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REDSHIFT AND CONTACT FORMS

VLADIMIR CHERNOV AND STEFAN NEMIROVSKI

Abstract. It is shown that the redshift between two Cauchy sur-
faces in a globally hyperbolic spacetime equals the ratio of the as-
sociated contact forms on the space of light rays of that spacetime.

1. Introduction

Let X be a spacetime, that is, a connected time-oriented Lorentz
manifold [2, §3.1]. The Lorentz scalar product on X will be denoted by
〈 , 〉 and assumed to have signature (+,−, . . . ,−) with n ≥ 2 negative
spatial dimensions.

Suppose that nE (‘emitter’) and nR (‘receiver’) are two infinitesimal
observers, i.e. future-pointing unit Lorentz length vectors, at events
E,R ∈ X connected by a null geodesic γ. Then the photon redshift
z = z(nE, nR, γ) from nE to nR along γ is defined by the formula

1 + z =
〈nE, γ̇(E)〉
〈nR, γ̇(R)〉

for any affine parametrisation of γ. In other words, 1 + z is the ratio
of the frequencies of any lightlike particle travelling along γ measured
by nE and nR, see e.g. [11, Appendix 9A] or [17, p. 354]. If z > 0, such
particles appear ‘redder’ (having lower frequency) to nR than to nE,
whence the terminology.

Assume now that X is globally hyperbolic [4, 5] and consider its
space of light rays NX . By definition, a point γ ∈ NX is an equivalence
class of inextendible future-directed null geodesics up to an orientation
preserving affine reparametrisation.

A seminal observation of Penrose and Low [18, 13, 14] is that the
space NX has a canonical structure of a contact manifold (see also
[16, 12, 1]). A contact form αM on NX defining that contact structure
can be associated to any smooth spacelike Cauchy surface M ⊂ X.
Namely, consider the map

ιM : NX ↪−→ T ∗M

taking γ ∈ NX represented by a null geodesic γ ⊂ X to the 1-form
on M at the point x = γ ∩ M collinear to 〈γ̇(x), · 〉|M and having
unit length with respect to the induced Riemann metric on M (see
formula (2.2) below). This map identifies NX with the unit cosphere
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2 CHERNOV & NEMIROVSKI

bundle S∗M of the Riemannian manifold (M,−〈 , 〉|M). Then

αM := ι∗M λcan,

where λcan =
∑
pkdq

k is the canonical Liouville 1-form on T ∗M .
Contact forms defining the same contact structure are pointwise pro-

portional. The purpose of the present note is to point out that the ratio
of the contact forms on NX associated to different Cauchy surfaces in
X is given by the redshifts between infinitesimal observers having those
Cauchy surfaces as their rest spaces.

Definition 1.1. Let M and M ′ be spacelike Cauchy surfaces in X.
The redshift from M to M ′ along γ ∈ NX is defined by

z(M,M ′,γ) := z
(
nM(x), nM ′(x

′), γ
)
,

where γ is any inextendible null geodesic representing γ, x = γ ∩M ,
x′ = γ ∩ M ′, and nM and nM ′ are the future pointing normal unit
vector fields on M and M ′.

Theorem 1.2. Let M and M ′ be spacelike Cauchy surfaces in X. For
every γ ∈ NX , we have

αM ′

αM
(γ) = 1 + z(M,M ′,γ).

Remark 1.3. The theorem remains true for partial Cauchy surfaces,
i.e. locally closed acausal spacelike hypersurfaces M,M ′ ⊂ X, and for
γ ∈ NX corresponding to null geodesics intersecting both M and M ′.

Remark 1.4. If M and M ′ are Cauchy surfaces through a point x ∈ X
such that nM(x) = nM ′(x), then the theorem shows that the contact
forms αM and αM ′ coincide on the tangent spaces to NX at all points
corresponding to null geodesics passing through x. In other words, an
infinitesimal observer at an event x defines a contact form on TNX

restricted to the sky Sx ⊂ NX .

The contact geometry of NX was previously used to recover the
causal or, equivalently [15], conformal structure of X, see [14, 16, 10,
7, 8, 9]. Theorem 1.2 should make it possible to apply techniques from
contact geometry to study the metric structure of a globally hyperbolic
spacetime. A token application to the comparison of Liouville and
Riemannian volumes on different Cauchy surfaces is given in §3 below.

