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For the double complex structure of grading-restricted vertex algebra cohomology defined 
in [6,7], we introduce a multiplication of elements of double complex spaces. We show that 
the orthogonality and bi-grading conditions applied on double complex spaces, provide 
in relation among mappings and actions of co-boundary operators. Thus, we endow the 
double complex spaces with structure of bi-graded differential algebra. We then introduce 
the simplest cohomology classes for a grading-restricted vertex algebra, and show their 
independence on the choice of mappings from double complex spaces. We prove that 
its cohomology class does not depend on mappings representing of the double complex 
spaces. Finally, we show that the orthogonality relations together with the bi-grading 
condition bring about generators and commutation relations for a continual Lie algebra.

© 2021 Elsevier B.V. All rights reserved.

1. Introduction: W -valued rational functions

In [6] the cohomology theory for a grading-restricted vertex algebra [8,4] (see Appendix A) was introduced. The definition 
of double complex spaces and co-boundary operators, uses an interpretation of vertex algebras in terms of rational functions 
constructed from matrix elements [5] for a grading-restricted vertex algebra. The notion of composability (see Section 1.2) 
of double complex space elements with a number of vertex operators, is essentially involved in the formulation. Then the 
cohomology of such complexes defines in the standard way a cohomology of a grading-restricted vertex algebras. It is an 
important problem to study possible cohomological classes for vertex algebras. In this paper we do the first steps to discover 
simplest cohomological invariants associated to the setup described above. For that purpose we first endow the double 
complex spaces with natural product, derive a counterpart of Leibniz formula for the action of co-boundary operators. Then 
we introduce the notion of a cohomological class for a vertex algebra. The orthogonality condition of double complex space 
is then defined. We show that the orthogonality being applied to the double complex spaces leads to relations among 
mappings and actions of co-boundary operators. The simplest non-vanishing cohomology classes for a grading-restricted 
vertex algebra is then derived. We show that such classes are independent of the choice of elements of the double complex 
spaces. Finally, we discuss occurring relations of a vertex algebra double complex relations with a continual Lie algebra [9]. 
For further applications of material introduced in this paper, we would mention the natural question of searching for more 
general cohomological invariants for a grading-restricted vertex algebra. Concerning possible applications, one can use the 
cohomological classes we derive to compute higher cohomologies of grading-restricted vertex algebras.

Let V be a grading-restricted vertex algebra, and W a grading-restricted generalized V -module (see Appendix A). One 
defines the configuration space [6]:
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FnC = {(z1, . . . , zn) ∈Cn | zi �= z j, i �= j},
for n ∈Z+ .

Definition 1. A W -valued rational function F in (z1, . . . , zn) with the only possible poles at zi = z j , i �= j, is a map

F : FnC → W ,

(z1, . . . , zn) �→ F(z1, . . . , zn),

such that for any w ′ ∈ W ′ ,

〈w ′,F(z1, . . . , zn)〉, (1.1)

is a rational function in (z1, . . . , zn) with the only possible poles at zi = z j , i �= j. Such map is called in what fallows W -
valued rational function in (z1, . . . , zn) with possible other poles. Denote the space of all W -valued rational functions in 
(z1, . . . , zn) by W z1,...,zn .

Namely, if a meromorphic function f (z1, . . . , zn) on a region in Cn can be analytically extended to a rational function 
in (z1, . . . , zn), then the notation R( f (z1, . . . , zn)), is used to denote such rational function. Note that the set of a grading-
restricted vertex algebra elements (v1, . . . , vn) associated with corresponding (z1, . . . , zn) play the role of non-commutative 
parameters for a function F in (1.1). Let us introduce the definition of a Wz1,...,zn -space:

Definition 2. We define the space Wz1,...,zn of W z1,...,zn -valued rational forms � with each vertex algebra element entry vi , 
1 ≤ i ≤ n of a quasi-conformal grading-restricted vertex algebra V tensored with power wt (vi)-differential of corresponding 
formal parameter zi , i.e.,

�(v1, z1; . . . ; vn, zn)

= F
(

dzwt (v1)
1 ⊗ v1, z1; . . . ;dzwt (vn)

n ⊗ vn, zn

)
∈ Wz1,...,zn , (1.2)

where F ∈ W z1,...,zn .

Definition 3. One defines an action of Sn on the space Hom(V ⊗n, Wz1,...,zn ) of linear maps from V ⊗n to W z1,...,zn by

σ(�)(v1 ⊗ · · · ⊗ vn)(z1, . . . , zn),= �(vσ (1) ⊗ · · · ⊗ vσ (n))(zσ (1), . . . , zσ (n)), (1.3)

for σ ∈ Sn and v1, . . . , vn ∈ V , � ∈ Wz1,...,zn . We will use the notation σi1,...,in ∈ Sn , to denote the permutation given by 
σi1,...,in ( j) = i j , for j = 1, . . . , n.

Definition 4. For n ∈Z+ , a linear map

F(v1, z1; . . . ; vn, zn) = V ⊗n → Wz1,...,zn ,

is said to have the LV (−1)-derivative property if

(i) ∂ziF(v1, z1; . . . ; vn, zn) = F(v1, z1; . . . ; LV (−1)vi, zi; . . . ; vn, zn), (1.4)

for i = 1, . . . , n, (v1, . . . , vn) ∈ V , w ′ ∈ W , and

(ii)
n∑

i=1

∂ziF(v1, z1; . . . ; vn, zn) = LW (−1).F(v1, z1; . . . ; vn, zn), (1.5)

with some action “.” of LW (−1) on F(v1, z1; . . . ; vn, zn).

Definition 5. A linear map

F : V ⊗n → Wz1,...,zn

has the LW (0)-conjugation property if for (v1, . . . , vn) ∈ V , (z1, . . . , zn) ∈ FnC, and z ∈C× , such that (zz1, . . . , zzn) ∈ FnC,

zLW (0)F (v1, z1; . . . ; vn, zn) = F
(

zLV (0)v1, zz1; . . . ; zLV (0)vn, zzn

)
. (1.6)
2
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1.1. E-elements

For w ∈ W , the W -valued function E(n)
W (v1 ⊗ · · · ⊗ vn; w) is given by

E(n)
W (v1 ⊗ · · · ⊗ vn; w)(z1, . . . , zn) = E(Y W (v1, z1) · · · Y W (vn, zn)w),

where an element E(.) ∈ W is given by

〈w ′, E(.)〉 = R(〈w ′, .〉),
and R(.) denotes the rationalization in the sense of [6]. Namely, if a meromorphic function f (z1, . . . , zn) on a region in Cn

can be analytically extended to a rational function in (z1, . . . , zn), then the notation R( f (z1, . . . , zn)) is used to denote such 
rational function. One defines

E W ;(n)
W V (w; v1 ⊗ · · · ⊗ vn) = E(n)

W (v1 ⊗ · · · ⊗ vn; w),

where E W ;(n)
W V (w; v1 ⊗ · · · ⊗ vn) is an element of W z1,...,zn . One defines

� ◦
(

E(l1)
V ; 1 ⊗ · · · ⊗ E(ln)

V ; 1

)
: V ⊗m+n → W z1,...,zm+n ,

by

(� ◦ (E(l1)
V ; 1 ⊗ · · · ⊗ E(ln)

V ; 1))(v1 ⊗ · · · ⊗ vm+n−1)

= E(�(E(l1)
V ;1(v1 ⊗ · · · ⊗ vl1) ⊗ · · · E(ln)

V ;1(vl1+···+ln−1+1 ⊗ · · · ⊗ vl1+···+ln−1+ln))),

and

E(m)
W ◦m+1 � : V ⊗m+n → W z1,...,zm+n−1 ,

is given by

(E(m)
W ◦m+1 �)(v1 ⊗ · · · ⊗ vm+n)

= E(E(m)
W (v1 ⊗ · · · ⊗ vm;�(vm+1 ⊗ · · · ⊗ vm+n))).

Finally,

E W ;(m)
W V ◦0 � : V ⊗m+n → W z1,...,zm+n−1 ,

is defined by

(E W ;(m)
W V ◦0 �)(v1 ⊗ · · · ⊗ vm+n) = E(E W ;(m)

W V (�(v1 ⊗ · · · ⊗ vn); vn+1 ⊗ · · · ⊗ vn+m)).

