 b̄1a2···ak b̄2···b̄m(x) =


P∈partition(a1···ak|b̄1···b̄m)

◦P , (5)
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where P runs over all partitions of the set (a1 · · · ak, b̄1 · · · b̄m) such that no subset contains both barred and unbarred indices.
◦P denotes a single vertex decorated by external legs which are in one-to-one correspondence with elements of P . Trees in
the right-hand side of (5) may be called φ-trees.

Let us first look at how Eq. (5) works by showing that gījpq̄ − g r s̄gr j̄q̄gis̄p is a covariant tensor. By (5), we have

gījpq̄(x) =
∂q̄φ̄ // ◦

∂kφ
//

∂iφ

OO

∂j̄φ̄

<<xxxxxx

+
∂j̄φ̄��∂q̄φ̄ // ◦

∂ipφ
//

+ ∂j̄q̄φ̄ // ◦
∂pφ

//
∂iφ

OO
+

∂j̄q̄φ̄ // ◦
∂ipφ //

gr j̄q̄(x) =
∂j̄φ̄��∂q̄φ̄ // ◦

∂rφ
//

+
∂j̄q̄φ̄ // ◦

∂rφ //

gis̄p(x) = ∂s̄φ̄ // ◦
∂pφ

//
∂iφ

OO
+ ∂s̄φ̄ // ◦

∂ipφ //

By g r s̄(x) = gcd̄(φ(x))(∂cφ−1
r )(∂dφ

−1
s ), we have

g r s̄(x)gr j̄q̄(x)gis̄p(x) =

∂j̄φ̄

##GGG
GG

◦ // ◦

∂iφ
;;wwwww

∂pφ ##GGG
GG

∂q̄φ̄

;;wwwww

+
∂j̄φ̄��∂q̄φ̄ // ◦ // ◦

∂ipφ
//

(6)

+ ∂j̄q̄φ̄ // ◦ // ◦
∂pφ

//
∂iφ

OO
+

∂j̄q̄φ̄ // ◦ // ◦
∂ipφ // , (6)

where we used


r(∂cφ
−1
r )(∂rφt) = δct . For the same reason, an internal edge e = uv of a φ-tree could be contracted if both

half-edges of e has no decoration and either deg+ v = 1 or deg− u = 1. Therefore the unique edge in the last three trees
at the right-hand side of (6) could be contracted. The resulting φ-trees cancel with the corresponding φ-trees from gījpq̄(x).
Thus we get

gījpq̄(x) − g r s̄(x)gr j̄q̄(x)gis̄p(x) =
∂q̄φ̄ // ◦

∂kφ
//

∂iφ

OO

∂j̄φ̄

<<xxxxxx

−

∂j̄φ̄

##GGG
GG

◦ // ◦

∂iφ
;;wwwww

∂pφ ##GGG
GG

∂q̄φ̄

;;wwwww

,

which implies that gījpq̄ − g r s̄gr j̄q̄gis̄p is a covariant tensor.
A half-edge of an internal edge is called an internal half-edge. From the above discussion, we see that under the change

of coordinates x → φ(x), the right-hand side of (4)
T∈Tg (a1···ak|b̄1···b̄m)

(−1)|V (T )|+1gT (x) (7)

is equal to a summation of φ-trees whose internal half-edges or external legs are decorated by indices (∂a1φ · · · ∂akφ,

∂b̄1 φ̄ · · · ∂b̄m φ̄). In order to prove (4), it is enough to prove that for any ill-decorated φ-tree Tφ (i.e. some internal half-edge
is decorated or some external leg has multiple derivatives), then its coefficient is zero in the above summation. We need to
enumerate all trees in the summation (7) that may produce Tφ .

Again it is illuminating to look at an example first. Consider the following two ill-decorated φ-trees.