2. Proof of Theorem 1.2

The key fact is the following basic property of vector fields tangent
to variations of pseudo-Riemannian geodesics by curves of the same
speed. For Jacobi fields tangent to families of null geodesics in Lorentz
manifolds, this computation appears in [18, p. 176], [16, pp. 252–253],
and [1, pp. 10–11].



REDSHIFT AND CONTACT FORMS 3

Lemma 2.1. Let γs : (a, b) → X, 0 ≤ s < ε, be a one-parameter
family of curves in a pseudo-Riemannian manifold (X, 〈 , 〉) such that
γ0 is a geodesic and 〈γ̇s, γ̇s〉 is independent of s. If

J(t) :=
d

ds

∣∣∣∣
s=0

γs(t)

is the vector field along γ0 tangent to this family, then

〈γ̇0(t), J(t)〉 = const.

Proof. Let us show that the t-derivative of this scalar product is zero.
Indeed,

d

dt
〈γ̇0(t), J(t)〉 = 〈∇tγ̇0(t), J(t)〉+ 〈γ̇0(t),∇tJ(t)〉, (2.1)

where ∇ is the pull-back of the Levi-Civita connection of the pseudo-
Riemannian metric on X to (a, b) × [0, ε) by the map (t, s) 7→ γs(t).
The first term on the right hand side vanishes because the tangent
vector of a geodesic is parallel along the geodesic. Note further that

∇t
∂

∂s
= ∇s

∂

∂t

since the Levi-Civita connection has no torsion and
[
∂
∂s
, ∂
∂t

]
= 0 (see

also [17, Proposition 4.44(1)]). Hence, the right hand side of (2.1) is
equal to

〈γ̇0(t),∇sγ̇s(t)
∣∣∣
s=0
〉 =

1

2

d

ds

∣∣∣∣
s=0

〈γ̇s, γ̇s〉 = 0

because the speed of γs is independent of s by assumption. �
Remark 2.2. The relevance of torsion in this context is pointed out
in the footnote on p. 184 of [18].

Let now M be a smooth spacelike Cauchy surface in a spacetime X
and γ an inextendible future-directed null geodesic in X intersecting
M at the (unique) point x = γ ∩M . Then

ιM(γ) =
〈γ̇(x), · 〉|M
〈γ̇(x), nM(x)〉 , (2.2)

where nM is the future-pointing unit normal vector field on M and
γ ∈ NX is the equivalence class of γ. Indeed, since 〈γ̇(x), · 〉 is a null
covector, the Riemannian length of its restriction to TxM is equal to the
Riemannian length of its restriction to the Lorentz normal direction,
which is precisely 〈γ̇(x), nM(x)〉(> 0).

Thus, if v ∈ TγNX and v = (ιM)∗v, then

αM(v) = λcan(v) =
〈γ̇(x), (πM)∗v〉
〈γ̇(x), nM(x)〉 (2.3)

by the definition of the canonical 1-form λcan and formula (2.2), where
πM : T ∗M →M denotes the bundle projection.
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Suppose that γs : (a, b)→ X, s ∈ [0, ε), is a family of null geodesics
intersecting M such that the maximal extension of γ0 is γ and the
corresponding curve in NX has tangent vector v at γ or, equivalently,
d
ds

∣∣
s=0

ιM(γs) = v. Let x(s) = γs ∩M so that x(0) = x. Then

(πM)∗v =
d

ds

∣∣∣∣
s=0

x(s)

because x(s) = πM ◦ ιM(γs) by the definition of ιM . Hence,

(πM)∗v = J(x) + τ ′(0)γ̇(x),

where J = d
ds

∣∣
s=0

γs is the Jacobi vector field along γ0 tangent to the
family γs and τ = τ(s) is the function defined by γs(τ(s)) = x(s). Since
γ̇(x) is null, it follows that

〈γ̇(x), (πM)∗v〉 = 〈γ̇(x), J(x)〉. (2.4)

If M ′ is another Cauchy surface and x′ = γ ∩M ′, we may choose
(a, b) ⊆ R so that γ(a, b) 3 x, x′ and a family γs as above exists on (a, b).
By formulas (2.3) and (2.4), we obtain

αM(v) =
〈γ̇(x), J(x)〉
〈γ̇(x), nM(x)〉 and αM ′(v) =

〈γ̇(x′), J(x′)〉
〈γ̇(x′), nM ′(x′)〉

.