In the case that l1 = · · · = li−1 = li+1 = 1 and li = m −n − 1, for some 1 ≤ i ≤ n, we will use � ◦i E(li)
V ; 1 to denote � ◦ (E(l1)

V ; 1 ⊗
· · · ⊗ E(ln)

V ; 1).

1.2. Maps composable with vertex operators

Since W -valued rational functions above are valued in W , for z ∈C× , u, v ∈ V , w ∈ W , Y V (u, z)v ∈ V , and Y W (u, z)v ∈
W , one might not be able to compose in general a linear map from a tensor power of V to W z1,...,zn with vertex operators. 
Thus in [6] they consider linear maps from tensor powers of V to W z1,...,zn such that these maps can be composed with 
vertex operators in the sense mentioned above.

Definition 6. For a V -module W = ∐
n∈C W (n) and m ∈ C, let Pm : W → W (m) be the projection from W to W (m) . Let 

� : V ⊗n → W z1,...,zn be a linear map. For m ∈ N , � is said [6] to be composable with m vertex operators if the following 
conditions are satisfied:

(1) Let l1, . . . , ln ∈Z+ such that l1 + · · · + ln = m + n, v1, . . . , vm+n ∈ V and w ′ ∈ W ′ . Set

�i = E(li)
V (vk1 ⊗ · · · ⊗ vki ;1V )(zk1 , . . . , zki ),

where k1 = l1 + · · · + li−1 + 1, ..., vki = l1 + · · · + li−1 + li , for i = 1, . . . , n. Then there exist positive integers Nn
m(vi, v j)

depending only on vi and v j for i, j = 1, . . . , k, i �= j such that the series
3
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∑
r1,...,rn∈Z

〈w ′, (�(Pr1�1 ⊗ · · · ⊗ Prn�n))(ζ1, . . . , ζn)〉,

is absolutely convergent when |zl1+···+li−1+p − ζi | + |zl1+···+l j−1+q − ζi | < |ζi − ζ j |, for i, j = 1, . . . , k, i �= j and for p =
1, . . . , li and q = 1, . . . , l j . The sum must be analytically extended to a rational function in (z1, . . . , zm+n), independent 
of (ζ1, . . . , ζn), with the only possible poles at zi = z j , of order less than or equal to Nn

m(vi, v j), for i, j = 1, . . . , k, i �= j.
(2) For v1, . . . , vm+n ∈ V , there exist positive integers Nn

m(vi, v j), depending only on vi and v j , for i, j = 1, . . . , k, i �= j, 
such that for w ′ ∈ W ′ , and vn,m = (v1+m ⊗ · · · ⊗ vn+m), zn,m = (z1+m, . . . , zn+m), such that∑

q∈C
〈w ′, (E(m)

W (v1 ⊗ · · · ⊗ vm; Pq((�(vn,m))(zn,m)))〉,

is absolutely convergent when zi �= z j , i �= j |zi | > |zk| > 0 for i = 1, . . . , m, and k = m + 1, . . . , m + n, and the sum can 
be analytically extended to a rational function in (z1, . . . , zm+n) with the only possible poles at zi = z j , of orders less 
than or equal to Nn

m(vi, v j), for i, j = 1, . . . , k, i �= j,.

In [6] one finds:

Proposition 1. The subspace of Hom(V ⊗n, Wz1,...,zn ) consisting of linear maps having the L(−1)-derivative property, having the 
L(0)-conjugation property or being composable with m vertex operators is invariant under the action of Sn.

2. Chain complexes and cohomologies

Let us recall the definition of shuffles [6].

Definition 7. For l ∈N and 1 ≤ s ≤ l − 1, let J l;s be the set of elements of Sl which preserve the order of the first s numbers 
and the order of the last l − s numbers, i.e.,

Jl,s = {σ ∈ Sl | σ(1) < · · · < σ(s), σ (s + 1) < · · · < σ(l)}.
The elements of J l;s are called shuffles. Let J−1

l;s = {σ | σ ∈ Jl;s}.

Now we introduce the notion of a Cn
m(V , W)-space:

Definition 8. Let V be a vertex operator algebra and W a V -module. For n ∈ Z+ , let Cn
0(V , W) be the vector space of 

all linear maps from V ⊗n to Wz1,...,zn satisfying the L(−1)-derivative property and the L(0)-conjugation property. For m, 
n ∈ Z+ , let Cn

m(V , W) be the vector spaces of all linear maps from V ⊗n to Wz1,...,zn composable with m vertex operators, 
and satisfying the L(−1)-derivative property, the L(0)-conjugation property, and such that∑

σ∈ J−1
l;s

(−1)|σ |σ
(
�(vσ (1) ⊗ · · · ⊗ vσ (l))

) = 0. (2.1)

Using a generalization of the construction of the vertex algebra bundle and coordinate-free formulation of vertex opera-
tors in [1] for the case of W-valued forms, we obtain following

Lemma 1. An element (1.2) of Cn
m(V , W) is invariant with respect the group Autz1,...,znO(n) of n-dimensional independent changes of 

formal parameters

(z1, . . . , zn) �→ (ρ1(z1, . . . , zn), . . . , ρn(z1, . . . , zn)). �
We also find in [6]

Proposition 2. Let C0
m(V , W) =W . Then we have Cn

m(V , W) ⊂ Cn
m−1(V , W), for m ∈Z+ .

In [6] the co-boundary operator for the double complex spaces Cn
m(V , W) was introduced:

δn
m : Cn

m(V ,W) → Cn+1
m−1(V ,W). (2.2)

For � ∈ Cn
m(V , W), it is given by
4
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δn
m(�) = E(1)

W ◦2 � +
n∑

i=1

(−1)i� ◦i E(2)
V ;1 + (−1)n+1σn+1,1,...,n(E(1)

W ◦2 �), (2.3)

where ◦i is defined in Subsection 1. Explicitly, for v1, . . . , vn+1 ∈ V , w ′ ∈ W ′ and (z1, . . . , zn+1) ∈ Fn+1C,

〈w ′, ((δn
m(�))(v1 ⊗ · · · ⊗ vn+1))(z1, . . . , zn+1)〉

= R(〈w ′, Y W (v1, z1)(�(v2 ⊗ · · · ⊗ vn+1))(z2, . . . , zn+1)〉)

+
n∑

i=1

(−1)i R(〈w ′, (�(v1 ⊗ · · · ⊗ vi−1 ⊗ Y V (vi, zi − zi+1)vi+1

⊗· · · ⊗ vn+1))(z1, . . . , zi−1, zi+1, . . . , zn+1)〉)
+(−1)n+1 R(〈w ′, Y W (vn+1, zn+1)(�(v1 ⊗ · · · ⊗ vn))(z1, . . . , zn)〉).