∂j̄φ̄

$$IIIII

◦
∂rφ // ◦

∂iφ
::uuuuu

∂pφ $$IIIII

∂q̄φ̄

::uuuuu

∂j̄φ̄

$$IIIII

◦ // ◦

∂ipφ
::uuuuu

∂rφ $$IIIII

∂q̄φ̄

::uuuuu

(8)
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For the first φ-tree of (8), the left vertex is ill-decorated. It may come from two contractible semistable trees with opposite
signs.

j̄

$$IIIII

◦ //
r��

◦

i
::uuuuu

p

$$IIIIIq̄ ::uuuuu

j̄
!!DD

DD

◦ // ◦ //
r��

◦

i
==zzzz

p

!!DD
DDq̄ ==zzzz

For the second φ-tree of (8), the right vertex is ill-decorated. It may come from two contractible semistable trees with
opposite signs.

j̄

$$IIIII

◦ // ◦
i
OO p ::uuuuu

r

$$IIIIIq̄ ::uuuuu

j̄
!!DD

DD

◦ // ◦ //
r��

◦

i
==zzzz

p

!!DD
DDq̄ ==zzzz

The above process may be called ‘‘freeing ill-decorated indices’’.
For a general φ-tree, we may treat each ill-decorated vertex separately. If the vertex has degree 2, then we have the

following two ways to free ill-decorated indices, their numbers of vertices differ by 1.

· · ·
∂∗̄φ̄ // ◦

∂•φ // · · · =⇒ · · · // ◦ //
•

OO

· · ·

∗̄

OO ∗̄��
· · · ◦ // ◦ · · ·

•

OO

Namely the ill-decorated inward (resp. outward) indices may be separated and attached to either the original vertex or to a
new vertex at the tail (resp. head) of the half-edge. It is obvious that the new edge is contractible.

If a vertex v has degree no less than 3, there are 2c(v) ways of freeing ill-decorated indices, where c(v) is the total number
of decorated internal half-edges and external legs with multiple derivatives incident to v. It is easy to see that they add up
to zero. So we conclude the proof. �

As an example, we can compute directly that

D(gījkl̄p) = −Rījkl̄/p = −∂pRījkl̄ + Γ δ
piRδ j̄kl̄ + Γ δ

pkRījδ l̄

=

j̄
!!DDD

◦

i <<xxxx //

p ""FFF
F k

l̄

==zzz

−

j̄
!!DDD

◦ // ◦
i <<xxxx //

p ""FFF
F k

l̄

==zzz

−

j̄
""DDD

◦ //
p��

◦

i <<zzz
k
""DDDl̄ <<zzz

−

j̄
""DDD

◦ //
k��

◦

i <<zzz
p
""DDDl̄ <<zzz

−

j̄
""DDD

◦ //
i��

◦

k <<zzz
p
""DDDl̄ <<zzz

+

j̄
""DDD

◦ // ◦ //
p��

◦

i <<zzz
k
""DDD

l̄

<<zzz

+

j̄
""DDD

◦ // ◦ //
k��

◦

i <<zzz
p
""DDD

l̄

<<zzz

+

j̄
""DDD

◦ // ◦ //
i��

◦

k <<zzz
p
""DDD

l̄

<<zzz

which agrees with (4).

3. Weyl invariants in semistable graphs

The weight of a digraph G is defined to be the integer w(G) = |E| − |V |. A digraph G is stable (resp. semistable) if each
vertex of G is stable (resp. semistable). The set of semistable and stable graphs of weight kwill be denoted by Gss(k) and G(k)
respectively.

A digraph G is called strongly connected or strong if there is a directed path from each vertex in G to every other vertex.
The strongly connected components (SCC’s) of a digraph G can each be contracted to a single vertex, the resulting graph is
a directed acyclic graph (DAG), called the condensation of G. A source (resp. sink) of G is a SCC that has only outward (resp.
inward) edges in the condensation of G.