However,

〈γ̇(x), J(x)〉 = 〈γ̇(x′), J(x′)〉
by Lemma 2.1 and therefore

αM ′(v)

αM(v)
=
〈γ̇(x), nM(x)〉
〈γ̇(x′), nM ′(x′)〉

= 1 + z
(
nM(x), nM ′(x

′), γ
)
,

which proves Theorem 1.2.

Remark 2.3. The proof shows that the ratio
αM′ (v)
αM (v)

, where v is a

tangent vector to NX at a point γ ∈ NX , is a positive function de-
pending only on γ. Thus, the contact forms on NX associated to
different Cauchy surfaces in X define the same co-oriented contact
structure indeed. This contact structure can also be described as the
pull-back of the canonical contact structure on the spherical cotangent
bundle ST ∗M of a Cauchy surface M by the map ρM = sM ◦ ιM ,
where sM : T ∗M − {zero section} → ST ∗M is the projection to the
spherisation, see [16, pp. 252–253] and [7, §4].

3. Liouville measure and Riemannian volume

Let M and M ′ be two spacelike Cauchy surfaces in a globally hyper-
bolic spacetime (X, 〈 , 〉) and consider the contact forms αM = ι∗Mλcan
and αM ′ = ι∗M ′λcan on NX associated to M and M ′. Then

αM =
(
1 + z(M,M ′,γ)

)−1
αM ′
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by Theorem 1.2 and therefore

αM ∧ (dαM)n−1 =
(
1 + z(M,M ′,γ)

)−n
αM ′ ∧ (dαM ′)

n−1 (3.1)

because α ∧ α = 0 and d(fα) = fdα + df ∧ α for any function f and
1-form α.

Recall that the Liouville measure on the unit cosphere bundle of a
Riemannian manifold is defined by the non-vanishing (2n− 1)-form

Ω := λcan ∧ (dλcan)n−1 .

Thus, formula (3.1) may be viewed as a general volume–redshift rela-
tion (cf. [11, §14.12 and §15.9]) for the Liouville measures on the unit
cosphere bundles of M and M ′ with respect to the Riemann metrics
−〈 , 〉|M and −〈 , 〉|M ′ . Indeed, let

ιM ′M = ιM ◦ (ιM ′)
−1 : S∗M ′ ∼=−→ S∗M (3.2)

be the map identifying the unit covectors corresponding to the same
null geodesic at its intersection points with M and M ′. Then (3.1)
shows that

(ιM ′M)∗ΩM =
(
1 + z(M,M ′,γ)

)−n
ΩM ′ (3.3)

at ιM ′(γ) ∈ S∗M ′.
Let L ⊆ NX be a (Borel) subset of the space of light rays and denote

by Lx the set of null geodesics from L passing through a point x ∈ X.
Integrating (3.3) over ιM ′(L), we obtain that

∫

ιM (L)

ΩM =

∫

ιM′ (L)

(
1 + z(M,M ′,γ)

)−n
ΩM ′ . (3.4)

The Liouville measure is locally the product of the Riemann measure
on the base manifold and the surface area measure on the unit sphere in
the standard Euclidean space Rn, see [3, §5.2] or [6, Theorem VII.1.3].
Therefore both integrals in (3.4) can be converted to double integrals.
Applying this to the left hand side first, we see that

∫

ιM (L)

ΩM =

∫

M

dVM(x)

∫

ιM (Lx)

dωx =

∫

M

ωM(x,L) dVM(x),

where dVM is the Riemann measure on M , dωx is the surface area
measure on the fibre S∗xM , and

ωM(x,L) :=

∫

ιM (Lx)

dωx

is the area of the set ιM(Lx) of unit covectors at x ∈M corresponding
to null geodesics from L, i.e. the solid angle spanned by the light rays
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from L at x ∈M . Now (3.4) takes the form
∫

M

ωM(x,L) dVM(x) =

∫

M ′

dVM ′(x
′)

∫

ιM′ (Lx′ )

(
1 + z(M,M ′,γ)

)−n
dωx′ .