In the case n = 2, there is a subspace of C2
0(V , W) containing C2

m(V , W) for all m ∈Z+ such that δ2
m is still defined on this 

subspace. Let C2
1
2
(V , W) be the subspace of C2

0(V , W) consisting of elements � such that for v1, v2, v3 ∈ V , w ′ ∈ W ′ ,

∑
r∈C

(〈w ′, E(1)
W (v1; Pr((�(v2 ⊗ v3))(z2 − ζ, z3 − ζ )))(z1, ζ )〉

+〈w ′, (�(v1 ⊗ Pr((E(2)
V (v2 ⊗ v3;1))(z2 − ζ, z3 − ζ ))))(z1, ζ )〉),

and ∑
r∈C

(〈w ′, (�(Pr((E(2)
V (v1 ⊗ v2;1))(z1 − ζ, z2 − ζ )) ⊗ v3))(ζ, z3)〉

+〈w ′, E W ;(1)
W V (Pr((�(v1 ⊗ v2))(z1 − ζ, z2 − ζ )); v3))(ζ, z3)〉

)
are absolutely convergent in the regions |z1 − ζ | > |z2 − ζ |, |z2 − ζ | > 0 and |ζ − z3| > |z1 − ζ |, |z2 − ζ | > 0, respectively, and 
can be analytically extended to rational functions in z1 and z2 with the only possible poles at z1, z2 = 0 and z1 = z2. It is 
clear that C2

m(V , W) ⊂ C2
1
2
(V , W) for m ∈Z+ . The co-boundary operator

δ2
1
2

: C2
1
2
(V ,W) → C3

0(V ,W), (2.4)

is defined in [6] by

δ2
1
2
(�) = E(1)

W ◦2 � +
2∑

i=1

(−1)i E(2)
V ,1V

◦i � + E W ;(1)
W V ◦2 �,

〈w ′, ((δ2
1
2
(�))(v1 ⊗ v2 ⊗ v3))(z1, z2, z3)〉

= R(〈w ′, (E(1)
W (v1;�(v2 ⊗ v3))(z1, z2, z3)〉

+〈w ′, (�(v1 ⊗ E(2)
V (v2 ⊗ v3;1)))(z1, z2, z3)〉)

−R(〈w ′, (�(E(2)
V (v1 ⊗ v2;1)) ⊗ v3))(z1, z2, z3)〉

+〈w ′, (E W ;(1)
W V (�(v1 ⊗ v2); v3))(z1, z2, z3)〉) (2.5)

for w ′ ∈ W ′ , � ∈ C2
1
2
(V , W), v1, v2, v3 ∈ V and (z1, z2, z3) ∈ F3C.

Consider the short sequence of the double complex spaces

0 −→ C0
3(V ,W)

δ0
3−→ C1

2(V ,W)
δ1

2−→ C2
1
2
(V ,W)

δ2
1
2−→ C3

0(V ,W) −→ 0, (2.6)

of (2.2). The first and last arrows are trivial embeddings and projections.
In [6] we find:

Proposition 3. For n ∈N and m ∈Z+ + 1, the co-boundary operators (2.3) and (2.5) satisfy the chain complex conditions, i.e.,

δn+1
m−1 ◦ δn

m = 0,

δ2
1 ◦ δ1

2 = 0.

2
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Since

δ1
2(C1

2(V ,W)) ⊂ C2
1(V ,W) ⊂ C2

1
2
(V ,W),

the second formula follows from the first one, and

δ2
1
2

◦ δ1
2 = δ2

1 ◦ δ1
2 = 0.

Using the double complexes (2.2) and (2.4), for m ∈Z+ and n ∈N , one introduces in [6] the n-th cohomology Hn
m(V , W )

of a grading-restricted vertex algebra V with coefficient in W , and composable with m vertex operators to be

Hn
m(V ,W) = ker δn

m/im δn−1
m+1,

H2
1
2
(V ,W) = ker δ2

1
2
/im δ1

2 .

3. The ε-product of C n
m(V , W)-spaces

In this section we introduce definition of the ε-product of double complex spaces Cn
m(V , W) with the image in another 

double complex space coherent with respect to the original differential (2.2), and satisfying the symmetry (2.1), LV (0)-
conjugation (1.6), and LV (−1)-derivative (1.4) properties and derive an analogue of Leibniz formula.

3.1. Motivation and geometrical interpretation

The structure of Cn
m(V , W)-spaces is quite complicated and it is difficult to introduce algebraically a product of its 

elements. In order to define an appropriate product of two Cn
m(V , W)-spaces we first have to interpret them geometrically. 

Basically, a Cn
m(V , W)-space must be associated with a certain model space, the algebraic W-language should be transferred 

to a geometrical one, two model spaces should be “connected” appropriately, and, finally, a product should be defined.
For two Wx1,...,xk - and Wy1,...,yn -spaces we first associate formal complex parameters in the sets (x1, . . . , xk) and 

(y1, . . . , yn) to parameters of two auxiliary spaces. Then we describe a geometric procedure to form a resulting model 
space by combining two original model spaces. Formal parameters of Wz1,...,zk+n should be then identified with parameters 
of the resulting space.

Note that according to our assumption, (x1, . . . , xk) ∈ FkC, and (y1, . . . , yn) ∈ FnC. As it follows from the definition 
of the configuration space FnC in Subsection 1, in the case of coincidence of two formal parameters they are excluded 
from FnC. In general, it may happen that some number r of formal parameters of Wx1,...,xk coincide with some r formal 
parameters of Wy1,...,yn on the whole C (or on a domain of definition). Then, we exclude one formal parameter from each 
coinciding pair. We require that the set of formal parameters

(z1, . . . , zk+n−r) = (. . . , xi1 , . . . , xir , . . . ; . . . , ŷ j1 , . . . , ŷ jr , . . .), (3.1)

where ̂. denotes the exclusion of corresponding formal parameter for xil = y jl , 1 ≤ l ≤ r, for the resulting model space would 
belong to Fk+n−rC. We denote this operation of formal parameters exclusion by R̂ F(x1, . . . , xk; y1, . . . , yn; ε).

Now we formulate the definition of the ε-product of two Cn
m(V , W)-spaces:

Definition 9. For F(v1, x1; . . . ; vk, xk) ∈ Ck
m(V , W), and F(v ′

1, y1; . . . ; v ′
n, yn) ∈ Cn

m′ (V , W) the product

F(v1, x1; . . . ; vk, xk) ·ε F(v ′
1, y1; . . . ; v ′

n, yn)

�→ R̂ F
(

v1, x1; . . . ; vk, xk; v ′
1, y1; . . . ; v ′

n, yn;ε)
, (3.2)

is a Wz1,...,zk+n−r -valued rational form

〈w ′, R̂ F(v1, x1; . . . ; vk, xk; v ′
1, y1; . . . ; v ′

n, yn;ε)〉
=

∑
u∈V

〈w ′, Y W
W V (F(v1, x1; . . . ; vk, xk), ζ1) u〉

〈w ′, Y W
W V

(
F(v ′

1, y1; . . . ; v ′
i1 , ŷi1; . . . ; . . . ; v ′

jr , ŷ jr ; . . . ; v ′
n, yn), ζ2

)
u〉, (3.3)

via (1.1), parametrized by ζ1, ζ2 ∈ C, and we exclude all monomials (xil − y jl ), 1 ≤ l ≤ r, from (3.5). The sum is taken 
over any Vl-basis {u}, where u is the dual of u with respect to a non-degenerate bilinear form 〈. , .〉λ , (A.8) over V (see 
Appendix A).

Remark 1. Due to the symmetry of the geometrical interpretation describe above, we could exclude from the set (x1, . . . , xk)

in (3.5) r formal parameters which belong to coinciding pairs resulting to the same definition of the ε-product.
6
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By the standard reasoning [3,12], (3.5) does not depend on the choice of a basis of u ∈ Vl , l ∈ Z. In the case when 
multiplied forms F do not contain V -elements, i.e., for �, � ∈ W , (3.5) defines the product � ·ε � associated to a rational 
function:

R(ε) =
∑
l∈Z

εl
∑
u∈Vl

〈w ′, Y W
W V (�, ζ1) u〉〈w ′, Y W

W V (�, ζ2) u〉, (3.4)

which defines F(ε) ∈ W via R(ε) = 〈w ′, F(ε)〉.

3.2. Convergence and properties of the ε-product

In order to prove convergence of a product of elements of two spaces Wx1,...,xk and Wy1,...,yn of rational W-valued forms, 
we have to use a geometrical interpretation [5,11]. Recall that a Wz1,...,zn -space is defined by means of matrix elements of 
the form (1.1). For a vertex algebra V , this corresponds [3] to a matrix element of a number of V -vertex operators with 
formal parameters identified with local coordinates on a Riemann sphere. Geometrically, each space Wz1,...,zn can be also 
associated to a Riemann sphere with a few marked points, and local coordinates vanishing at these points [5]. An extra 
point can be associated to a center of an annulus used in order to sew the sphere with another sphere. The product (3.5)
has then a geometric interpretation. The resulting model space would also be associated to a Riemann sphere formed as a 
result of sewing procedure. In Appendix B we describe explicitly the geometrical procedure of sewing of two spheres [11].