Lemma 3.1. Let e = uv be a contractible edge of a semistable graph G. Denote by G′ the graph obtained by contracting e in G. If
e′

≠ e is an edge of G such that e′
≠ vu, then e′ is contractible in G if and only if it is contractible in G′.
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Proof. The proof is almost identical to the proof of Lemma 2.3. �

Definition 3.2. A semistable graph G is called stabilizable if after contractions of a finite number of contractible edges of G,
the resulting graph becomes stable, which is called the stabilization graph of G and denoted by Gs.

If G is the stabilization graph of H , then w(G) = w(H). By Lemma 3.1, the stabilizability of a semistable graph G is
independent of the order of edge-contractions.

Lemma 3.3. A strong semistable graph G is stabilizable.

Proof. Let v be a nonstable vertex of G. Then v has no loop by the strongness of G. Moreover, v has either a unique inward or
a unique outward edge, which is contractible. Thus we can always contract some edge until a stable graph is reached. �

A connected semistable graph may be not stabilizable, e.g. '&%$ !"#1
1 //'&%$ !"#1 .

Lemma 3.4. Let G be a stabilizable semistable graph. If the stabilization graph of G is strong, then G is also strong.

Proof. Obviously G is connected. If G is not strong, first assume that G has two SCC’s A, B. Then it is not difficult to see that
any edge between A, B is not contractible, a contradiction. If G hasmore than two SCC’s, consider its condensation G′. Choose
any edge e in G′ which is contractible in G, we can contract e to reduce the number SCC’s of G by one. Since the stabilization
graph of G is strong, we can always repeat this process until we get a graph with two SCC’s, which is not contractible, a
contradiction again. Therefore Gmust be strong. �

Theorem 3.5. Let G be a stable graph of weight k. Then

D(G) =

stabilizable
H∈Gss(k)

(−1)|V (H)|−|V (G)|
|Aut(G)|

|Aut(H)|
H, (9)

where H runs over stabilizable semistable graphs of weight k whose stabilization graph is G.

Proof. By definition, D(G) is a sum of stabilizable semistable graphs obtained by expanding each vertex of G by (4) as a sum
of contractible semistable trees, while keeping incidence relations of G. The group Aut(G) has a natural action on the above
multiset of stabilizable semistable graphs H in the expansion of D(G). Then it is not difficult to see that the set of orbits is in
one-to-one correspondence with isomorphism classes of stabilizable semistable graphs of weight k and the isotropy group
at H is Aut(H). Therefore the orbit of H has |Aut(G)|/|Aut(H)| graphs. The factor (−1)|V (H)|−|V (G)| is clear from (4). So we
conclude the proof of (9). �

Corollary 3.6. A linear combination of stabilizable semistable graphs of weight k

stabilizable
H∈Gss(k)

c(H)
(−1)|V (H)|

|Aut(H)|
H (10)

is a Weyl invariant (i.e. invariant under coordinate transformations) if and only if c(H1) = c(H2) whenever H1,H2 have the
same stabilization graph.

Proof. Note that (10) is a Weyl invariant if and only if it is equal to
G∈G(k)

c(G)
(−1)|V (G)|

|Aut(G)|
D(G).

So the corollary follows from Theorem 3.5. �

Definition 3.7. For convenience, a function c(H) defined on the set of stabilizable semistable graphs is called aWeyl function
if it satisfies c(H1) = c(H2) whenever H1,H2 have the same stabilization graph.

Any constant function is a Weyl function. Below is a more nontrivial example.