(3.5)

Example 3.1. Assume that the redshift z(M,M ′,γ) = z is the same
for all γ ∈ L. Then (3.5) simplifies to

∫

M

ωM(x,L) dVM(x) =
1

(1 + z)n

∫

M ′

ωM ′(x
′,L) dVM ′(x

′).

Example 3.2. Let L = NX be the set of all light rays. Then

ιM(Lx) = S∗xM

for every Cauchy surface M and every point x ∈M . Hence,

ωM(x,L) = cn,

where cn is the area of the standard unit sphere in Rn. Therefore (3.5)
implies

cnVol(M) =

∫

M ′

dVM ′(x
′)

∫

S∗
x′M

′

(
1 + z(M,M ′,γ)

)−n
dωx′ .

If the redshift is constant as in Example 3.1, it follows that

Vol(M) =
1

(1 + z)n
Vol(M ′).

More generally, if z ≤ z(M,M ′,γ) ≤ z, then

1

(1 + z)n
Vol(M ′) ≤ Vol(M) ≤ 1

(1 + z)n
Vol(M ′).

Example 3.3. Consider a subset D ⊆M and let

LD = {γ ∈ NX | γ ∩D 6= ∅}

be the set of all light rays passing through D. Then

ιM(LDx ) =

{
S∗xM, x ∈ D,
∅, x ∈M \D,

and therefore

ωM(x,LD) =

{
cn, x ∈ D,
0, x ∈M \D.
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Hence, (3.5) gives the following expressions for the volume of D in M :

VolM(D) =
1

cn

∫

M ′

dVM ′(x
′)

∫

ιM′ (L
D
x′ )

(
1 + z(M,M ′,γ)

)−n
dωx′ (3.6)

=
1

cn

∫

{ιM′ (γ)| γ∩D 6=∅}

(
1 + z(M,M ′,γ)

)−n
ΩM ′ . (3.7)

Thus, the volume of D ⊆ M can be computed by integrating the red-

shift factor
(
1 + z(M,M ′,γ)

)−n
with respect to the Liouville measure

on S∗M ′ over the subset of all unit covectors on M ′ corresponding to
light rays γ passing through D. For constant redshift, (3.6) reduces to

VolM(D) =
1

cn(1 + z)n

∫

M ′

ωM ′(x
′,LD) dVM ′(x

′).

Note that if M lies in the past of M ′, then ωM ′(x
′,LD) may be inter-

preted as the solid angle at x′ ∈M ′ subtended by D ⊆M .

Figure 1. Cauchy surfaces and light rays (n = 2).

Example 3.4. Let now

LDD
′

:= LD ∩ LD
′

= {γ ∈ NX | γ ∩D 6= ∅, γ ∩D′ 6= ∅}
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be the set of all light rays intersecting D ⊆ M and D′ ⊆ M ′. (Exam-
ple 3.3 is a special case of this situation with D′ = M ′.) Then

ιM(LDD
′

x ) =

{
ιM(LD

′
x ), x ∈ D,

∅, x ∈M \D,
and similarly

ιM ′(L
DD′
x′ ) =

{
ιM ′(L

D
x′), x′ ∈ D′,

∅, x′ ∈M ′ \D′.
Hence, it follows from (3.5) that
∫

D

ωM(x,LD
′
) dVM(x) =

∫

D′

dVM ′(x
′)

∫

ιM′ (L
D
x′ )

(
1 + z(M,M ′,γ)

)−n
dωx′ .

In the case of constant redshift z, we obtain
∫

D

ωM(x,LD
′
) dVM(x) =

1

(1 + z)n

∫

D′

ωM ′(x
′,LD) dVM ′(x

′).

If M is in the past of M ′, then ωM ′(x
′,LD) is the solid angle subtended

by D at x′ as in Example 3.3 and ωM(x,LD
′
) is the solid angle at x ∈M

spanned by rays emitted from x and received in D′, see Fig. 1.
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