Let us identify (as in [5,11,12,10,2,1]) two sets (x1, . . . , xk) and (y1, . . . , yn) of complex formal parameters, with local 
coordinates of two sets of points on the first and the second Riemann spheres correspondingly. Identify complex parameters 
ζ1, ζ2 of (3.5) with coordinates (B.1) of the annuluses (B.3). After identification of annuluses Aa and Aa , r coinciding 
coordinates may occur. This takes into account case of coinciding formal parameters. In this way, we construct the map 
(3.2).

As we see in (3.5), the product is defined by a sum of products of matrix elements [3] associated to each of two 
spheres. Such sum is supposed to describe a W-valued rational differential form defined on a sphere formed as a result 
of geometrical sewing [11] of two initial spheres. Since two initial spaces Wx1,...,xk and Wy1,...,yn are defined through 
rational-valued forms expressed by matrix elements of the form (1.1). We then arrive at the resulting product defines a 
Wz1,...,zk+n−r -valued rational form by means of an absolute convergent matrix element on the resulting sphere. The complex 
sewing parameter, parameterizing the module space of sewin spheres, parametrizes also the product of W-spaces.

Next, we formulate

Definition 10. We define the action of an element σ ∈ Sk+n−r on the product of F(v1, x1; . . . ; vk, xk) ∈ Wx1,...,xk , and 
F(v ′

1, y1; . . . ; v ′
n, yn) ∈Wy1,...,yn , as

〈w ′,σ (R̂ F)(v1, x1; . . . ; vk, xk; v ′
1, y1; . . . ; v ′

n, yn;ε)〉
= 〈w ′,F (̃vσ (1), zσ (1); . . . ; ṽσ (k+n−r), zσ (k+n−r);ε)〉
=

∑
u∈V

〈w ′, Y W
W V

(
F (̃vσ (1), zσ (1); . . . ; ṽσ (k), zσ (k)), ζ1

)
u〉

〈w ′, Y W
W V

(
F (̃vσ (k+1), zσ (k+1); . . . ; ṽσ (k+n−r), zσ (k+n−r)), ζ2

)
u〉, (3.5)

where by (̃vσ(1), . . . , ̃vσ(k+n−r)) we denote a permutation of

(̃v1, . . . , ṽk+n−r) = (v1, . . . ; vk; . . . , v̂ ′
j1
, . . . , v̂ ′

jr
, . . .). (3.6)

Let t be the number of common vertex operators the mappings F(v1, x1; . . .; vk, xk) ∈ Ck
m(V , W) and F(v ′

1, y1; . . . ;
v ′

n, yn) ∈ Cn
m′ (V , W), are composable with. The rational form corresponding to the ε-product R̂F(v1, x1; . . . ; vk, xk; v ′

1, y1;
. . . ; v ′

n, yn; ε) converges in ε , and satisfies (2.1), LV (0)-conjugation (1.6) and LV (−1)-derivative (1.4) properties. Using Defi-
nition 8 of Cn

m(V , W)-space and Definition 6 of mappsings composable with vertex operators, we then have

Proposition 4. For F(v1, x1; . . . ; vk, xk) ∈ Ck
m(V , W) and F(v ′

1, y1; . . . ; v ′
n, yn) ∈ Cn

m′ (V , W), the product ̂RF(v1, x1; . . . ; vk, xk;
v ′

1, y1; . . . ; v ′
n, yn; ε) (3.5) belongs to the space Ck+n−r

m+m′−t(V , W), i.e.,

·ε : Ck
m(V ,W) × Cn

m′(V ,W) → Ck+n−r
m+m′−t(V ,W). � (3.7)

Remark 2. Note that due to (A.3), in Definition (3.5) it is assumed that F(v1, x1; . . .; vk, xk) and F(v ′
1, y1; . . . ; v ′

n, yn)

are composable with the V -module W vertex operators Y W (u, −ζ1) and Y W (u, −ζ2) correspondingly. The product (3.5) is 
actually defined by a sum of products of matrix elements of ordinary V -module W vertex operators acting on W-elements. 
The elements u ∈ V and u ∈ V ′ are connected by (A.9), and ζ1, ζ2 are related by (B.4). The form of the product defined 
above is natural in terms of the theory of characters for vertex operator algebras [10,2,12].
7
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Remark 3. For purposes of construction of cohomological invariant, we do not exclude in this paper the case of r pais of 
common formal parameters xi = y j , 1 ≤ i ≤ k, 1 ≤ j ≤ n, for F(v1, x1; . . . ; vk, xk) ∈ Ck

m(V , W) and F(v ′
1, y1; . . . ; v ′

n, yn) ∈
Cn

m′ (V , W) in Proposition 1. Such formal parameter pairs are excluded from the right hand side of the map (3.7).

We then have two corollaries:

Corollary 1. For the spaces Wx1,...,xk and Wy1,...,yn with the product (3.5) F ∈Wz1,...,zk+n−r , the subspace of Hom(V ⊗n, Wz1,...,zk+n−r

consisting of linear maps having the LW (−1)-derivative property, having the LV (0)-conjugation property or being composable with 
m vertex operators is invariant under the action of Sk+n−r .

Corollary 2. For a fixed set (v1, . . . vk; vk+1, . . . , vk+n) ∈ V of vertex algebra elements, and fixed k + n, and m + m′ , the ε-product 
F(v1, z1; . . . ; vk, zk; vk+1, zk+1; . . .; vk+n−r, yk+n−r; ε),

·ε : Ck
m(V ,W) × Cn

m′(V ,W) → Ck+n−r
m+m′−t(V ,W),

of the spaces Ck
m(V , W) and Cn

m′ (V , W), for all choices of k, n, m, m′ ≥ 0, is the same element of Ck+n−r
m+m′−t(V , W) for all possible 

k ≥ 0. �
By Lemma 1, elements of the space Ck+n−r

m+m′−t resulting from the ε-product are invariant with respect to changes of formal 
parameters of the group Autz1,...,zk+n−rO(k+n−r) .

We then have

Definition 11. For fixed sets (v1, . . . , vk), (v ′
1, . . . , v

′
n) ∈ V , (x1, . . . , xk) ∈ C, (y1, . . . , yn) ∈ C, we call the set of all 

Wx1,...,xk;y1,...,yn -valued rational forms R̂F(v1, x1; . . . ; vk, xk; v ′
1, y1; . . . ; v ′

n, yn; ε) defined by (3.5) with the parameter ε
exhausting all possible values, the complete product of the spaces Wx1,...,xk and Wy1,...,yn .

3.3. Coboundary operator acting on the product space

In Proposition 4 we proved that the product (3.5) of elements F1Ck
m(V , W) and F2 ∈ Cn

m′ (V , W) belongs to 
Ck+n−r

m+m′−t(V , W). Thus, the product admits the action ot the differential operator δk+n−r
m+m′−t defined in (2.2) where r is the 

number of common formal parameters, and t the number of common composable vertex operators for F1 and F2. The 
co-boundary operator (2.2) possesses a variation of Leibniz law with respect to the product (3.5). We then have

Proposition 5. For F(v1, x1; . . . ; vk, xk) ∈ Ck
m(V , W) and F(v ′

1, y1; . . . ; v ′
n, yn) ∈ Cn

m′ (V , W), the action of δk+n−r
m+m′−t on their prod-

uct (3.5) is given by

δk+n−r
m+m′−t

(
F(v1, x1; . . . ; vk, xk) ·ε F(v ′

1, y1; . . . ; v ′
n, yn)

)
=

(
δk

mF (̃v1, z1; . . . ; ṽk, zk)
)

·ε F (̃vk+1, zk+1; . . . ; ṽk+n, zk+n−r)

+(−1)kF (̃v1, z1; . . . ; ṽk, zk) ·ε
(
δn−r

m′−tF (̃v1, zk+1; . . . ; ṽk+n−r, zk+n−r)
)

,

(3.8)

where we use the notation as in (3.1) and (3.6).

Appendix C contains the proof of this Proposition.