Lemma 3.8. Let L (H) be the set of linear subgraphs of H (note ∅ ∈ L (H)) and p(L) the number of components of L ∈ L (H).
Then

βC (H) =


L∈L (H)

Cp(L), (11)

is a Weyl function for any constant C.
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Proof. LetH ′ be a graph obtained by contracting a contractible edge e = uv inH . For any given L ∈ L (H), define L′
∈ L (H ′)

by

L′
=


L, e ∉ L
L/{e}, e ∈ L

where L/{e} is the graph obtained by contracting e in L. Since we have either deg+ u = 1 or deg− v = 1, it is not difficult to
see that L → L′ gives a one-to-one correspondence between L (H) and L (H ′). Moreover, p(L) = p(L′). So we have

βC (H) =


L∈L (H)

Cp(L)
=


L′∈L (H ′)

Cp(L′)
= βC (H ′).

This implies βC (H1) = βC (H2) whenever H1,H2 have the same stabilization graph. �

Corollary 3.9. (i) det(I − A(H)) is a Weyl function, where I is the identity matrix and A(H) is the adjacency matrix of H.
(ii) |L (H)|, the number of linear subgraphs of H, is a Weyl function.

Proof. (i) follows by taking C = −1 in (11) and using the following Coefficient Theorem from spectral graph theory,

det(I − A(H)) =


L∈L (H)

(−1)p(L). (12)

(ii) follows by taking C = 1 in (11). �

We remark that det(I − A(H)) appears as the coefficients of asymptotic expansions of the Bergman kernel [37].

4. Covariant differential operators

Differential operators onKählermanifolds canbe encodedbydigraphswith a distinguished vertex. The results in previous
sections can be extended to this setting almost verbatim.

Definition 4.1. A (one-)pointed tree T = (V ∪ {•}) is defined to be a decorated tree with a distinguished vertex labeled by f .
A (one-)pointed graph Γ = (V ∪ {•}, E) is defined to be a digraph with a distinguished vertex labeled by f . T or Γ is called
semistable (resp. stable) if each ordinary vertex v ∈ V is semistable (resp. stable).

Definition 4.2. A directed edge uv of a semistable pointed tree or a semistable pointed graph is called contractible if u ≠ v
and at least one of the following two conditions holds: (i) u ∈ V and deg+(u) = 1; (ii) v ∈ V and deg−(v) = 1.

A semistable pointed tree T is called contractible if all of its edges are contractible. Note that Lemma 2.3 still holds for
pointed trees.

Theorem 4.3. Let k,m ≥ 0. Then

D(fa1···ak b̄1···b̄m) =


T=(V∪{•})∈Tf (a1···ak|b̄1···b̄m)

(−1)|V |fT , (13)

where Tf (a1 · · · ak|b̄1 · · · b̄m) the set of all contractible semistable pointed trees with external legs in the set {a1 · · · ak, b̄1 · · · b̄m}

and fT is the Weyl invariant associated to the pointed tree T .

Proof. The proof is similar to Theorem 2.5. �

Definition 4.4. The weight of a pointed graph Γ = (V ∪ {•}, E) is defined to be w(Γ ) = |E| − |V |. By abuse of notation,
we denote V (Γ ) = V ∪ {•}. The set of semistable and stable pointed graphs of weight kwill be denoted by Gss

1 (k) and G1(k)
respectively. We denote by Aut(Γ ) the set of all automorphisms of the pointed graph Γ fixing the distinguished vertex.

A semistable pointed graph Γ is called stabilizable if after contractions of a finite number of contractible edges of Γ , the
resulting graph becomes stable, which is called the stabilization graph of Γ and denoted by Γ s. Note that Lemma 3.1 still
holds for pointed graphs.

Lemma 4.5. (i) A strong semistable pointed graph Γ is stabilizable.
(ii) Let Γ be a stabilizable semistable graph. If the stabilization graph of Γ is strong, then Γ is also strong.

Proof. The proof is similar to Lemmas 3.3 and 3.4. �
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Theorem 4.6. Let Γ be a stable pointed graph of weight k. Then

D(Γ ) =


Z

(−1)|V (Z)|−|V (Γ )|
|Aut(Γ )|

|Aut(Z)|
Z, (14)

where Z runs over stabilizable semistable pointed graphs of weight k whose stabilization graph is Γ .