Remark 4. Checking (2.2) we see that an extra arbitrary vertex algebra element vn+1 ∈ V , as well as corresponding extra 
arbitrary formal parameter zn+1 appear as a result of the action of δn

m on F ∈ Cn
m(V , W) mapping it to Cn+1

m−1(V , W). In 
application to the ε-product (3.5) these extra arbitrary elements are involved in the definition of the action of δk+n−r

m+m′−t on 
F(v1, x1; . . . ; vk, xk) ·ε F(v ′

1, y1; . . . ; v ′
n, yn).

Note that both sides of (3.8) belong to the space Cn+n′−r+1
m+m′−t+1(V , W ). The co-boundary operators δn

m and δn′
m′ in (3.8) do not 

include the number of common vertex algebra elements (and formal parameters), neither the number of common vertex 
operators corresponding mappings composable with. The dependence on common vertex algebra elements, parameters, and 
composable vertex operators is taken into account in mappings multiplying the action of co-boundary operators on �.

Finally, we have the following
8
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Corollary 3. The multiplication (3.5) extends the chain-cochain complex structure of Proposition 3 to all products Ck
m(V , W) ×

Cn
m′ (V , W), k, n ≥ 0, m, m′ ≥ 0. �

Corollary 4. The product (3.5) and the product operator (2.2) endow the space Ck
m(V , W) × Cn

m(V , W), k, n ≥ 0, m, m′ ≥ 0, with the 
structure of a bi-graded differential algebra G(V , W, ·ε, δk+n−r

m+m′−t). �
For elements of the spaces C2

ex(V , W) we have the following

Corollary 5. The product of elements of the spaces C2
ex(V , W) and Cn

m(V , W) is given by (3.5),

·ε : C2
ex(V ,W) × Cn

m(V ,W) → Cn+2−r
m (V ,W), (3.9)

and, in particular,

·ε : C2
ex(V ,W) × C2

ex(V ,W) → C4−r
0 (V ,W). �

3.4. The commutator

Let us consider the mappings �(v1, z1; . . .; vn, zk) ∈ Ck
m(V , W), and �(vk+1, zk+1; . . . ; vk+n, zk+n) ∈ Cn

m′ (V , W), with 
have r common vertex algebra elements (and, correspondingly, r formal variables), and t common vertex operators map-
pings � and � are composable with. Note that when applying the co-boundary operators (2.3) and (2.5) to a map 
�(v1, z1; . . . ; vn, zn) ∈ Cn

m(V , W),

δn
m : �(v1, z1; . . . ; vn, zn) → �(v ′

1, z′
1; . . . ; v ′

n+1, z′
n+1) ∈ Cn+1

m−1(V ,W),

one does not necessary assume that we keep the same set of vertex algebra elements/formal parameters and vertex opera-
tors composable with for δn

m�, though it might happen that some of them could be common with �.
Let us define an extra product (related to the ε-product) the product of � and �,

� · � : V ⊗(k+n−r) → Wz1,...,zk+n−r , (3.10)

� · � = [�,·ε �] = � ·ε � − � ·ε �, (3.11)

where brackets denote ordinary commutator in Wz1,...,zk+n−r . Due to the properties of the maps � ∈ Ck
m(V , W) and � ∈

Cn
m′ (V , W), the map (� ·ε �) belongs to the space Ck+n−r

m+m′−t(V , W). For k = n and

�(vn+1, zn+1; . . . ; v2n, z2n) = �(v1, z1; . . . ; vn, zn),

we obtain from (3.11) and (3.5) that

�(v1, z1; . . . ; vn, zn) · �(v1, z1; . . . ; vn, zn) = 0. (3.12)

4. The invariants

In this section we provide the main result of the paper by deriving the simplest cohomological invariants associated to 
the short double complex (2.4) for a grading-restricted vertex algebra.

Let us give first some further definitions. In this section we skip the dependence on vertex algebra elements and formal 
parameters in notations for elements of Cm

n (V , W).

Definition 12. In analogy with differential forms, we call a map � ∈ Cn
m(V , W) closed if

δn
m� = 0.

For m ≥ 1, we call it exact if there exists � ∈ Cn+1
m−1(V , W) such that

� = δn
m�.

Definition 13. For � ∈ Cn
m(V , W) we call the cohomology class of mappings [�] the set of all closed forms that differs from 

� by an exact mapping, i.e., for χ ∈ Cn−1
m+1,

[�] = � + δn−1
m+1χ,

(we assume that both parts of the last formula belongs to the same space Cn
m(V , W)).
9
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Under a natural extra condition, the short double complex (2.6) allows us to establish relations among elements of 
double complex spaces. In particular, we require that for a pair of double complex spaces Cn1

k1
(V , W) and Cn2

k2
(V , W) there 

exist subspaces C ′n1
k1

(V , W) ⊂ Cn1
k1

(V , W) and C ′n2
k2

(V , W) ⊂ Cn2
k2

(V , W) such that for �1 ∈ C ′n1
k1

(V , W) and �2 ∈ C ′n2
k2

(V , W),

�1 · δn2
k2

�2 = 0, (4.1)

namely, �1 supposed to be orthogonal to δn2
k2

�2 (i.e., commutative with respect to the product (3.11)). We call this the 
orthogonality condition for mappings and actions of co-boundary operators for a double complex. It is easy to see that the 
assumption to belong to the same double complex space for both sides of the equations following from the orthogonality 
condition applies the bi-grading condition on double complex spaces. Note that in the case of differential forms considered 
on a smooth manifold, the Frobenius theorem for a distribution provides the orthogonality condition. In this Section we 
derive algebraic relations occurring from the orthogonality condition on the short double complex (2.6). We formulate

Proposition 6. The orthogonality condition for the short double complex sequence (2.6) determines the cohomological classes:[(
δ1

2�
) · �]

,
[(

δ0
3χ

)
· χ

]
,

[(
δ1

t α
) · α]

, (4.2)

for 0 ≤ t ≤ 2, with non-vanishing 
(
δ1

2�
) · �, 

(
δ0

3χ
) · χ , and 

(
δ1

t α
) · α. These classes are independent on the choice of � ∈ C1

2(V , W), 
χ ∈ C0

3(V , W), and α ∈ C1
t (V , W).

Remark 5. A cohomology class with vanishing 
(
δ1

2�
) · � · α is given by 

[(
δ1

2�
) · � · α]

.

Proof. Let us consider two maps χ ∈ C0
3(V , W), � ∈ C1

2(V , W). We require them to be orthogonal, i.e.,

� · δ0
3χ = 0. (4.3)

Thus, there exists α ∈ Cn
m(V , W), such that

δ0
3χ = � · α, (4.4)

and 1 = 1 + n − r, 2 = 2 + m − t , i.e., n = r, which leads to r = 1; m = t , 0 ≤ t ≤ 2, i.e., α ∈ C1
t (V , W). All other orthogonality 

conditions for the short sequence (2.6) does not allow relations of the form (4.4).
Consider now (4.3). We obtain, using (3.8)

δ2−r′
4−t′ (� · δ0

3χ) = (
δ1

2�
) · δ0

3χ + � · δ1
2δ0

3χ = (
δ1

2�
) · δ0

3χ = (
δ1

2�
) · � · α.

Thus

0 = δ3−r′
3−t′ δ

2−r′
4−t′ (� · δ0

3χ) = δ3−r′
3−t′

((
δ1

2�
) · � · α.

)
,

and 
((

δ1
2�

) · � · α)
is closed. At the same time, from (4.3) it follows that

0 = δ1
2� · δ0

3χ − � · δ1
2δ0

3χ =
(
� · δ0

3χ
)

.

Thus

δ1
2� · δ0

3χ = δ1
2� · � · α = 0.

Consider (4.4). Acting by δ1
2 and substituting back we obtain

0 = δ1
2δ0

3χ = δ1
2(� · α) = δ1

2(�) · α − � · δ1
t α,

thus

δ1
2(�) · α = � · δ1

t α.

The last equality trivializes on applying δ3
t+1 to both sides.