Proof. The proof is similar to Theorem 3.5. �

Corollary 4.7. A linear combination of stabilizable semistable pointed graphs

stabilizable
Z∈Gss

1

c(Z)
(−1)|V (Z)|

|Aut(Z)|
Z (15)

is a covariant differential operator (i.e. invariant under coordinate transformations) if and only if c(Z1) = c(Z2) whenever Z1, Z2
have the same stabilization graph.

Proof. It follows immediately from Theorem 4.6. �

Example 4.8. Engliš [5] proved the following asymptotic expansion for a Laplace integral on a domain Ω ∈ Cn when
m → ∞,

Ω

f (y)e−m(Φ(x,x)+Φ(y,y)−Φ(x,y)−Φ(y,x)) ω
n
g(y)

n!
=

1
mn


k≥0

m−kRk(f )(x), (16)

where Φ is the Kähler potential and Rk are covariant differential operators.
In [12, Thm 3.2], we proved an explicit formula for Rk,

Rk(f ) =


Γ ∈Gss

1

det(A(Γ−) − I)
|Aut(Γ )|

Γ , (17)

where Γ− is obtained by removing the distinguished vertex of Γ .
We show that (17) is consistent with Corollary 4.7. Similar to Corollary 3.9 (i), we have det(I − A(Γ−)) = det(I − A(Γ ′

−
))

where Γ ′ is obtained by contracting a contractible edge in Γ . Moreover, if Γ is a semistable pointed graph which is non-
stabilizable, then det(I − A(Γ−)) = 0. In order to prove the last assertion, we may assume that each edge of Γ is non-
contractible. If v is a strictly semistable ordinary vertex (i.e. deg(v) = 3), then v must have a self-loop, namely Γ− contains
a SCC {'&%$ !"#1 }. Therefore we must have det(I − A(Γ−)) = 0.

By Corollary 4.7, the graded algebra R of abstract covariant differential operators has a canonical basis G1 consisting of
stable pointed graphs, graded by weights. Before we give a multiplication formula in this algebra, we needmore definitions.

Definition 4.9. Let Γ = (V ∪ {•}, E) be a pointed graph that can be obtained by inserting a finite number of vertices to
edges of a semistable pointed graphΓ ss, called the semistabilization graph ofΓ . SuchΓ is called generalized stabilizable (GS)
if Γ ss is stabilizable. The stabilization graph of Γ ss, denoted by Γ s, is also called the stabilization graph of Γ .

The reason we introduce GS pointed graphs is to account for the derivatives on edges g īj. See [12, Rem. 3.7] for detailed
discussions.

We have the following explicit composition formula of covariant differential operators.

Theorem 4.10. In terms of the basis of stable pointed graphs, we have
Z1∈G1

c1(Z1)
(−1)|V (Z1)|

|Aut(Z1)|
Z1


◦


Z2∈G1

c2(Z2)
(−1)|V (Z2)|

|Aut(Z2)|
Z2



=


Z∈G1


GS

Γ ⊂Z

(−1)|V ((Z/Γ )s)|+|V (Γ s)|c1((Z/Γ )s)c2(Γ s)


1

|Aut(Z)|
Z, (18)

where Γ runs over all GS pointed subgraphs of Z , and Z/Γ is the pointed graph obtained from Z by contracting Γ to a point.

Proof. Eq. (18) follows almost immediately from Corollary 4.7 and results proved in our previous paper [35, Lem. 3.10 &
Rem. 3.7].
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A further justification to (18) is the following lemma.

Lemma 4.11. Let Z be a GS pointed graph and Γ a GS pointed subgraph of Z. Then Z/Γ is also a GS pointed graph.

Proof. Let e be an edge in (Z/Γ )ss. Then it is not difficult to see that e is contractible in (Z/Γ )ss if and only if e is contractible
in Z ss. Therefore (Z/Γ )ss is stabilizable, since Z ss is stabilizable. �

By Lemma 4.5, each strong pointed graph is a GS pointed graph. All linear combinations of strong (stable) pointed
graphs form a subalgebra S , which contains certain interesting covariant differential operators arising from deformation
quantization on Kähler manifolds (cf. Theorem 5.1). The composition formula in S is given by

strong
Z1∈G1

c1(Z1)
(−1)|V (Z1)|

|Aut(Z1)|
Z1


◦


strong
Z2∈G1

c2(Z2)
(−1)|V (Z2)|

|Aut(Z2)|
Z2



=

strong
Z∈G1


strong
Γ ⊂Z

(−1)|V ((Z/Γ )s)|+|V (Γ s)|c1((Z/Γ )s)c2(Γ s)


1

|Aut(Z)|
Z, (19)

where Γ runs over all strong pointed subgraph of Z .
Recall that the Berezin transform has an asymptotic expansion (cf. [5,36]),

Iα f (x) =

∞
k=0

Qkf (x)α−k, α → ∞. (20)

The following explicit formula for the differential operators Qk was proved in [12],

Qk =

strong
Γ ∈G1(k)

det(A(Γ−) − I)
|Aut(0)|

Γ , (21)

where Γ− is obtained from Γ by removing the distinguished vertex from Γ .
We can also study R and S on a fixed Kähler manifold. For a bounded symmetric domain Ω of rank r equipped with the

Bergman metric, it is obvious that R = S . Denote by D(Ω) the algebra of invariant differential operators. Engliš proved
that S coincides with D(Ω) [5, Prop. 7] and S is freely generated by Q1,Q3,Q5, . . . ,Q2r−1 [11, Thm. 1.1].

On a bounded symmetric domain, all Rījkl̄/α = 0, |α| ≥ 1. So a pointed graph Γ = 0 unless Γ is a balanced graph,
i.e. deg+(v) = deg−(v) for each vertex v. Combining Engliš’ result and (21), we get a set of explicit generators for D(Ω) in
terms of balanced strong pointed graphs,

Qk =

balanced
strong

Γ ∈G1(k)

det(A(Γ−) − I)
|Aut(0)|

Γ , k = 1, 3, . . . , 2r − 1, (22)

whose composition formula is given by (19). Note that on a bounded symmetric domain, balanced strong pointed graphs in
G1(k) are not linearly independent. For k = 1, 3, 5, Gk has 1, 5, 119 nonzero terms respectively.

5. Star products

On a Kähler manifold (M, ω−1), a formal deformation of the form (1/ν)ω−1 is a formal (1, 1)-form,

ω̂ =
1
ν
ω−1 + ω0 + νω1 + ν2ω2 + · · · , (23)

where each ωk is a closed, may be degenerate, (1, 1)-form. Karabegov [18] showed that deformation quantizations with
separation of variables on (M, ω−1) are in one-to-one correspondence with such formal deformations. Given a star product
⋆ of anti-Wick type, its Karabegov form is computed as following: let z1, . . . , zn be local holomorphic coordinates on an
open subset U ofM . Then there exists a set of formal functions on U , denoted by u1, . . . , un,

uk
=

1
ν
uk

−1 + uk
0 + νuk

1 + ν2uk
2 + · · · ,

satisfying uk ⋆ z l − z l ⋆ uk
= δkl. The Karabegov form of ⋆, which is independent of the coordinates chosen, is given by

ω̂|U = −
√

−1 ∂̄(


k u
kdzk).

Let G = (V , E) be a digraph that can be obtained by inserting a finite number of vertices to edges of a semistable graph
Gss. Similar to Definition 4.9, we may call such G a generalized stabilizable graph if Gss is stabilizable. The stabilization graph
of Gss, denoted by Gs, is also called the stabilization graph of G.
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By Lemmas 3.3 and 3.4, we know that any strong digraph must be one of the following: (i) a generalized stabilizable
graph; (ii) a single vertex without loops; (iii) a connected linear digraph (i.e. a directed cycle with n ≥ 1 vertices).