Let us show now the non-vanishing property of 
((

δ1
2�

) · �)
. Indeed, suppose 

(
δ1

2�
) · � = 0. Then there exists γ ∈

Cn
m(V , W), such that δ1

2� = γ · �. Both sides of the last equality should belong to the same double complex space but one 
can see that it is not possible. Thus, 

(
δ1

2�
) · � is non-vanishing. One proves in the same way that 

(
δ0

3χ
) · χ and 

(
δ1

t α
) · α

do not vanish too. Now let us show that 
[(

δ1
2�

) · �]
is invariant, i.e., it does not depend on the choice of � ∈ C1

2(V , W). 
Substitute � by (� + η) ∈ C1(V , W). We have
2

10
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(
δ1

2 (� + η)
) · (� + η) = (

δ1
2�

) · � + ((
δ1

2�
) · η − � · δ1

2η
)

+ (
� · δ1

2η + δ1
2η · �) + (

δ1
2η

) · η. (4.5)

Since

(
� · δ1

2η + (
δ1

2η
) · �) = �δ1

2η − (δ1
2η)� + (

δ1
2η

)
� − � δ1

2η = 0,

then (4.5) represents the same cohomology class 
[(

δ1
2�

) · � · α]
. The same folds for 

[(
δ0

3χ
) · χ]

, and 
[(

δ1
t α

) · α]
. �

Remark 6. Due to Proposition 1, all chahomological classes are invariant with respect to corresponding group Autz1,...,znO(n)

changes of formal parameters.

The orthogonality condition for a double complex sequence (2.6), together with the action of co-boundary operators 
(2.2) and (2.4), and the multiplication formulas (3.11)–(3.8), define a differential bi-graded algebra depending on vertex 
algebra elements and formal parameters. In particular, for the short sequence (2.6), we obtain in this way the generators 
and commutation relations for a continual Lie algebra G(V ) (a generalization of ordinary Lie algebras with continual space 
of roots, c.f. [9]) with the continual root space represented by a grading-restricted vertex algebra V .

Lemma 2. For the short sequence (2.6) we get a continual Lie algebra G(V ) with generators{
�(v1), χ, α(v2), δ1

2�(v1), δ0
3χ, δ1

t α(v2),0 ≤ t ≤ 2
}

, (4.6)

and commutation relations for a continual Lie algebra G(V )

� · δ1
t α = α · δ1

2� �= 0,

δ0
3χ = � · α, (4.7)

with all other relations being trivial. The sum of cohomological classes (4.2) provides an invariant of G(V ).

Proof. Recall that �(v1)(z1) ∈ C1
2(V , W), χ ∈ C0

3(V , W), α ∈ C1
t (V , W), 0 ≤ t ≤ 2. One easily checks the commutation 

relations coming from the orthogonality and bi-grading conditions. Further applications of (2.2), (2.4), and (4.1) to (2.6)
lead to trivial results. � · δ1

t α �= 0 is proven by contradiction. It is easy to check Jacobi identities for (4.6) and (4.7). With a 
redefinition

H = δ0
3χ,

H∗ = χ,

X+(v1) = �(v1),

X−(v2) = α(v2),

Y+(v1) = δ1
2�(v1),

Y−(v2) = δ1
t α(v2), (4.8)

the commutation relations (4.7) become:

[X+(v1), X−(v2)] = H,

[X+(v1), Y−(v1)] = [X−(v2), Y+(v1)] ,

i.e., the orthogonality condition brings about a representation of an affinization [8] of continual counterpart of the Lie 
algebra sl2. Vertex algebra elements in (4.8) play the role of roots belonging to continual non-commutative root space given 
by a vertex algebra V . �
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Appendix A. Grading-restricted vertex algebras and their modules

In this section, following [6] we recall basic properties of grading-restricted vertex algebras and their grading-restricted 
generalized modules, useful for our purposes in later sections. We work over the base field C of complex numbers. A vertex 
algebra (V , Y V , 1), cf. [8], consists of a Z-graded complex vector space

V =
⊕
n∈Z

V (n), dim V (n) < ∞ for each n ∈Z,

and a linear map

Y V : V → End (V )[[z, z−1]],
for a formal parameter z and a distinguished vector 1V ∈ V . The evaluation of Y V on v ∈ V is the vertex operator

Y V (v) ≡ Y V (v, z) =
∑
n∈Z

v(n)z−n−1,

with components

(Y V (v))n = v(n) ∈ End (V ),

where Y V (v, z)1 = v + O (z). Now we describe further restrictions [6], defining a grading-restricted vertex algebra:

(1) Grading-restriction condition: V (n) is finite dimensional for all n ∈Z, and V (n) = 0 for n � 0.
(2) Lower-truncation condition: For u, v ∈ V , Y V (u, z)v contains only finitely many negative power terms, that is, 

Y V (u, z)v ∈ V ((z)) (the space of formal Laurent series in z with coefficients in V ).
(3) Identity property: Let 1V be the identity operator on V . Then

Y V (1V , z) = IdV .

(4) Creation property: For u ∈ V , Y V (u, z)1V ∈ V [[z]] and

lim
z→0

Y V (u, z)1V = u.

(5) Duality: For u1, u2, v ∈ V , v ′ ∈ V ′ = ∐
n∈Z V ∗

(n) (V ∗
(n) denotes the dual vector space to V (n) and 〈 ., .〉 the evaluation pair-

ing V ′ ⊗ V →C), the series 〈v ′, Y V (u2, z2)Y V (u1, z1)v〉, and 〈v ′, Y V (Y V (u1, z1 − z2)u2, z2)v〉, are absolutely convergent 
in the regions |z1| > |z2| > 0, |z2| > |z1| > 0, |z2| > |z1 − z2| > 0, respectively, to a common rational function in z1 and 
z2 with the only possible poles at z1 = 0 = z2 and z1 = z2.

One assumes the existence of Virasoro vector ω ∈ V : its vertex operator Y (ω, z) = ∑
n∈Z L(n)z−n−2 is determined by 

Virasoro operators L(n) : V → V fulfilling (notice that with abuse of notation we denote LV (n) = L(n))

[L(m), L(n)] = (m − n)L(m + n) + c

12
(m3 − m)δm+b,0IdV,

(c is called the central charge of V ). The grading operator is given by L(0)u = nu, u ∈ V (n) , (n is called the weight of u
and denoted by wt (u)).

(6) LV (0)-bracket formula: Let LV (0) : V → V be defined by LV (0)v = nv for v ∈ V (n) . Then

[LV (0), Y V (v, z)] = Y V (LV (0)v, z) + z
d

dz
Y V (v, z),

for v ∈ V .
(7) LV (−1)-derivative property: Let LV (−1) : V → V be the operator given by

LV (−1)v = Resz z−2Y V (v, z)1 = Y(−2)(v)1,

for v ∈ V . Then for v ∈ V ,

d

dz
Y V (u, z) = Y V (LV (−1)u, z) = [LV (−1), Y V (u, z)].

Correspondingly, a grading-restricted generalized V -module is a vector space W equipped with a vertex operator map

Y W : V ⊗ W → W [[z, z−1]],

12
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u ⊗ w �→ Y W (u, w) ≡ Y W (u, z)w =
∑
n∈Z

(Y W )n(u, w)z−n−1,

and linear operators LW (0) and LW (−1) on W satisfying conditions similar as in the definition for a grading-restricted 
vertex algebra. In particular,

(1) Grading-restriction condition: The vector space W is C-graded, that is, W = ∐
α∈C W (α) , such that W (α) = 0 when the 

real part of α is sufficiently negative.
(2) Lower-truncation condition: For u ∈ V and w ∈ W , Y W (u, z)w contains only finitely many negative power terms, that 

is, Y W (u, z)w ∈ W ((z)).
(3) Identity property: Let IdW be the identity operator on W , Y W (1, z) = IdW .
(4) Duality: For u1, u2 ∈ V , w ∈ W , w ′ ∈ W ′ = ∐

n∈Z W ∗
(n) (W ′ is the dual V -module to W ), the series

〈w ′, Y W (u1, z1)Y W (u2, z2)w〉,
〈w ′, Y W (u2, z2)Y W (u1, z1)w〉,
〈w ′, Y W (Y V (u1, z1 − z2)u2, z2)w〉, (A.1)

are absolutely convergent in the regions |z1| > |z2| > 0, |z2| > |z1| > 0, |z2| > |z1 − z2| > 0, respectively, to a common 
rational function in z1 and z2 with the only possible poles at z1 = 0 = z2 and z1 = z2.