Let h be an arbitrary C-valued function on the set of strong stable graphs and {'&%$ !"#1 }. We define a function αh on the set of
all strong digraphs by

αh(G) =


(−1)|V (G)|−|V (Gs)|h(Gs), G is a generalized stabilizable graph,

−1, G is a single vertex without loops,
(−1)n+1h('&%$ !"#1 ), G is a directed cycle with n ≥ 1 vertices.

Theorem 5.1. Let h and αh be the functions given above. For any functions f1 and f2 on a Kähler manifold, we have the following
anti-Wick type star product

f1 ⋆ f2(x) =

strong
Γ ∈Gss

1

νw(Γ ) 1
|Aut(Γ )|


G∈SCC(Γ−)

αh(G) Γ op(f1, f2), (24)

where G runs over all strongly connected components of Γ− and the partition function Γ op(f1, f2) is obtained by taking antiholo-
morphic and holomorphic derivatives of Γ separately on f1 and f2.

The Karabegov form of the star product (24) is given by

ω̂ =
1
ν
ω−1 − h('&%$ !"#1 )Ric −

√
−1∂∂̄

strong
G∈Gss

νw(G) αh(G)

|Aut(G)|
G, (25)

where Ric =
√

−1∂∂̄ log det g is the Ricci curvature.

Proof. The first two terms of formal Berezin transform corresponding to (24) is

I(f ) = f +


• 1dd


+ · · · ,

which implies that ⋆ satisfies (2). The associativity can be verified by the same argument as [35, Prop. 4.5]. By definition, in
order to prove (25), we need only check that

uk
=

1
ν

∂Φ

∂zk
− h('&%$ !"#1 )

∂ log det g
∂zk

+


G∈Gss

0

νw(G) −αh(G)

|Aut(G)|

∂G
∂zk

(26)

satisfy uk ⋆ z l − z luk
= δkl for 1 ≤ k, l ≤ n. The coefficient of ν0 in uk ⋆B z l − z luk is equal to

• 1dd

op 
∂Φ

∂zk
, z l


=
∂2Φ

∂zk∂ z̄ l
= δkl.

In general, a graph H appearing in uk ⋆ z l − z luk has the following form

H =
l̄
����
��
��

ONMLHIJKΓ
**//___ 44 ?>=<89:;G

k

WW////// ,

where G is a strong graph. It may either come from Ḣop( ∂Φ

∂zk
, z l) or Γ op( ∂G

∂zk
, z l), where Ḣ is obtained from H by gluing the

head of k and the tail of l̄. The coefficient of H in uk ⋆ z l − z luk is equal to
K∈SCC(Ḣ−)

αh(K) + (−αh(G))


K∈SCC(Γ−)

αh(K) = 0,

as claimed. �

By specializing the functions h and αh, the above theorem recovers previous known star products: Berezin, Berezin–
Toeplitz, Karabegov–Bordemann–Waldmann (standard) and its dual. For example, take h(G) = det(A(G) − I) for stable
graphs, then αh(G) = det(A(G) − I) for all strong graphs (cf. [35, Lem. 3.9]). We get the Berezin star product.

From Lemma4.5, Corollary 4.7 and the discussion in [35, Rem. 4.2], once (25) is given, the above theoremmay be regarded
as a special case of Gammelgaard’s formula [32].
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Proposition 5.2. Let C be a constant and hC be the function given by

hC (G) =


L∈L (G)

(−1)|V (G)|+1+p(L)Cp(L)

|Aut(G)|
, (27)

where L runs over linear subgraphs (including empty subgraph) of G and p(L) the number of components of L ∈ L (H). Then the
corresponding star product (24) is

f1 ⋆ f2(x) =

strong
Γ ∈Gss

1

νw(Γ )

|Aut(Γ )|


L∈L (Γ−)