The locality

Y W (v1, z1)Y W (v2, z2) ∼ Y W (v2, z2)Y W (v1, z1),

and associativity

Y W (v1, z1)Y W (v2, z2) ∼ Y W (Y V v1, z1 − z2)v2, z2),

properties for the vertex operators in a V -module W follow from the Jacobi identity [8].
(5) LW (0)-bracket formula: For v ∈ V ,

[LW (0), Y W (v, z)] = Y W (L(0)v, z) + z
d

dz
Y W (v, z).

(6) LW (0)-grading property: For w ∈ W (α) , there exists N ∈Z+ such that (LW (0) − α)N w = 0.
(7) LW (−1)-derivative property: For v ∈ V ,

d

dz
Y W (u, z) = Y W (LV (−1)u, z) = [LW (−1), Y W (u, z)].

For v ∈ V , and w ∈ W , the intertwining operator

Y W
W V : V → W ,

v �→ Y W
W V (w, z)v, (A.2)

is defined by

Y W
W V (w, z)v = ezLW (−1)Y W (v,−z)w. (A.3)

A.1. Non-degenerate invariant bilinear form on V

The subalgebra

{LV (−1), LV (0), LV (1)} ∼= S L(2,C),

associated with Möbius transformations on z naturally acts on V , (cf., e.g. [8]). In particular,

γλ =
(

0 λ

−λ 0

)
: z �→ w = −λ2

z
, (A.4)

is generated by

Tλ = exp (λLV (−1)) exp
(
λ−1LV (1)

)
exp (λLV (−1)) ,

where
13
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TλY (u, z)T −1
λ = Y

(
exp

(
− z

λ2
LV (1)

)(
− z

λ

)−2LV (0)

u,−λ2

z

)
. (A.5)

In our considerations (cf. Appendix B) of Riemann sphere sewing, we use in particular, the Möbius map

z �→ z′ = ε/z,

associated with the sewing condition (B.4) with

λ = −ξε
1
2 , (A.6)

with ξ ∈ {±√−1}. The adjoint vertex operator [8,3] is defined by

Y †(u, z) =
∑
n∈Z

u†(n)z−n−1 = TλY (u, z)T −1
λ . (A.7)

A bilinear form 〈., .〉λ on V is invariant if for all a, b, u ∈ V , if

〈Y (u, z)a,b〉λ = 〈a, Y †(u, z)b〉λ, (A.8)

i.e.

〈u(n)a,b〉λ = 〈a, u†(n)b〉λ.
Thus it follows that

〈LV (0)a,b〉λ = 〈a, LV (0)b〉λ, (A.9)

so that

〈a,b〉λ = 0, (A.10)

if wt(a) �= wt(b) for homogeneous a, b. One also finds

〈a,b〉λ = 〈b,a〉λ.
The form 〈., .〉λ is unique up to normalization if LV (1)V 1 = V 0. Given any V basis {uα} we define the dual V basis {uβ}
where

〈uα, uβ〉λ = δαβ.

Appendix B. A sphere formed from sewing of two spheres

The matrix element for a number of vertex operators of a vertex algebra is usually associated [3,2,10] with a vertex 
algebra character on a sphere. We extrapolate this notion to the case of Wz1 ,...,zn spaces. In Section 3 we explained that 
a space Wz1,...,zn can be associated with a Riemann sphere with marked points, while the product of two such spaces is 
then associated with a sewing of such two spheres with a number of marked points and extra points with local coordinates 
identified with formal parameters of Wx1,...,xk and Wy1,...,yn . In order to supply an appropriate geometric construction for 
the product, we use the ε-sewing procedure (described in this Appendix) for two initial spheres to obtain a matrix element 
associated with (3.2).

Remark 7. In addition to the ε-sewing procedure of two initial spheres, one can alternatively use the self-sewing procedure 
[11] for the sphere to get, at first, the torus, and then by sending parameters to appropriate limit by shrinking genus to zero. 
As a result, one obtains again the sphere but with a different parameterization. In the case of spheres, such a procedure 
consideration of the product of W-spaces so we focus in this paper on the ε-formalizm only.

In our particular case of W-values rational functions obtained from matrix elements (1.1) two initial auxiliary spaces 
we take Riemann spheres �(0)

a , a = 1, 2, and the resulting space is formed by the sphere �(0) obtained by the procedure 
of sewing �(0)

a . The formal parameters (x1, . . . , xk) and (y1, . . . , yn) are identified with local coordinates of k and n points 
on two initial spheres �(0)

a , a = 1, 2 correspondingly. In the ε sewing procedure, some r points among (p1, . . . , pk) may 
coincide with points among (p′

1, . . . , p′
n) when we identify the annuluses (B.3). This corresponds to the singular case of 

coincidence of r formal parameters.
Consider the sphere formed by sewing together two initial spheres in the sewing scheme referred to as the ε-formalism 

in [11]. Let �(0)
a , a = 1, 2 be to initial spheres. Introduce a complex sewing parameter ε where
14
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|ε| ≤ r1r2.

Consider k distinct points on pi ∈ �
(0)
1 , i = 1, . . . , k, with local coordinates (x1, . . . , xk) ∈ FkC, and distinct points p j ∈ �

(0)
2 , 

j = 1, . . . , n, with local coordinates (y1, . . . , yn) ∈ FnC, with

|xi| ≥ |ε|/r2,

|yi| ≥ |ε|/r1.

Choose a local coordinate za ∈C on �(0)
a in the neighborhood of points pa ∈ �

(0)
a , a = 1, 2. Consider the closed disks

|ζa| ≤ ra,

and excise the disk

{ζa, |ζa| ≤ |ε|/ra} ⊂ �
(0)
a , (B.1)

to form a punctured sphere

�̂
(0)
a = �

(0)
a \{ζa, |ζa| ≤ |ε|/ra}.

We use the convention

1 = 2, 2 = 1. (B.2)

Define the annulus

Aa = {ζa, |ε|/ra ≤ |ζa| ≤ ra} ⊂ �̂
(0)
a , (B.3)

and identify A1 and A2 as a single region A = A1 �A2 via the sewing relation

ζ1ζ2 = ε. (B.4)

In this way we obtain a genus zero compact Riemann surface

�(0) =
{
�̂

(0)
1 \A1

}
∪

{
�̂

(0)
2 \A2

}
∪A.

This sphere form a suitable geometrical model for the construction of a product of W-valued rational forms in Section 3.

Appendix C. Proof of Proposition 5

Proof. For a vertex operator Y V ,W (v, z) let us introduce a notation ωV ,W = Y V ,W (v, z) dzwtv . Let us use notations (3.1) and 
(3.6). According to (2.2), the action of δk+n−r

m+m′−t on R̂F(v1, x1; . . . ; vk, xk; v ′
1, y1; . . . ; v ′

k, yn; ε) is given by

〈w ′, δk+n−r
m+m′−t R̂ F(v1, x1; . . . ; vk, xk; v ′

1, y1; . . . ; v ′
n, yn;ε)〉

= 〈w ′,
k∑

i=1

(−1)i R̂ F (̃v1, z1; . . . ; ṽ i−1, zi−1; ωV (̃vi, zi − zi+1)̃vi+1, zi+1; ṽ i+2, zi+2;

. . . ; ṽk, zk; ṽk+1, zk+1; . . . ; ṽk+n, zk+n;ε)〉

+
n−r∑
i=1

(−1)i 〈w ′,F
(̃

v1, z1; . . . ; ṽk, zk; ṽk+1, zk+1; . . . ; ṽk+i−1, zk+i−1;

ωV
(̃

vk+i, zk+i − zk+i+1) ṽk+i+1, zk+i+1;
ṽk+i+2, zk+i+2; . . . ; ṽk+n−r, zk+n−r;ε

)〉
+〈w ′,ωW (̃v1, z1) F (̃v2, z2; . . . ; ṽk, zk; ṽk+1, zk+1; . . . ; ṽk+n−r, zk+n−r;ε)〉
+〈w, (−1)k+n+1−rωW (̃vk+n−r+1, zk+n−r+1)

F (̃v1, z1; . . . ; ṽk, zk; ṽk+1, zk+1; . . . ; ṽk+n−r, zk+n−r;ε)〉

=
∑
u∈V

〈w ′,
k∑

i=1

(−1)i Y W
V W (F (̃v1, z1; . . . ; ṽ i−1, zi−1; ωV (̃vi, zi − zi+1)̃vi+1, zi+1;

ṽ i+2, zi+2; . . . ; ṽk, zk), ζ1)u〉
〈w ′, Y W (F (̃vk+1, zk+1; . . . ; ṽk+n−r, zk+n−r), ζ2)u〉
V W

15
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+
∑
u∈V

n−r∑
i=1

(−1)i 〈w ′, Y W
V W (F (̃v1, z1; . . . ; ṽk, zk), ζ1)u〉

〈w ′, Y W
V W (F (̃vk+1, zk+1; . . . ; ṽk+i−1, zk+i−1;

ωV (̃vi, zk+i − zk+i+1) ṽk+i+1, zk+i+1; ṽk+i+2, zk+i+2;
. . . ; ṽk+n−r, zk+n−r), ζ2)u〉

+
∑
u∈V

〈w ′, Y W
V W (ωW (̃v1, z1) F (̃v2, z2; . . . ; ṽk, zk), ζ1)u〉

〈w ′, Y W
V W (F (̃vk+1, zk+1; . . . ; ṽk+n−r, zk+n−r), ζ2)u〉

+
∑
u∈V

〈w ′, Y W
V W ((−1)k+1ωW

(̃
vk+1, zk+1

)
F (̃v1, z1; . . . ; ṽk, zk), ζ1)u〉

〈w ′, Y W
V W (F (̃vk+2, zk+2; . . . ; ṽk+n−r, zk+n−r), ζ2)u〉

−
∑
u∈V

〈w ′, (−1)k+1〈w ′, Y W
V W (ωW

(̃
vk+1, zk+1

)
F (̃v1, z1; . . . ; ṽk, zk), ζ1)u〉

〈w ′, Y W
V W (F (̃vk+2, zk+2; . . . ; ṽk+n−r, zk+n−r), ζ2)u〉

+
∑
u∈V

〈w ′, Y W
V W (F (̃v1, z1; . . . ; ṽk, zk), ζ1)u〉

〈w ′, Y W
V W (ωW (̃vk+n−r+1, zk+n−r+1)

F (̃vk+1, zk+1; . . . ; ṽk+n−r, zk+n−r), ζ2)u〉
−

∑
u∈V

〈w ′, Y W
V W (F (̃v1, z1; . . . ; ṽk, zk), ζ1)〉

〈w ′, Y W
V W (ωW (̃vk+n−r+1, zk+n−r+1)

F (̃vk+1, zk+1; . . . ; ṽk+n−r, zk+n−r), ζ2)〉
=

∑
u∈V

〈w ′, Y W
V W (δk

mF (̃v1, z1; . . . ; ṽk, zk), ζ1)u〉

〈w ′, Y W
V W (F (̃vk+1, zk+1; . . . ; ṽk+n−r, zk+n−r), ζ2)u〉

+(−1)k
∑
u∈V

〈w ′, Y W
V W (F (̃v1, z1; . . . ; ṽk, zk), ζ1)u〉

〈w ′, Y W
V W (δn−r

m′−tF (̃vk+1, zk+1; . . . ; ṽk+n−r, zk+n−r), ζ2)u〉
= 〈w ′, δk

mF (̃v1, z1; . . . ; ṽk, zk) ·ε 〈w ′,F (̃vk+1, zk+1; . . . ; ṽk+n−r, zk+n−r)〉
+(−1)k〈w ′,F (̃v1, z1; . . . ; ṽk, zk) ·ε δn−r

m′−tF (̃vk+1, zk+1; . . . ; ṽk+n−r, zk+n−r)〉,
since, ∑

u∈V

〈w ′, (−1)k+1Y W
V W (ωW

(̃
vk+1, zk+1

)
F (̃v1, z1; . . . ; ṽk, zk), ζ1)u〉

〈w ′, Y W
V W (F (̃vk+2, zk+2; . . . ; ṽk+n−r, zk+n−r), ζ2)u〉

=
∑
u∈V

〈w ′, (−1)k+1eζ1 LW (−1)Y W (u,−ζ1) ωW
(̃

vk+1, zk+1
)
F (̃v1, z1; . . . ; ṽk, zk)〉

〈w ′, Y W
V W (F (̃vk+2, zk+2; . . . ; ṽk+n−r, zk+n−r), ζ2)u〉

=
∑
u∈V

〈w ′, (−1)k+1eζ1 LW (−1)ωW
(̃

vk+1, zk+1
)

Y W (u,−ζ1) F (̃v1, z1; . . . ; ṽk, zk)〉

〈w ′, Y W
V W (F (̃vk+2, zk+2; . . . ; ṽk+n−r, zk+n−r), ζ2)u〉

=
∑
u∈V

〈w ′, (−1)k+1 ωW
(̃

vk+1, zk+1 + ζ1
)

eζ1 LW (−1)Y W (u,−ζ1) F (̃v1, z1; . . . ; ṽk, zk)〉

〈w ′, Y W (F (̃vk+2, zk+2; . . . ; ṽk+n−r, zk+n−r), ζ2)u〉
V W

16
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=
∑
v∈V

∑
u∈V

〈v ′, (−1)k+1 ωW
(̃

vk+1, zk+1 + ζ1
)

w〉

〈w ′, eζ1 LW (−1)Y W (u,−ζ1) F (̃v1, z1; . . . ; ṽk, zk)〉
〈w ′, Y W

V W (F (̃vk+2, zk+2; . . . ; ṽk+n−r, zk+n−r), ζ2)u〉
=

∑
u∈V

〈w ′, eζ1 LW (−1)Y W (u,−ζ1) F (̃v1, z1; . . . ; ṽk, zk)〉
∑
v∈V

〈v ′, (−1)k+1 ωW
(̃

vk+1, zk+1 + ζ1
)

w〉

〈w ′, Y W
V W (F (̃vk+2, zk+2; . . . ;

ṽk+n−r, zk+n−r), ζ2)u〉
=

∑
u∈V

〈w ′, Y W
V W (F (̃v1, z1; . . . ; ṽk, zk), ζ1)u 〉

〈w ′, (−1)k+1 ωW
(̃

vk+1, zk+1 + ζ1
)

Y W
V W (F (̃vk+2, zk+2; . . . ; ṽk+n−r, zk+n−r), ζ2)u〉

=
∑
u∈V

〈w ′, Y W
V W (F (̃v1, z1; . . . ; ṽk, zk), ζ1)u 〉

〈w ′, (−1)k+1 ωW
(̃

vk+1, zk+1 + ζ1
)

eζ2 LW (−1)Y W (u,−ζ2) F (̃vk+2, zk+2; . . . ; ṽk+n−r, zk+n−r)〉
=

∑
u∈V

〈w ′, Y W
V W (F (̃v1, z1; . . . ; ṽk, zk), ζ1)u 〉

〈w ′, (−1)k+1 eζ2 LW (−1) Y W (u,−ζ2) ωW
(̃

vk+1, zk+1 + ζ1 − ζ2
)

F (̃vk+2, zk+2; . . . ; ṽk+n−r, zk+n−r)〉
=

∑
u∈V

〈w ′, Y W
V W (F (̃v1, z1; . . . ; ṽk, zk), ζ1)u〉

〈w ′, Y W
V W (ωW (̃vk+1, zk+1) F (̃vk+2, zk+2; . . . ; ṽk+n−r, zk+n−r), ζ2)u〉,

due to locality (A.1) of vertex operators, and arbitrariness of ṽk+1 ∈ V and zk+1, we can always put

ωW
(̃

vk+1, zk+1 + ζ1 − ζ2
) = ωW (̃vk+2, zk+2),

for ṽk+1 = ṽk+2, zk+2 = zk+1 + ζ2 − ζ1. �
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