(−1)|V (Γ )|−1+p(L)Cp(L)

|Aut(Γ )|
Γ op(f1, f2). (28)

The dual opposite of (28) is a star product of Wick type given by

f1 ⋆′ f2(x) =


Γ

νw(Γ ) (−1)|E(Γ )|Cℓ(Γ )

|Aut(Γ )|
Γ (f1, f2), (29)

where Γ runs over all semistable pointed graphs such that each SCC of Γ− is either a single vertex or a linear digraph, ℓ(Γ ) is the
number of linear digraphs in the SCC’s of Γ− and Γ (f1, f2) = Γ op(f2, f1).

Proof. The proof of (28) is obvious. The proof of (29) is similar to the argument of [35, Thm. 4.3]. �

When C = 1, (24) and (29) are respectively the Berezin and Berezin–Toeplitz star products (cf. [35, Section 4]). When
C = 0, (24) and (29) are respectively the Karabegov–Bordemann–Waldmann star product and its dual (cf. [35, Section 6]).
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Appendix. Enumeration of contractible semistable trees

Lemma A.1. Let k,m ≥ 2. Then tk,m(n) = 0 when n > k + m − 2 and

tk,m(n) = tm,k(n), tk,2(k) = (2k − 3)!!, (30)

tk,m(2) = 2k
+ 2m

− k − m − 3, (31)

tk,m(3) =
1
2
(3k+1

+ 3m+1) − (2k
+ 2m)(k + m) − 5(2k

+ 2m)

+ 2k+m
+

1
2
(k2 + m2) +

7
2
(k + m) + km + 7. (32)

Proof. The first two equations are obvious. Let us prove tk,2(k) = (2k − 3)!!. When k = 2, we have t2,2(2) = 1. A
k-vertex tree in Tg(a1 · · · ak|b̄1b̄2) can be obtained by connecting the outward leg ak to a new node in the middle of any
of the edges and outward legs of a (k − 1)-vertex tree in Tg(a1 · · · ak−1|b̄1b̄2). There are k − 2 edges and k − 1 outward legs
in a (k − 1)-vertex tree in Tg(a1 · · · ak−1|b̄1b̄2); therefore, tk,2(k) is larger than tk−1,2(k − 1) by a factor of 2k − 3. So we get
tk,2(k) = (2k − 3)!!.

There is a unique 2-vertex tree, so we have

tk,m(2) =

k−2
i=0


k
i


+

m−2
i=1

m
i


= 2k

+ 2m
− k − m − 3.

There are three 3-vertex directed trees,

◦ // ◦ // ◦ ◦ // ◦ ◦oo ◦ ◦oo // ◦ . (33)

We compute their respective contributions to tk,m(3),

tk,m(3) =

k−3
i=1


k
i

 k−2−i
j=1


k − i
j


+

k−2
i=1


k
i

 m−2
j=0


m
j


+

m−3
i=0

m
i

 m−2−i
j=1


m − i

j



+
1
2

m−2
i=2

m
i

 m−i
j=2


m − i

j


+

1
2

k−2
i=2


k
i

 k−i
j=2


k − i
j


,
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Table 1
tk,m(n), numbers of contractible semistable trees.

(k,m) n = 1 n = 2 n = 3 n = 4 n = 5 n = 6

(2, 2) 1 1
(3, 2) 1 4 3
(4, 2) 1 11 25 15
(3, 3) 1 7 15 9
(5, 2) 1 26 130 210 105
(4, 3) 1 14 58 90 45
(6, 2) 1 57 546 1750 2205 945
(5, 3) 1 29 208 628 765 325
(4, 4) 1 21 150 432 529 225

where the first three summations come from the first tree of (33), the last two summations come from the second and third
trees of (33) respectively. We can simplify the binomials to get (32). �
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